Prof. Dr.

Frederik Witt

Professor - Chair of Differential Geometry
Institute of Geometry and Topology
Chair of Differential Geometry

Contact

+49 711 685-67042

Pfaffenwaldring 57
70550 Stuttgart
Deutschland
Room: 7.348

Office Hours

  • during the term: friday 10-11. No office hour on the 15th and 29th of November.
  • after the winter term: first week after the end of the winter term and two weeks before the summer term by appointment
  • after the summer term: two weeks after the end of the summer term and two weeks before the winter term by appointment

 

 

preprints   arXiv | INSPIRE

appeared or accepted for publication   MathSciNet (requires access rights)

  1. Asymptotic Geometry of the Hitchin Metric (with R. Mazzeo, J. Swoboda and H. Weiß), Comm. Math. Phys. 367 (2019), no. 1, 151–191.
  2. Holonomy rigidity for Ricci-flat metrics (with B. Ammann, K. Krönke and H. Weiß), Math. Z. 291 (2019), no. 1-2, 303–311.
  3. Ends of the moduli space of Higgs bundles  (with R. Mazzeo, J. Swoboda and H. Weiß), Duke Math. J. 165 (2016), no. 12, 2227–2271.
  4. A spinorial energy functional: critical points and gradient flow (with B. Ammann and H. Weiß), Math. Ann. 365 (2016), no. 3-4, 1559–1602.
  5. The spinorial energy functional on surfaces (with B. Ammann and H. Weiß), Math. Z. 282 (2016) no. 1-2, 177–202.
  6. Limiting configurations for solutions of Hitchin's equation (with R. Mazzeo, H. Weiß and J. Swoboda), Séminaire de Théorie spectrale et géométrie (Grenoble), 31 (2012-2014), pp. 91–116
  7. Mini-Workshop: Quaternion Kähler Structures in Riemannian and Algebraic Geometry held November 3-9, 2013. Organised by A. Fino, U. Semmelmann, J. Wiśniewski and F. Witt. Volume 10, Issue 4, pp. 3115–3145, Oberwolfach Reports EMS, 2013
  8. A heat flow for special metrics (with H. Weiß), Adv. Math. 231 (2012) no. 6, 3288–3322
  9. Energy functionals and soliton equations for G2-forms (with H. Weiß), Ann. Global Anal. Geom. 42 (2012) no. 4, 585–610
  10. On complex and symplectic toric stacks (with A. Hochenegger), in: "Contributions to Algebraic Geometry" (Hrsg. P. Pragacz), Pages 305–333, EMS Series of Congress Reports, 2012
  11. Generalised geometries, constrained critical points and Ramond-Ramond fields (with C. Jeschek), Fortschr. Phys. 59 (2011) no. 5-6, 494–517
  12. Deformations of associative submanifolds with boundary (with D. Gayet), Adv. Math. 226 (2011) no. 3, 2351–2370
  13. Gauge theory in dimension seven, in: L. de Andrés, M. Fernández, O. Garay, L. Ugarte (ed.),
    Workshop on Geometry and Physics: Special metrics and supersymmetry pp. 180–195, AIP 2009
  14. Special metrics and Triality, Adv. Math. 219 (2008) no. 5, 1972–2005
  15. Calibrations and T-duality (with F. Gmeiner), Comm. Math. Phys. 283 (2008) no. 2, 543–578
  16. Calabi-Yau manifolds with B-fields, Rend. Sem. Mat. Univ. Pol. Torino 66 (2008) no. 1, 1–21
  17. Metric bundles of split signature and type II supergravity, Recent developments in pseudo-Riemannian geometry, 455–494, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008
  18. Calibrations on spaces with GxG-structure (with F. Gmeiner), Fortschr. Phys. 55 (2007) no. 5-7, 727–730
  19. Generalised G2-manifolds, Comm. Math. Phys. 265 (2006) no. 2, 275–303
  20. Generalised G2-structures and type IIB superstrings (with C. Jeschek), J. High Energy Phys. 2005 no. 3, 053, 15 pp
  21. Conformal properties of harmonic spinors and lightlike geodesics in signature (1,1), J. Geom. Phys. 46 (2003) no. 1, 74–97

Theses

Special metrics and closed forms, DPhil thesis, University of Oxford, 2005
Konforme Invarianten von Lorentz-Flächen, Diplomarbeit, Humboldt Universität zu Berlin, 2001

  • lecture course Höhere Mathematik 3 (vertieft) c@mpus ILIAS
  • reading course Garbenkohomologie für Noethersche Schemata c@mpus ILIAS

 

Primary (MSC2010)

14 Algebraic geometry

  • 14-06 Proceedings, conferences, collections, etc.

