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Abstract. In the same way we can view R2 as complex space C, a two di-
mensional real surface can be seen as a one dimensional complex curve. If we

replace smooth functions by holomorphic ones, the surface becomes a genuine

geometric object of complex geometry. In this way it brings together anayl-
sis and algebra, and topology and geometry. Moreover, complex geometry

is not only confined to surfaces but makes also sense in higher dimensions.

It has many important applications to Riemannian and (complex) algebraic
geometry as well as to theoretical physics.

Since this is a classical subject there exists a vast and excellent literature.

The text here builds essentially on

(i) O. Forster, Lectures on Riemann surfaces, Springer;
(ii) W. Fulton, Algebraic topology, Springer;

(iii) R. Gunning, Lectures on Riemann surfaces, Princeton University Press.

No claim of any originality in the presentation of this material is made.
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1. The category of Riemann surfaces

In order to do geometry we need two things: A topological space and a prefered
class of functions. We define Riemann surfaces and holomorphic maps in analogy
with smooth manifolds and smooth maps which starts from the notion of a smooth
function. Here, we replace smooth functions by holomorphic ones, see Appendix A
for a brief recap. In this first chapter we construct several examples of Riemann
surfaces and holomorphic maps and also discuss various classifications results.
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Unless mentioned otherwise,

X will be a surface, that is, a connected second countable Hausdorff space such
that every point a P X admits an open neighbourhood homeomomorphic to R2.

We note that such a topological space is always metrisable, that is, it is the topology
of open balls for some distance function (or metric) d. We denote by Drpzq an open
ball of radius r around z P X. If X “ C and z “ 0 we simply write Dr for Drp0q.
For more specific results on the topology of surfaces we require, see Appendix C. A
further impotant feature is the existence of partitions of unity. This is a family
tfk : X Ñ r0, 1s Ă R of functions subordinate to an open cover tUku of X, that is

‚ supp fk Ă Uk,
‚ family of supports is locally finite, that is, any point a P X has a neigh-

bourhood V which meets only finitely many Uk, so V XUk “ H except for
finitely many k,

and such that

‚
ř

k fk “ 0. (This is the reason calling tfku a partition of unity. A priori
the sum can be infinite but in view of local finiteness, fkppq “ 0 for all but
a finite number of k.)

Such a partition of unity exists for any open cover of X, see for instance [Fo,
Appendix A].

1. Remark. We will actually assume that X is an orientable surface, that is, it
does not contain an embedded Moebius band (the one-sided surface you get when
you a cylinder by twisting it once, see Figure 1.1). In practice, we can gloss over
these topological subtleties.

Figure 1. A Moebius band

1.1. Riemann surfaces and holomorphic maps. First, we define the concept
of a Riemann surface before we turn to the functions.

Riemann surfaces.
2. Definition (complex charts and holomorphic atlas. A complex chart
is a homeomorphism ϕ : U Ă X Ñ V Ă C between open sets U and V . Two such
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charts ϕ1,2 : U1,2 Ñ V1,2 are said to be holomorphically compatible if the maps

ϕ12 :“ ϕ2 ˝ ϕ
´1
1 : ϕ1pU1 X U2q Ñ ϕpU1 X U2q,

the so-called transition functions, are biholomorphic (see Figure 1.2). We will
usually write U12 “ U1 X U2 for the intersection of two open sets U1,2. A holo-
morphic atlas is a system A “ tϕi : Ui Ñ Vi | i P Iu of charts such that

‚ tUiuiPI is an open cover of X, i.e. X “
Ť

iPI Ui;
‚ for any i, j P I, ϕi and ϕj are holomorphically compatible.

Two holomorphic atlases A and B are holomorphically equivalent if any two
charts ϕ P A and ψ P B are holomorphically compatible.

Figure 2. Two compatible charts ϕ1,2 : U1,2 Ă V1,2 Ă C

3. Remark. If ϕ : U Ñ V is a complex chart, then for any open subset Ũ Ă U ,
ϕ̃ “ ϕ|Ũ : Ũ Ñ Ṽ “ ϕpŨq is a complex chart compatible with ϕ.

It is easily verified that the notion of holomorphic equivalence induces an equiva-
lence relation on atlases.

4. Definition (holomorphic structure and Riemann surface). A holo-
morphic structure on X is an equivalence class of holomorphically equivalent
atlases. Every holomorphic structure contains a unique maximal atlas (take the
union of all atlases in the equivalence class). Let A be such a maximal atlas. Then
the pair pX,Aq is called a Riemann surface.

5. Remark.

(i) Any oriented surface admits at least one holomorphic structure. This is essen-
tially a consequence of the Uniformisation Theorem (which we will not prove
in this course) and the covering theory discussed in Section 1.1.2.

(ii) Since a holomorphic function is necessarily smooth, the identification C – R2

induces on X the structure of a two dimensional differentiable manifold.
(iii) Radós theorem (see for instance [Fo, Theorem 23.3]) asserts that a Riemann

surface is automatically second countable so we could drop this condition
from our assumptions on the underlying topological space (the theorem is
false however in higher dimensions).
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We will usually only specify some atlas of a given equivalence class, not necessarily
a maximal one. In particular, if we speak of a chart ϕ of X, then ϕ is not necessarily
contained in a given atlas, but only compatible (and thus an element of the maximal
atlas of the holomorphic structure). More generally, we say that an open set U Ă X
is a coordinate neighbourhood of X if U is the domain of some compatible
chart. If no confusion arises we usually drop any reference to the atlas and denote
the Riemann surface by X.

6. Examples. Here are some explicit examples. We will construct further ones
by analytic continuation below, see Section 1.1.3.

(i) The complex plane C. Here, a holomorphic atlas is induced by the equiv-
alence of the atlas A “ tId : C Ñ Cu which consists solely of the identity.
One usually writes z : CÑ C for this chart and considers z as a holomorphic
coordinate or parameter.

(ii) Domains. Let X be a Riemann surface and Y Ă X a domain, i.e. a con-
nected, open subset. We define an atlas of Y by taking all charts ϕ : U Ñ ϕpUq
of X with U Ă Y (since Y is open, U is open in Y if and only if U is open in
X). Hence Y is a Riemann surface, and we will always equip domains of X
with this holomorphic structure unless mentioned otherwise.

(iii) The projective space P1. Let

P1 “ tlines in C2 through the origin in C2u.

Since any point pz0, z1q P C2 determines a unique such line, we can identify P1

with the set trz0 : z1s | pz0, z1q P C2ztp0, 0qu. Here, rz0 : z1s denotes the equiv-
alence class of C2ztp0, 0qu modulo the action of C˚ by scalar multiplication,
i.e. pz0, z1q „ pw0, w1q if and only if z0 “ λw0, z1 “ λw1 for some λ P C˚. In
particular, we get a projection map π : C2ztp0, 0qu Ñ P1 which also induces a
natural topology on P1. Namely, a set U Ă P1 is open if and only if π´1pUq
is open. In particular, π is continuous. For instance, Ui “ trz0 : z1s | zi “ 0u
is open, for π´1pUiq “ tpz0, z1q | zi “ 0u. In fact, we get homeomorphisms

ϕ0 : U0 Ñ C, ϕ0prz0 : z1sq “ z1{z0, ϕ1 : U1 Ñ C, ϕ0prz0 : z1sq “ z0{z1,

whose induced transition function is ϕ01 “ ϕ0 ˝ϕ
´1
1 : C˚ Ñ C˚, ϕ01pzq “ 1{z

is clearly biholomorphic. This gives P1 the structure of a Riemann surface.
Note in passing that since P1 “ πpS3q for S3 Ă C2 – R4, P1 is compact as
the image of a compact set under a continuous map.

(iv) Tori. Let ω1, ω2 P C – R2 be linearly independent over R. Consider the
lattice

Λ :“ Zω1 ` Zω2 “ tnω1 `mω2 | n, m P Zu
spanned by ω1 and ω2. We consider the torus, the set of equivalence classes

TΛ “ C{Λ,

where two points z, z1 P C are equivalent if and only if z ´ z1 P Λ. Again,
we have a projection map π “ πΛ : C Ñ TΛ and declare a set U to be
open if and only if π´1pUq is open in C. To define a complex structure
on TΛ we define an atlas by taking all charts of the following type. We let
V Ă C be an open subset such that no two points in V are equivalent under
Λ. In particuar, π|V : V Ñ U “ πpV q Ă TΛ is bijective and defines a
homeomorphism. Let ϕ “ pπ|V q

´1 : U Ñ V . Let us show that any two
of these charts, say ϕi : Ui Ñ Vi, i “ 1, 2, are compatible. For the map
ϕ12 “ ϕ1 ˝ ϕ

´1
2 : ϕ1pU1 X U2q Ñ ϕ2pU1 X U2q we have πpϕ12pzqq “ πpzq, that
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is, ϕ12pzq ´ z P Λ. Since ϕ12pzq ´ z is continuous and Λ discrete, ϕ12pzq ´ z
is a constant in Λ on any connected component of ϕ1pU1 X U2q and thus a
translation. In particular, it is holomorphic. Similarly, ϕ´1

12 is holomorphic.

7. Remark.

(i) P1 is also called the Riemann sphere for the following reason: If we think of C
as R2 and let 8 “ r0 : 1s, then topologically P1 “ R2 Y t8u – S2 where the
identification of R2Yt8u with the 2-sphere is given by stereographic projection
(see for instance [Fo, Exercise 1.1]). It follows that S2 can be given a (unique,
see Example 1.18) structure of a Riemann surface. The superscript 1 in P1

indicates that this is just the first space in the series of higher dimensional
projective spaces Pn obtained by taking the lines through the origin in Cn`1.

(ii) One can check that the map Tλ Ñ S1 ˆ S1 which takes the point repre-
sented by xω1 ` yω2 to pexpp2πixq, expp2πiyqq is a homeomorphism, and in
fact even a diffeomorphism, that is, any two differentiable atlases are equiv-
alent. However, we will see below that there are inequivalent holomorphic
atlases on TΛ, that is, TΛ as a Riemann surface is not uniquely determined
(see Example 1.18).

Holomorphic functions. Any good mathematical theory has a notion of (iso-)
morphism. In geometry, this is build from the preferred class of functions to which
we come next. The resulting morphisms will be studied in the next paragraph.

8. Definition (holomorphic function). Let X be a Riemann surface and
W Ă X be an open subset. A function f : W Ñ C is called holomorphic if for
every chart ϕ : U Ñ V with UXW “ H, the complex function f ˝ϕ´1 : ϕpUXW q Ă
CÑ C is holomorphic in the usual sense (cf. Appendix A). The set of holomorphic
functions on W Ă X will be denoted by OXpW q or OpW q for short.

9. Remark.

(i) Any constant function is trivially holomorphic, whence a natural inclusion
C ãÑ OpW q. It is straightforward to see that the sum and the product of
holomorphic functions are again holomorphic. Since C Ă OpW q, we see that
OpW q is a C-algebra.

(ii) For any domain in C with its standard holomorphic structure we recover the
usual notion of a holomorphic function.

(iii) Any chart ϕ : U Ñ V Ă C is holomorphic by the very definition of holomor-
phic compatibility. Following the notation for C (cf. (i) of Example 1.6), one
also calls ϕ´1 : V Ñ U a local coordinate or uniformising parameter
and writes z “ ϕ´1. Then a function f : U Ă X Ñ C is holomorphic ô
fpzq : V Ñ C is holomorphic in the usual sense. Note that almost by defini-
tion holomorphicity is a local property and that it is enough to check it for
some (not necessarily maximal) atlas of X by compatibility.

(iv) It is actually enough to check holomorphicity for a single atlas A which is
compatible with the holomorphic structure. Namely, if f ˝ ϕ´1 : ϕpUq Ñ C
is holomorphic for all charts ϕ in A, then f is holomorphic. Indeed, let ψ
be any complex chart of the Riemann surface. Then (neglecting domains of
definition) f ˝ψ “ f ˝ϕ´1˝ϕ˝ψ The notion was taylor-made for the definition
of a holomorphic function.
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The classical theorems for holomorphic functionson open sets of C (cf. Section A)
easily generalise to Riemann surfaces, for instance:

10. Theorem (Riemann’s Removable Singularities Theorem) [Fo, 1.8].
Let U be an open subset of a Riemann surface, and let a P U . If f P OpUztauq is
bounded on U ñ f can be uniquely extended to a holomorphic function in OpUq.

Proof. Shrinking U if necessary we can take a chart ϕ : U Ñ V and consider f˝ϕ´1 :
V ztϕpaqu Ñ C. This is a bounded holomorphic function on V for f is bounded,
hence one can apply the usual version of Riemann’s theorem (cf. Appendix A). �

11. Theorem (maximum principle) [Fo, 2.6]. Let X be a Riemann surface and
f : X Ñ C be a nonconstant holomorphic function ñ |f |, the absolute value of f ,
does not have a global maximum.

Proof. We proceed by contraposition and assume that M :“ supbPX |fpbq| ă 8,
that is, |f | attains its global maximum at some point b P X. Hence b P S :“ ta P
X | |fpaq| “ Mu. We have to show that S “ X. First, S must be closed by
continuity of f . Second, S must be also open: Take a chart ϕ : U Ñ V and an open
connected set U1 Ă U around a so that f ˝ϕ´1|ϕpU1q is a holomorphic function with

a (global) maximum at f˝ϕ´1paq. By the classical maximum principle, f˝ϕ´1|ϕpU1q

must be constant and thus equal to M , hence a P U1 P S. It follows that S is not
empty, closed and open and thus equals X for X is connected. �

The maximum principle has also a surprising effect for compact Riemann surfaces.

12. Corollary (holomorphic functions on compact Riemann surfaces) [Fo,
2.8]. Let X be a compact Riemann surface. Then OpXq – C.

Proof. Let f : X Ñ C be holomorphic so that in particular, f is continuous. Since
X is compact it assumes its maximum somewhere. By Theorem 1.11 this is only
possible if f is constant. �

13. Corollary (Liouville’s theorem) [Fo, 2.10]. Every bounded function
f : CÑ C is constant.

Proof. We consider f ˝ϕ0 : U0 Ă P1 Ñ C as a holomorphic function on P1ztr0 : 1su.
However, since f is bounded, this must be removable by Theorem 1.10 and f extends
to a holomorphic function f : P1 Ñ P1. Hence f is constant by Corollary 1.12. �

Holomorphic maps. Now we can define the notion of a holomorphic map.
Taking these as morphisms we can actually define a category, but we will not pursue
this viewpoint further.

14. Definition (holomorphic map). Suppose X and Y are Riemann surfaces.
A continuous map F : X Ñ Y is called holomorphic, if for every pair of charts
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ϕ1 : U1 Ñ V1 and ϕ2 : U2 Ñ V2 on X and Y respectively with F pU1q Ă U2, the
function

ϕ2 ˝ F ˝ ϕ
´1
1 : V1 Ă CÑ V2 Ă C

is holomorphic in the usual sense. A map F : X Ñ Y is biholomorphic if there
exists a holomorphic map G : Y Ñ X such that F ˝ G “ IdY and G ˝ F “ IdX ,
that is, F is bijective and has a holomorphic inverse F´1 “ G. If a biholomorphic
map X Ñ Y exists we say that X and Y are isomorphic.

15. Remark.

(i) The composition of two holomorphic maps is again holomorphic.
(ii) If Y “ C, then holomorphic maps are just holomorphic functions in the sense

of Definition 1.8.
(iii) Two holomorphic atlases A and A1 on X are equivalent if and only if the

identity Id : pX,Aq Ñ pX,A1q is a biholomorphic map.

More generally, a continuous map F : X Ñ Y is holomorphic if and only if for every
chart ϕ : U Ă Y Ñ V , the restricted function F˚ϕ :“ ϕ ˝ F |F´1pUq : F´1pUq Ñ
V Ă C is holomorphic.

16. Proposition [Gu, Lemma 2]. F : X Ñ Y is holomorphic ô for any open
subset U Ă Y , we have F˚f P OXpF

´1pUqq, that is, we get an induced map

F˚U : OY pUq Ñ OXpF
´1pUqq.

Proof. If F is holomorphic, then clearly F˚Uf P OXpF
´1pUqq for all f P OY pUq.

For the converse we need to check that F is holomorphic near any p P X. Take
coordinates ϕ and ψ around p and F ppq respectively, say on U Ă X and V Ă Y
with F´1pV q Ă U . In particular, ψ P OY pV q. Hence F˚ψ P OXpF

´1pV qq by
assumption so that F˚ψ ˝ϕ´1 “ ψ ˝F ˝ϕ is a holomorphic function in the ordinary
sense. �

17. Remark. It is easily checked that F˚ is a ring morphism. If F : X Ñ Y and
G : Y Ñ Z are holomorphic maps, then pG ˝ F q˚ “ F˚ ˝G˚.

18. Examples.

(i) The famous Uniformisation Theorem asserts that any simply-connected Rie-
mann surface is isomorphic to either of the following ones: P1, C or a do-
main strictly contained in C (any two such domains are isomorphic by Rie-
mann’s mapping theorem). In particular, there exists only one compact
simply-connected Riemann surface. Put differently, any oriented compact
surface of genus zero has precisely one holomorphic structure up to biholo-
morphic maps (for instance induced by linear transformations of the form
Arz0 : z1s “ rAz0 : Az1s for A P GLp2,Cq).

(ii) Next let us consider a compact Riemann surfaces of genus 1, i.e. tori. Let
Λ “ tm1ω1 ` m2ω2 | mi P Zu and Λ1 “ tm1ω

1
1 ` m2ω

1
2 | mi P Zu be two

lattices in C. Let T “ TΛ “ C{Λ and T 1 “ TΛ1 “ C{Λ1 be the corresponding
complex tori. If T and T 1 are isomorphic via an isomorphism F : T Ñ T 1, we
can lift F ˝ πΛ : CÑ TΛ1 by standard covering space theory (cf. Appendix B,

in particular Theorem B.15) to a periodic holomorphic map F̃ : CÑ C which
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satisfies πΛ1 ˝ F̃ “ F ˝ πΛ. Since πΛ1pF̃ pz ` λqq “ F̃ pπΛpz ` λqq “ πΛ1pF̃ pzqq

for all λ P Λ we have F̃ pz ` λq ´ F̃ pzq P Λ1, i.e

F̃ pz ` ωiq “ F̃ pzq ` ai1ω
1
1 ` ai2ω

1
2 (1)

for some integers aij P Z such that a11a22´a12a21 “ ˘1. The latter condition

stems from the fact that the inverse F̃´1 must satisfy a similar relation, that is,
F̃´1pz`ω1iq “ F̃´1pzq`bi1ω1`bi2ω2 for bij P Z. Moreover, the matrices satisfy
pbijq “ paijq

´1. By Cramer’s rule happens it follows that detpaijq “ ˘1. By
interchanging the order of ω11,2 we may assume that detpaijq “ 1, that is,

paijq P SLp2,Zq. Since F̃ pz`λq´ F̃ pzq P Λ1 is constant in z, differentiating in

z yields F̃ 1pzq “ F̃ 1pz ` λq. Hence F̃ 1 is invariant under Λ and thus decends
to a function on the torus TΛ Ñ C. By Theorem 1.12 F 1 must be constant:
F̃ 1pzq ” c P C. Hence F pzq “ cz ` d for a further constant d P C. We

can get rid of d by compounding F̃ with the biholomorphic map induced by
the translation τ : TΛ1 Ñ TΛ1 , τprzsq “ rz ´ ds which lifts to the translation

τ̃ : CÑ C, τ̃pzq “ z´d. So up to a translation, F̃ pzq “ cz. Then Equation (1)
implies

cω1 “ a11ω
1
1 ` a12ω

1
2, cω2 “ a21ω

1
1 ` a22ω

1
2. (2)

If we consider the ratios ω “ ω1{ω2 and ω1 “ ω11{ω
1
2, the latter relation gives

ω “

ˆ

a11 a12

a21 a22

˙

ω1 :“
a11ω

1 ` a12

a21ω1 ` a22
. (3)

Conversely, if (3) holds, then there exists a complex constant c “ 0 such

that (2) F̃ pzq :“ cz satisfies (1) and thus descends to an isomorphism F :
T Ñ T 1. Hence T and T 1 are isomorphic ô ω “ Aω1 for A P SLp2,Zq and
Aω1 defined as in (3).

19. Remark. In particular, two nonisomorphic holomorphic structures can give
rise to the same differentiable structure as the previous example of nonisomorphic
tori shows (as observed in Example 1.6 (iv), they are diffeomorphic to S1 ˆ S1).

Next we prove some elementary properties of holomorphic maps.

20. Theorem (Identity Theorem) [Fo, 1.11]. Let F1,2 : X Ñ Y be two holo-
morphic maps between two Riemann surfaces X and Y . If there exists a set S Ă X
with a limit point (e.g. S open) such that F1|S “ F2|S, then F1 ” F2.

Proof. Let R be the set of all points a P X which have an open neighbourhood U
such that F1|U “ F2|U .

Step 1. R is not empty. Indeed, consider charts ϕ1 : U1 Ñ V1 and ϕ2 : U2 Ñ V2

with U1 connected, a P U1 and FipU1q Ă U2. Since ϕ1pS X U1q contains a limit
point, ϕ2 ˝ F1 ˝ ϕ

´1
1 “ ϕ2 ˝ F2 ˝ ϕ

´1
1 : V1 Ñ C by the usual identity theorem for

holomorphic functions, cf. Corollary A.11. Hence F1|U1
“ F2|U2

, so a P R.

Step 2. R is open. This follows by design.

Step 3. R is closed. Let b P BR be a boundary point of R. Then F1pbq “ F2pbq by
continuity. Let U be an open neighbourhood of b. Take a chart ϕ : U Ñ V with U
connected and b P U . Since b is a boundary point of R, U XR “ H. Arguing as in
the first step we see that F1|U “ F2|U , whence b P R.

The result now follows from the connectivity of X. �
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21. Corollary. If U is connected, then OpUq is an integral domain.

Proof. Indeed, assume that f ¨ g ” 0 for f , g P OpUq. Then either g or f must
vanish on an open subset of U , and hence on all of U by the Identity Theorem
(applied to the case Y “ C). �

Recall that a subset S of a topological space X is called discrete if every point
a P S has an open neighbourhood U in X such that UXS “ tau. From the Identity
Theorem 1.20 we immediately deduce the

22. Corollary [Fo, 4.2]. Let F : X Ñ Y be a nonconstant holomorphic map .
Then F is discrete, i.e. F has discrete fibres.

Proof. Otherwise, there exists b P Y such that the set S “ ta P X | F paq “ bu has
an accumulation point. But then F ” b, i.e. F would be constant. �

23. Example. Consider the holomorphic projection πΛ : C Ñ TΛ. The fibres
can be identified with translated copies of Λ which is discrete in C.

Next we are proving further elementary properties of holomorphic maps based on
the following local classification:

24. Theorem (local normal form theorem for holomorphic maps) [Fo, 2.1].
Let X and Y be Riemann surfaces, and F : X Ñ Y is a nonconstant holomorphic
map. Suppose a P X and b :“ F paq. Then there exists an integer k ě 1 and charts
ϕ : U Ñ V on X and ψ : U 1 Ñ V 1 on Y such that

(i) a P U , ϕpaq “ 0 and b P U 1, ψpbq “ 0;
(ii) F pUq Ă U 1;
(iii) the map ψ ˝ F ˝ ϕ´1 : V Ñ V 1 is the assignement z ÞÑ zk.

Proof. It is clear that we can find charts satisfying the first two properties, i.e.
F1 “ ψ ˝ F ˝ ϕ´1 satisfies F1p0q “ 0. Hence there exists a k ě 1 such that
F1pzq “ zkgpzq with gp0q “ 0. On a (simply-connected) neighbourhood of 0 we can
thus take the k-th root of g, i.e. there exists a holomorphic function h defined near
0 such that hkpzq “ gpzq. If we let ϕ1pzq “ zhpzq then ϕ1 is biholomorphic near 0
onto its image. Further, ϕpzqk “ F pzq, whence F1 ˝ ϕ

´1pzq “ F1pϕ
´1pzqq “ zk as

desired. �

25. Remark. There are two cases to consider: Either k “ 1 so that F is locally
injective, or k ě 2 and we have a branch point, see Definition 1.36. In particular, k
does not depend on the choice of charts as these are injective. We therefore have
an intrinsic interpretation of the number k, namely as the order of ramification,
cf. Example 1.38 (ii). Namely, for any open neighbourhood U of a, there exists
an open neighbourhood U0 Ă U such that f´1pyq X U0 has precisely k elements if
y “ b. One calls k also the multiplicity of a for which we write k “ νpF, aq.

26. Example. Let ppzq “ zk `
řn
i“0 ciz

i P Crzs be a nonconstant complex
polynomial considered as a holomorphic map P : P1 Ñ P1 by setting P pr1 : zsq “
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r1 : ppzqs and fpr0 : 1sq “ r0 : 1s. Using the chart ϕ1 near r0 : 1s (cf. Example 1.6
(iii)) we have

ϕ1 ˝ P ˝ ϕ
´1
1 pwq “ ϕ1

`

P prw : 1sq
˘

“

#

0, w “ 0
wn

řn
k“0 akw

n´k , w “ 0

Since 1{
ř

akw
n´k “ 0 for w sufficiently close to 0, P is indeed holomorphic as it is

bounded near w “ 0, and we can argue as for Theorem 1.24 and find a new chart
around 8 “ r0 : 1s so that P expressed in these coordinates is of the form wn.
Hence νpP,8q “ n.

It follows that as far as local properties are concerned, we may always assume
that modulo charts, F : X Ñ Y is locally of the form F pzq “ zk. This implies
immediately the following

27. Corollary [Fo, 2.4, 2.7]. Let F : X Ñ Y be a nonconstant holomorphic map.
Then

(i) F is open;
(ii) if X is compact, then F is surjective. In particular, Y is compact.

Proof. The map z ÞÑ zk is clearly open. In particular F pXq Ă Y is open. But
if X is compact, then F pXq is compact and thus closed. Hence F pXq “ Y by
connectivity of Y . �

28. Corollary [Fo, 2.5]. Let F : X Ñ Y be an injective holomorphic map. Then
F : X Ñ F pXq is biholomorphic.

Proof. We necessarily have k “ 1 for F is injective. �

Meromorphic functions. Next we generalise the concept of meromorphic func-
tions to Riemann surfaces. While in a usual course on complex analysis, these are
treated as a generalisation of a holomorphic function, on Riemann surfaces we can
see them as a special class of holomorphic maps (cf. Proposition 1.32) which is why
we treat them now.

29. Definition. Let X be a Riemann surface and U Ă X be open. We call
f : U 99K C a meromorphic function on U if f : Uˆ Ñ C is a holomorphic
function defined on some open subset Uˆ Ă U such that

(i) UzUˆ contains only isolated points;
(ii) for every point a P UzUˆ one has

lim
zÑa

|fpzq| “ 8.

The points of UzUˆ are the pôles of f . The set of all meromorphic functions on
U is denoted by MXpUq or MpUq for short.

30. Remark.
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(i) Using a chart ϕ : U Ñ C one immediately sees that f P MXpUq gives rise
to a meromorphic function f ˝ ϕ´1 : ϕpUq 99K C in the usual sense (cf.
Appendix A.26). In particular, a is a pôle ô there exists a minimal m ě 1
such that zmf ˝ϕ´1pzq is bounded near a for any chart near a with ϕpaq “ 0
(this is indeed independent of the chart as ϕ is biholomorphic). We call m
the order of the pôle. Therefore we can locally develop f ˝ ϕ into a Laurent
series

ř

kěν akz
k where ak P C and ν P Z is the order of ϕ´1p0q.

(ii) MpUq has the natural structure of a C-algebra (and in fact of a field, see
Corollary 1.33). Indeed, for f , g PMpUq we define f ` g and f ¨ g by taking
first their sum and product on the open subset Uˆ where they are both si-
multanuously holomorphic and then extending over any removable singularity
(cf. Theorem 1.10). Note that pôles can indeed cancel (consider z and 1{z in
MCpCq).

31. Examples.

(i) Holomorphic functions: Any holomorphic function is obviously meromor-
phic with empty pôle set, i.e. OpUq ĂMpUq.

(ii) Polynomials on P1: Consider again Example 1.26 where the polynomial
ppzq “ zk `

řn
i“0 ciz

i P Crzs gave rise to the holomorphic map P : P1 Ñ P1

by setting P pr1 : zsq “ r1 : ppzqs and P pr0 : 1sq “ r0 : 1s. The restriction P |U0

takes then values in C and can be thus regarded as a holomorphic function
defined on P1zt8u. Read in the chart ϕ1 with local coordinate w “ 1{z over
U0 X U1, we have P pwq “

řn
j“0 aiw

´i which clearly has a pole at 0 of order
n.

Examples 1..26 and 1.31 (ii) show that polynomials P : C Ñ C can be either
considered as holomorphic maps P1 Ñ P1 or as meromorphic functions P1 99K
C. The next proposition shows that global meromorphic functions on a Riemann
surface X 99K C correspond to holomorphic maps X Ñ P1 which emphasises once
more the special rôle played by P1. Subsequently, we will tacitely identify these two
viewpoints and think of meromorphic functions as holomorphic functions X Ñ P1

and vice versa.

32. Proposition [Fo, 1.15]. Let X be a Riemann surface and f P MpXq. For
each pôle p of f , define F ppq :“ 8, and F “ f on Xˆ. Then F : X Ñ P1 is a
holomorphic map. Conversely, if F : X Ñ P1 is a holomorphic map, then F is
either identically equal to 8 “ r0 : 1s or else F´1p8q consists of isolated points and
f : Uˆ :“ XzF´1p8q Ñ C induces a meromorphic function f : X 99K C.

Proof. For f P MpXq let P pfq be the set of pôles of f . We define a continuous
extension of F : Xˆ “ XzP pfq Ñ C to f : X Ñ P1 by setting fppq “ r0 : 1s “ 8.
If ψ : V Ñ C is a chart such that U X P pfq “ tpu such that F pV q Ă U1 in P1

ñ ϕ1 ˝ F ˝ ψ
´1 : ψpUq Ñ C is continuous. Since and ψ : V Ñ C is a chart of

P1 then ϕ1 ˝ F ˝ ψ is continuous, so that the singularity in ψppq is removable by
Theorem 1.10.

The converse follows from the Identity Theorem 1.20. �

33. Corollary. The Identity Theorem 1.20 holds for meromorphic functions re-
garded as holomorphic maps. In particular, the set of zeroes and poles of a mero-
morphic functions is discrete. It follows that any meromorphic function which is
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not identically zero can be inverted so that

KX :“MpXq

is a field. We call KX the function field of X.

Unlike for holomorphic functions there are nonconstant global meromorphic func-
tions on compact Riemann surfaces:

34. Example (the function field of P1) [Fo, 2.9]. We have

KP1 “ CpT q,

that is, any global meromorphic function can be written as the quotient of two
polynomials so that f is rational. Indeed, let f P KP1 . Then f has finitely many
poles a1, . . . , an, and by passing to 1{f if necessary, we may assume that all of these

poles live in U0. Fixing a coordinate z we have prinicipal parts hk “
ř´1
j“´νk

cνkjpz´

akq
j of the corresponding Laurent series which we can holomorphically extend to

all of P1 as they are bounded if z Ñ 8 (use the Removable Singularity Theorem;
cf. also Example 1.31). Hence c “ f´

ř

hk must be holomorphic on P1 and thus be
constant. It follows that f “ c`

ř

hk is a rational function. A generator is given
by the meromorphic function r1 : zs Ñ z which is why we usually write KP1 “ Cpzq

35. Examples (the function field of TΛ and doubly periodic functions).
Next we consider genus 1 surfaces. Nontrivial global meromorphic functions on
complex tori arise for instance from doubly periopdic functions: Suppose as above
that ω1, ω2 P C are linearly independent over R and let Λ “ Zω1 ` Zω2 be the
induced lattice. A meromorphic function F : C 99K C is called doubly periodic
if F pz ` ω1q “ F pzq “ F pz ` ω2q or equivalently, if F pz ` ωq “ F pzq for all ω P Λ.
In particular, F descends to a meromorphic map F : TΛ Ñ P1. For instance, the
Weierstrass ℘-function with respect to Λ is defined by

℘Λpzq “
1

z2
`

ÿ

ωPΓz0

ˆ

1

pz ´ ωq2
´

1

ω2

˙

.

Conversely, any meromorphic function TΛ 99K C gives rise to a doubly periodic
function so we can freely identify these two concepts. From Corollaries 1.12 and 1.27
we immediately deduce that any holomorphic doubly periodic function CÑ C must
be constant. Moreover, any nonconstant meromorphic doubly periodic function
must attain any complex value for it induces a holomorphic map f : TΛ Ñ P1

which by Corollary 1.27 (ii) is surjective.

This function will be further investigated in the exercise sheets. Furthermore, it
will be shown that

KTΛ
– CpzqrXs{pX2 ´ 4pz ´ ℘pω1{2qqpz ´ ℘pω2{2qqpz ´ ℘ppω1 ` ω2q{2qqq

. – KP1rXs{pX2 ´ 4pz ´ ℘pω1{2qqpz ´ ℘pω2{2qqpz ´ ℘ppω1 ` ω2q{2qqq

(this does indeed only depend on the lattice, and not on the basis ωi). In particular,
KP1 Ă KTΛ is a finite field extension.
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1.2. Branch points. We have now introduced the basic objects of study of this
course, namely Riemann surfaces and holomorphic maps between them. Next we
investigate the structure of holomorphic maps in finer detail.

Since the fibres of holomorphic maps are discrete we can make a rough a subdivision
into branched and unbranched holomorphic maps.

36. Definition. Let F : X Ñ Y be a nonconstant holomorphic map. A point
a P X is called a ramification point of F , if there is no neighbourhood U of a
such that F |U is injective. If F has branch points, then F is called branched or
ramified, and unbranched or unramified else.

37. Remark. There does not seem to be a universal agreement on the distinction
between ramification and branch points in the literature so be careful when using
other texts.

38. Examples.

(i) Let k ě 2 be a natural number and let Pk : C Ñ C be the map Pkpzq “ zk.
Then 0 P C is a ramification point as well as a branch point, while the map
Pk : C˚ Ñ C is unbranched.

(ii) By the Normal Form Theorem 1.24, any nonconstant holomorphic map F :
X Ñ Y looks locally like Pk. Hence a P X is a ramification point precisely if
its multiplicity is ě 2.

(iii) The mapping exp : C Ñ C˚ is an unbranched holomorphic map, for exp is
injective on any domain which does not contain two points differing by an
integral multiple of 2πi.

(iv) The canonical projection π : C Ñ TΛ onto the torus defined by the lattice Λ
is unbranched, for π is a local homeomorphism.

Thus there are three kinds of holomorphic maps:

‚ constant maps;
‚ unbranched maps;
‚ branched maps.

Of course, there is not much to say about constant maps. We first analyse the
unbranched case.

Covering maps. The first important property of unbranched maps is the follow-
ing characterisation which generalises Example 1.38 (iv).

39. Proposition (unbranched maps are local homeomorphisms) [Fo, 4.4].
A nonconstant holomorphic map F : X Ñ Y has no ramification points if and only
if F is a local homeomorphism, i.e. every point a P X has an open neighbourhood
which under F is mapped homeomorphically onto an open neighbourhood of F paq.

Proof. ñ) Suppose F : X Ñ Y has no ramification points. Hence for a P X there
exists an open neighbourhood U such that F |U is injective. Since F is open as a
nonconstant holomorphic map, F |U is a homeomorphism between U and F pUq.

ð) Suppose F : X Ñ Y is a local homeomorphism. Then any point a P U admits
by definition an open neighbourhood U such that F |U is injective. �

A convere to the previous proposition is this.
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40. Proposition [Fo, 4.6]. Let X be a Haudorff space and Y be a Riemann
surface. If F : X Ñ Y is a local homeomorphism ñ there exists a unique complex
structure on Y such that F is an unbranched holomorphic map.

Proof. We proceed in two steps.

Step 1. Existence. We let A be the family of charts constructed as follows. For a
complex chart ϕ1 : U 1 Ă Y Ñ V around a point in the image of F we let U Ă X be
such that F pUq Ă U 1 and F |U is a homeomorphism onto its open image. We then
define the complex chart ϕ “ ϕ1 ˝ F : U Ñ ϕ1pF pUqq. It is clear that these charts
are compatible (the F just cancels), and the coordinate neighbourhoods cover X.
Furthermore, F (trivially) becomes locally bihiolomorphic and is thus holomorphic.

Step 2. Uniqueness. Assume that there is another atlas A1 such that F : pX,A1q Ñ
Y is holomorphic. Then Id : pX,Aq Ñ pX,A1q is biholomorphic since locally,
Idpaq “ pp|U q

´1 ˝ ppaq for a suitable open set U .

�

41. Holomorphic covering maps. A special and very important class of local
homeomorphisms is given by covering maps (see Definition B.16 and Appendix B for
further information). We now investigate the relation of holomorphic unbranched
maps with covering maps. Let us start with some basic observations:

(i) If π : X Ñ Y is a covering map and Y is a Riemann surface, we obtain a
unique Riemann surface structure on X so that π becomes an unbranched
holomorphic map by Proposition 1.40.

(ii) A proper unbranched holomorphic map π : X Ñ Y is a covering map with
finite fibres by Proposition B.22.

(iii) Any Deck transformations of a holomorphic covering is necessarily holomor-
phic. Indeed, we have the following: Assume that X, Y and Z are Riemann
surfaces, and that π : X Ñ Y is an unbranched holomorphic map. Then every
lift of a holomorphic map F : Z Ñ Y to X is holomorphic. This can be shown
by restricting to a neighbourhood U Ă X such that π|U is biholomorphic onto
its image [Fo, Theorem 4.9]. Since a Deck transformation is a lift of the map
F “ π : Z “ X Ñ Y , it is necessarily holomorphic.

For holomorphic covering maps there are two cases to consider, namely whether
the fibres are finite or not. We assume finiteness first which implies that the map
F : X Ñ Y is proper. In particular, F is closed, that is, it maps closed sets in X
to closed sets in Y .

The set of ramification points R is a closed discrete subset of X as follows from the
local normal form theorem 1.24. Since F is proper, B “ F pRq, the set of branch
points, is also closed and discrete. It follows that F |XzR is a holomorphic covering
map onto Y zB with a well-defined number of sheets by Proposition B.14. This
means that every value b P Y zB of F is taken exactly n times. We also say that
b has multiplicity n. In order to extend that notion over all of Y , we define the
multiplicity µpF, bq of any point b P X by

µpF, bq “
ÿ

aPπ´1pbq

νpF, aq

where νpF, aq is the multiplicity of a P X. For ramification points one also considers
the ramification index which is ρpF, aq :“ νpF, aq´1. In particular, RpF q “ ta P
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X | ρpF, aq ą 0u. A covering is simply ramified or has a simple ramification
point at a if ρpF, aq “ 1, has a double ramification point if ρpF, aq “ 2 and so
on.

42. Remark. Consider an n-sheeted branched holomorphic covering map F :
X Ñ Y of two compact Riemann surfaces of genus g and g1, respectively. A priori,
the ramification index of any ramification point can be any number between 1 and
n ´ 1. The total sum

ř

aPR ρpF, aq, however, is topologically determined. Indeed,
we have the Riemann-Hurwitz formula [Fo, 17.14]

2pg ´ 1q “ 2npg1 ´ 1q `
ÿ

aPR
ρpF, aq.

In particular, an unbranched holomorphic covering map must have g ´ 1{g1 ´ 1
sheets. This formula easily follows from Euler’s formula for the Euler characteristic
χpXq “ 2pg ´ 1q “ V ´ E ` F where E, K and F denotes the total number of
vertices, edges, and faces of a triangulation (taking ´E ensures that χpXq is indeed
independent of the chosen triangulation). See also Appendix C for a recap on the
topology of surfaces.

43. Proposition [Fo, 4.24]. If F is a proper nonconstant holomorphic map ñ
µpF, bq is constant on Y . We call µpF, bq the number of sheets.

Proof. If we take out the ramification points of X, then F restricts to a covering
map of say n sheets. Let b P B and F´1pbq “ ta1, . . . , aru. Now for all i there exists
disjoint neighbourhoods Ui of ai, and neighbourhoods Vi of b, such that F´1pcqXUi
has precisely νpF, aiq elements for c P Viztbu. Since F is a covering over V ztbu, the
cardinality of F´1pcq for c P V ztbu is n, whence the

ř

i νpF, aiq “ n �

44. Example. Let ppz, wq “
řn
i“0 fipwqz

i P OpCqrzs a polynomial with coef-
ficients in OpCq. We let X “ Zppq “ tpz, wq P C2 | fpz, wq “ 0u, Y “ C and
F : X Ñ Y , F pz, wq “ w projection on the second factor. Under mild conditions
(namely Bzppz0, w0q or Bwppz0, w0q “ 0 for pz0, w0q P X) the implicit function theo-
rem for holomorphic functions (cf. Remark A.9 and [GuRo, Theorem I.B.4]) implies
that X is a Riemann surface. Generically, the polynomial has n distinct roots, and
F defines a covering map. It branches over multiple zeroes, see Figure 1.3.

Figure 3. The covering map defined by p P OpCqrzs of degree 3
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45. Corollary [Fo, 4.25]. A nonconstant meromorphic function over a compact
Riemann surface has as many poles as zeroes (counted with multiplicities).

Proof. Consider the meromorphic function as a holomorphic map X Ñ P1. Since
it is proper, µpF,8q “ µpF, 0q. �

Summarising, a holomorphic map between compact Riemann surfaces F : X Ñ Y
is either constant or a (branched) covering map with finite fibres. Next we study
local normal forms for holomorphic (branched) coverings. In the sequel, we let
D “ tz P C | |z| ă 1u, Dˆ “ Dzt0u and H “ tz P C | Im |z| ą 0u. Recall from
Example B.17 that pk : Dˆ Ñ Dˆ, pkpzq “ zk and exppi¨q : H Ñ Dˆ are covering
maps.

46. Theorem (local classification of holomorphic covering maps) [Fo, 5.10].
Let F : X Ñ Dˆ be an unbranched holomorphic covering map. Then

(i) If the covering has an infinite number number of sheets ñ there exists a bi-
holomorphic mapping Φ : X Ñ H such that the diagramm

X

F
��

Φ // H

exppi¨q}}
Dˆ

commutes.
(ii) If the covering is k-sheeted ñ there exists a biholomorphic mapping Φ : X Ñ

Dˆ such that the diagramm

X

F
��

Φ // Dˆ

pk||
Dˆ

commutes.

Proof. This follows directly from Proposition B.32 for Deck pX{Dˆq must be a
subgroup of π1pD

ˆq – Z. The holomorphicity of Φ follows in the same way as for
Deck transformations in (iii) of Paragraph 1.41. �

47. Corollary [Fo, 5.11]. Let F : X Ñ D be a proper non-constant holomorphic
covering map such that F restricted to Xˆ :“ F´1pDˆq Ñ Dˆ is an unbranched
covering map ñ there exist k P N and a biholomorphic mapping Φ : X Ñ D such
that the diagramm

X

F
��

Φ // D

pk~~
D

commutes.
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Proof. By the previous theorem, the restriction of F to Xˆ factorises via a holo-
morphic map Φ : Xˆ Ñ Dˆ into F “ pk ˝ Φ. If we can extend Φ to all of X
we are done. For this we show that F´1p0q consists of a single point a so that we
obtain a continuous, hence holomorphic extension by Φpaq “ 0. Indeed, assume
that F´1p0q consisted of n points a1, . . . , an with n ě 2. Since they are isolated we
have F´1pDεq Ă V1 Y . . .Y Vn for a small neighbourhood Dε around 0 and disjoint
open neigbourhoods Vi of ai. Let Dˆε be the discs Dε with the origin deleted. Then
F´1pDˆε q is homeomorphic to p´1

k pD
ˆ
ε q “ Dˆk?ε which is connected. Since the ai

are accumulation points of F´1pDˆε q – Dˆk?ε, F
´1pDεq must be connected, too,

contradicting the fact that it is contained in the union of at least two nonempty
open subsets with disjoint closures. Hence n “ 1. �

48. Corollary [Fo, 8.4]. Let S Ă Y be a closed discrete subset, Y ˆ :“ Y zS. If
Xˆ is a Riemann surface and Fˆ : Xˆ Ñ Y ˆ a proper unbranched holomorphic
covering map ñ Fˆ extends to a proper branched covering F : X Ñ Y for a
Riemann surface X Ą Xˆ.

Proof. Let b P S Ă Y and consider a chart ϕ : Vb Ñ C of Y centered in b and
such that ϕpVbq “ D. Since S is a discrete subset, the domains Vb of these charts
can be chosen to be disjoint. We let V ˆb “ Vbztbu. Since Fˆ is proper, Fˆ´1pV ˆb q

consists of a finite number of components U iˆb covering V ˆb kib times. Modulo

biholomorphism, Fˆ|Uiˆb
pzq “ zk

i
b by Theorem 1.46 (ii). We add ideal points aib to

U iˆb and obtain U ib :“ U iˆb Ytaibu. We set X “ XˆYtaibubPS . For each such a point

aib we define a neighbourhood basis by taibu Y pF
ˆ´1pWbq X U iˆb q, where Wb runs

through a neighbourhood basis of b. This turns X into a Hausdorff space, induces
on Xˆ the given topology and defines a proper map F : X Ñ Y in the obvious
way. To define the structure of a Riemann surface on X, consider the continuation
of the holomorphic maps U iˆb Ñ V obtained by sending aib to b. This gives a

biholomorphic mapping Φ : U ib Ñ D corresponding to z P U ib ÞÑ zk
i
b P Vb . Since for

any other chart U1 of Xˆ, aib R U1 X U ib , these added maps are clearly compatible
with Xˆ. Thus we obtain a Riemann surface by glueing in the local models of
Corollary 1.47. In particular, F : X Ñ Y is a proper, holomorphic map. �

49. Remark. In a similar vein, suppose that F : X Ñ Y , G : Z Ñ Y are
proper holomorphic covering maps, and that S Ă Y is a discrete subset. Then
any biholomorphic map Hˆ : F´1pY zSq Ñ G´1pY zSq commuting with F and
G can be extended to a commuting holomorphic map F : X Ñ Z [Fo, Theorem
8.5]. In particular, every Deck transformation F : Xˆ Ñ Xˆ can be extended
to a (uniquely determined) biholomorphic map F : X Ñ X which commutes the
covering map. It follows that the holomorphic structure on X in the previous
Corollary 1.48 is uniquely determined.

50. Corollary and Definition (Deck transformations for branched holo-
morphic covering maps). We let

DeckpX{Y q “ tG : X Ñ X | G biholomorphic , F ˝G “ F u “ DeckpXˆ, Y ˆq

be the group of Deck transformations of F : X Ñ Y , where Y ˆ “ Y ztbranch pointsu
and Xˆ “ Xztramification pointsu.
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1.3. Analytic continuation and algebraic functions. Our next task is to ac-
tually construct Riemann surfaces, namely as maximal domains of holomorphic
functions via analytic continuation. Historically, this was the first instance of a
Riemann surface which was not a domain in C. This will also open a more al-
gebraic (geometric) way of investigating Riemann surfaces through their function
fields.

Analytic continuation. Let f : U Ñ C be a holomorphic function without
zeroes. Locally, the holomorphic logarithm exists. What is its maximal domain
of definition? The Figure 1.4 illustrates the problem for the entire holomorphic
function fpzq “ z.

Figure 4. Maximal domain of the holomorphic logarithm

It is classical that the holomorphic logarithm exists on any slitted plane (cf. also
Example A.8). However, if we wish to have a maximal domain (in a sense to

be specified below) on should rather consider the covering map X̂ Ñ C as in

Figure 1.4. By Proposition 1.40 X̂ can be turned into a Riemann surface such that
the projection onto the punctured plane Cˆ becomes holomorphic. We will say
that X̂ was obtained by analytic continuation from z. Moreover, the holomorphic
logarithm is globally defined, and we really obtained a pair pX̂, log zq of a Riemann
surface and a globally defined holomorphic function.

In the sequel, X will denote again a Riemann surface.

51. Definition (germ and stalk of holomorphic functions). Let a P X. For
two functions f P OpUq, g P OpV q with a P U X V we say that f is equivalent to
g ô there exists an open set W Ă U X V with a P W and such that f |W “ g|W .
This is an equivalence relation whose equivalence class will be denoted by rU, f s
and which will be called the germ of f at a. Since the precise U is immaterial
we also denote this germ by fa. The operations rU, f s ` rV, gs “ rU X V, f ` gs and
rU, f s ¨ rV, gs “ rU X V, f ¨ gs turn the set

OX,a “ trU, f s | a P U, f P OpUqu
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into a C-algebra which we call the stalk of holomorphic functions at a. If the
underlying Riemann surface is clear from the context we simply write Oa for OX,a.
Further, we let

|O| “
ğ

aPX

Oa

be the disjoint union of all stalks and define the projection map π : |O| Ñ X to be
the map which assigns to each fa P Oa its base point a P X.

52. Remark.

(i) Note that rU, f s “ 0a “ the neutral element of addition in OX,a ô f ” 0 on
some open neighbourhood of a.

(ii) Similarly, we can define the stalk of meromorphic functions MX,a. This also
inherits the algebraic structure of MXpUq and is thus a field (in fact, though
we have not proven this fact yet, MX,a “ QuotOX,a – convince yourself that
OX,a is indeed integral!).

(iii) The germ of a holomorphic function f P OpUq determines f completely if U
is connected, for if rU, f s “ rU, gs, then f and g agree on some nonempty open
subset of U . Hence we obtain an inclusion OpUq ãÑ Oa.

The order function which we discuss next is a good example for how one uses germs:

53. The order function. For any a P U Ă X we define the order function

oa : M˚
X,a :“MX,azt0au Ñ Z, oapfq “

$

&

%

´m, f has a pôle at a of order m
n, f has a zero at a of order n ą 0
0, else

In particular, f is holomorphic on U ô oapfq ě 0 for all p P U and we have the

(i) product rule: oapf ¨ gq “ oapfq ` oapgq, that is we have a group morphism
pOXpUq, ¨q Ñ pZ,`q;

(ii) non-archimedean property: oapf ` gq ě mintoapfq, oapgqu.

For instance, we have o8pP q “ ´n for the meromorphic function P of the previous
Example 1.31 (ii). For convenience, we will set oap0aq “ 8 if we wish to extend oa
over all of MX,a.

Of course, we could have defined the order function at a for meromorphic functions
in, say, MXpUq, but this would be unnatural for we have to choose U , while the
order only depends on the germ.

54. Remark. The order function oa : M˚
X,a Ñ Z is an example of a discrete

valuation. Note that O˚X,a is just the subring of M˚
X,a given by oa ě 0. It is

thus a discrete valuation ring and as such in particular local with maximal ideal
m “ tfa | øapfaq ą 0, that is, those germs which are no invertible near a for fa has a
zero.(see [AtMa, Chpater 1, 5 and 9] for a definition and further discussion of these
concepts).

We topologise |O| as follows: For any open subset U Ă X and f P OpUq, we let
WU,f be the open set

WU,f :“ tfa | a P Uu Ă |O|,
that is, the open set WU,f can be identified with the image of the section f : U Ñ
|O|, fpaq “ fa induced by f (recall that in general, a section of a map π : X Ñ Y
is a map σ : Y Ñ X which satisfies π ˝ σ “ IdY ). Now a subset B Ă PpXq of
the power set of some set X is a basis for the topology ô (i) the elements U P B
cover X, and (ii) for any U , V P B, and a P U X V there exists W P B such that
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a PW Ă U X V . A basis generates a natural topology by taking the intersection of
all topologies on X which contain B, that is, a set is open in X if and only if it is
the union of sets in B.

55. Lemma [Fo, 6.8]. The system tWU,fu with U Ă X open and f P OpUq forms
the basis of a topology. Furthermore, the projection becomes a local homeomorphism.

Proof. The first assertion is straightforward, see for instance [Fo, Theorem 6.8]. To
show that the projection is a local homeomorphism, suppose that fa “ rU, f s P |O|
and πpfaq “ a. Then fa P WU,f is an open neighbourhood of fa, and U is an open
neighbourhood of a P X. The projection restricted to WU,f in injective and thus a
homeomorphism onto its image U . �

56. Remark. The Identity Theorem for holomorphic functions implies that |O| is
Hausdorff, see for instance [Fo, Theorem 6.10]. It follows by Proposition 1.40 that
any connected component of |O| is a Riemann surface. In particular, any function

germ fa P |O| singles out a Riemann asurface X̂. Further, it defines a holomorphic

function f̂ P OpX̂q such that f̂pfaq “ fpaq. Indeed, let f̂pgbq “ gpbq for any gb P X̂.

In particular, f̂ |WV,g
“ g ˝ π. Note in passing that X̂ cannot be compact for f̂ is

not constant.

57. Definition. Let u : I “ r0, 1s Ñ X be a curve from a to b. The germ ψ P Ob

is said to be obtained by analytic continuation along the curve u from the
germ ϕ if there exists a family ϕt P Ouptq, t P I with ϕ0 “ ϕ and ϕ1 “ ψ and such
that ϕt is locally induced by a holomorphic function, i.e. for all τ P I there exists
a neighbourhood Iτ and an open subset Uτ containing upIτ q Ă X with f P OpUτ q
such that fuptq “ ϕt.

58. Remark. Since I is compact every open cover of upIq can be reduced to a
finite cover. Therefore the condition of the previous definition can be reformulated
as follows: There exists a partition 0 “ t0 ă t1 ă . . . ă tn´1 ă tn “ 1 of I as well
as open connected sets Ui Ă X with urti´1, tis Ă Ui and fi P OpUiq such that

(i) ϕ “ f1,up0q, ψ “ fn,up1q;
(ii) fi|Vi “ fi`1|Vi , where Vi denotes the connected component of the intersection

Ui X Ui`1 containing the point uptiq,

see also Figure 1.5

Note that by definition, ϕ “ fa for some holomorphic function defined near a;
Definition 1.57 requires this choice to be uniform near ϕ, i.e. the same function
does the job for any ϕ1 sufficiently close to ϕ. In this way this condition can be
seen as a continuity property of ϕt. Indeed, we have the

59. Lemma [Fo, 7.2]. A function germ ψ P Ob is the analytic continuation of
ϕ P Oa along u : I Ñ X ô there exists a lifting û : I Ñ |O| of u such that ûp0q “ ϕ
and ûp1q “ ψ.

In particular, the analytic continuation of a germ, if it exists, is uniquely determined

Proof. ñ) By design, ϕt “ û is the desired lifting (this is precisely the reason why
we required ϕt to be locally induced by a holomorphic function).

ð) Let ϕt “ ûptq and τ P I. There exists a neighbourhood WU,f of ûpτq P |O| such
that ϕt “ ûptq “ fuptq for all t P u´1pUq “ Iτ . Hence ϕt is the analytic continuation
of ϕ to ψ. �
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Figure 5. Analytic continuation along u.

From Proposition B.13 we immediately deduce the first part of the

60. Monodromy Theorem [Fo, 7.3]. Let ϕ P Oa and u0,1 : I Ñ X be homotopic
curves from a to b via the homotopy us, s P I. Assume that for every us, there
exists an analytic continuation of ϕ P Oa to ûsp1q P Ob. Then the endpoint does
not depend on s, i.e. û0p1q “ ûsp1q “ û1p1q for all s.