53 Differential geometry

  • 53-06 Proceedings, conferences, collections, etc.
  • 53C07 Special connections and metrics on vector bundles (Hermite-Einstein-Yang-Mills)
  • 53C24 Rigidity results
  • 53C26 Hyper-Kähler and quaternionic Kähler geometry, "special'' geometry 
  • 53C27 Spin and Spinc geometry
  • 53C29 Issues of holonomy
  • 53C38 Calibrations and calibrated geometries 
  • 53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) 
  • 53C80 Applications to physics
  • 53D18 Generalized geometries (à la Hitchin) 
  • 53D35 Global theory of symplectic and contact manifolds

58 Global analysis, analysis on manifolds

  • 58D17 Manifolds of metrics (esp. Riemannian)
  • 58D27 Moduli problems for differential geometric structures

81 Quantum theory

  • 81T30 String and superstring theories; other extended objects (e.g., branes) 

Secondary (MSC2010)

14 Algebraic geometry

  • 14H60 Vector bundles on curves and their modul
  • 14M25 Toric varieties, Newton polyhedra

32 Several complex variables and analytic spaces

  • 32-06 Proceedings, conferences, collections, etc.
  • 32Q25 Calabi-Yau theory

35  Partial differential equations

  • 35K55 Nonlinear parabolic equations  
  • 35R01 Partial differential equations on manifolds

53 Differential geometry

  • 53C10 G-structures
  • 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
  • 53C29 Issues of holonomy
  • 53C50 Lorentz manifolds, manifolds with indefinite metrics

58 Global analysis, analysis on manifolds

  • 58Exx Variational problems in infinite-dimensional spaces
  • 58E30 Variational principles
  • 58J32 Boundary value problems on manifolds
  • 58J60 Relations with special manifold structures (Riemannian, Finsler, etc.

81 Quantum theory

  • 81T60 Supersymmetric field theories

83 Relativity and gravitational theory

  • 83E50 Supergravity

Master

  • Quotienten in der algebraischen Geometrie, U Stuttgart, 2017
  • Limiting configurations from a Hermitian point of view, U Stuttgart, 2016
  • Hodge Theory on Noncompact Manifolds, U Stuttgart, 2016
  • Die Momentenabbildung in der symplektischen und torischen Geometrie (ko-betreute Diplomarbeit), FU Berlin, 2008


Bachelor

  • Über die Klassifikation komplexer Flächen, U Stuttgart 2019
  • Die Picard- und Jacobi-Varietät einer Riemannschen Fläche, U Stuttgart 2019
  • Toric Ideals, Gröbner Bases and the Knapsack Problem, U Stuttgart 2016
  • Public-Key Kryptographie, WWU Münster, 2014
  • Elliptische Kurven über endlichen Körpern, WWU Münster, 2014
  • Das Gruppengesetz einer kubischen Kurve, WWU Münster, 2014
  • Die Grad-Genus-Formel, WWU Münster, 2014
  • Hirzebruch-Flächen - Konstruktion und Untersuchung einer symplektischen Mannigfaltigkeit, WWU Münster, 2014
  • Minimalflächen und harmonische Abbildungen, WWU Münster, 2013
  • Symplectic toric manifolds, LMU München, 2010

Universität Stuttgart

WWU Münster

  • Skalarkrümmung und Minimalflächen (SoSe 15)
  • Differentialgeometrie 1 (WiSe 14/15)
  • Geometrische Variationsrechnung (SoSe 14)
  • Mathematische Grundlagen der String-Theorie (SoSe 13)
  • Geometrische Analysis (WiSe 12/13)
  • Holomorphe Vektorbündel (SoSe 12)
  • Riemannsche Flächen (SoSe 11)
  • Komplexe Geometrie (WiSe 10/11)

LMU München

  • Yang-Mills-Theorie (SoSe 10)
  • Symplektische Geometrie 2 (WiSe 09/10)
  • Symplektische Geometrie 1 (SoSe 09)
To the top of the page