Therefore, if X is simply connected and ϕ P Oa is a germ which can be analyt-
ically continued along every curve starting at a ñ there exists a globally defined
holomorphic function f P OpXq such that fa “ ϕ.

Proof. Only the last assertion requires justification. Let ϕb “ rU, gs P Ob be the
germ obtained by analytic continuation along some path from ϕa P Oa. Since X
is simply-connected, this does not depend on the path for any closed loop can be
retracted to a point, that is, any two paths with the same inital and final points
are homotopic. Then fpbq :“ gpbq yields the desired holomorphic map. �

61. Example. Consider the function fpzq “ z. Then f has no zeroes on C˚
so we can locally take its logarithm. Let uptq “ e2πit Ă C˚ be the unit circle and
let tj “ 2πj{3 for j “ 0, . . . , 3. On a suitable open neighbourhood of uprtj´1, tjsq,
j “ 1, 2 or 3, we define gjpzq “ log f “ log |z| ` iargj z, where argj takes values in
r2πpj ´ 1q{3´ ε, 2πj{3` εs for some small ε ą 0, see Figure 1.6. Then gj agree on
the overlaps and thus define an analytic continuation of the germ g1,up0q. However,
the circle lies in a not simply connected domain, and indeed, g3pup1qq “ g3pup0qq “
2πi “ g1pup1qq “ 0.

On the other hand, as follows from Remark 1.56, any germ ga of a locally defined
holomorphic logarithm g “ log z singles out a Riemann surface X̂ inside π : |O| Ñ
C˚. The corresponding function ĝ P OpX̂q extends g to πpÛq where Û is a maximal
open neighbourhood of ga such that π|Û is injective. To generalise this observation,

let π : X̂ Ñ X be an unbranched holomorphic map. Then π induces an isomorphism
π˚b : OX,πpbq Ñ OX̂,b for any b P X̂ by setting π˚b rU, f s “ rπ

´1pUq, f ˝ πs since π
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Figure 6. Analytic continuation of log z along the unit circle.

is locally biholomorphic. We let πb˚ “ pπ
˚
b q
´1 : OX̂,b Ñ OX,πpbq be its inverse (we

sometimes drop the base point b to ease notation).

62. Definition (analytic continuation). Let ϕ P OX,a. A quadrupel

pX̂, π, f̂ , âq is called an analytic continuation of ϕ if

(i) X̂ is a Riemann surface and π : X̂ Ñ X is an unbranched holomorphic map;

(ii) f̂ P OpX̂q;
(iii) πpâq “ a and π˚pf̂âq “ ϕ.

An analytic continuation pX̂, π, f̂ , âq of ϕ is maximal if the following universal
property is satisfied: For any other analytic continuation pZ, q, g, bq of ϕ there

exists a holomorphic map F : Z Ñ X̂ such that F pbq “ â, g “ F˚f̂ “ f̂ ˝ F and
π ˝ F “ q:

pX̂, f̂ , âq

π

��
pZ, g, bq

F

99

q // pX,ϕq

As usual, universality implies that a maximal analytic continuation is essentially
uniquely determined. Guided by the example of the holomorphic logarithm we
prove the

63. Theorem [Fo, 7.8]. For any function germ ϕ P OX,a there exists a maximal

analytic continuation, namely p|OX |ϕ, π, f̂ , ϕq where |OX |ϕ is the Riemann surface

of |OX | distinguished by ϕ, and f̂ is the natural function on |OX |ϕ, cf. Remark 1.56.

This requires first a lemma.

64. Lemma [Fo, 7.7]. Let pX̂, π, f̂ , âq be an analytic continuation of ϕ P OX,πpâq.

If û : I Ñ X̂ is a curve with ûp0q “ â, then ϕt :“ π˚f̂ûptq is an analytic continuation
of ϕ along u “ π ˝ û.
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Proof. We need to show that locally, there exists g P OXpUq such that guptq “ ϕt.

Indeed, since π is an unbranched holomorphic map, π|Û : Û Ă X̂ Ñ U Ă X is

biholomorphic for suitable open sets U and Û . Put g :“ pπ|Û q
´1˚f̂ “ f̂ ˝ pπ|Û q

´1 :

U Ñ C. By design, guptq “ π˚f̂ûptq “ ϕt. �

Proof. (of Theorem 1.63) Let X̂ be the connected component of |O| containing ϕ,

π : X̂ Ñ X the restriction of |O| Ñ X, and b “ ϕ P |O|. We let f̂ : X̂ Ñ C
be the corresponding holomorphic function, i.e. f̂pfxq “ fpxq. It follows that f is

holomorphic, and fpbq “ a. Thus pX̂, π, f, bq is an analytic continuation of ϕ.

To show that it is maximal, suppose that pZ, q, g, bq is another analytic continuation

of ϕ. We define F : Z Ñ X̂ as follows. Let z P Z and choose a curve û from b to
z. According to Lemma 1.64 the function germ q˚pgzq P OX,qpzq Ă |O| is obtained
via analytic continuation from ϕ along the curve u “ q ˝ û. It follows that q˚pgzq

lies precisely in the connected component determined by ϕ which is just X̂. Hence
the map F : Z Ñ X̂, z ÞÑ q˚pgzq is well-defined. It is easy to see that F satisfies
all the required properties. �

Field extensions and algebraic functions. Recall from algebra that a function
field of n variables is a finite extension of a field of the form kpx1, . . . , xnq for
algebraically independent variables xi. For instance, KP1 “ Cptq is a function
field of one variable. While this justifies the term “function field” for P1 we now
wish to show that KX is a function field of one variable for any compact Riemann
surface X. This will be done in two steps. First, consider a branched n-sheeted
holomorphic covering map π : X Ñ Y . Pull-back by π induces a morphism of fields
π˚ : KY Ñ KX which sends f to π˚f “ f ˝ π. Since this map is nontrivial it is
necessarily injective, that is, we can regard KY as a subfield of KX . Furthermore,
we are going to show that rKX : KY s “ n so that π˚ defines a finite (and in
particular, algebraic) field extension. In a second step (to be carried out later) we
show that every compact Riemann surface admits a branched holomorphic covering
X Ñ P1 from which it follows that KX is a function field of one variable.

Our first goal os to show that rKX : KY s ď n if π : X Ñ Y is a branched
n-sheeted holomorphic covering. We first need to introduce some technicalities.
Let π : X Ñ Y be an n-sheeted unbranched holomorphic covering map, and let

f P KX . For a special neighbourhood V we therefore have f´1pV q “
Ťk
j“1 Uj

with π|Uj : Uj Ñ V invertible. Let fj “ f ˝ pπ|Uj q
´1 P MY pV q. We consider the

polynomial

PV,f pT q “ Πk
j“1pT ´ fjq “

n
ÿ

j“0

σjT
j PMY pV qrT s, (4)

where σj “ σpfq “ p´1qjsn´jpf1, . . . , fnq are given by the n´j-th symmetric poly-
nomial sn´j (e.g. s0px1, . . . , xnq “ 1, s1px1, . . . , xnq “

ř

xj , . . . , σnpx1, . . . , xnq “

Πxj). If we consider another special neighbourhood W with f´1pW q “
Ťk
j“1 Ũj ,

then the functions f̃j “ f ˝ pπ|Ũj q
´1 agree with fj on the intersection V X W

up to some relabeling, that is, PV,f pT q|VXW “ PW,f pT q|VXW for σjpf1, . . . , fnq “

σjpf̃1, . . . , f̃nq. Indeed, the σj are symmetric in their arguments, i.e. invariant un-
der the action of the permutation group Sn, and thus invariant under relabeling.
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Hence the locally defined σj piece together to give globally well-defined meromor-
phic functions σjpfq P KY , j “ 0, . . . , n called the elementary symmetric func-
tions of f . Summarising, we obtain a polynomial Pf pT q P KY rT s which satisfies
Pf pfpaqqpπpaqq “ 0 for all a P X, that is, π˚Pf P KX rT s satisfies

π˚Pf pfq “ 0.

More generally, the elementary symmetric functions are well-defined for branched
covering maps π : X Ñ Y . Indeed, let C Ă Y be a closed discrete subset of Y which
contains all critical values of π. Further, let S “ π´1pCq, Xˆ :“ XzS and Y ˆ :“
Y zC so that in particular, π|Xˆ : Xˆ Ñ Y ˆ becomes an unbranched holomorphic
covering. For f P MXpX

ˆq consider the elementary functions σjpfq P MY pY
ˆq.

In the following, we say that a meromorphic function f extends meromorphically
to a if zmf is bounded near a for a local coordinate z with zpaq “ 0.

65. Lemma [Fo, 8.2]. f can be continued holomorphically resp. meromorphically
for all a P S ô the σjpfq, j “ 1, . . . , k can be continued holomorphically resp.
meromorphically to b “ πpaq P Y . In particular, the elementary functions of f P
MXpXq are also defined in case of a branched holomorphic covering.

Proof. Assume first that f can be continued holomorphically to all a P π´1pbq,
b P C. Then σjpfq exists outside b and is bounded, hence σjpfq can be extended to
b by Riemann’s Removable Singularities Theorem. Conversely, substituting T “ f
into π˚Pf pT q and evaluating at x P Xˆ we get

fnpxq ` σ1pfqpπpxqqf
n´1pxq ` . . .` σnpfqpπpxqq “ 0

so that σj bounded near b implies f bounded near a P π´1pbq so that f extends.

Secondly, assume that f extends meromorphically to X. Thus, if z is a local co-
ordinate for Y with zpbq “ 0, b P C, then w “ π˚z is a local coordinate around
a P π´1pbq, and wmf extends holomorphically over a for m big enough. In partic-
ular, σjpw

mfq “ zmjσjpfq is holomorphic by the first case, hence σjpfq extends
meromorphically to b. Conversely, if zmσjpfq can be continued holomorphically to
b for all j, then wmf can be continued holomorphically to all a P π´1pbq, hence f
extends meromorphically. �

66. Remark. The proof also applies if X is a disconnected union of Riemann
surfaces, e.g. the trivial cover of Y by n copies of Y .

From the identity pπ˚Pf qpfq “ fk `
řk
j“1pπ

˚σjpfqqf
n´j “ 0 we directly deduce

the

67. Theorem [Fo, 8.3]. Let π : X Ñ Y be a branched holomorphic n-sheeted
covering map. If f P KX with elementary symmetric functions c1, . . . , cn ñ

fn ` pπ˚σ1pfqqf
n´1 ` . . .` π˚σn´1pfqf ` π

˚σnpfq “ 0.

In particular, considering KY as a subfield of KX via π˚ this defines a polynomial
relation on f P KX with coefficients in KY so that KY Ă KX is a finite field
extension of degree ď n.

68. Remark. We will see later that the degree is actually equal to n.

Summarising, we have seen that any holomorphic branched covering π : X Ñ Y
gives rise to a finite field extension KY Ă KX . Conversely we can ask when a finite
field extension of KY can be realised by a branched holomorphic covering map?
Finite field extensions of k arise by adjoining roots of irreducible polynomials P P
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krT s. In fact, since we are working with fields of characteristic zero, the existence of
a primitive element (cf. Theorem D.10) says that any finite field extension KY Ă L
is of the form KY pfq – KY rT s{pP q where P P KY rT s is an irreducible polynomial.
We wish to find a Riemann surface X with KX “ L.

69. Theorem [Fo, 8.7-9]. Let P P KY rT s be an irreducible polynomial of degree n
ñ there exists a Riemann surface X and a branched n-sheeted holomorphic covering
π : X Ñ Y such that P has a root in KX , that is, there exists f P KX such
that π˚P pfq “ 0. The triple pX,π, fq is unique up to biholomorphic mappings
commuting with the covering maps and pulling one meromorphic function back to
the other.

Proof. We proceed in three steps.

Step 1. If P pT q “ Tn `
řn
j“1 cjT

j P OX,arT s and
řn
j“0 cjpaqT

n´1 P CrT s has

simple zeroes z1, . . . , zn ñ there exist germs ϕ1, . . . , ϕn P OX,a such that ϕjpaq “ zj
and P pT q “ Πn

j“1pT ´ ϕjq. Indeed, let c1, . . . , cn be holomorphic functions on the

disk DR Ă C. Consider the holomorphic function fpw, zq “ wn `
řn
j“1 cjpzqw

n´j .

If w0 is a simple zero of the polynomial fp¨, 0q, then it follows from the Implcit
Function Theorem (which holds also for holomorphic functions) that there exists a
holomorphic function ϕ : Dr Ñ C, 0 ă r ď R with ϕp0q “ w0 and fpϕpzq, zq “ 0
(see also [Fo, Lemma 8.7] for a proof avoiding the use of the IFT).

Step 2. Existence. Let ∆ “ ∆pyq P KY be the discriminant of P . This is a certain
polynomial in the coefficients of P with ∆pyq “ 0ô P rT spyq “ P 1rT spyq “ 0 (where
P 1 is the formal derivative of P in T ). Since P is irreducible, ∆ does not vanish
identically. It follows that there exists a discrete subset S Ă Y such that for all
y P Y ˆ :“ Y zS, ∆pyq “ 0 and cj P OY pY

ˆq are holomorphic. Let Xˆ Ă |O| Ñ Y
be the set of all germs ϕ P OY,y, y P Y ˆ such that P pϕq “ 0. Let πˆ : Xˆ Ñ Y ˆ be
the restriction of the natural projection |O| Ñ Y . For any y P Y ˆ, the polynomial

pypT q :“ Tn `
n
ÿ

j“1

cjpyqT
n´j P CrT s

has precisely n distinct zeros for ∆pyq “ 0. By the previous step it follows that for
every y P Y 1 there exists an open neighbourhood V of y and functions fi P OY pV q
such that P pT q “ Πn

j“1pT ´ fjq on V . Further, πˆ´1pV q “
Ťn
j“1 Uj where

Uj “ fjpV q is the image of the section of |O| induced by fj is a disjoint union
of open sets (the zeros of py are simple!). Further, πˆ|Uj Ñ V is a homeomorphism
which shows that πˆ : Xˆ Ñ Y ˆ is a covering map. We claim that Xˆ is connected
so that πˆ extends to a branched holomorphic cover π : X Ñ Y by Proposition 1.48.
If not, assume for simplicity that there are two connected components X1,2. We
can regroup the product P pT q “ Πn

j“1pT ´ fjq “ Πn1
j“1pT ´ fkj q ¨ Πn2

j“1pT ´ fij q
where the two factors comprise the functions giving rise to germs in X1 and X2

respectively. By Lemma 1.65 these piece together to two meromorphic functions
P1,2pT q P KY rT s. It follows that P pT q “ P1pT qP2pT q, contradicting the irre-
ducibility of P . Finally, let f be the tautological holomorphic function on X. Then
π˚P pfq “ fnpxq `

řn
j“1 cjpπpxqqf

jpxq “ 0. By Lemma 1.65 again, we can extend

f to a meromorphic function on all of X such that π˚P pfq “ 0.

Step 3. Uniqueness. We briefly sketch uniqueness, for details see [Fo, Theorem
8.9]. Suppose pZ, q, gq is another triple with the required properties. Let T Ă Z
be the union of the poles of g and the branch points of q. Let T 1 “ qpT q Ă Y and
X 1 “ π´1pY ˆzT 1q Ă Xˆ. To construct a map F : ZzT Ñ X 1, take z P Z and
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let y “ qpzq. Then q˚gz P OY,y solves P pq˚gzq “ 0 and thus must be in X 1 by
design of Xˆ. It follows that F pzq “ q˚gz is a continuous map which commutes
with q and π. By Remark 1.49 this extends to a holomorphic map Z Ñ X which
commutes with π and q. It is easy to check that F is in fact biholomorphic.

�

Since f is the root of the polynomial equation P “ 0 it is called the algebraic
function defined by P . We also say that pX,π, fq is the algebraic function
determined by pY, P q.

70. Example. We have seen in Example 1.34 that KP1 – CpZq, the rational
functions in one variable. Hence for any polynomial P pT q with coefficients in the
ring CpZq there exists a finite branched covering π : X Ñ P1 with X a (compact)
Riemann surface and f P KX such that π˚P pfq “ 0. If, for instance, we consider
P pT q “ T 2 ´ gpZq P KP1rT s for some polynomial gpZq P CrZs, then this defines a
compact Riemann surface X on which the (meromorphic) function

?
g is defined.

71. Corollary [Fo, 8.12]. If pX,π, fq is an algebraic function defined by pY, P q
with degP “ n, then KX “ KY pfq – KY rT s{pP q. In particular, KY Ă KX is an
algebraic field extension of degree n.

Proof. By Theorem 1.67 the field extension KY Ă KX is algebraic. Let µ P KY rT s
be the minimal polynomial of some f0 P KX such that its degree d is maximal. Since
P is irreducible, d ě n. We claim that KX “ KY pf0q. Indeed, let g P KX . Since
KY is a perfect field (it has characteristic zero), we can find a primitive element for
the field extension KY Ă KY pf0, gq Ă KX , that is, KY pf0, gq “ KY phq for some h P
KY pf0, gq, cf. Theorem D.10. By definition of d, rKY phq : KY s “ dimKY KY phq ď
d, but d ě dimKY KY pf0, gq ě dimKY KY pf0q “ d, whence equality of dimension.
Since KY pf0q is a subspace of KY pf0, gq we have KY pf0q “ KY pf0, gq and thus
KY pf0q “ KX . By Theorem 1.69, n ě dimKY KX “ d ě dimKY KY pfq. On the
other hand , dimKY KY pfq “ n for P is irreducible of degree n. Hence d “ n and
KX “ KY pfq – KY rT s{pP q. �

72. Explicit construction of an algebraic function. It is instructive to
consider a special case of Theorem 1.69. Consider a polynomial gpzq “ Πn

j“1pz´ajq
with n distinct roots a1, . . . , an which we consider as a meromorphic function on
P1. P pT q “ T 2 ´ f is irreducible over KP1 “ Cpzq (it has no zeroes), so it defines
an algebraic function suggestively denoted pX,π,

?
gq. We are going to construct

π : X Ñ Y explicitly.

Let S “ ta1, . . . , anu Y t8u (in 8, f has possibly a singularity), and Y ˆ “ P1zS
and Xˆ “ π´1pY ˆq Ă |OY | be the 2-sheeted unbranched covering given by the
germs ϕ which solve ϕ2 ´ gy “ 0. In particular, we can analytically continue any
germ in OY ˆ,y along any curves in Y ˆ. Now consider what is happing near S. For
j P t1, . . . , nu we choose sufficiently small discs Dj :“ Dεpajq such that Dj X S “
taju. The functions gjpzq “ Πk “jpz ´ akq have no zeroes in Dj so that there exist
holomorphic functions hj : Dj Ñ C with h2

j “ gj . In particular, gpzq “ pz ´ ajqh
2
j

on Dj . Consider the curve uptq “ aj ` reit Ă Dj . For a given t0 we get the

germ ϕt0 “
?
reit{2hupt0q. If we continue this germ around the circle we get ´ϕt0

after completing one loop. This means that π : π´1pDˆj q Ñ Dˆj “ Djztaju is the

connected 2´1 covering isomorphic to z ÞÑ z2, cf. Theorem 1.46 (otherwise it would
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be disconnected and one would find again ϕt0 after the completion of one circle).
So we add a single point to Xˆ over aj . Locally, π looks like z ÞÑ z2. Now this
constructs the covering over C – P1zt8u. Next we have a look at D8 :“ Dεp8q, a
disc which is also taken to be so small that D8 X S “ t8u. There, we can write
fpwq “ wnf0pwq for a local coordinate w near 8 and holomorphic f0pwq  0 on D8.
If n is odd we can write fpwq “ wh2pwq for h meromorphic, and fpwq “ hpwq if
n is even. As before we can consider a circle path around 8. In the odd case,
continuation of the germ going around the loop yields minus the germ and we have
to add one point over 8, while the covering π : X Ñ Y is disconnected near 8 if
n is even, that is, we have to add two points.

Field extensions can be also analysed using Galois theory, see Appendix D. Let
π : X Ñ Y be a branched holomorphic covering with group of Deck transformations
DeckpX{Y q (see Definition 1.50). We explore the relation between the Galois group
GalpKX{KY q and the group of Deck transformations next.

First, we define a representation DeckpX{Y q Ñ GalpKX{KY q as follows. If F P

DeckpX{Y q and f P KX , define

σF pfq :“ F´1˚ ˝ f “ f ˝ F´1. (5)

Taking the inverse actually ensures that we have representation, for

pσF ˝ σGqpfq “ f ˝ pG´1 ˝ F´1q “ f ˝ pF ˝Gq´1 “ σF˝Gpfq.

Clearly, σF is the identity on KY .

73. Definition (Galois covering). Let π : X Ñ Y be a branched holomorphic
covering map. Let C Ă Y be the set of critical values of π. The covering is
called Galois if the unbranched cover X 1 “ Xzπ´1pCq Ñ Y 1 “ Y zC is Galois, i.e.
DeckpX 1{Y 1q acts transitively on each fibre (cf. Definition B.27).

74. Theorem (Galois correspondence). Let pX,π, fq be the algebraic function
determined by pY, P q ñ the representation (5) induces an isomorphism

DeckpX{Y q – GalpKX{KY q.

Moreover, π : X Ñ Y is Galois if and only if the field extension KY Ă KX is
Galois.

Proof. By construction, σF pfq “ f for any nontrivial Deck transformation F P

DeckpX{Y q which shows that the reprensetation is faithful, i.e. injective. To show
surjectivity, let σ P GalpKX{KY q. Then pX,π, σpfqq is also an algebraic function
so that there exists a Deck transformation F : X Ñ X with f ˝ F “ σpfq. Hence
σ “ σF´1 , for KX “ KY pfq so that σ is determined by th evalue it takes on f .
Finally, π : X Ñ Y resp. KY Ă KX is Galois if and only if DeckpX{Y q resp.
GalpX{Y q contains n elements, see Definition B.27 and [Bo, 4.1.3 and 4.1.4]. �

Plane algebraic curves. Finally, we sketch another way of representing compact
Riemann surfaces – namely as plane algebraic curves. This will also show (modulo
a result we will establish later) that the function field KX completely determines
X. This paragraph requires some basic knowledge on projective spaces.

As we have already mentioned any compact surface admits a nonconstant meromor-
phic function which defines a branched n-sheeted holomorphic map π : X Ñ P1 (as
mentioned above, this is a nontrivial analytical fact; once this has been established,
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the theory of Riemann surfaces becomes completely algebraic). In particular, KX

is a finite extension of KP1 – Cpzq, that is, there exists f P KX and a uniquely
determined monic irreducible polynomial P rT s P CpzqrT s such that P pfq “ 0 of
degree n. After clearing the denominators we can regard P as an element in Crz, T s
which we write as Crw, zs to make it look more symmetric. Let n “ degP . Now
take its associated homogeneous form Qpu,w, zq “ unP pw{u, z{uq. This is now a
homogeneous polynomial for which we consider the zero locus C “ ZpQq Ă P2, the
associated plane algebraic curve.

75. Proposition [Gu, Lemma 31]. With every plane algebraic curve we can
associate a Riemann surface XpCq in a natural way.

Proof. We first restrict attention to U “ tru : v : ws | u “ 0u – C2 Ă P2. Then
C is given as Cu “ tpv, wq | P pv, wq “ 0u Ă C. Consider P pz, wq as a polyno-
mial in Cpwq, and let ∆pwq be its discriminant (a polynomial in w). Generically,
∆pwq “ 0 and at such a point, the polynomial P pv, wq has precisely n distinct
roots v1, . . . , vn. This entails BvP pvi, wq so that by the implicit function theorem,
Cˆu “ Cu X p∆

´1p0qqc is locally given by holomorphic functions pϕipwq, wq. In
particular, projection on the second factor defines an unbranched covering map
π : Cˆu Ñ p∆´1p0qqc Ă C. By Corollary 1.41 this extends to a branched holo-
morphic covering map Cu Ñ C which gives Cu a uniquely determined holomorphic
structure. Next repeat this argument on the sets V “ tv “ 0u and W “ tw “ 0u.
Since the holomorphic structure is uniquely determined on the corresponding Rie-
mann surfaces Cv and Cw, they all agree on the overlaps and glue thus to a globally
defined Riemann surface XpCq. �

It is true, though we cannot prove it yet, that if C is associated with X, then
X – XpCq. In particular, we have the

76. Corollary [Gu, Corollary to Theorem 27]. The function field KX determines
X up to biholomorphic maps.

2. The theorem of Riemann-Roch

Having discussed the general structure of Riemann surfaces we next analyse general
properties of an abstract compact Riemann surface X.

2.1. Differential forms, sheaves and cohomology. In order to investigate X
further, we first need to introduce a higher form of live than ordinary holomorphic
functions, namely differential forms.

Differential forms. Let U Ă C be an open subset. We identify C with R2 in the
standard way, namely z “ x ` iy. As before we denote by C8pUq the C-algebra
of functions f : U Ñ C – R2 which are smooth. Apart of the usual derivation
operators Bx aand By we introduce

B :“ Bz :“
1

2
pBx ´ iByq and B̄ :“ Bz̄ “

1

2
pBx ` iByq.

As explained in the Appendix A, the kernel of B : C8pUq Ñ C8pUq is just OpUq,
the C-algebra of holomorphic functions.

Recall that a function f : U Ñ C for U an open set of a Riemann surface X is
smooth if and only if f ˝ϕ : ϕpU XV q Ñ C is smooth for any chart ϕ : V Ñ C with
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V X U “ H. Locally, the differential operators make also sense on the coordinate
neighbourhoods of X, but of course Bx and By depend on the chart. However, the
condition

Bxfpaq “ Byfpaq “ 0 (6)

is invariantly defined for a change of coordinates ϕij is biholomorphic so that both
Bxϕijpaq “ Byϕijpaq “ 0. We let ma be the germ of smooth functions such that (6)
holds. This is in fact a maximal ideal of C8X,a the germs of smooth functions on X
at a.

1. Definition (cotangent space). The quotient space

T˚aX :“ ma{m
2
a

is the cotangent space of X at a. It is a complex C-vector space in a natural
way. If U is an open neighbourhood of a and f P C8X pUq, then the differential
daf P T

˚
aX is the element

daf :“ pf ´ fpaqqmodm2
a

(note that f ´ fpaq P ma for it obviously vanishes at a). In particular, dac “ 0 for
any constant function.

2. Proposition [Fo, 9.4]. If U Ă X is a chart with coordinate z “ x ` iy, then
pdax, dayq as well as pdaz, daz̄q form a basis of TXa and for any smooth function
defined near a, we have

daf “ Bxfpaqdax` Byfpaqday

“ Bzfpaqdaz ` Byfpaqdaz̄.

Proof. We will carry out the proof for px, yq, the case pz, z̄q working similarly.

Step 1. pdax, dayq is a basis of T˚aX. First of all, they generate T˚aX for if we
expand rf s P T˚aX for a smooth representative f P ma into a Taylor series fpx, yq “

c1px´ xpaqq ` c2py ´ ypaqq ` f̃ for c1,2 P C, then fpaq “ f̃ P m2
a so that taking the

differential yieds daf “ c1dax` c2day. This is zero ô c1px´xpaqq` c2py´ypaqq “
ř

gihi with finitely many gi, hi P m2
a. Hence Bx and By evaluated at a implies

c1 “ 0 and c2 “ 0.

Step 2. Expresssion of daf with respect to this basis. If f is smooth near a, then
its Taylor series gives

f ´ fpaq “ Bxfpaqpx´ aq ` Byfpaqpy ´ aq ` f̃

with f̃ P m2
a. Hence daf “ Bxfpaqdax` Byfpaqday.

�

3. Cotangent vectors and their type. If pU, zq and pU, z̃q are two different
coordinates around a P X, then

c :“ Bz z̃paq P C˚ and0 “ Bz̄ z̃paq “ 0.

Hence daz̃ “ Bz z̃{z ´ aq ` terms in m2
a so that daz̃ “ cdaz and da ¯̃z “ c̄daz̄. Hence

both daz and daz̃ as well as daz̄ and da ˜̄z span the same complex vector space

T 1,0˚
a X :“ Cdaz, T 0,1˚

a X :“ Cdaz̄.
In particular, we can decompose daf into a p1, 0q- and p0, 1q-component denoted
Bfpaq and B̄fpaq respectively, that is,

Bfpaq “ Bzfpaqdaz and B̄fpaq “ Bz̄fpaqdaz̄.
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4. Definition (cotangent bundle and 1-forms). The cotangent bundle is
the set T˚X “

Ť

aPX T
˚
aX. We denote by π : T˚X Ñ X the natural projection

wich assigns to λ P T˚aX its base point πpλq “ a. A 1-form over U Ă X open is a
section of T˚X, i.e. a map ω : U Ñ T˚X such that π ˝ ω “ IdU . Similarly, we can
define T 1,0˚

a X and T 0,1˚
a X with p1, 0q and p0, 1q-forms as sections.

Note that any 1-form ω can be locally written as ω “ fdx ` gdy for functions
f , g : U Ñ C defined on the coordinate neighbourhood U . Similarly, p1, 0q- and
p0, 1q-forms can be written as fdz and gdz̄.

5. Definition (smooth and holomorphic 1-forms). A 1-form ω is called
smooth if locally ω “ fdx` gdy for smooth functions f and g over U . A similar
definition applies for smooth p1, 0q and p0, 1q-forms. We denote by A1

XpUq, A1,0pUq
and A0,1pXq the space of smooth 1-, p1, 0q- and p0, 1q-forms. Moreover, we call a
1-form holomorphic if locally ω “ fdz for f P OpUq. We write Ω1pUq for the
holomorphic 1-forms over U . In particular, a holomorphic 1-form is a smooth
p1, 0q-form.

6. Examples. For every smooth function, dfpaq :“ daf , Bf and B̄f are smooth
1-, p1, 0q- and p0, 1q-forms respectively. If f P OpUq, then Bf P Ω1pUq.

7. Remark. Note that we can multiply any smooth 1-form by a smooth func-
tion etc. so that A1pUq, A1,0

X pUq and A0,1
X pUq are C8X -modules in a natural way.

Similarly, Ω1pUq is an OXpUq-module.

Recall from your linear algebra course the exterior product Λ2V of a vector space
which was generated by elements of the form v1^v2, vi P V , subject to the relations
pv1 ` v2q ^ v3 “ v1 ^ v3 ` v2 ^ v3, pλv1q ^ v2 “ λpv1 ^ v2q where λ is a scalar,
and v1 ^ v2 “ ´v2 ^ v1. If e1, . . . , en is a basis for V , then ei ^ ej , i ă j is a
basis for Λ2V . Aapplying this pointwise we define the second exterior power of the
cotangent bundle by

Λ2T˚X :“
ď

aPX

Λ2T˚aX.

A basis is given by dax^ day resp. daz ^ daz̄. It follows that similar constructions
such as Λ2T 1,0˚

X , Λ2T 0,1˚
X must be trivial for daz^ daz “ 0 etc. Now a (smooth) 2-

form is a section of Λ2T˚X locally of the form ωa “ fpaqdax^day “ 2ifpaqdaz^daz̄

for f smooth. We denote the space of smooth 2-forms over U by A2
XpUq or A1,1

X pUq.
Note that Ω2

X “ 0. Note that we have a natural map

A1
XpUq ˆA1

XpUq Ñ A2
XpUq, pω, σq ÞÑ ω ^ σ.

If locally, ω “ fdx` gdy and σ “ f̃dx` g̃dy, thenω ^ σ “ fg̃ ´ gf̃qdx^ dy.

8. Remark. Since Λ0V “ k the ground field of V we have Λ0T˚X “ X ˆ C so
that A0

XpUq – C8X pUq, the smooth sections over U .

9. Exterior derivative of forms. We now extend the differential to map d :
A1
XpUq Ñ A2

XpUq for any open subset U of X, and similarly B : A0,1
X pUq Ñ A1,1

X pUq
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and B̄ : A1,0
X pUq Ñ A1,1

X pUq. If locally ω “
ř

i fidgi for functions fi and differentials
dgi (we know such a representation to exist) we let

dω “
ÿ

dfi ^ dgi

B̄ω “
ÿ

B̄fi ^ dgi

Bω “
ÿ

Bfi ^ dgi.

For instance, if ω “ fdz ` gdz̄, then

dω “ p´B̄f ` Bgqdz ^ dz̄

B̄ω “ ´B̄fdz ^ dz̄

Bω “ Bgdz ^ dz̄.

A priori this depends on the coordinates pz, z̄q but it is straightforward to show
that different coordinates give the same result (this follows essentially from the
skew-symmetry of ^, see [Fo, 9.13]).

10. Elementary properties. Let f P C8X pUq and ω P A1
XpUq. Then

(i) dω “ Bω ` B̄ω. In particular, ω P Ω1
XpUq ô B̄ω “ 0.

(ii) d ˝ df “ B ˝ Bf “ B̄ ˝ B̄f “ 0. In particular, B ˝ B̄f “ ´B̄ ˝ Bf .
(iii) dpfωq “ df ^ ω ` fdω etc.

The proof is straightforward and a good exercise.

11. Definition (closed and exact differential forms). A differential form ω
is closed if dω “ 0, and exact if ω “ dσ.

12. Remark. In two dimensions it is elementary to see that a closed form is
locally exact. For general smooth manifolds this is known as Poincaré Lemma (we
are going to prove a B̄-version of this in Theorem 2.41).

13. Proposition [Fo, 9.16]. If U Ă X open ñ

(i) every holomorphic 1-form is closed;

(ii) every closed 1-form in A1,0
X pUq is holomorphic.

Proof. If ω P Ω1
XpUq Ă A1,0

X pUq, then B̄ω “ 0 for it is holomorphic, and Bω “ 0 for

it is of type p1, 0q. Therefore dω “ B̄ω ` Bω “ 0. Similarly, if ω P A1,0
X pUq, then

0 “ dω “ B̄ω. �

14. Pull-back for differential forms. Finally, we discuss the pull-back of
differential forms. Recall that a holomorphic map F : X Ñ Y induced a map F˚V :
OY pV q Ñ OXpF

´1pV qq for any V Ă Y open by letting F˚pfq “ f ˝ F . Of course,
requiring only smoothness of F gives merely a map F˚V : C8Y pV q Ñ C8X pF

´1pV qq.
This can be generalised to a map

F˚Ap
Y pUq Ñ Ap

XpF
´1pV qq

on differential forms as follows. Namely, if f P C8Y pV q, then we define

F˚df :“ dpF˚fq “ dpf ˝ F q

and we extend F˚ as an algebra morphism over all of A˚, i.e.

F˚pω ^ τq “ F˚ω ^ F˚τ.

It follows in particular that
F˚dω “ dpF˚ωq.
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With these rule we can compute the pull-back of ω P Ap
Y pV q for any ω.

15. Application: Integration of 2-forms. If ω P A2
XpXq for a (compact

Riemann) surface we want to make sense out of the expression
ş

X
ω, the integral

of ω over X. We first consider the case of a domain X “ U Ă C. We assume that

suppω “ tz P U | ωz “ 0u,

the so-called support of ω. If ω “ fdx ^ dy, then suppω “ supp f where f is the
usual suport of a function. Since the differential of a biholomorphic map never
vanishes, this is indeed independent of the concrete coordinate system we use to
express ω. We now define

ż

U

ω :“

ż

U

fpx, yqdxdy,

where dxdy denotes the Lebesgue measure of U under the identification with an
open subset of R2 using the coordinates x and y. Now if ϕpx, yq “ upx, yq`ivpx, yq :
V Ñ U is a biholomorphic map, then its functional determinant is det Jacϕ “
BxuByv ´ ByuBxv “ |ϕ

1|2, the latter in view of the Cauchy-Riemann equations. By
the usual transformation formula for integrals, we have

ż

U

fdxdy “

ż

V

pf ˝ ϕq|ϕ1|2dxdy.

On the other hand, writing ω “ if{2dz ^ dz̄, we have ϕ˚ω “ ipf ˝ ϕq{2dϕ^ dϕ̄ “
|ϕ1|2ω we obtain

ż

U

ω “

ż

ϕpV q

ω “

ż

V

ϕ˚ω, (7)

that is, the number
ş

U
ω is invariant under change of holomorphic variables (more

generally, one can show that it is invariant under oriented diffeomorphisms so inte-
gration is really a feature of the underlying differentiable surface).

Next consider a chart ψ : U Ñ V of the Riemann surface X. If ω P A2
XpXq is a

2-form with support in U we define
ż

X

ω :“

ż

U

ω :“

ż

V

ψ´1˚ω.

It follows from (7) that this is indeed independent of the given chart, since any other
chart gives rise to a biholomorphic transition function ϕ which does not change the
value of

ş

U
ω.

Finally, let ω P A2
XpXq be a general 2-form with copmact support (this is automatic

ifX is compact and ensures that the integral is finite). CoverX by coordinate charts
Uk and take a partition of unity tfku subordinate to tUku (see the introduction of
Section 1 for the notion of a partition of unity). Then ω “

ř

pfkωq is the locally
finite, hence well-defined sum of differential forms ωk “ fkω with compact support
in the chart domain Uk. We then define

ż

X

ω :“
ÿ

k

ż

Uk

pfkωq.

A tedious, but straight forward computation shows that this is indeed well defind,
that is, independent of the partition of unity tpUk, fkqu. This defines the integral
of ω which has the following properties:

(i) Linearity. If λ P C and ω, τ P A2pXq are 2-forms of compact support, then
ż

X

pλω ` τq “ λ

ż

X

ω `

ż

X

τ.

Again, this is a direct verification.
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(ii) Stokes’ Theorem. Assume that X is compact nad ω P A1pXq. Then
ż

X

dω “ 0.

This can be reduced to the case
ş

U
dω, where U Ă C is an open set with

compact closure and smooth boundary BU . For instance, if U “ DRzDr for
two discs with R ą r, then

ż

U

dω “

ż

DR

ω|DR ´

ż

Drω|Dr (8)

with the obvious restriction of 1-forms. By passing to radial coordinates one
can directly compute the integral, see [Fo, 10.19-20].

(iii) Poincaré-Pairing. Let X be compact. The bilinear map

A1pXq Ñ A1pXq Ñ C, pω, τq ÞÑ

ż

X

ω ^ τ

is non-degenerate, that is, if
ş

X
ω^τ “ 0 for all τ P A1pXq ñ ω “ 0 (Exercise).

Sheaves. The objects A0, Ωp etc wich are associated with a Riemann surfaces are
examples of sheaves a concept we investigate next. Sheave and their cohomology will
be a powerful tool in the investigation of Riemann surfaces, but they are actually
important in many areas of geometry. The following definition is completely general
and valid for any topological space X. Soon, however, we are going to specialise to
the case of a Riemann surface.

16. Definition (sheaf). Let X be a topological space. A sheaf (of abelian
groups) F over X is a topological space together with a continuous map π : F Ñ X,
the projection such that

(i) π is a local homeomorphism;
(ii) for each point p P X, the stalk Fp :“ π´1ppq is an abelian group;
(iii) the group operations are continuous. Concretely, consider π˚F :“ tps, tq |

πpsq “ πptqu Ă F ˆF together with the induced topology. Then the assigne-
ment ps, tq P π˚F ÞÑ s´ t P F is continuous.

A sheaf map F : F Ñ G between sheaves π : F Ñ X and π̃ : G Ñ X is
a continuous map such that π̃ ˝ F “ π. In particular, any sheaf map is stalk
preserving, i.e. F pFpq Ă Gp. A sheaf morphism is a sheaf map which is also a
group morphism on any stalk.

17. Remark. In the same way, we can consider sheaves of rings, fields, vector
spaces etc.

18. Examples.

(i) Let G be an abelian group which we equip with the discrete topology – every
set is open. Then G “ X ˆ G together with the product topology and π “
projection on the first factor, is a sheaf: Ug :“ Uˆtgu, U Ă X open and g P G
is a basis for the topology, and π restricted to Ug is obviously a homeomor-
phism. Note that this might not be the “natural” topology for groups such
as C (In case of a Riemann surface, E “ X ˆC for X a Riemann surface and
with the product topology with respect to the standard Euclidean topology
on C, E would be the trivial vector bundle, and not a constant sheaf.)

(ii) Let X be a Riemann surface. Then π : |O| Ñ X is a sheaf, cf. Section 1.1.3.
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In view to understand the last example better it is instructive to consider the
topology of a sheaf F Ñ X from a different perspective. A section of F over u Ă X
open is a continuous map σ : U Ñ F such that π˝σ “ IdU . In particular, σppq P Fp.
We denote the set of sections over U by ΓpU,Fq. Now pick any s P F and an open
neighbourhood V of s in F such that π|V is a homeomorphism onto its image. It
follows that σ :“ pπ|V q

´1 is a section whose image is an open neighbourhood of s.
In fact, if τ is any other section with τppq “ s taking a suitably small neighourhood
V of s shows that τ0 “ τ |τ´1pV q takes values in V so that τ0 “ pπ|V q

´1, that is,
any section is locally of this form. In particular, any section σ is an open map, and
the images of sections form a basis of the topology. Furthermore, if σ, τ P ΓpU,Fq,
then compounding with the continuous group operations gives a continuous section
f ´ g P ΓpU,Fq, that is, ΓpU,Fq defines a group in a natural way. In particular,
for any U there exists σ0 P γpU,Fq defined by σ0ppq “ 0p “ the zero element
in Fp, the so-called zero section. Note that in passing, the fact that π is a
local homeomorphism garantuees local existence of non-trivial sections. In general,
however, ΓpX,Fq, the group of global sections, might consist of the zero section
only.

If F : F Ñ G is a sheaf map, then we have an induced map F˚ : ΓpU,Fq Ñ ΓpU,Gq
defined by F˚σ “ F ˝ σ for F is continuous. In particular, a sheaf map is open and
a local homeomorphism for the sections generate the topology. If, furthermore, F
is a sheaf morphism, then F˚ is also a group morphism.

Now with a sheaf we have associated the family of groups ΓpU,Fq. To what extent
does this determine the sheaf F? We first axiomatise the properties of ΓpU,Fq.

19. Definition (presheaf). A presheaf (of abelian groups) over X is an
assignment U ÞÑ FU of abelian groups for any open set U of X, together with
morphisms ρUV : FU Ñ FV , the so-called restriction maps, for any pair V Ă U
of open subsets of X, which satisfy

‚ FH “ 0;
‚ ρUU “ IdFU ;
‚ ρVW ˝ ρUV “ ρUW for any triple W Ă V Ă U of open subsets of X.

We sometimes also write g|V for ρUV pgq if no confusion arises. A presheaf map is
a family of maps FU : FU Ñ GU which commutes with restrictions, i.e. ρGUV ˝FU “
FV ˝ρ

F
UV . It is a presheaf morphism if it is group morphism for any open subset

U of X.

20. Examples.

(i) Let G be an abelian group. Then FU “ G for U “ H and ρUV “ IdG is a
presheaf, the so-called constant presheaf associated with G which we denote
by G.

(ii) Let X be a Riemann surface. Then OXpUq “ holomorphic functions U Ñ C
defines a presheaf together with the usual restriction maps.

(iii) For any sheaf F , FU :“ ΓpU,Fq defines a presheaf, the presheaf of sections
of F .

21. Sheafification. Conversely, consider a presheaf FU . Then there is a naturally
associated sheaf F̂. We construct F̂ as the union of “stalks” Fp for p P X. Towards
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that end, let Uppq “ tU Ă X open | p P Uu. Then

Fp :“ lim
ÝÑ

UPUppq
FU ,

that is, the stalk is the direct limit of FU which inherits a natural structure as an
abelian group. By definition, an element s P Fp is an equivalence class represented
by an element g P FU for some U P Uppq, with elements g P FU and h P FV
for U , V P Uppq identified if there exists an open subset W Ă U X V in Uppq
with ρUW pgq “ ρVW phq (the “germ” gp of g). This defines F̂ “

Ť

pPX Fp as
a set, together with π “ projection on the base point. Note that we get maps
ρUp : FU Ñ Fp, ρUppgq “ gp the germ of g at p P U . As a base of topology we take

the images of locally constant sections σ : U Ñ F̂ , that is, locally σppq “ gp for some
g P FV , V Ă U . It is easy to check that this defines indeed a base of topology [Gu,
Section 2.b] for which π is clearly a local homeomorphism with stalks π´1ppq “ Fp
and local sections ΓpU, F̂q “ tσ : U Ñ F | σ locally constantu. Further, it is not
difficult to see that the group operation is continuous, cf. again [Gu, Section 2.b].

22. Examples.

(i) Let X be a Riemann surface and consider the presheaf OXpUq. The associ-
ated stalks OX,p, p P X, are just germs of holomorphic functions (fixing a
local uniformising coordinate z these can be identified with Ctzu, the ring of
convergent power series in z). Conversely, the presheaf of sections of |OX | is
just OXpUq.

(ii) Let G be the constant presheaf associated with the abelian group G. It

follows that the local sections σ P ΓpU, Ĝq which are locally constant are
just the continuous maps σ : U Ñ G, where G is endowed with the discrete
topology. It follows that if U is an open set with n connected components,
then ΓpU, Ĝq – Gn. In particular, the sheaf of sections of Ĝ is not isomorphic
to G.

It is clearly in order to characterise those presheaves which arise as presheaves of
sections.

23. Definition (complete presheaf). A presheaf F on X is called complete
if for any open covering tViu of an open subset U of X, the following conditions
hold:

(i) If s P FpUq is such that s|Vi “ 0 P FpViq for all i, then s “ 0 in FpUq (“s is
determined by restriction to open subsets”, “local injectivity”).

(ii) If there exists si P FpViq for each i such that si|ViXVj “ sj |ViXVj , then there
exists s P FpUq such that s|Vi “ si (“local compatible sections can be glued
together”, “local surjectivity”).

24. Examples.

(i) If X is a Riemann surface, then the presheaf of holomorphic functions OXpUq
is a complete presheaf. Similarly, we can consider the complete presheaves
‚ O˚XpUq “ nowhere vanishing holomorphic functions U Ñ C (modelled

on the multiplicative group OXpUq
˚)

‚ MX “ meromorphic functions, M˚
X “ meromorphic functions not iden-

tically zero
‚ ΩpX “ sheaf of holomorphic p-forms
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‚ the “smooth sheaves” C8 of smooth functions or Ap of smooth p-forms
etc.

(ii) G is not complete for if U “ U0YU1 has two (disjoint) connected components,
the local sections gi P GpUiq do not glue to a section in GpUq unless g0 “ g1.

25. Proposition [Gu, Lemma 3]. A presheaf FU arises as a sheaf of sections ô

FU is complete. In fact, FU is complete ô FU – ΓpU, F̂q, where F̂ is the associated
sheaf. In particular, we can identify sheaves and complete presheaves in a natural
way, and we will therefore refere to a complete presheaf simply as a sheaf.

Proof. Only the converse requires proof. So assume that FU is a complete presheaf,
and consider the sheaf F̂ associated with FU . We show that the natural group
morphism γU : FU Ñ ΓpU, F̂q which associates with g P FU the section γU pgqppq “
gp, is a bijection.

γ is injective. Assume that gp “ 0p for all p P U . This means that locally, the
section γU pgq restricts to the zero section. By the local injectivity property we
conclude γpgq ” 0.

γ is surjective. Let σ P ΓpU, F̂q. Then locally, σ|Uα “ γUαpgαq for a suitable cover
U “

Ť

Uα. Since gα|UαXUβ and gβ |UαXUβ map to σ|UαXUβ under γUαXUβ we have
gα|UαXUβ “ gβ |UαXUβ by the injectivity just established. Hence there exists g P FU
which restricts to gα over Uα by the local surjectivity property. �

26. Remark. In view of the local nature of a complete presheaf FU , it is already
determined by FUα for a base tUαu of the topology of X. Indeed, we have

FU “ lim
ÐÝ
UαĂU

FUα ,

where lim
ÐÝ

denotes the projective limit of the partially ordered set tUα | Uα Ă Uu.
This is the subset tpgαqα P

ś

α Uα | gα “ ρUβUαgβ if Uα Ă Uβu. Therefore we
will often only specify complete presheaves for a base of topology. Similarly, it is
enough to define presheaf morphism for FpUαq Ñ GpUαq. We leave the details as
an Exercise.

27. Further types of sheaves. Let π : F Ñ X be a sheaf.

(i) Restriction of a sheaf. If E Ă X is any subset we call F |E :“ π´1pEq the
restriction of F . For p P E we have pF |Eqp “ Fp. For instance, if U Ă X is a
connected open subset of a Riemann surface X we can consider the restriction
OX |U which is just the sheaf of holomorphic germs of the Riemann surface U .
(If U is not open, for instance, U “ tpu is a point, then OX |E is in general not
even a subsheaf of continuous functions C0

E “
Ť

pPX C
0
E,p over E, for instance

OX |tpu “ OX,p – Ctzu, but C0
tpu “ C.)

(ii) Subsheaves. Let G Ă F be an open subset. Then G is a subsheaf of F if for
all p P X, pπ|Gq

´1ppq “ Gp “ G X Fp is a subgroup of Fp. Projection is the
restriction of π to G.

(iii) Quotient sheaves. If G Ñ X is a subsheaf of F we can define the quotient
sheaf Q “ F{G as follows. The stalks Qp are just the quotient groups Fp{Gp.
We let Q “

Ť

pQp and take the natural projection to X. We have a natural

quotient map q : F Ñ Q by projecting any stalk to the quotient Fp{Gp. A set
U Ă Q is by definition open if q´1pUq Ă F is open. It is easy to see that this
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gives Q the structure of a sheaf. It follows that a section σ : U Ñ Q can be
locally lifted to a section σ̃ : U Ñ F with q ˝ σ̃ “ σ.

28. Example (skyscraper sheaf). Let X be a Riemann surface with OX the
sheaf of holomorphic functions. Choose a point p P X and consider the subsheaf

SpUq “ tf P OXpUq | fppq “ 0 whenever x P Uu.

This is indeed a subsheaf for S is open in OX (the sections of S which form a basis
for the topology of S are also open in OX) and Sp “ OX,pXS is clearly a subgroup
(actually the maximal ideal) of OX,p. The quotient sheaf Q “ OX{S is then the
union of stalks Qa “ t0u if a “ p and Qp “ OX,p{Sp “ OX,p{m “ C. We can
extende this construction to any discrete set of points. The resulting sheaf is called
a skyscraper sheaf for obvious reasons.

29. Exact sequences. Let F : F Ñ G be a sheaf homomorphism. Then we let

kerF “
ď

aPX

kerFa “ F´1p0q

and

imF “
ď

aPX

imFa

be the kernel and the image sheaf respectively. In terms of presheaves, these are
the sheaves associated with the presheaves FU “ kerFU and GU “ imFU . It follows
that imF – F{ kerF . Note in passing that while the kernel presheaf is already
complete, the image sheaf is not. This enables us to define an exact sequence of
sheaves

F F // G G // Q

which by definition means that imF – kerG as sheaves. In particular, if we let 0
denote the trivial sheaf with stalks the zero group, a sequence

0 // F F // G G // Q // 0

is exact ô F is an injection, that is, F is an isomorphism onto a subsheaf of G,
and G is a projection, that is a sheaf morphism whose image is all of Q. Hence
such a so-called short exact sequence is equivalent to

0 // S ι // F π // F {S // 0,

where S is a subsheaf of F , and ι and π are the natural injection and projection
maps.

A prime example of such a short exact sequence is the exponential sequence of
a Riemann surface given by

0 // Z ι // OX
exp // O˚X // 0,

where Z denotes the constant sheaf associated with Z, and where exp is the holo-
morphic exponential map which maps a germ rU, f s to rU, exp f s (thinking of U as
a domain in C via a chart). Since we can always choose U to be simply-connected,
we can take logarithms of nowhere vanishing holomorphic functions over U so that
exp is indeed surjective. On the other hand, the sequence on presheaf level

0 // ZU
ι // OX,U

exp // O˚X,U // 0,

is not exact for general U for it fails to be surjective (ultimately, this reflects the
fact that the presheaf imFU is not complete).
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Cohomology. One of the principal uses of sheaves is to consider their associated
cohomology theory. This gives rise to natural invariants of the underlying space.
Again, the formalism applies to any topological space X, but of course, we are
mainly interested in the case of a Riemann surface.

We start with some definitions for a general topological space X. Let U “ tUαu
an open covering of X. Further, let NpUq be the nerve of U , which we define as
follows. The elements Uα of U are called the vertices. Any choice of q` 1 subsets
U0, . . . Uq span a q-simplex σ “ pU0, α, Uqq. The open set U0 X . . . X Uq “ |σ|
is called the support of the simplex σ. Then the nerve NpUq is the set of all
q-simpleces, q ě 0.

Next let F Ñ X be a sheaf. A q-cochain of U with coefficients in the sheaf F
is a function f which assigns to every q-simplex in NpUq a section fpσq P Γp|σ|,Fq.
We denote the set of q-cochains by CqpU ,Fq, so

C0pU ,Fq “
ź

α

FpUαq

C1pU ,Fq “
ź

α “β

FpUα X Uβq

. . .

This set inherits the natural algebraic structure of F , so if F is a sheaf of abelian
groups, pf ` gqpσq “ fpσq ` gpσq P Γp|σ|,Fq. We define a group morphism

δq : CqpU ,Fq Ñ Cq`1pU ,Fq,

the so-called coboundary operator, for f P CqpU ,Fq and σ “ pU0, . . . , Uq`1q P

NpUq by

δqpfqpσq “
q`1
ÿ

i“0

p´1qiρi|σ|
`

fpU0, Ui´1, Ui`1, . . . , Uq`1q
˘

P ΓpU0 X . . .X Uq`1,Fq,

where ρi|σ| denotes the restriction map from ΓpU0 X Ui´1 X Ui`1 . . . X Uq`1,Cq to
Γp|σ|,Fq. Then CqpU ;Fq becomes a (differential) complex, i.e.

δq`1 ˝ δq “ 0,

which is a straightforward, if tedious, computation. For sake of simplicity we often
write δ instead of δq. Next we consider the subgroups

ZqpU ,Fq “ tf P CqpU ,Fq | δf “ 0u “ ker δq,

the q-cocycles, and

BqpU ,Fq “ δq´1Cq´1pU , q “ im δq´1,

the so-called q-coboundaries. Since δ2 “ 0, Bq Ă Zq, and the quotient group

HqpU ,Fq “
"

ZqpU ,Fq{BqpU ,Fq, q ą 0
Z0pU ,Fq, q “ 0

is the q-th cohomology group of U with coefficients in the sheaf F . These
cohomology groups obviously depend on the covering U , so we still need to work
in order to turn this into an invariant of the underlying topological space. For H0

ths is easy.

30. Lemma (0-th cohomology and global sections) [Gu, Lemma 4]. For any
covering U of X we have

H0pU ,Fq “ ΓpX,Fq.
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Proof. A zero-cochain f P C0pU ,Fq assigns to each U P U a section fpUq P ΓpU,Fq.
By definition, f P H0pX,Fq ô δf “ 0. If we let Uαβ :“ Uα X Uβ denote pairwise
intersections for Uα and Uβ in U , the latter condition means that

δfpUαβq “ fpUαq|Uαβ ´ fpUβq|Uαβ “ 0,

that is, if Uαβ “ H then the local sections fpUαβq P ΓpUαβq agree on intersections

and there exists a global section f̂ P ΓpX,Fq which restricts to fpUαq. Conversely,

a global section f̂ P ΓpX,Fq obviously produces local sections fpUαq “ f̂ |Uα in
ΓpUαq which agree on the overlaps. �

Next we investigate Hq for q ą 0 and various coverings. We call a covering V “
tVau a refinement of U “ tUαu if there exists a mapping µ : V Ñ U such that
Va Ă µpVaq for all Va P V. Put differently, any vertex of V must sit inside some
vertex of U . The map µ is called the refining map. It induces a map

µ : CqpU ,Fq Ñ CqpV,Fq
as follows. If f P CqpU ,Fq and τ “ pV0, . . . , Vqq is a q-simplex in NpVq, then
µpfqpV0, . . . , Vqq “ fpµpV0q, . . . , µpVqqq||τ |. Note that H “ V0 X . . .X Vq Ă µpV0q X

. . .X µpVqq so that pµpV0q, . . . , µpVqq is a q-simplex of NpUq. Clearly, µ is a group
morphism and commutes with δ, i.e. µ ˝ δ “ δ ˝ µ. It therefore descends to a group
morphism

µ˚ : HqpU ,Fq Ñ HqpV,Fq.
Although a refinement map is not uniquely determined, its induced map at coho-
mology level is:

31. Lemma [Gu, Lemma 5]. If V is a refinement of U , and if µ : V Ñ U and
ν : V Ñ U are two refining maps ñ µ˚ “ ν˚.

Proof. Let q “ 0. An element f P H0pU ,Fq is a collection tfpUαqu such that
fpUαq|Uαβ “ fpUβq|Uαβ . Hence µpfq is the collection tfpµpVaqqu. Under the identi-
fication with global sections, both tfpUαqu and tfpµpVaqqu glue to the same global
section, and similarly for ν. Hence µ˚ “ ν˚ “ Id.

Let q ą 0. We need to show that if f P ZqpU ,Fq, then νpfq ´ µpfq “ δθpfq
for some θpfq P Cq´1pV,Fq. Modulo coboundaries, this means that ν “ µ, i.e.
ν˚ “ µ˚. We define θ : CqpU ,Fq Ñ Cq`1pV,Fq as follows. If f P CqpU ,Fq and
τ “ pV0, . . . , Vq´1q P NpVq, then

θpfqpV0, . . . , Vq´1q “

q´1
ÿ

j“0

p´1qjfpµpV0q, . . . , µpVjq, νpVjq, . . . , νpVq´1qq||τ |.

Now this has at least on µ- and one ν-entry in every summand. Taking the differ-
ential, a short computation on τ “ pV0, . . . , Vqq shows that

δθpfqpV0, . . . , Vqq “
q
ÿ

j“0

p´1qj`1δfpµpV0q, . . . , µpVjq, νpVjq, . . . , νpVqqq||τ |

` ν˚pfqpτq ´ µ˚pfqpτq,

whence the assertion if δf “ 0. �

Now we can define a partial ordering on the set of coverings as follows. We write
V ď U if V is a refinement of U . By the previous lemma there is a well-defined
map ρUV : HqpU ,Fq Ñ HqppV,Fq which is transitive, i.e. ρVW ˝ ρUV “ ρUW , and
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such that ρUU “ 0. Note that the set of coverings is directed, that is, for any two
coverings U and V one can find a covering W such that W ď U and W ď V (take
for instance as vertices in W the intersections of the vertices in U and V). We can
therefore define

HqpX,Fq “ lim
ÝÑ
U
HqpU ,Fq

which by definition is the group obtained by taking the product
À

U H
qpU ,Fq and

by identifying two elements f P HqpU ,Fq and g P HqpV,Fq if there exists a common
refinement W of U and V such that the images of f and g in HqpW,Fq agree. In
particular, for each covering U there is a natural map HqpU ,Fq Ñ HqpX,Fq. The
cohomology thus obtained is usually referred to as Čhech cohomology. If we wish
to distinguish it from other cohomology theories we sometimes write Ȟq instead of
H for emphasis.

32. General definition of direct limits. More generally, we can define the
direct limit of groups as follows. Let tGiuiPI be a family of groups indexed by a
directed set I, i.e. we have a partial ordering ď and for any two elements i and j
in I there exists k P I such that k ď i, j. Furthermore, we assume that for each
j ď i we have a group morphism µij : Gi Ñ Gj such that for all i P I, µii “ IdGi
and µik “ µjk ˝ µij whenever k ď j ď i. Then pGi, µijq is a directed system and we
can define the direct limit lim

ÝÑiPI
Gi as follows. Consider the direct sum

À

iGi of
abelian groups, together with the subgroup R generated by elements of the form
xi ´ µijpxiq for all j ď i and xi P Gi. We define

lim
ÝÑ
iPI

Gi :“
à

i

Gi{R,

that is, two elements in gi P G and gj P G, j ď i are equivalent if and only if there
is k P I such that µikpgiq “ µijpgiq. If we let µi : Gi Ñ lim

ÝÑi
Gi be the restriction of

the natural projection
À

iGi Ñ lim
ÝÑi

Gi restricted to Gi, then

(i) µi “ µj ˝ µij whenever i ď j;
(ii) every element in lim

ÝÑi
Gi can be written as µjpxjq for some xj PMj ;

(iii) the direct limit is characterised by the following universal property: Let G be
a group with group morphisms αi : Gi Ñ G such that αi “ αj ˝ µij whenever
j ď i. Then there exists a unique group morphism α : lim

ÝÑi
Gi Ñ G such that

αi “ α ˝ µ,

see for instance [AtMa, Exercice 2.14-16].

33. Remark. We can replace the indexing set I in the definition of the direct
limit by any cofinal subset J . Recall that a subset J of a directed set I is cofinal if
for all i P I there exists j P J with j ď i. Here are two examples:

(i) We can define the stalk Fp of a complete presheaf by

Fp “ lim
ÝÑ

UPUppq
FU ,

where Uppq is a neighbourhood base of p. Then an element ϕ P Fp is rep-
resented by a section f P FpUq for a sufficiently small open set U con-
taining p. If we denote by ϕ “ µU pfq “ rU, f s the resulting equivalence
class, then rU, f s “ rV, gs ô there exists W P Uppq, W Ă U X V such that
µUW pfq “ f |W “ µVW pgq “ g|V . In particular, rW, f |W s “ rV, g|V s.

(ii) Since the set of coverings given by bases of the topology of X is cofinal in
the set of all coverings we can take the direct limit over bases of topology.
A cohomology class in HqpX,Fq is then represented by a cohomology class
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cU P HqpU ,Fq by (ii) of 2.32 (which in turn is represented by a cocycle
ξU P Z

qpU ,Fq)

From Lemma 2.30 immediately follows

34. Corollary.

H0pX,Fq – ΓpX,Fq

Having defined cohomology for arbitrary sheaves we now face the problem to com-
pute it for a given sheaf. In practice we will encounter three types of sheaves on
a Riemann surface X: topological sheaves such as the constant sheaves Z or R,
“smooth” sheaves such as C8X or Ap

X , and “holomorphic” sheaves such as OX or
Ωp.

Topological sheaves. To compute cohomology groups like HqpX,Zq one can appeal
to results from algebraic topology. Assume that X admits the structure of a sim-
plicial complex(this is always the case for a surface). Then simplicial cohomology
HqpX,Zq is defined and we have

ȞqpX,Zq – HqpX,Zq.

Since simplicial cohomology equals ordinary singular cohomology we find, for in-
stance for a compact Riemann surface X that

Ȟ0pX,Zq “ Z, Ȟ0pX,Zq “ Z2g, Ȟ0pX,Zq “ Z,

where g denotes the genus of the Riemann surface, see Theorems C.7 and 9. Here,
we first construct an isomorphism between the cohomology groups of a simplicial
complex KX underlying the topological space X, and the cohomology groups of an
associated open covering UK . Towards this end recall that the star of a vertex Stpνq
of KX is the interior of the union of all simplices containing ν as a vertex. Then
UK :“ tStpνq | ν vertex of KXu defines an open covering. Moreover,

Ş

α“0 1Stpναq 
H and connected ô ν0, . . . , νq are the verteces of a q-simplex. We can then define
a map CqpUK ,Zq Ñ CqpKX , Zq (the latter group being the group of simplicial
cochains) by sending f to

ř

fpσqσ where the sum is being taken over the connected
σ P NpUKq. This induces an isomorphism ȞqpUK ,Zq – HqpK,Zq and taking
succesive subdivisions of K “ KX yields refinements UK whch are cofinal in the
set of open coverings. Passing to the limit gives ȞqpX,Zq – HqpX,Zq.

Smooth sheaves. Here, the so-called long exact sequences plays a key rôle. For a
motivation, consider a short exact sequence of sheaves

0 // G ι // F π // Q // 0.

For any open set U we get an induced sequence at the level of the presheaves of
sections,

0 // GpUq
ι˚ // FpUq

π˚ // QpUq.
As we have discussed above, π˚ is not surjective in general. Cohomology can be
regarded as a measure for the inexactness of this sequence (at least for U “ X).
For this we need to restrict our discussion to paracompact (Hausdorff) spaces, for
instance surfaces. Recall that a Hausdorff space is called paracompact if every
open covering has a locally finite refinement. In particular, it suffices to take the
direct limit over locally finite coverings in the definition of cohomology.
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35. Theorem (Long exact sequence) [Gu, Theorem 1]. If X is a paracompact
Hausdorff space, and if

0 // G ι // F π // Q // 0

is an exact sequence of sheaves of abelian groups over X, then there exists a long
exact sequence

0 // H0pX,Gq
ι˚ // H0pX,Fq

π˚ // H0pX,Qq
δ˚ // H1pX,Gq

ι˚ //

H1pX,Fq
π˚ // H1pX,Qq

δ˚ // H2pX,Gq // .

Here, ι˚ and π˚ are the induced maps on cohomology – they commute both with
δ (so that they define maps between the cohomology groups with respect to U) and
with refinements (so that they induce maps at cohomology level HqpXq).

Proof. We sketch the proof. For more details, see [Gu, Theorem 1].

Construction of the coboundary operator. First choose an open covering U of X. For
each simplex σ P NpUq there is an induced exact sequence 0 Ñ Gp|σ|q Ñ Fp|σ|q Ñ
Qp|σ|q. Since the coboundary groups CqpU ,Gq etc. are direct products of Γp|σ|,Gq
we get an induced exact sequence 0 Ñ CqpU ,Gq ι˚Ñ CqpU ,Fq π˚Ñ CqpU ,Qq. In order
to obtain a short exact sequence we replace CqpU ,Qq by the image π˚pC

qpU ,Fqq “:
C̄qpU ,Fq. Then π˚ and ι˚ commute with the differential δ. If we define

H̄qpU ,Qq “ tf P C̄qpU ,Qq | δf “ 0u{δC̄q´1pU ,Qq,

we then get an induced exact sequence at cohomology level

HqpU ,Gq
ι˚ // HqpU ,Fq

π˚ // H̄qpU ,Qq.

We can now define δ˚ : H̄qpU ,Qq Ñ Hq`1pU ,Gq. Namely, take rcs P H̄qpU ,Qq.
Then c P C̄qpUQq is in the image of π˚, i.e. there exists f P CqpU ,Fq with π˚f “ t.
But δπ˚f “ π˚δf “ δc “ 0, so that there exists g P Cq`1pU ,Gq with ι˚g “
f . We let δ˚rcs “ rgs. Since ι˚ is injective, we have indeed δg “ 0, and the
definition is independent of the choices made (check). Two issues remain: First,
the independence of the covering and second, to get rid of H̄q.

Independence of the covering U . Consider a refinement µ : V Ñ U . We have
two long cohomology sequences associated with U and V respectively, which are
interrelated by µ˚ (it is immediate to check that µ˚H̄qpU ,Fq Ă H̄qpV,Fq). Since µ˚

commutes with ι˚, π˚ and δ˚ taking the direct limit commutes with the cohomology
squence and yields an exact cohomology sequence

. . . // HqpX,Gq
ι˚ // HqpX,Fq

π˚ // HqpX,Qq
δ˚ // Hq`1pX,Gq // . . . .

H̄qpX,Qq “ HqpX,Qq. Here we use the paracompactness of the space. We will
show that for a given cochain c P CqpU ,Qq there exists a refinement µ : V Ñ U and
f P CqpV,Fq such that µ˚c “ π˚f , that is, any Q-cochain lies in the image of π˚,
possibly after refining the covering. Since X is paracompact we may assume that
U is locally finite. For each p P X we then choose an open neighbourhood Vp of p
in X such that

(i) if Vp X Uα “ H ñ Vp Ă Uα: Since U is locally finite, there exists an open
neighbourhood Vp of p which intersects only finitely many Uαi . Shrinking Vp
further if necessary implies that Vp Ă

Ş

i Uαi .
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(ii) If σ “ pU0, . . . , Uqq P NpUq, h P Γp|σ|,Qq and Vp Ă |σ| ñ h|Vp “ π˚pgq
for some g P ΓpVp,Fq: Use the fact that Q is a quotient sheaf, shrinking Vp
further if necessary.

For each p P X define a refinement V “ tVpupPX by choosing Up “ µpVpq P U
which is possible by (i). For any q-simplex τ “ pVp0

, . . . , Vpq q P NpVq we have
|τ | Ă Up0

X . . .XUpq . Then Vp0
XUpi “ H so that Vp0

Ă Upi again by (i). It follows
that |τ | Ă Vp0 Ă Up0 X . . .X Upq “ |µpτq|. Hence if c P CqpU ,Qq, then

µ˚cpτq “ cpµpτqq||τ | “
`

cpµpτqq|Vp0

˘

||τ |.

However, cpµpτqq|Vp0
“ π˚f for a section f P ΓpVp0 ,Fq by (iii) with σ “ µpτq. This

proves the claim and finishes the proof. �

In view of the long exact sequence, the following property of sheaves is of interest.

36. Definition (acylic sheaf). A sheaf F is called acyclic ô HqpX,Fq “ 0 for
q ą 0.

37. Examples of acyclic sheaves [Go].

(i) soft (“mou”) sheaves: If A Ă X is a closed subset, then ΓpX,Fq Ñ ΓpA,Fq
is surjective.

(ii) flabby (“flasque”) sheaves: If U Ă X is an open subset, then ΓpX,Fq Ñ
ΓpU,Fq surjective.

(iii) fine sheaves: We will treat these below.

This gives rise to the following way of computing sheaf cohomology in general
provided one has an acyclic resolution of a sheaf F , i.e. an exact sequence of the
form

0 // F // F0
d0 // F1

d1 // F2
d2 // . . .

where the sheaves Fi are acyclic sheaves, and di : Fi Ñ Fi`1 are sheaf morphisms.

38. Theorem [Gu, Theorem 3]. ) If X is paracompact, and F is a sheaf admitting
an acyclic resolution, then

HqpX,Fq – ker dqpXq{ im dq´1pXq

for q ą 0.

Proof. Let Ki “ ker di Ă Fi. First we get a short exact sequence of the form

0 // F // F0
di // K1

// 0

from which we deduce that H1pFq – H0pK1q{ im d0 and Hq`1pFq – HqpK1q for
q ě 1 since F0 is fine. Now the exact sequences

0 // Ki // Fi
di // Ki`1

// 0

yield HqpK1q – Hq´1pK2q – . . . – H1pKqq – H0pKq`1q{ im dq. �

39. Example: De Rham cohomology. Though one can show that an acyclic
resolution always exists. However, in practice one uses concrete natural resolutions.
For instance, we will see in a moment, at least in the case of the differentiable
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structure underlying a Riemann surface, that the sheaves of differential forms Ap
X

are fine. In particular, for any differentiable manifold M we get a fine resolution

0 // C // A0
M

d0 // A1
M

d1 // . . .

In particular, ȞqpM,Cq – ker dq{ im dq´1 “: Hq
DRpMq, where the right hand side

defines the so-called de Rham cohomology. By the considerations above we
obtain in particular that HqpM,Cq – Hq

DR (de Rham’s theorem) – although de
Rham cohomology is defined in terms of the differentiable structure, the resulting
cohomology theory is a topological invariant!

We say that a family tηαuαPΛ of sheaf morphisms F Ñ F is a partition of unity
for the sheaf F subordinate to the locally finite covering U “ tUαuαPΛ if

‚ ηαpFpq “ 0 for all p R Uα;
‚
ř

α ηαpgq “ g for all g P F .

As for usual partitions of unity, local finiteness ensures that the sum
ř

a ηapgq is
finite. We say that F is a fine sheaf if it admits a partition of unita for any locally
finite covering. For instance, the sheaf of smooth functions C8X over a Riemann
surface is fine, for a usual partition of functions tpUα, fαqu (as we used to define
integration) induces a partition of unity by extending fα by 0 to all of x which acts
on C8 by multiplication.

40. Theorem (fine sheaves are acyclic) [Gu, Theorem 2]. If U “ tUαu
is a locally finite covering and tηαu a partition of unity of F subordinate to U ñ

HqpU ,Fq “ 0 for all q ą 0. In particular, HqpX,Fq “ 0 for all q ą 0 if X is
paracompact and F fine.

Proof. Let f P ZqpU ,Fq, q ą 0. We want to show that f is exact, that is, f “ δg
for some g. The ηα induce morphisms ηα˚ on CqpU ,Fq such that f “

ř

ηα˚f , so
we need only to show that ηα˚f “ δgα for any fixed α. We define gα as follows. Let
τ “ pV0, . . . , Vq´1q be a q ´ 1-simplex. If Uα X |τ | “ H, then gαpτq “ 0 P Γp|τ |,Fq.
Otherwise, let

gαpτq “ e|τ |pηα˚fqpUα, τq

where e|τ | : ΓpUα X |τ |q Ñ Γp|τ |q denotes extension by zero. Then g P Cq´1pU ,Fq
and if σ “ pU0, . . . , Uqq, τi “ pU0, . . . , Ui´1, Ui`1, . . . , Uqq, we have by a short
computation

δgαpσq “
q
ÿ

i“0

p´1qigαpσiq||σ| “ ηα˚fpσq ´ e|σ|δηα˚f “ ηα˚fpσq

for δf “ 0. Defining g “
ř

α gα yields fpσq “
ř

α ηα˚fpσq “
ř

αpδgαqpσq “ pδgq as
required. �

A further application of fine sheaves is

41. Theorem (Leray) [Gu, Theorem 5]. Let F be a sheaf of abelian groups
over a paracompact space X, and let U “ tUαu be a Leray covering, i.e. an open
covering of X such that Hqp|σ|,Fq “ 0 for all σ P NpUq and q ě 1. Then

HqpX,Fq – HqpU ,Fq

for all q ě 0.
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Proof. Pick an acyclic resolution

0 // F // F0
d0 // F1

d1 // F2
d2 // . . .

for F (as remarked above, this always exists). It follows that HqpX,Fq is isomor-
phic to ker dqpXq{ im dq´1pXq. Restriction to |σ| for σ P NpUq yields an acyclic
resolution which computes Hqp|σ|,Fq. Since Hqp|σ|,Fq “ 0 it follows that

0 // Γp|σ|,Fq // Γp|σ|,F0q
d0˚ // Γp|σ|,F1q

d1˚ // Γp|σ|,F2q
d2˚ // . . .

defines actually an exact sequence. As the cochain groups are just direct products
of groups Γp|σ|,Fiq it follows that we also obtain an exact sequence

0 // CqpU ,Fq // CqpU ,F0q
d0˚ // CqpU ,F1q

d1˚ // CqpU ,F2q
d2˚ // . . . .

The morphisms commute with the differential. Consequently, these sequences can
be grouped together to give the following big commutative diagramm:

0

��

0

��

0

��

0

��
0 // ΓpX,Fq

��

// ΓpX,F0q

��

d0 // ΓpX,F1q

��

d1 // ΓpX,F2q

��

d2 // . . .

0 // C0pU ,Fq

δ

��

// C0pU ,F0q

δ

��

d0˚ // C0pU ,F1q

δ

��

d1˚ // C0pU ,F2q

δ

��

d2˚ // . . .

0 // C1pU ,Fq

δ

��

// C1pU ,F0q

δ

��

d0˚ // C1pU ,F1q

δ

��

d1˚ // C1pU ,F2q

δ

��

d2˚ // . . .

0 // C2pU ,Fq

δ��

// C2pU ,F0q

δ��

d0˚ // C2pU ,F1q

δ��

d1˚ // C2pU ,F2q

δ��

d2˚ //

...
...

...
...

It follows from our initial considerations that all the rows except for the first are
exact. Similarly, all the columns except for the first are exact. Since the inexactness
of these sequences is precisely measures by cohomology, a simple diagramm chase
gives the result. �

Though the existence of a Leray covering is a priori unclear we will see powerful
applications of this theorem later on.

Holomorphic sheaves. These are at the heart of theory of Riemann surfaces and
need to be computed individually.

42. Definition (Dolbeault cohomology). Let X be a (compact) Riemann
surface, and let O “ OX be the sheaf of holomorphic functions. Then HqpX,Oq is
called the q-th Dolbeault cohomology group.

We know already that H0pX,Oq “ C, that is, the only globally defined holomorphic
functions are the constant functions. To compute HqpX,Oq (at leasfor q ą 0, let
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U Ă C be an open set. Recall that the Cauchy-Riemann operator B̄ “ pBx ` iByq{2
which induces the sequence

0 // OX
// C8X

B̄ // C8X

by acting on germs represented by holomorphic functions defined over charts. We
then prove the

43. Theorem [Gu, Theorem 4]. Let U Ă C be a domain, and let g P C8pUq ñ
There exists f P C8pUq such that B̄f “ g.

Proof. We proceed in two steps

Step 1. Let D Ă U be a domain such that D̄ is compact and contained in U ñ

There exists f P C8pUq such that B̄f |D “ g|D. Pick a smooth functoin ρ on C such
that ρpzq “ 1 for z P D̄ and ρpzq “ 0 for z P CzU , and supp ρ is compact. Then we
can define a smooth function h by

hpzq “ ρpzqgpzq for z P U, hpzq “ 0 for z P CzU.
Note that h|D “ g|D. We put

fpzq “
1

2πi

ż

C

hpz ` ξq

ξ
dξ ^ dξ̄.

The integral is well-defined for we have, passing to polar coordinates ξ “ reiθ, that
pdξ ^ dξ̄q{ξ “ ´2ie´iθdr ^ dθ so that we are integrating a smooth function with
compact support. In particular, differentiation commutes with integration. Note
that by the chain rule differentiation of hpz ` ξq is symmetric with respect ξ̄ and
z̄. Moreover, Bξ̄ is ξ-linear. It follows that

Bz̄fpzq “
1

2πi

ż

C
Bz̄hpz ` ξq

dξ ^ dξ̄

ξ

“
1

2πi

ż

C
Bξ̄hpz ` ξq

dξ ^ dξ̄

ξ

“
1

2πi

ż

C
Bz̄
hpz ` ξq

ξ
dξ ^ dξ̄.

Next fix z P C, a disc DR whose radius R is large enough that supph Ă DR, and a
disc Dε such that D̄ε Ă DR. We denote by γR respectively γε the circles bounding
DR and Dε with positive orientation. Then

2πiBz̄fpzq “ lim
εÑ0

ż

DRzDε

Bξ̄

`hpz ` ξq

ξ

˘

dξ ^ dξ̄

“ lim
εÑ0

ż

DRzDε

d
`hpz ` ξq

ξ
dξ
˘

dξ̄,

and Stokes’ Theorem (8) implies that

2πiBz̄f “ lim
εÑ0

ż

γε

hpz ` ξq

ξ
dξ.

Parametrising γε by ξ “ εeiθ yields

2πiBz̄fpzq “ lim
εÑ0

ż 2π

θ“0

hpz ` εeiθqidθ

“

ż 2π

θ“0

hpzqidθ

“ 2πihpzq.
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Hence f is the desired function.

Step 2. Conclusion. Select a sequence of domains Dn Ă U as in the first step such
that

‚ D̄n Ă Dn`1;
‚ U “

Ť8

n“1Dn;
‚ any f P OpDn´1q can be approximated uniformly well by fi P OpDnq over
D̄n´2.

The existence of such a sequence is garantued by Runge’s approximation the-
orem, see [Fo, Section 25, in particular Theorem 25.4]. We claim that there
exists a sequence of functions fn P C8pDnq such that B̄f “ g over Dn and
|fnpzq ´ fn´1pzq| ă 2´n for all z P D̄n´2. We proceed by induction. By the
first step there exists a smooth function hn P C

8pUq such that B̄hh “ g over Dn.
For n “ 0 and n “ 1 there is nothing more to show if we put fi “ hi. If n ě 2, then
hn and fn´1 are both smooth over Dn´1, and B̄phn´ fn´1q “ 0 over Dn´1, that is,
hn ´ fn´1 P OpDn´1q. Now we choose an aproximating function h P OpDnq such
that supzPD̄n´2

|hnpzq ´ fn´1pzq ´ hpzq| ă 2´n and put fn “ hn ´ h.

The resulting sequence tfnpzqu is Cauchy and therefore converges to some limiting
value fpzq. Indeed, consider

fpzq “ fn`2pzq `
8
ÿ

m“n`2

pfm`1pzq ´ fmpzqq.

Since |fm`1pzq ´ fmpzq| ă 2´m for z P Dn Ă Dm´2 the series fn converges with
respect to the supremum norm over Dn. Since the individual terms in the series
are holomorphic, so is their sum. Consequently, f P C8pDn´2q and B̄f “ g. Since
the fmaily Dn exhausts U , the result follows.

�

For a general Riemann surface X Theorem 2.43 implies that we have an exact
sequence (the Dolbeault sequence of X)

0 // OX
// A0,0

X
B̄ // A0,1

X
// 0 (9)

Since the Ap,q
X are fine sheaves we immediately obtain the

44. Corollary (Dolbeault). HqpX,Oq “ 0 for q ą 1.

45. Remark. We will see later that H1pX,Oq – Cg, where g is the genus of the
underlying surface.

2.2. Line bundles and divisors. We have seen that on a compact Riemann sur-
face only constants define global holomorphic functions. Now considering OX as a
sheaf it is free in the sense that OXpXq “ ΓpX,OXq are just functions X Ñ C, that
is, a global section σ : X Ñ OX can be represented by global holomorphic functions
f : X Ñ C, σppq “ pp, fppqq. In this section we will introduce line bundles. Morally,
these are sheaves which are locally of the form U ˆ C. Unlike OX these sheaves
can possess nontrivial global sections. Closely related to this are divisors which we
will investigate first.

Divisors. Recall that O˚X is the germ of nowhere vanishing holomorphic functions,
that is f P O˚XpUq ô f P OXpUq and fpzq “ 0 for all z P U . Furthermore, M˚ is



48 FREDERIK WITT UNIVERSITÄT STUTTGART

the sheaf of not identically vanishing meromorphic functions, that is, f PM˚
XpUq

ô f ı 0.

46. Definition (sheaf of divisors). The quotient sheaf DX “M˚
X{O˚X is the

sheaf of germs of divisors. A section D P ΓpU,DXq will be called a divisor on
U . (Note that these definitions make also sense on noncompact RIemann surfaces).

A germ Dp P Dp, p P X, is thus an equivalence class of a nontrivial meromorphic
function which is defined up to an invertible holomorphic function. This leads to
a particularly simple description of divisors in terms of the order function oa 1.53.
Clearly, oa descends to the quotient Dp “ M˚

X,p{OX˚,p and actually induces an

isomorphism Dp – Z. Furthermore, a section D P ΓpU,Dq is locally represented
by a nowhere vanishing meromorphic function whose zeroes and pôles are isolated.
Applying this isomorphism pointwise implies that oppDppqq “ 0 except for a discrete
subset of U which is finite if U is relatively compact in X. Consequently, we
can identify D with the locally finite formal sum

ř

pPU oppDppqqp of poitns with
coefficients in Z. The multiplicative structure of D corresponds to an additive
structure on these formal sums for oppf ¨ gq “ oppfq ` oppgq. We therefore get an
alternatve description of D, namely as the complete presheaf DpUq consisting of
sections U Ñ Z which are zero except for a discrete subset of U together with the
natural restriction maps. Moreover, this obviously defines a flasque sheaf so that in
particular, HqpX,Dq “ 0 for q ě 1. Note that there is a naturl partial ordering for
divisors. We say that D P DXpUq is positive if D “

ř

app with integers ap ě 0.
We write D ě 0 and D ě D1 ô D ´D1 ě 0.

47. Example: the divisor of a meromorphic function. With any nontrivial
meromorphic function f P M˚

XpUq we can associate a divisor pfq :“
ř

oppfpqp.
Divisors of this form are called principal. Note that a prinicpal divisor is positive
ô f is holomorphic.

The map which associates a principal divisor with a meromorphic function gives
rise to the exact sequence

0 // O˚X
ι //M˚

X

p¨q // DX // 0,

where ι is the natural inclusion mapping. In particular, we get an induced map

ΓpX,M˚
Xq

p¨q
Ñ ΓpX,DXq. Since DX is flasque, globally defined divisors exist in

abundance. The existence of nontrivial meromophic functions is less obvious. A
first existence result is this:

48. Theorem (Weierstrass) [Gu, Theorem 6]. If U is a domain in C, then we
have an exact sequence of groups

0 // ΓpU,O˚U q
ι˚ // ΓpU,M˚

U q
p¨q˚ // ΓpU,DU q // 0.

In particular, any divisor on U is principal.

Proof. Surjectivity follows from the ling exact sequence provided we can show that
H1pU,O˚U q “ 0. Let X “ U . From the exact sequence

0 // Z ι // OX
exp // O˚X // 0

we deduce the exact sequence

H1pX,OXq // H1pX,O˚Xq // H2pX,Zq // H2pX,OXq.
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But we know already that H1pX,OXq “ H2pX,OXq “ 0 from which we obtain
H1pX,O˚q – H2pX,Zq. But since X is noncompact, H2pX,Zq “ 0 (this is a
general topological fact for noncompact surfaces) from which the result follows. �

49. Remark. More generally, this result holds for any noncompact Riemann
surface X as they satisfy H1,2pX,OXq “ 0, see [Forster]. One can actually ex-
plicitely construct the meromorphic function via Weierstrass’ factor theorem A.28.
The virtue of our approach lies in the relative simplicity of the proof, once the
vanishing of H1,2pX,OXq is established.

50. Corollary. If U is a domain in C, then QuotOpUq “MpUq.

Proof. It is clear that QuotOpUq Ă MpUq. Conversely, let f P MpUq. By the
Weierstrass Theorem 2.48 we can find a holomorphic function h P OpUq whose
divisor gives precisely the pole divisor of f (i.e. the divisor consisting of the poles
of f together with their multiplicity). In particular, g :“ h ¨ f P OpUq so that
f “ g{h P QuotOpUq. �

Next we investigate the exact sequence 0 Ñ O˚ Ñ M˚ Ñ D Ñ 0 using the fact
that D is an acyclic sheaf.

51. Definition (divisor class group). Two divisors D1 and D2 in ΓpX,Dq are
linearly equivalent if D1 ´D2 “ pfq for f P ΓpX,M˚q. The group

Cl pXq “ ΓpX,Dq{pΓpX,M˚qq

is called the divisor class group of X.

The long exact sequence yields the short exact sequence

0 // Cl pXq // H1pX,O˚q // H1pX,M˚q // 0

We investigate the cohomology group H1pX,O˚q next.

Holomorphic line bundles. We start with the

52. Definition (holomorphic line bundles). A holomorphic line bundle ξ
is an element in H1pX,O˚q. We call H1pX,O˚q the group of holomorphic line
bundles.

As explained in 2.32 and the subsequent remark, we can represent a holomorphic
line bundle ξ by a cocycle which we write tξαβu P Z1pU ,O˚q for a base U “ tUαu
of the topology of X. Writing the group operation multiplicatively the cocycle
condition implies

ξαβ ¨ ξβγ |Uαβγ “ ξαγ |Uαβγ ,

where Uαβ “ Uα XUβ , Uαβγ “ Uα XUβ XUγ etc. and where Uαβγ “ H. It follows
that if V “ Uαβ “ H and V “

Ť

VĄUγPU is a covering by open sets in U (U is a

base of the topology!), then

ξαβ “ ξ´1
βα .

Indeed, 1 “ pδξqαβγ “ ξβγξ
´1
αγ ξαβ |Uγ P O˚pUγq and 1 “ pδξqβαγ “ ξαγξ

´1
βγ ξβα|Uγ P

O˚pUγq. Hence 1 “ pδξqβαγ ¨ pδξqαβγ “ pξαβ ¨ ξβαq|Uγ .
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Next we associate a sheaf Oξ with every ξ P H1pX,O˚q. For each α, we let
OξpUαq “ ΓpUα,Oq “ OξpUαq. However, for Uβ Ă Uα we let

ραβpfqppq “ ξβαppq ¨ fppq

instead of the usual restriction morphisms. The cocycle condition (2.2) garantuees
that ρβγ˝ραβ “ ραγ . In particular, OξpUαq together with the “restriction functions”
ραβ determine a presheaf since they are defined for a base of the topology, cf.
Remark2.26. It is easy to see that it is complete and independent of the representing
cocycle.

53. Definition (sheaf of holomorphic cross-sections). We call the sheaf
Oξ just constructed the sheaf of holomorphic cross-sections of ξ. We call the
cocycle ξαβ representing ξ an atlas of ξ if the underlying base of topology consists
of coordinate neighbourhoods of X and OξpUαq – OpUαq.

In particular, a global section s P ΓpX,Oξq is determined by a collection of lo-
cally defined holomorphic functions sα “ ρXUαpsq P OpUαq which satisfy sα|Uαβ “
ξαβsβ |Uαβ whenever Uαβ “ H. Indeed, let p P Uαβ and let Uαβ Ą Uγ be an open
set in U containing p. By design, ραγpsαqppq “ ρXUγ psqppq “ ρβγpsβqppq whence
ξγαppq ¨ sαppq “ ξβγppq ¨ ξβαppq ¨ sαppq “ ξβγppq ¨ sβppq.

54. Remark. To understand the terminology, we interpret ξ “ tξαβu given by an
atlas geometrically by considering the cocycle as a family of holomorphic functions
ξαβ : Uαβ Ñ C˚ “ GLp1,Cq. We can then define

Lξ “
ğ

Uα ˆ C{ „ξ,

where two elements pz, sq P Uα ˆ C and pw, tq P Uβ ˆ C are equivalent if and only
if w “ z and s “ ξαβt. Clearly, this is an equivalence relation. The natural map
Ů

Uα ˆ CÑ Lξ topologises this space. Furthermore, we have a natural projection
πξ : Lξ Ñ X whose fibre is just C. In a sense, it is like a sheaf except that its
topology is of product type, that is, locally it is homeomorphic to Uα ˆ C. Lξ
is calle a holomorphic line bundle. In particular, it is an example of a higher
dimensional complex manifold. As for sheave we can consider sections σ : U Ñ Lξ
which satisfy πξ ˝ σ “ IdU . Since L is itself a complex manifold we can require
these to be holomorphic. The holomorphic sections over U are then just given by
Oξ.

Of course, Lξ depends a priori on the cocycle ξαβ rather than the cohomology
class ξ. However, there is a natural notion of a morphism of a line bundle, and
one can show that cohomologous cocycles give rise to holomorphic line bundles.
Summarising, a cohomology class of ξ determines an isomorphism class of line
bundles Lξ.

55. Example. The trivial cohomology class 1 gives rise to the holomorphically
trivial line bundle X ˆ C, i.e. Oξ “ OX . In particular, any global section must
be constant if X is compact, i.e. H0pX,O1q “ H0pX,OXq – C.

In fact, we have the

56. Lemma. A line bundle ξ is holomorphic trivial, i.e. ξ “ 1 P H1pX,O˚q ô
there exists a global section s P ΓpX,O˚ξ q, that is, s is nowhere vanishing.
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Proof. ñ) Then ΓpX,Oξq “ ΓpX,Oq so that any nontrivial constant will do.

ð) Assume that s P ΓpX,Oξq such that psq “ 0. By definition, for any collection
tsαu representing s we have sα “ ξαβsβ . Since sβ and sα are nowhere vanishing we
have ξαβ “ sα{sβ , whence pδtsαuqαβ “ sβs

´1
α “ ξβα so that ξ “ δs. Hence ξ “ 0

in H1pX,Oξq. �

It follows that for a nontrivial bundle ξ any holomorphic section has at least one
zero. We often refer to a holomorphically trivial bundle simply as a trivial bundle,
but it is important to keep in mind that there are several notions of triviality, see
also our discussion of Chern classes in Section 2.2.3. In order to investigate global
sections further, and in particular to study existence of nontrivial global sections,
it is useful to consider line bundles of the type ξ “ δ˚D for some D P ΓpX,Dq.
We denote its sheaf of sections by OD :“ Oδ˚D. This has a useful reformulation
as follows. Consider the subsheaf OM,D which we define as follows. For any point
p P X we let the stalk be given by

pOM,Dqp “ tϕ “ rU, f s PMp | either f ” 0 or pfq ě D|Uu

and let OM,D “
Ť

pPXpOM,Dqp. This defines obviously a subsheaf of M and we
have the

57. Proposition [Gu, Lemma 7]. The sheaves OD and OM,D are isomorphic. In
particular, we can consider the sheaves of sections Oξ as subsheaves of M for any
line bundle ξ.

Proof. We consider again the exact sequence 0 Ñ O˚ Ñ M˚ Ñ D Ñ 0 with
induced boundary operator δ˚. Any divisor D P ΓpX,Dq is locally induced by a
meromophic function, that is, there exists an open covering U “ tUαu together
with meromorphic functions dα P M˚

Uα
such that pdαq “ D|Uα and ξαβ “ dβ{dα

is the cocycle defined by δ˚D. To define the isomorphism OM,D Ñ OD take a
germ f P pOM,Dqp with which we associate the meromophic germ fα :“ f{dα if
p P Uα. Since pfαq “ pfq ´ pdαq ě 0 this germ is necessarily holomorphic at p.
Furthermore, if p P Uα X Uβ then fα “ f{dα “ f ¨ ξαβ{dβ “ ξαβfβ . In particular,
fα defines a function germ in pODqp, and the resulting map is easily seen to be an
isomorphism. �

58. Corollary. The nontrivial global sections of OD “ δ˚D correspond precisely
to meromorphic functions f PM˚ with pfq ě D.

It is natural to ask when a line bundle ξ is of the form δ˚D. Obviously, the
obstruction against this is the cohomology module H1pX,M˚q. Its vanishing has
an interesting interpretation in terms of Mξ, the sheaf of meromorphic cross
sections which is constructed in the same way as Oξ. For a cross section s P
ΓpX,Mξq we can define the order of s at p by setting oppsq “ oppsαq if p P Uα.
Since sα is well-defined up to a nowhere vanishing holomorphic function which has
order 0, this is well-defined. For any not identically vanishing section s we can
therefore define the divisor of the cross section s by

psq “
ÿ

pPX

oppsqp.

In particular, ΓpX,Oξq “ ts P ΓpX,Mξq | psq ě 0u.
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59. Lemma. H1pX,M˚q “ 0 ô for all ξ P H1pX,O˚q, H0pX,Mξq “ t0u, that
is, ξ admits a global meromorphic section.

Proof. As for holomorphic sections on eshows that ξ “ r1s in H1pX,M˚q ô there
exists s P ΓpX,M˚

ξ q, i.e. s is not identically zero ô ΓpX,Mξq “ 0. By the

exact sequence 0 Ñ O˚ ι
Ñ M˚ Ñ D Ñ 0 we can represent write every element

η P H1pX,M˚q as η “ ι˚ξ for ξ P H1pX,O˚q. It follows that H1pX,M˚q “ 0 if
and only if for every line bundle ξ P H1pX,O˚q, ΓpX,Mξq “ t0u. �

We will see later that indeed H1pX,M˚q “ 0 for any compact Riemann surface,
cf. Theorem 2.74. This basic analytic existence result is at the heart of the theory
of Riemann surfaces. For the moment we continue to study the cohomology of Oξ.

Towards that end we want to generalise the Dolbeault sequence 0 Ñ O Ñ A0,0 B̄
Ñ

A1,0 Ñ 0 to an acyclic resolution of Oξ. Namely, in the same vein as Oξ and Mξ

we can define smooth cross sections C8ξ of ξ or ξ-valued pp, qq-forms Ap,q
ξ . For

instance, taking an atlas ξαβ of ξ we define

Ap,q
ξ “ ΓpUα,Ap,q

X q “ Ap,q
X pUαq.

For Uβ Ă Uα we take again the restriction functions provided by ξβα, i.e. ραβ :
Ap,q
ξ pUαq Ñ Ap,q

ξ pUβq is given by ραβpϕαqppq “ ξβαppq ¨ ϕα,p. For instance, if

ϕα “ fαdzα P A1,0pUαq for some local coordinate zα on Uα, then ρβαpϕαqppq “
ξαβppq ¨fαppqdpzα. The resulting presheaves are complete and fine, and they reduce
to the usual sheaves if ξ is trivial. Furthermore, global sections are given locally as
above by forms ϕα which satisfy ϕβ “ ξβαϕα. Note that the exterior differential

d : Ap
X Ñ Ap`1

X does not induce a map Ap
ξ Ñ Ap`1

X for the holomorphic functions

ξαβ : Uαβ Ñ C˚ do not commute with d, for dξαβ “ Bξαβ . However, they commute
with B̄ so that we can consider the Dolbeault-Serre sequence

0 // Oξ
// A0,0

ξ
B̄ // A0,1

ξ
// 0.

Since in a coordinate neighbourhood this reduces to the ordinary Dolbeault se-
quence (9) this sequence is exact and defines an acyclic resolution of Oξ. We
immediately deduce from this the

60. Theorem (Dolbeault-Serre) [Gu, Theorem 8]. Let X be a (not necessarily
compact) Riemann surface, and ξ P H1pX,O˚q be a holomorphic line bundle ñ

H1pX,Oξq – ΓpX,A0,1
ξ q{B̄ΓpX,A

0,0
ξ q

HqpX,Oξq “ 0, q ě 2.

It remains to investigate HqpX,Oξq in more detail for q “ 0, 1. As a first step, we
need that H0pX,Oξq and H1pX,Oξq are finite dimensional.

61. Theorem [Gu, Section 4.c]. For all ξ P H1pX,O˚q, dimCH
qpX,Oξq ă 8 if

q “ 0, 1.

Proof. (Sketch for q “ 0) The main idea is to show that HpX,Oξq can be identified
with a locally compact Hilbert space. Then HqpX,Oξq must be finite dimensional
by general arguments from functional analysis.
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Step 1. Define a Hilbert space structure on O. One first considers the square
integrable holomorphic functions

Γ0pU,Oq “ tf P OpUq |
ż

U

|fpzq|2dz ^ dz̄ ă 8u

and shows that this defines a Hilbert space. Furthermore, one can prove that
the restriction operators ρUV : Γ0pU,Oq Ñ Γ0pV,Oq are bounded linear operators
between Hilbert spaces which are compact, if V̄ is compact and contained in U .

Let U “ tUαu be an atlas of ξ. Out of Γ0 we can construct the differential complex

δ : Cq0pU ,Oξq Ñ Cq`1
0 pU ,Oξq between Hilbert spaces. We consider the associated

cohomology groups which will be denoted by Hq
0 pU ,Oξq.

Step 2. We have Hq
0 pU ,Oξq – HqpU ,Oξq – HqpX,Oξq. This is essentially an

application of Leray’s theorem as Hqp|σ|,Oξq – Hqp|σ|,Oqp“ 0 for q ě 1q.

Step 3. Finally, we show that Hq
0 pU ,Oξq are Hilbert spaces and that refinement

maps induce bounded compact operators between cohomology and that Hq
0 pU ,Oξq

is a locally compact Hilbert space, hence finite-dimensional. Again, this follows
essentially from functional analytic considerations.

�

In particular, the difference dimCH
0pX,Oξq´dimCH

1pX,Oξq is well-defined. That
this is a computable topological quantity is the content of the famous

62. Theorem (Riemann-Roch) [Gu, Theorem 13]. Let X be a compact Riemann
surface of genus g, and let ξ P H1pX,O˚q be a complex line bundle ñ

dimCH
0pX,Oξq ´ dimCH

1pX,Oξq “ 1´ g ` cpξq,

where cpξq “
ř

pPX oppsq is the so-called Chern class of ξ given as the sum of all

orders of a nontrivial meromorphic section s of ξ (whose existence has yet to be
justified). In particular, if cpξq ą g ´ 1, then Oξ admits non-trivial holomorphic
sections.

Serre duality. While H0pX,Oξq has an easy interpretation as the space of global
sections, the module H1pX,Oξq lacks such a simple interpretation. This makes the
computation of its dimension quite difficult in general. However, in the special case
of Riemann surfaces, this can be expressed in terms of the dimension of the space
of global sections of some further sheaf:

63. Theorem (Serre duality) [Gu, Theorem 9]. Let X be a compact Riemann
surface, and let ξ P H1pX,O˚q be a holomorphic line bundle ñ There is a natural
isomorphism

H1pM,Oξq – H0pX,Ω1
ξ´1q

˚.

In particular, dimCH
1pM,Oξq “ dimCH

0pX,Ω1
ξ´1q

˚.

Recall that Ω1 is the sheaf of holomorphic 1-forms, sometimes also called the sheaf
of abelian differentials. The proof is functional analytic in nature, the interested
read might consult [Gu, Chapter 6]. We merely outline the duality between these
two spaces. First note that we have a natural bilinear pairing

ΓpX,A0,1
ξ q ˆ ΓpX,A1,0

ξ´1q Ñ ΓpX,A1,1
X q, pϕ,ψq ÞÑ ϕ^ ψ
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(write out what this means in local coordinates – since we multiply ϕα and ψα
by ξβα and ξ´1

βα when passing to ϕβ and ψβ these contributions cancel and we

can glue the locally defined forms p1, 1q-forms to a global one). This p1, 1q-form
gives a complex number by integration (X is compact so we do not worry about
convergence issues):

ΓpX,A0,1
ξ q ˆ ΓpX,A1,0

ξ´1q Ñ ΓpX,A1,1
X q, pϕ,ψq ÞÑ xϕ,ψy :“

ż

X

ϕ^ ψ.

Now if Bf P BΓpX,A0,0
ξ q Ă ΓpX,A0,1

ξ q and ψ P ΓpX,Ω1
ξ´1q Ă ΓpX,A1,0

ξ´1q so that

B̄ϕ “ 0 and Bpfψq P A2,0pXq “ 0, we have

xB̄f, ψy “

ż

X

B̄f ^ ψ “

ż

X

dpfψq “ 0

by Stokes theorem (see Paragraph 2.15). The pairing x¨, ¨y thus descends to

H1pX,Oξq ˆH
0pX,Ω1

ξ´1q Ñ C, prϕs, ψq ÞÑ xϕ, ψy.

Serre’s assertion is that this map is non degenerate. Note that while the isomor-
phism in Theorem 2.63 is natural, the isomorphism H0pX,Ω1

ξ´1q
˚ – H0pX,Ω1

ξ´1q

(which exists by finite dimensionality) is not.

To conclude this section we reformulate Serre’s duality theorem in terms of the
canonical line bundle KX which avoids the use of differential forms by interpreting
these as sections of KX . As the name suggests the fact that KX exists naturally
on any Riemann surface and is (at least for X compact) nontrivial makes this a
particularly interesting line bundle. To define it let U be a maximal atlas of X
consisting of local charts zα : Uα Ñ C. We denote by fαβ : zβpUαβq Ñ zαpUαβq the
resulting transition functions, i.e. we have

zαppq “ fαβppqpzβppqq

for all p P Uαβ . We then define a cocycle καβ P Z
1pU ,O˚q by

καβppq “
1

f 1αβpzβppqq
.

Indeed, if p P Uαβγ , then zαppq “ fαγpzγppqq “ fαβpfβγpzγppqqq so that by the
chain rule for holomorphic functions,

καγppq “
“

f 1αγpzγppqq
‰´1

“
“

f 1αβpfβγpzγppqqq ¨ f
1
βγpzγppqq

‰´1

“
“

f 1αβpzβppqq ¨ f
1
βγpzγppqq

‰´1

“ καβppq ¨ κβγppq.

64. Definition (canonical line bundle). We call the holomorphic line bundle
κ P H1pX,O˚q the canonical line bundle.

Next we consider the sheaf Ω1 of holomorphic 1-forms. In terms of the maximal
atlas U , a section ϕα P Ω1pUαq is given by ϕα “ gαdzα with gα P OpUαq and
gαppqdpzα “ gβppqdpzβ if p P Uαβ . Since dpzα “ f 1αβpzβppqqdpzβ “ κ´1

αβppqdpzβ ,
this means that

gα “ καβgβ

so that tgαu defines a section of κ. Hence Ω1 “ Oκ and more generally, Ω1
ξ “ Oκξ

(where the product κξ in H1pX,O˚q is represented by the product cocycle καβ ¨ξαβ).
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Similarly, A1,0
ξ “ A0,0

κξ “ C8κξ, the smooth sections of the holomorphic line bundle
κξ. With this notation, we can restate Serre duality as

H1pX,Oξq – H0pX,Oκξ´1q˚.

2.3. Statement and proof of Riemann-Roch. We are now prepared to prove
Theorem 2.62. We start by defining Chern classes, before we turn to the proof of
Riemann-Roch.

Chern classes. We have seen in Lemma 2.56 that a line bundle is holomorphically
trivial ô there exists a global section s P O˚XpXq. More generally, we could ask
for a smooth nowhere vanishing section, i.e. a family tfαu with fα P C

8˚pUαq such
that fα “ ξαβfβ . If it exists we say that ξ is smoothly trivial. Geometrically,
this means that the corresponding line bundle L Ñ X is isomorphic to X ˆ C via
a smooth (instead of a holomorphic) map. Still, such smooth trivialisations may
not exist and we define obstructions against its existence via Čhech cohomology.
This will eventually lead to the definition of the Chern class of a holomorphic line
bundle.

To start with we consider the exponential sequence 0 Ñ Z Ñ O Ñ O˚ Ñ 0. This
leads to the exact sequence H1pM,Zq Ñ H1pM,Oq Ñ H1pM,O˚q Ñ H2pM,Zq Ñ
0 for H2pX,Oq “ 0 by Corollary 2.44. Consequently, the sequence

0 // H1pM,Oq{H1pM,Zq // H1pM,O˚q
δ˚ // H2pM,Zq // 0

is exact.

65. Definition (Chern class). We call c :“ δ˚ the characteristic map and
cpξq :“ δ˚ξ the Chern class of the line bundle ξ.

To understand its geometric meaning, consider the smooth exponential sequence
0 Ñ Z Ñ C8 Ñ C8˚ Ñ 0. The inclusions ι : O Ñ C8 etc. give rise to the
commutative diagramm

H1pX,Oq //

ι˚

��

H1pX,O˚q c //

ι˚

��

H2pX,Zq //

–

��

0

H1pX,C8q // H1pX,C8˚q
c // H2pX,Zq // 0

Now C8 is a fine sheaf so that H1pX,C8q – H2pX,Zq. It follows that the complex
line bundle associated with ξ P H1pX,C8˚q, that is, we glue the local models
Uα ˆ C via the smooth transition functions ξαβ : Uαβ Ñ C˚, is actually classified
by cpξq. In particular, cpξq “ 0 ô there exists a global section tfαu of C8˚ξ pXq

with fα “ ξαβfβ . For a holomorphic line bundle ξ P H1pX,O˚q, cpξq “ 0 means
ι˚pξq “ 0 by the commutativity of the diagramm, that is, ι˚pξqαβ “ fβ{fα for
smooth fα P C

8˚pUαq.

66. Remark.

(i) Similarly, we can topologically trivialise ξ ô there exists a global nowhere
vanishing continuous section of ξ. Since we can approximate such a continuous
section arbitrarily closely by a smooth section, a bundle ξ is topologically
trivial ô ξ is smoothly trivial. In this sense, cpξq is a topological invariant of
ξ which classifies ξ completely as a complex vector bundle. Note, however, that
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even the smoothly trivial bundle X ˆ C might carry nontrivial holomorphic
structures.

(ii) The previous discussion holds for any, in particular, noncompact Riemann
surface. Since in this case H2pX,Zq “ 0 we immediately deduce that any
holomorphic line bundle is smoothly trivial. In fact, though this is beyond
the scope of our course, one can show that it is even holomorphically trivial,
see [Fo, 30.3].

Henceforth we restrict our attention again to compact Riemann surfaces. Then
H2pX,Zq – Z so that cpξq can be considered as an integer. We will give two different
descriptions of this integer. The first is based on the inclusion 0 Ñ H2pX,Zq Ñ
H2pX,Cq induced by the inclusion Z Ă C. In general, the latter inclusion only gives
a map H2pX,Zq Ñ H2pX,Cq which is not necessarily injective. From the universal
coefficient theorem, however, it follows that H2pX,Cq – H2pX,Zq bZ C. On the
other hand, de Rham’s theorem asserts that H2pX,Cq – A2pXq{dA1pXq so that
we can represent cpξq by a differential form ϕpξq P A2pXq. Integration of this yields
the isomorphism H2pX,Cq – C, since

ş

X
ϕ is independent of the representative

by Stokes’ Theorem. This form ϕpξq can be made explicit. In the sequel, let C8R
denote the sheaf of real-valued smooth functions.

67. Proposition [Gu, Lemma 14]. Let ξ P H1pX,O˚q be represented by tξαβu P
Z1pU ,O˚q, and let thαu P C0pU , C8˚R u be such that hαppq “ |ξαβppq|

2hβppq for
p P Uαβ. Then

ϕα “
1

2πi
BB̄ log hα

defines a smooth 2-form such that

cpξq “

ż

X

ϕ.

68. Remark. Without loss of generality we can choose hα ą 0. The transforma-
tion law hαppq “ ξ̄αβppqhβppqξβαppq is that of a hermitian metric: In general, if
h “ phijq defines a hermitian metric on Cn in terms of a given basis, then a base
change implemented by the matrix A “ pAijq P GLpn,Cq is given by ĀJ ¨ h ¨ A.
Given a hermitian metric on ξ induces a hermitian metric on the corresponding
line bundle L by hppv, wq “ vhαppqw̄ for v, w P Lp. Now a hermitian metric
always exists. Indeed, t|ξαβ |

2u defines a cocycle in Z1pU , C8˚R q. Since the real ex-
ponential exp : C8R Ñ C8˚R defines a sheaf isomorphism and C8R is obviously fine,
0 “ H1pX,C8R q “ H1pX,C8˚R q. (In particular, any real line bundle – obtained
by glueing the local models Uα ˆ R – must be trivial) It follows that the cocycle
t|ξαβ |

2u must be a coboundary, i.e. equal to δthαuαβ “ hβ{hα. The 2-form ϕ can
then be interpreted as the curvature of the hermitian metric. For the special case
of the holomorphic line bundle ´κ this has an interpretation in terms of the Gauss-
ian curvature of a Riemannian (sic!) surface, and Riemann-Roch then essentially
becomes the famous Gauß-Bonnet theorem, cf. also 2.77 (iii)

The relationship between hermitian metrics on complex vector bundles and topo-
logical invariants, the so-called characteristic classes, is at the heart of Chern-Weil
theory.

Proof. The result will follow from a detailed analysis of the characteristic map δ˚ :
H1pX,O˚q Ñ H2pX,Zq and the de Rham isomorphismH2pX,Cq – A2pXq{dA1pXq.
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Consider the exact sequence 0 Ñ Z Ñ O Ñ O˚ Ñ 0 and represent ξ by a cocycle
ξαβ such that Uαβ is simply-connected if nonempty (take an atlas of ξ and refine
further). In particular, we can take the logarithm and obtain a cochain σαβ “
plog ξαβq{2πi so that exppσαβq “ ξαβ . By definition, cpξq “ δ˚ξ “ rcαβγs where
cαβγ P Z

2pU ,Zq is the coboundary cαβγ “ pδσqαβγ “ σβγ ´ σαγ ` σαβ . In order
to represent this class by a 2-form we take the standard acyclic resolution of C to
compute H2pX,Cq, namely

0 // C // C8
d // A1 d // A2 // 0.

This gives rise to the exact sequence 0 Ñ C Ñ A0 Ñ A1
d Ñ 0 where A1

d denotes
the closed 1-forms (this corresponds to the sequence 0 Ñ F Ñ F0 Ñ K1 Ñ 0 in
Theorem 2.38). Regarding cαβγ as a cocycle in C2pU ,Cq it is the coboundary of the
cocycle σαβ in C1pU , C8q. In particular, dσαβ P Z

1pU ,A1
dq. On the other hand, the

exact sequence 0 Ñ A1
d Ñ A1 Ñ A2 Ñ 0 (corresponding to 0 Ñ K1 Ñ F1 Ñ K2 Ñ

in Theorem 2.38) shows that dσαβ , regarded as an element in Z1pU ,A1q via the
inclusion 0 Ñ A1

d Ñ A1, must be the coboundary of a cochain in C0pU ,A1q for
H1pX,A1q “ 0, A1 being fine. It follows that we need to find τα P C

0pU ,A1q such
that dσαβ “ pτα ´ τβq|Uαβ , or equivalently, we need a family of smooth 1-forms

τα P A1pUαq satisfying

τα “
1

2πi
d log ξαβ ` τβ in Uα X Uβ .

In particular, dτα “ dτβ on Uαβ so that ϕα “ dτβ pieces together to a well-defined
2-form ϕ which represents the cohomology class rcαβγs P H

2pX,Cq.
We can now conclude by constructing τα as follows. By assumption, log hα “
log hβ ` log ξαβ ` log ξ̄αβ over Uαβ . Since the functions ξαβ are holomorphic,
d log ξαβ “ B log ξαβ and B log ξ̄αβ “ 0. Taking τα “ i{2π ¨ B log hα does the job,
and ϕα “ dτα “ i{2πB̄B log hα. �

Let f P H0pX,M˚
ξ q be a nontrivial meromorphic section of ξ. The integer

degpfq :“
ÿ

pPX

oppfq

is called the total order or the degree of f . Since X is compact, oppfq “ 0 only
for a finite number of points p.

69. Theorem [Gu, Theorem 11]. For any line bundle ξ P H1pX,O˚q over a com-
pact Riemann surface X, and any nontrivial meromorphic section f P H0pX,M˚q,
we have

cpξq “
ÿ

pPX

oppfq.

In particular, any nontrivial meromorphic section has the same total order.

Proof. We are building a hermitian metric from f and apply the previous proposi-
tion. Namely, let p1, . . . , pn the finite number of points of X where oppfq “ 0. We
represent ξ by a cocycle ξαβ where we choose the covering in such a way that for
all i “ 1, . . . , n, there exists an open neighbourhood Vi of pi contained in Uαi for
some αi, but Vi X Uα “ H if α “ αi. We have fα “ ξαβfβ on Uαβ “ H. We let
hα “ |fα|

2 ą 0 on Uαz
Ť

i Vi and extend it smoothly and positively over
Ť

i Vi. In
particular, hα “ |ξαβ |

2hβ so that h defines a hermitian metric on ξ. (Intiutively, f
defines a trivialisation of ξ near p whenever oppf “ 0; we then let |f |2 be the norm
of the trivialisation.)
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Next we evaluate cpξq using the previous proposition so that

cpξq “
1

2πi

ż

X

BB̄ log h´1
α “

1

2πi

ż

X

B̄Bhα.

Outside
Ť

i Vi we have hα “ |fα|
2 “ f̄α ¨ fα so that

B̄B log hα “ B̄Bplog fα ` log f̄αq “ 0.

Indeed, fα “ fαpzq is holomorphic in z so that B̄f “ 0 and Bf̄ “ B̄f “ 0. Hence

cpξq “
1

2π

ÿ

i

ż

Vi

B̄B log hαi

“
1

2πi

ÿ

i

ż

Vi

dB log hαi

“
1

2πi

ÿ

i

ż

BVi

B log hαi

by Stokes’ theorem. But hα “ |fα|
2 on the boundary BVi of Vi,, whence B log hα “

plog fαq
1 “ f 1α{fα. Consequently,

cpξq “
1

2πi

ÿ

i

ż

BVi

f 1α
fα
“
ÿ

i

opipfq

by the Rouché’s formula A.31 (which is essentially the residue theorem). �

Since any global holomorphic section defines in particular a meromorphic one with
nonnegative total order we immediately dedude the

70. Corollary. If cpξq ă 0 then there are no nontrivial global holomorphic sections
of ξ, that is, H0pX,Oξq “ 0.

As a further corollary we note

71. Corollary. If ξ “ δ˚D, D “
ř

aipi ñ cpξq “ ´ degD “ ´
ř

ai.

Proof. Indeed, if we represent D locally by dα P M˚pUαq then ξαβ “ pδ˚Dqαβ “
dβ{dα. Hence we obtain a meromorphic section s “ t1{dαu whose induced divisor
is psq “ ´D. �

Proof of Riemann-Roch. For the rest of this section X will be a compact
Riemann surface. Let ξ P H1pX,O˚q be a holomorphic line bundle. We define

χ̃pξq “ dimH0pX,Oξq ´ dimH1pX,Oξq ´ cpξq

“ dimH0pX,Oξq ´ dimH0pX,Oκξ´1q ´ cpξq,

where we used Serre duality for the last line.

72. Remark. The integer

χpξq “ dimH0pX,Oξq ´ dimH1pX,Oξq “ χ̃pξq ` cpξq

is called the (holomorphic) Euler characteristic of ξ.



RIEMANN SURFACES 59

We know already that this quantity is well-defined. We will need to show that it is
independent of ξ̃ and that it equals χpξq “ 1´g where g is the genus of the surface.
First we investigate the case of a divisor.

73. Lemma. Let D P DpXq, and let η “ δ˚D P H
1pX,O˚q ñ

χ̃pξηq “ χ̃pξq.

Proof. If D “
ř

aipi then χ̃pξ ¨ δ˚Dq “ χ̃pΠiξη
ai
i q where ηi “ δ˚pi. Hence it is

sufficient to prove the assertion for a point bundle η “ δ˚p, p P X. In analogy with
the sheaves considered in Proposition 2.57 we introduce the subsheaf OM, D, ξ of
Mξ defined by

pOM, D, ξqq “ trU, f s P pMξqq | f ” 0 or pfq ě D|Uu.

Since D “ p ą 0, OM, D, ξ is actually a subsheaf of Oξ, and we can consider the
quotient sheaf Q “ Oξ{OM, D, ξ. This is a skyscraper sheaf of the form

Qq “

"

0 if q “ p
C if q “ p

(the stalk OM, D, ξ at p is just the maximal ideal m of the local ring pOξqp given by
noninvertible sections). In fact, OM, D, ξ – Oξη (this follows as in Proposition 2.57).

From the resulting exact sequence 0 Ñ Oξη
ι
Ñ Oξ

π
Ñ S Ñ 0 we deduce the long

exact sequence

0 // H0pX,Oξηq // H0pX,Oξq
π˚ // H0pX,Qq

δ˚ //

// H1pX,Oξηq
ι˚ // H1pX,Oξq // H1pX,Qq // 0 // . . .

Since Q is a skyscraper sheaf it is flabby and thus acyclic with H0pX,Qq – C.
From this and the exactness of the sequence it follows that

‚ dim imπ˚ ` dimH0pX,Oξηq “ dimH0pX,Oξq,
‚ dimH1pX,Oξq ` dim ker ι˚ “ dimH1pX,Oηξq,
‚ 1 “ dim imπ˚ ` dim ker ι˚,

that is, we find for the alternating sum

dimH0pX,Oξηq ´ dimH1pX,Oξηq ` 1

“ dimH0pX,Oξq ´ dimH1pX,Oξq.

Since 1 “ ´cpηq “ cpη´1q, adding cpξq to both sides and using cpξq ` cpη´1q “

cpξη´1q gives the desired formula χ̃pξη´1q “ χ̃pξq. �

As an important consequence we deduce from this and Lemma 2.59 the

74. Theorem [Gu, Theorem 12]. On a compact Riemann surface X,

H1pX,M˚q “ 0,

i.e. every line bundle on M has a nontrivial meromorphic section and is thus of the
form δ˚D for some divisor D uniquel determined up to pfq for f PM˚

XpXq.
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Proof. Since a line bundle comes from a divisor if and only if it admits a meromor-
phic section, it is enough to show that there exists a line bundle η “ δ˚D such that
ξη admits a meromorphic section. We will actually be able to show that we can
find a holomorphic line bundle η such that ξη has in fact a holomorphic section.
Suppose to the contrary that H0pX,Oξηq “ 0 for all D P DpXq. By the previous
lemma,

χ̃pξηq “ dimH0pX,Oξηq ´ dimH0pX,Oκξ´1η´1q ´ cpξηq

is independent of D so that by our assumption,

dimH0pX,Oκξ´1η´1q ` cpξηq “ c

for some constant independent of D. Choosing D suitably we can arrange for
cpκξ´1η´1q “ cpκq ´ cpξq ´ cpηq ă 0 so that κξ´1η´1 admits no nontrivial holo-
morphic sections by Corollary 2.70. But then cpηq “ c´ cpξq is independent of D,
a contradiction. �

75. Corollary. We have

ClpXq – H1pX,O˚q,
that is, the divisor class group is isomorphic to the group of holomorphic line bun-
dles.

76. Corollary. The number χ̃pξq is constant and does not depend on ξ.

Proof. Since every line bundle ξ comes from a divisor, we have χ̃ξq “ χ̃p1 ¨ ξq “
χp1q. �

In particular, we find

χ̃pξq “ χ̃p1q “ dimH0pX,Oq ´ dimH0pX,Oκq ´ cp1q “ 1´ dimH0pX,Oκq,

We call the constant
g :“ dimH1pX,Oκq

the arithmetic genus of X. To interpret g in terms of the topology underlying
the Riemann surface we consider the exact sequence

0 // C // O d // Ω1 d // Ω2 “ 0

(a holomorphic 1-form ω P Ω1 is closed, hence locally of the form ω “ fdz “ dg
for g P C8 – it is easy to see that g is holomorphic, hence the sequence is indeed
exact). This gives rise to the long exact sequence

0 // H0pX,Cq // H0pX,Oq // H0pX,Ω1q //

// H1pX,Cq // H1pX,Oq // H1pX,Ω1q //

// H2pX,Cq // 0 // . . .

Now H0pX,Cq – H0pX,Oq – H2pX,Cq – C, and as above it follows that

dimH0pX,Ω1q ´ dimH1pX,Cq ` dimH1pX,Oq ´ dimH1pX,Ω1q ` 1 “ 0

By Serre Duality we have dimH1pX,Oq “ dimH0pX,Ω1q “ dimH0pX,Oκq “ g
and dimH1pX,Ω1q “ dimH0pX,Oq “ 1. Consequently, 2g “ dimH1pX,Cq which
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means that g equals also the topological genus of X (while this is only define in the
surface case, the arithmetic genus can be defined for arbitrary complex manifolds).
It also follows that

χ̃pξq “ 1´ g

which completes the proof of Theorem 2.62.

77. Applications of Riemann-Roch. Finally, we discuss some applications of
Riemann-Roch.

(i) Existence of nontrivial holomorphic sections. Given a line bundle ξ over X one
is naturally interested in the holomorphic sections and their zeroes: Assume
that there are nontrivial sections s0 . . . , sn P H

0pX, ξq. Then p ÞÑ rs0ppq : . . . :
snppqs P Pn is well-defined whenever p is not a base point, i.e. sippq “ 0 for all
p. Here, we think of the si as trivialised sections of the associated line bundle
Lξ. Of course, the n ` 1-tupel ps0, . . . , snppqq depends on the trivialisation.
But any other trivialisation multiplies this n` 1-tuple by a nonzero complex
number so that the line rs0ppq : . . . : snppqs P Pn is well-defined. It turns out
that we that there are no base points and that the map X Ñ Pn is actually
an embedding if there are sufficiently many sections. In fact, there exists an
integer n so that considering ξn instead of n provides such a line bundle with
sufficiently many sections (we also say that ξ is ample. To see how Riemann-
Roch can be of help here, consider ξ “ κ, the canonical line bundle.Then

χ̃pκq “ dimH0pX,Oκq ´ dimH1pX,Oκq ´ cpκq “ g ´ 1´ cpκq

so that

cpκq “ 2pg ´ 1q. (10)

This implies not only that a holomorphic 1-form has at exactly 2pg´1q zeroes
counted with mulitplicity, but also that

dimH0pX,Oκq ě g ´ 1.

It follows that any Riemann surface of genus ě 2 has nontrivial holomorphic
1-forms. We discuss further case of existence in the problem class.

(ii) Dimension of the Teichmüller space. Given a compact surface we can ask
how many ineqivalent Riemann surface structures we can define on X. This
question can be asked more generally for any (compact) manifold of arbitrary
dimension. Specialised to the case of a Riemann surface X the answer is
this. Fixing one particular Riemann structure the answer is this (cf. for in-
stance [?, 6.1.5 and 6.1.6]): The space of possible Riemann surface structures
is a smooth complex manifold TX (the Teichmüller space of X) if and only
if H2pX,Oκ´1q “ 0 (which is always the case, cf. Theorem 2.60), and in this
case its dimension is dimH1pX,Oκ´1q. To compute the latter we note that
by Riemann-Roch

dimH1pX,Oκ´1q “ 1´ g ` cpκ´1q ´ dimH0pX,Oκ´1q

Now cpκ´1q “ ´cpκq “ 2p1´ gq ă 0 for g ď 2 which implies H0pX,Oκ´1q “ 0
by Corollary 2.70. Hence dimTX “ 3pg ´ 3q if g ě 2. That X carries at
least one Riemann surface structure is of course nontrivial. This follows for
instance from the fact that the fundamental group of any compact surface
acts as biholmorphically via Deck transformations on the unviersal covering
C, cf. for instance also the discussion in [Gu, §9]. Summarising, we also yield
a smooth Teichmller space which is of dimension 0 on the sphere, of dimension
1 on a torus, and of dimension 3pg ´ 3q on a surface of genus ě 2.
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(iii) Expressing the Chern class cpκq as an integral over X as in Proposition 2.??,
Riemann-Roch actually gives the famous Gauss-Bonnet-Theorem for Riemann-
ian (sic!) surfaces, that is, surfaces equipped with a Riemannian metric. In-
deed, underlying the real tangent space and ist Riemannian is the dual of the
holomorphic line bundle κ together with a hermitian metric. The integrand
iBB̄ log hα can then be interpreted as the Gaussian curvature of the Riemann-
ian metric.

Appendix A. Holomorphic functions

We briefly recall the most important features of holomorphic functions. For a
general reference see for instance [Ah] or [Re]. As a matter of notation, we let Dεpz0q

be the open disc of radius ε around z0 P C, i.e. Dεpz0q “ tz P C | |z ´ z0| ă εu.

1. Definition. Let U Ă C – R2 be an open subset. A function f : U Ñ C is
called complex differentiable at a P U or holomorphic at a P U if

f 1paq :“ lim
zÑa

fpzq ´ fpaq

z ´ a

exists. In this case, f 1paq is called the complex derivative of f at a. If is
holomorphic for every a P U we say that f is holomorphic on U and let OpUq be
the set of holomorphic functions on U .

2. Example.

(i) f : C Ñ C, fpzq ” c P C the constant functions are holomorphic on C
with f 1paq “ 0, whence C Ă OpCq (identifying constant functions with their
complex value).

(ii) f : CÑ C, fpzq “ cz, c P C is holomorphic with f 1paq “ c.
(iii) If f P OpUq and V Ă U is an open subset, then f |V P OpV q. In particular,

C Ă OpUq

Functions which are holomorphic on all of C are also called entire. As for the
usual (real) differentiability we can prove in exactly the same way the following
differentiation rules.

3. Proposition. Let f , g P OpUq. Then

(i) f ` g P OpUq, and pf ` gq1paq “ f 1paq ` g1paq;
(ii) f ¨ g, and pf ¨ gq1paq “ f 1paq ¨ gpaq ` fpaq ¨ g1paq.

In particular, OpUq is a C-algebra.

(i) If g is a function which is holomorphic in a, and f is holomorphic in gpaq,
then f ˝ g is holomorphic in a, and we have

pf ˝ gq1paq “ f 1pgpaqq ¨ gpaq.

4. Example. Since OpUq is a C-algebra and z P OpUq by restriction, any
polynomial fpzq “

řn
i“0 aiz

i is in OpUq, and f 1paq “
ř

i“0 iaiz
i´1. More generally,

let f : U Ñ C be analytic, that is, for any z0 P U exists an ε ą 0 such that
Dεpz0q Ă U and

fpzq “
8
ÿ

i“0

aipz ´ z0q
i z P Dεpz0q
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where the convergence is absolute and uniform in z. It follows that f is holomorphic
and differentiating term by term yields

f 1pzq “
8
ÿ

i“0

iaipz ´ z0q
i´1 z P Dεpz0q

as in the real differentiable case. For instance, the complex exponential function

ez :“
8
ÿ

i“0

zi

i!

is entire.

In terms of real differentiability we can express the condition to be holomorphic as
follows. Under the identification C – R2, z “ x` iy corresponds to px, yq.

5. Theorem. A function f : U Ñ C is holomorphic in a P U ô f is real
differentiable in a and the Cauchy-Riemann equations

Bxupaq “ Byvpaq, Byupaq “ ´Bxvpaq

hold. In particular, any holomorphic function is continuous.

Proof. See for instance [Pö, 9.4]. �

In practice, we will use the previous theorem as follows. We let

Bzfpaq :“
1

2
pBxf ´ iByfqpaq, Bz̄fpaq :“

1

2
pBxf ` iByfqpaq.

We also write B for Bz and B̄ for Bz̄. Then we obtain the following

6. Corollary. A function f P C1pUq is holomorphic at a ô

B̄fpaq “ 0.

In this case, f 1paq “ Bfpaq.

7. Remark.

(i) Of course, the regularity assumption of Corollary A.6 is not optimal, but it
will simpliyfy the subsequent discussion since where we use Stokes’ Theorem
to derive Cauchy’s integral formula. At any rate, this will be sufficient for our
purposes.

(ii) To see where the Cauchy-Riemann equations comes from, consider a smooth
function fpx, yq “ upx, yq ` ivpx, yq : U Ñ C – R2. Its real derivative at a
with respect to the real standard basis e1 “ 1, e2 “ i of R2 is

Daf “

ˆ

Bxu Byu
Bxv Byv

˙

.

This is a real linear map, that is Dafpλvq “ λDafpvq for all v P R2, λ P R.
When is it complex linear? Multiplication with i sends e1 “ 1 to e2 “ i and
e2 “ i to ´1 “ e1, so Daf is complex linear if and only it commutes with the
corresponding matrix, i.e.

Daf ˝

ˆ

0 ´1
1 0

˙

“

ˆ

0 ´1
1 0

˙

˝Daf.

It is easy to see that this holds ô the Cauchy-Riemann equations hold. Sum-
marising, a smooth function f : U Ñ C – R2 is holomorphic ô its differential
is complex linear.
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(iii) In general, a complex linear map A : R2 Ñ R2 is given by a matrix of the
form

A “

ˆ

a b
´b a

˙

which after the identification R2 – C corresponds to the complex linear map
given by multiplication with a`ib. Hence, seeing Daf as a complex number if
Daf is complex linear, i.e. f is holomorphic, we have Daf “ Bxu´ iByu “ Bf .

The upshot of this B-B̄ formalism is that we can treat a holomorpic function as a
“differentiable” function in z whose derivative at a is given by Bfpaq and for which
the usual differentiation rules hold.

8. Example.

(i) fpzq “ zk is holomorphic for B̄fpaq “ 0 and Bfpaq “ kak´1.
(ii) The exponential map exp : C Ñ C˚ defined by exppzq “

ř8

k“0 z
k{k! is

holomorphic (more generally, any power series which converges absolutely
and uniformly on some open disc is holomorphic there). Note thta exp defines
a group morphism if C and C˚ are endowed with their usual group structures
of addition and multiplication of complex numbers. In particular, ker exp “
2πiZ.

(iii) If f P OpUq, then a logarithm of f is a function g P OpUq such that
exppgq “ f . Of course, fpzq “ 0 for all z P U is a necessary condition
for a holomorphic logarithm to exist, but due to monodromy issues (cf. also
Section 11.3) it is in general not sufficient. However, the logarithm exists
if e.g. U is simply connected. In this case, one can also consider the k-th
holomorphic root of f , namely h P OpUq with hk “ f . Take, for instance,
h “ exppg{kq, where g is a holomorphic logarithm (see also [Re, Section 9.3]
for instance).

(iv) fpzq “ |z|2 “ z ¨ z̄ is not holomorphic, for it depends on z̄: B̄fpzq “ z.
(v) Let f : U Ñ C, g : V Ñ U Ă C two smooth functions so that f ˝ g : V Ñ C

is also smooth. Then for all a P V ,

Bpf ˝ gqpaq “ Bfpgpaqq ¨ Bgpaq ` B̄fpgpaqq ¨ Bḡpaq,

B̄pf ˝ gqpaq “ Bfpgpaqq ¨ B̄gpaq ` B̄fpgpaqq ¨ B̄ḡpaq

(see for instance [Re, p.68]). In particular, if f and g are holomorphic, so is
f ˝ g and we obtain the holomorphic chain rule

Bpf ˝ gqpaq “ pf ˝ gq1paq “ f 1pgpaqq ¨ g1paq.

9. Remark. In analogy with real analysis we can also consider holomorphic
functions in several variables. A function f “ pf1, . . . , fmq : U Ă Cn Ñ Cm is
holomorphic ô fi : U Ñ C is contininuous and fpz1, . . . , znq holomorphic in any
single variable zi in the sense above. Then many familiar theorems of real analysis
still hold, in particular the implicit function theorem which allows to set up a theory
of complex manifolds along the lines of differentiable manifolds. For instance this
theorem for holomorphic functions f : U Ă C2 Ñ C reads as follows. If f ” fpw, zq
is holomorphic and if Bzfpaq “ 0, then there exists a holomorphic function g ” gpwq
defined in some neighbourhood of a such that fpw, gpwqq “ fpaq. Put differently,
we can eliminate holomorphically the variable z from the equation fpw, zq “ fpaq.
See also [GuRo] for more details on holomorphic functions in severable variables.
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Before we come to the next theorem we define

dz “ dx` idy, dz̄ “ dx´ idy.

We can think of pdz, dz̄q as the basis dual to pB, B̄q. In particular,

df “ Bfdz ` B̄fdz̄.

The volume element dx ^ dy used for integration is then idz ^ d̄z{2. Recall
also that for the line integral of a continuous f defined on the nighbourhood of a
piecewise C1 curve γ : I Ñ C is defined by

ż

γ

fpzqdz :“

ż

I

fpγptqq ¨ γ1ptqdt.

This is indepenent of the particular parametrisation of γ, and if we write f “
pu, vq “ u` iv and γ “ px, yq, then

ş

γ
fdz “

ş

γ
pudx´ vdyq ` i

ş

γ
pvdx` udyq. We

can now state the central theorem for holomorphic functions.

10. Theorem (Cauchy’s integral formula). Let w P D :“ Dεpz0q Ă C and
f P C1pD̄q (that is, f is continuously differentiable on D and continuous on D̄) ñ

fpwq “
1

2πi

`

ż

BD

fpzq

z ´ w
dz `

ż

∆

B̄fpzq

z ´ w
dz ^ dz̄

˘

.

In particular, we have for f P C1pD̄q XOpDq that

fpwq “
1

2πi

ż

BD

fpzq

z ´ w
dz.

Proof. The proof requires some familiarity with the exterior form calculus, see also
Section 2.1

Let Dδ “ Dδpwq Ă D and

ηwpzq :“
1

2πi
¨
fpzq

z ´ w
dz

which is defined on DzDδ. Its exterior derivative is the continuous 2-form on DzDδ

given by

dηwpzq “
1

2πi
¨

1

z ´ w
B̄fdz̄ ^ dz.

In particular, the integral on the left hand side exists which via Stokes gives
ż

DzDδ

dη “

ż

BD

η ´

ż

BDδ

η. (11)

Now parametrise BDδ by γptq “ w ` δeit. then
ż

BDδ

η “
1

2πi

ż

γ

fpzq

z ´ w
dz

“
1

2πi

ż 2π

0

fpw ` δeitq

δeit
iδeitdt

“
1

2π

ż 2π

0

fpw ` δeitqdt.

The latter expression converges to fpwq as δ Ñ 0 (consider fpw`δeitq as a function
in δ and apply Taylor’s theorem). On the other hand

ˇ

ˇ

B̄f

z ´ w
dz̄ ^ dz

ˇ

ˇ “ 2
|B̄f |

r
r|dr ^ dt| ď 2c|dr ^ dt|
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where we introduced polar coordinates x “ r cos t and y “ r sin t so that dz̄^ dz “
2irdr ^ dt. Hence dη is absolutely integrable which implies

ż

DzDδ

dη “

ż

DzDδ

dη “

ż

D

dη ´

ż

Dδ

dη.

However, |
ş

Dδ
dη| ď Cδ2 for some constant C which by (11) implies

ż

D

dη “

ż

BD

η ` lim
δÑ0

`

ż

Dδ

dη ´

ż

BDδ

η
˘

“

ż

BDη ´ fpwq,

whence the result. (Note that we cannot apply Stokes to
ş

Dδ
dη for dη is singular

at w P Dδ.) �

We will now draw several very powerful corollaries.

11. Corollary. Let f P OpUq.
(i) f is analytic. More precisely, for all z0 P U we have fpzq “

ř8

k“0 akpz ´ z0q
k

for z P Dεpz0q where ε ą 0 is any real number ă distpz0, BUq.
(ii) If U is connected and Zpfq “ tz P U | fpzq “ 0u has an accumulation point,

then f ” 0 (“Identity Theorem”).

Proof. (i) By Cauchy’s theorem for all w P D “ Dεpz0q we have

fpwq “
1

2πi

ż

BD

fpzq

z ´ w
dz

“
1

2πi

ż

BD

fpzq

pz ´ z0q ´ pw ´ z0q
dz

“
1

2πi

ż

BD

fpzq

z ´ z0
¨

1

1´ w´z0
z´z0

dz

“
1

2πi

ż

BD

`

ÿ

k“0

fpzq

pz ´ z0q
k`1

dz
˘

pw ´ z0q
k

“

8
ÿ

k“0

` 1

2πi

ż

BD

fpzq

pz ´ z0q
k`1

dz
˘

pw ´ z0q
k.

Note that all we used is that D̄ Ă U and |w´z0| ă |z´z0| since w P D and z P BD.
Hence the computation is valid for any ε ă distpx, BUq.

(ii) Let z0 P Zpfq and f ı 0 near z0. By (i) we can write fpzq “ pz´z0q
mgpzq with

gpz0q “ 0 and m ě 1 unless f ” 0 near z in some open neighbourhood V of z0.
Hence gpzq “ 0 for z sufficently close to z0, so that Zpfq X V “ tz0u. So whenever
Zpfq has an accumulation point a, then f must vanish identically near that point.
Since a power series around z0 is identically zero on Dεpz0q if its zero set has an
accumulation point (see for instance [Pö, 9.40]). This entails that f ” 0 on U if U is
connected. Indeed, let f ” 0 on Va near the accumulation point a and let z P Zpfq.
Choose a curve u : I :“ r0, 1s Ñ C from a to z and let ε ă distpImu, BUq. Then f
vanishes on Dεpz0, εq. If w P Dεpz0, εqXImu, then f vanishes on Dεpz0, εqYDεpw, εq.
Since Imu is compact we find after a finite number of steps that z lies in a disc
of radius ε on which f vanishes. Hence Zpfq is open. Since it is closed for f is
continuous, Zpfq “ u for U is connected. �

12. Remark.
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(i) Because of (i) of the previous corollary one uses the terms “complex analytic”
and “holomorphic” interchangeably. Note that in particular, a holomorphic
function is automatically C8 (which also immediately shows that there are
C1 functions which are not holomorphic).

(ii) If U is connected, then OpUq is an integral domain.

13. Corollary (mean value inequality). For all f P OpUq we have |fpwq| ď
maxzPBDεpwq |fpzq| whenever BDεpwq Ă U .

Proof. From Cauchy’s theorem we immediately get that

|fpwq| ď
1

2π

ż

BDεpwq

ˇ

ˇ

fpzq

z ´ w

ˇ

ˇdz “
1

2π

ż 2π

0

fpw ` εeitqdt ď max
zPBDεpwq

|fpzq|.

�

14. Corollary (holomorphic functions are open). Let f P OpUq be noncon-
stant and U connected ñ f is open, i.e. images of open sets are again open.

Proof. We proceed in two steps.

Step 4. Let D be an open disc around w P U whose closure D̄ is contained in U , and
such that minzPBD |fpzq| ą |fpwq| ñ there exists z0 P D with fpz0q “ 0. If not, there
exists an open neighbourhood V of D̄ where fpzq “ 0 so that g :“ 1{f |V P OpV q.
By assumption, maxzPBD |gpzq| ă |gpwq| which is impossible by the mean value
inequality.

Step 5. Conclusion. Let z P D. We need to show that there exists ε ą 0 such
that Dεpfpzqq Ă fpDq. Since f is not constant, there exists δ ą 0 such that
fpzq R fpBDδpzqq. (Otherwise, there would exist for any δ ą 0 an element zδ P BDδ

with fpzq “ fpzδq which by the Identity Theorem implies f ” const on U , a
contradiction.) For such a δ we define 2ε :“ minwPBDδpzq |fpwq ´ fpzq| ą 0. Now
for all w P BDδpzq,

v P Dεpfpzqq ñ |fpwq ´ v| ě |pfwq ´ fpzq| ´ |fpzq ´ v| ą 2ε´ ε ą ε.

Hence minwPBDδpzq |fpwq ´ v| ą ε ą |fpzq ´ v|. By the first step this yields a
z0 P Dδpzq such that fpz0q ´ v “ 0, whence fpz0q “ v P fpDδpzqq.

�

15. Corollary (maximal principle). If for f P OpUq, z P U is a local maximum
of |f |, then f must be constant.

Proof. Let z P U be such that |fpzq| ě |fpwq| for all w P D :“ Dεpzq Ă U . But then
fpDq is not open, for if it were, there would exists a disc Dδpfpzqq Ă fpDq and thus
fpwq P Dδpfpzqq with w P D and |fpwq| ą |fpzq|. Hence f must be constant. �

16. Corollary (Liouville). If f is entire, i.e. f P OpCq and bounded ñ
f ” const.
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Proof. Assume that |fpzq| ď M for all z P C. If w P C and δ ą |w| we have from
Cauchy that

fpwq ´ fp0q “
1

2πi

ż

BDδp0q

fpzq
` 1

z ´ w
´

1

z

˘

dz “
w

2πi

ż

BDδp0q

fpzq

zpz ´ wq
dz.

It follows that |fpwq ´ fp0q| ď |w|max|z|“δ
|fpzq|
|z´w| ď |w|M max|z|“δ

1
|z´w| . Now

|z ´ w| ě
ˇ

ˇ|z| ´ |w|
ˇ

ˇ “ δ ´ |w| so that finally,

|fpwq ´ fp0q| ď
|w| ¨M

δ ´ |w|

Since we can choose δ arbitrarily big, fpwq “ fp0q. �

17. Remark. The previous statement is obviously false for smooth functions as
the existence of cut-off functions demonstrates.

18. Holomorphic logarithm. A final aspect of holomorphic functions we want
to discuss is the existence of holomorphic logarithms. By definition, a holomorphic
logarithm of a holomorphic function f P OpUq is a holomorphic function log g which
satisfies expplog gq “ g. To illustrate the problem, consider the identity function
z “ rei argpzq where argpzq P r0, 2πq gives the argument of z, i.e. its angle for
standard polar coordinates pr, ϕq of R2 – C (with the convention that argp0, yq “ 0
for y ą 0). If for z “ 0 we define log z “ log r`i argpzq, then obviously expplog zq “
rei argpzq “ z, and by the local injectivity of exp we know that this is the only
solution if we restrict to suitable small domains and ranges of the functions involved.
However, we cannot define log z globally on C˚ for going around the origin once
shows that argpzq is not continuous – the limit limϕÑ2π´ argpreiϕq “ 0, not ϕ. We
therefore can only take holomorpic logarithms of holomorphic functions f : U Ñ C
defined on simply-connected domains such that fpzq “ 0 for all z P U , for instance
by taking a small disc around any z where f is defined with fpzq “ 0. Once we have
defined holomorphic logarithms we can also define holomorphic roots, for instance
?
f “ expp 1

2 log fq etc.

Next we will consider singularities of holomorphic functions.

19. Definition (singularities of holomorphic functions). If f P OpUztz0uq,
then z0 is called a singularity of f . If f is bounded near z0, then the singularity is
called removable. If there exists m P N such that pz´ z0q

m ¨ fpzq is bounded near
z0, and if m is taken to be minimal with this property, then z0 is called a pôle of
order m of f . In all other cases, f is called an essential singularity.

We investigate these types of singularities next. First we characterise removable
singularities.

20. Theorem (Riemann’s removable singularities theorem). Let f P
OpUztz0uq, and z0 P U be a singularity. Are equivalent:

(i) z0 is removable;
(ii) limzÑ8pz ´ z0qfpzq “ 0;
(iii) f extends to a continuous function on all of U ;
(iv) f extends to a holomorphic function on all of U .

21. Remark. Note that the extension, if it exists, is uniquely determined by the
Identity Theorem A.20.
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Proof. Up to a translation we may assume without loss of generality that z0 “ 0 and
put Uˆ “ Uzt0u. It is clear that pivq ñ piiiq ñ piiq ñ piq and piq ñ piiq ñ piiiq.
We are now going to prove the nontrivial direction.

(ii)ñ(iv): Let gpzq :“ zfpzq on U times and gp0q :“ 0. By assumption, g is
continuous in 0, hence on all of U . Moreover, hpzq :“ zgpzq P C0pUqXOpUˆq, and
hp0q “ 0. It follows that

hpzq ´ hp0q

z
“
hpzq

z
Ñ 0

so that h is holomorphic with h1p0q “ 0 and hence analytic near 0, i.e.

hpzq “
8
ÿ

i“1

aiz
i “ z2

8
ÿ

i“0

ai`2z
i “ z2fpzq.

It follows that
ř8

i“0 ai`2z
i is the desired holomorphic extension of f . �

Next we consider the case of poles.

22. Proposition (characterisation of poles). Let f P OpUztz0uq, z0 P U be a
singularity, and n be an integer ě 1. Are equivalent:

(i) f has a pole of order n at z0;
(ii) there is a function g P OpUq with gpz0q “ 0, and such that

fpzq “
gpzq

pz ´ z0q
n

z P Uztz0u;

(iii) there is an open neighbourhood V of z0 in U and h P OpV q without zeroes on
V ztz0u, with a zero in z0 of order n, and such that f “ 1{h on V ztz0u;

(iv) there is a neighbourhood V of z0 lying in U and positive constants c, C such
that for all z P V ztz0u

c ď |fpzq||z ´ z0|
n ď C.

In particular, the function OpUztz0uq has a pole at z0 if and only if limzÑz0 fpzq “
8.

Proof. Let Uˆ “ Uztz0u. Again we assume for simplicity that z0 “ 0.

(i)Ñ(ii) Since znf P OpUˆq is bounded near z0 we can remove the singularity
and obtain a holomorphic function gpzq “ znfpzq P OpUq. If gp0q “ 0, then
gpzq “ zg̃pzq with g̃ P OpUq which implied that g̃pzq “ zn´1fpzq on Uˆ so that
zn´1fpzq would be bounded near z0 – a contradiction to the minimality of the pole
order n.

(ii)ñ(iii) Since gp0q “ 0, g does not vanish on a neighbourhood of 0. Thus hpzq “
zm{gpzq yields the desired function.

(iii)ñ(iv) On a suitable neighbourhood V of 0, hpzq “ zmh̃pzq for h̃ P OpV q with

h̃p0q “ 0. Hence there exist constants c and C such that c ă |h̃pzq| ă C. Since

|fpzq|´1 “ |z|m|h̃pzq|, the claim follows.

(iv)ñ(i) By assumption, zmf is bounded. Furthermore, |z|m´1fpzq| ě C{z which
shows that zm´1f is not bounded near z0 “ 0, whence m is minimal and equals
the order of the pole. �
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23. Proposition (development into a Laurent series with finite principal
part). Let f P OpUztz0uq, and let z0 be a pole of order n. Then there exist complex

numbers b1, . . . , bn with bn “ 0, and a holomorphic function f̃ P OpUq, such that

fpzq “
bm

pz ´ z0q
m
`

bm
pz ´ z0q

m
` . . .`

bm
pz ´ z0q

m
` f̃pzq, z P Uztz0u.

The numbers bi and the function f̃ are uniquely determined. Conversely, any func-
tion of this form has a pole of order n at z0.

Proof. By (ii) of Proposition A.22, fpzq “ gpzq{pz ´ z0q
m on Uztz0u, where g P

OpUq. Hence g is analytic around z0, and developping into a series around z0 yields
the Laurent series of f . The remaining assertions are clear. �

Finally, we characterise essential singularities.

24. Theorem (Casorati-Weierstrass). Let f P OpUztz0uq, and z0 P U be a
singularit. Are equivalent:

(i) z0 is an essential singularity;
(ii) for every neighbourhood V Ă U of z0, the image fpV ztz0uq is dense in C;
(iii) there exists a sequence zn in Uztz0u with lim zn “ z0, and such that the image

sequence fpznq has no limit in CY t8u.

Proof. Let as above Uˆ :“ Uztz0u. We prove the nontrivial assertion (i)ñ(ii) by
contradiction. Assume therefore that there exists no such neighbourhood V of z0

in U , that is, there exists a disc D :“ Dεpaq Ă C such that D X fpUˆq “ H. In
particular, |fpzq ´ aq| ą r so that the function gpzq :“ 1{pfpzq ´ aq is holomorphic
and bounded on Uˆ. Therefore, the singularity of g in z0 is removable. Thus
either fpzq “ a` 1{gpzq has a removable singularity if gpz0q “ 0, or it has a pole if
gpzq “ 0. However, we assumed z0 to be essential, contradiction! �

25. Example. Using Proposition A.22 it is easy to see that expp1{zq has an
essential singularity at z “ 0.

It is actually desirable to allow poles which gives rise to the following definition.

26. Definition (meromorphic function). A function f is called meromorphic
on U if there is a discrete subset Ppfq Ă U , the pole set, such that UzPpfq
is holomorphic in UzPpfq and has a pole at any z0 P Ppfq. In particular, a
meromorphic function on U is holomorphic if and only if Ppfq “ H. We often set
fpzq :“ 8 for z P Ppfq and consider a meromorphic function as a map f : U Ñ

CY t8u “ P1.

27. Examples.

(i) Let g, h P Crzs be two polynomials. Then f “ g{h is a meromorphic function
whose pole set is given by the zero set of h. We call f also a rational
function.

(ii) The cotangent function cot z “ cos z{ sin z is meromorphic, but not rational.
Indeed, it has pole set P pcot zq “ Zpsin zq “ πZ which is countably infinite.
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To discuss further existence theorems of holomorphic and meromorphic functions we
first introduce the order function. If f P OpUq is not identically zero, then there
is a minimal natural number νzpfq such that fpzq “ f 1pzq “ . . . “ f pm´1qpzq “ 0
and fm “ 0. If f ” 0 we put νzp0q “ 8. We extend this to the case of meromorphic
functions by letting νzpfq “ ´m if z is a pole of f of order m. Thus if f and g are
meromorphic on U ,

(i) f is holomorphic at z P U ô νzpfq ď 0. In this case, fpzq “ 0 ô νzpfq ą 0.
(ii) νzpfgq “ νzpfq ` νzpgq.
(iii) νzpf ` gq ě mintνzpfq, νzpgqu with equality whenever νzpfq “ νzpgq.

We have two classical existence results.

28. Theorem (Weierstrass). Let U Ă C be open, and let S Ă U be a discrete
subset, and o : S Ñ Ną0 be a given function. Then there exists f P OpUq with
νapfq “ opaq for all a P S. Put differently, we can always construct holomorphic
functions with given zeroes of any order.

29. Theorem (Mittag-Leffler). Let U Ă C be open, and let S Ă U be a discrete
subset. Then there exists f PMpUq with Ppfq “ S and such that the Laurent series
of f has any given prinicipal part at that point.

We give (at least partial) proofs in Section 2.1, see also [Fo, Theorems 26.3 and
26.7]. Weierstrass’ theorem is actually a corollary to the Weierstrass Factorisation
Theorem.

It is clear that we can add and multiply meromorphic function over U in a natural
way, namely by adding or multiplying the holomorphic functions outside the pole
set and by computing the new pole set of the result; Ppf˘gq, Ppf ¨gq Ă PpfqYPpgq.
Moreover, we can also divide by meromorphic functions. This turns MpUq into a
C-algebra. If f PMpUq its zero set Zpfq is discrete. Now on UzpPpfqYZpfqq, f is
holomorphic without zeroes, so that 1{f is defined and also holomorphic. Moreover,
z0 P Zpfq becomes a pole of 1{f of same order as the zero of f . Moreover, since for
z0 P Ppfq, pz0 ´ zqmfpzq is bounded for some m, limzÑz0 1{fpzq “ 0 so that 1{f
has a removable singularity in z0. It follows that MpUq is actually a field. In fact
we have the

30. Proposition. Let U Ă C be connected. Then MpUq “ QuotOpUq, that is,
MpUq is the quotient field of the integral domain OpUq.

Proof. It is clear that QuotOpUq Ă MpUq. Conversely, let f P MpUq. By the
Weierstrass Factorisation Theorem A.28 we can find a holomorphic function h P
OpUq whose zero set is precisely Ppfq and such that νzpgq “ ´νzpfq. In particular,
if g “ h ¨ f , we have νzpgq “ νzpgq ` νpfq ď 0 so that g P OpUq. Hence f “ g{h P
QuotOpUq. �

Finally, we mention how zeroes and poles can be detected by integration. Let
f P MpUq be a meromorphic function, and let D be any disc in U containing
finitely many poles and zeroes of f . We let ZDpfq “

ř

pPD, oppfqą0 oppfq and

PDpfq “
ř

pPD, oppfqă0 oppfq the total order of zeroes and poles of f in D, that is,

the number of zeroes and poles counted with multiplicity. As a corollary to the
so-called residue theorem [Pö, Section 9.8] we obtain
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31. Rouché’s formula. If f PMpUq and D is any disc in U containing finitely
many zeroes and poles of f ñ

1

2πi

ż

BD

f 1pzq

fpzq
dz “ ZDpfq ´ PDpfq.

Appendix B. Covering spaces

In this appendix we summarise, mostly without proof, the basics of homotopy
theory and covering spaces. For details see [Fo, Chapter 1, §3-§5] or [Fu, Chapter
11-13]. Here, X will denote a topological space.

The fundamental group. A (parametrised) curve is a continuous map
u : I :“ r0, 1s Ă R Ñ X. up0q P X is called the initial point and up1q P X
the final point. We say that u joins up0q to up1q. A reparametrisation is a
continuous map ϕ : I Ñ I such that ϕp0q “ 0 and ϕp1q “ 1. The curve u ˝ ϕ is
called a reparametrisation of u. They have, of course, the same image, so be careful
to distinguish between the locus of points defined by imu and the map u itself.

1. Definition (homotopy of curves). Two curves u and v : I Ñ X from a P X
to b P X are called homotopic, and we write u „ v, if there exists a homotopy
or deformation, i.e. a continuous map H : I ˆ I Ñ X such that for all s, t P I we
have

‚ Hpt, 0q “ uptq;
‚ Hpt, 1q “ vptq;
‚ Hp0, sq “ a and Hp1, sq “ b;

see also Figure B.7.

Figure 7. Homotopy of the curves u0 and u1

2. Lemma [Fo, Theorem 3.2 and Lemma 3.3]. Homotopy defines an equivalence
relation on the set of curves between two given points a and b in X. In particular,
u is equivalent to any of its reparametrisations. We write rus for this equivalence
class.
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Next we aim to define a group structure on the set of closed curves, i.e. curves
u : I Ñ X with up0q “ up1q.

3. Definition (product of curves, inverse and constant curves). Let u :
I Ñ X be a curve from a to b.

(i) If v : I Ñ X is a curve from b to c, then the product curve u ˚ v : I Ñ X is
defined by

pu ˚ vqptq :“

"

up2tq for 0 ď t ď 1{2
vp2t´ 1q for 1{2 ď t ď 1

(ii) The inverse curve u´ : I Ñ X is defined by

u´ptq :“ up1´ tq for every t P I.

(iii) The constant curve at a is the curve ua : I Ñ X defined by u0ptq “ a for
all t P I.

(iv) The curve u : I Ñ X is null-homotopic if it is homotopic to the constant
curve at up0q.

Note that taking products or the inverse is compatible with the relation of homo-
topy, that is,

u1 „ v1, u2 „ v2 ñ u1 ˚ u1 „ v1 ˚ v2 and u´1 „ u´2 .

We are now prepared for the

4. Theorem and Definition [Fo, Theorem and Definition 3.8]. Let X be
a topological space and a P X is a point. The set π1pX, aq of homotopy classes
of closed curves at a forms a group under the product and inverse as defined in
Definition B.3. This group is called the fundamental group of X with base
point a.

A priori, the fundamental group depends on the base point. However, if a and b
are two points in X which are joined by a curve u, then we can define a group
isomorphism

Γu : π1pX, aq Ñ π1pX, bq, rvs ÞÑ ru´ ˚ v ˚ us

This motivates the following

5. Definition ((locally) arcwise connected). X is arcwise connected if
any two point can be joined by a curve. An arcwise connected space is connected,
the converse is true if X is in addition locally arcwise connected, that is, every
point has a neighbourhood basis of arcwise connected sets. Since for an arcwise
connected space, the fundamental group is determined up to group isomorphism we
usually speak of the fundamental group of the arcwise connected space and write
π1pXq.

6. Example. A Riemann surface is always locally arcwise connected for it has
neighbourhoods homeomorphic to R2. Since they are connected, they are automat-
ically arcwise connected.

7. Definition (simply connected). An arcwise connected space X is called
simply connected if its fundamental group π1pXq is trivial.

8. Examples.
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(i) A subset X Ă Rn is star-shaped with respect to a P X if for every
point b P X, the line segment ta ` p1 ´ tqb, t P I, is contained in X, see
Figure B.8. In particular, X is (arcwise) connected. If X is star-shaped, then
X is simply connected. Indeed, if u is a closed curve at a, H : I ˆ I Ñ X,
Hpt, sq “ sa` p1´ squptq is a homotopy from u to ua. In particular, C – R2

or any slitted plane such as CzR ą 0 are simply connected.
(ii) The Riemann sphere is simply connected. Indeed, let u be a closed curve, say

at 8 “ r0 : 1s. If u is contained in U1 Ă P1, then we can deform u into u8 for
U1 is star-shaped. If not, we factorise u “ u1 ˚ . . . ˚ ur by subdividing I into
smaller intervals and reparametrising the resulting curves, so that the u2k`1

lie entirely in U1 and u2k lie entirely in U0. Now we can slightly deform the
curves u2k into ũ2k so that they lie in U0ztr1 : 0su Ă U1. Hence u can be
deformed to u1 “ u1 ˚ ũ2 ˚ . . . which lies in U1 and is therefore null-homotopic.

(iii) The torus is not simply connected. In fact, πpTΛq – Zrαs ‘ Zrβs, where
the curve nrαs means winding round n times α, and similarly for rβs, see
Figure B.9 and Appendix C (recall that TΛ is homeomomorphic to S1 ˆ S1,
cf. Remark 1.7).

Figure 8. A starshaped domain in the plane

Figure 9. The generators α and β of the fundamental group of the torus
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The previous example immediately implies that TΛ cannot be homoemorphic to P1

for the fundamental group is a topological invariant.

9. Definition (pushforward map). Let f : X Ñ Y be a continuous map
between two topological spaces. Then we define the pushforward of f by

f˚ : π1pX, aq Ñ π1pY, fpaqq, f˚rus “ rf ˝ us.

This is indeed well-defined and satisfies pf ˝ gq˚ “ f˚ ˝ g˚ (see [Fo, 3.15]).

10. Application: The fundamental group is a topological invariant. It
follows that if f is a homeomorphism, then f˚ and f´1

˚ are defined, and Idπ1pX,aq “

pf´1 ˝ fq˚ “ f´1
˚ ˝ f˚, and similarly for π1pY, fpaqq. Hence f˚ and f´1

˚ are group
isomorphisms which are inverse to each other. In particular, the two fundamental
groups must be isomorphic.

Lifting of curves and covering maps. One is often confronted with the
following lifting problem: Given two continuous maps p : X Ñ Y and f : Z Ñ Y ,
when does there exists a (unique) map g : Z Ñ X such that p ˝ g “ f?

X

p

��
Z

g
>>

f // Y

This question leads to an important subclass of homeomorphisms, namely covering
maps. Since we are mainly interested in applications to Riemannian surfaces we
will assume that X and Y are Hausdorff spaces which slightly simplifies the
presentation. While existence of lifting is a subtle issue, uniqueness holds if p is a
local homeomorphism:

11. Proposition (uniqueness of liftings) [Fo, Theorem 4.8]. Let p : X Ñ Y
be a local homeomorphism, and let f : Z Ñ Y be a continuous mapping from some
connected topological space Z. If g1 and g2 are two liftings of f in the sense above
which agree in one point, i.e. g1pzq “ g2pzq for one z P Z, then g1 “ g2.

To discuss existence we first consider a special case.

12. Definition (curve lifting property). A continuous map p : X Ñ Y is
said to have the curve lifting property if for every curve u : I Ñ Y and every
point ã P X there exists a lift ũ : I Ñ X such that ũp0q “ ã and p ˝ ũ “ u. (By
Proposition B.11 the lift is uniquely determined by ã.)

Next we give a criterion when homotopy is preserved under lifts.

13. Proposition [Fo, Theorem 4.10]. Let p : X Ñ Y be a local homeomorphism.
Let H : I ˆ I Ñ Y be a (continuous) homotopy with Hp0, sq “ a and Hp1, sq “ b,
and let ã P X be such that ppãq “ a. If all curves usptq :“ Hpt, sq : I Ñ Y can be

lifted to X with initial point â, then Ãpt, sq :“ ũs : I ˆ I Ñ X defines a homotopy
between ũ0 and ũ1. In particular, ũsp1q is constant so that ũ0 and ũ1 have the same
endpoint.

14. Corollary (constant number of sheets)[Fo, Theorem 4.16]. If p : X Ñ Y
has the curve lifting property and Y is arcwise connected, then for any two points
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a and b P Y , the fibres p´1paq and p´1pbq have the same cardinality. In particular,
p is surjective.

The curve lifting property gives a handy criterion for the existence of lifts of general
maps:

15. Theorem [Fo, Theorem 4.17]. Let p : X Ñ Y be a local homeomorphism
which has the curve lifting property. If Z is a connected and simply connected
space, and f : Z Ñ Y a continuous map, then there exists a lift of f which is
uniquely determined by any choice of points fpaq “ b, a P Z and b P X.

It remains to find conditions which ensure the curve lifting property.

16. Definition (covering map). A local homeomorphism p : X Ñ Y is called
a covering map if every point a P Y has an open neighbourhood U such that its
preimage p´1pUq can be represented as

p´1pUq “
ď

iPI

Ui,

where the Ui, i P I, are disjoint open subsets of X, and all the maps p|Ui Ñ U
are homeomorphisms. Any open neighbourhood U with this property is said to
be special. A morphism of covering maps p : X Ñ Y and q : Z Ñ Y is a
continuous map f : X Ñ Z such that the diagramm

X

p

��f~~
Z

q // Y.

commutes.

17. Examples.

(i) Consider the holomorphic mapping pk : C˚ Ñ C˚, pkpzq “ zk. Since the k-th
roots of unity form a discrete finite subset of C˚ it is clear that pk is a covering
map. If we holomorphically extend pk to a map CÑ C by sending 0 to itself,
then 0 is a ramification point (considered as a point in the domain) as well as
a branch point (considered as a point in the range). Its ramification index is
k ´ 1 and its multiplicity is k.

(ii) The holomorphic exponential exp : C Ñ C˚, exppzq “
ř

k“0 z
k{k! is an un-

branched holomorphic covering map. Indeed, exp is injective on every subset
U Ă C such that no two points z0 and z1 differ by an integer multiple of 2πi.

(iii) In a similar vein, the projection map πΛ : CÑ TΛ is an unbranched holomor-
phic covering map.

18. Remark. Let D “ tz P C | |z| ă 1u be the open unit disk in the complex
plane, and let p : D Ñ C be the canonical injection. Then p is a local homeomor-
phism, but not a covering map for any point z P C with |z| “ 1 has no special
neighbourhood.

19. Proposition (local homeomorphisms and covering maps) [Fo, Theo-
rems 4.14 and 4.22]. Every covering map p : X Ñ Y has the curve lifting property.
Conversely, if Y has a basis of simply connected open sets (e.g. Y is a Riemann sur-
face), then a local homeomorphism which has the curve lifting property is a covering
map.
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20. Application: Logarithm of a holomorphic function. Let X be a simply
connected Riemann surface and f : X Ñ C a nowhere vanishing holomorphic
function. A logarithm of f is a function g : X Ñ C such that exppgq “ f for the
holomorphic exponential exp : CÑ C˚. This can be expressed in terms of liftings:

C

exp

��
X

f //

g
==

C˚.
By Proposition B.15 a lift g exists which is clearly holomorphic since exp is a
covering map. Moreover, it is uniquely determined by points x P X and z P C such
that fpxq “ exppzq, namely gpxq “ z.

Another condition which ensure that a local homeomorphism is a covering map is
properness.

21. Definition (proper map). A topological space is locally compact if
every point has a compact neighbourhood. A continuous map between two locally
compact spaces is proper if the preimage of any compact set is again compact. In
particular, any proper map is closed, for in a locally compact space a set is closed
if and only if the intersection with every compact set is compact.

22. Proposition. Let p : X Ñ Y be a local homeomorphism. Then p is proper ô
p is a covering map with finite fibres.

Proof. ñ) See [Fo, Theorem 4.22].

ð) We briefly sketch the converse. A closed continuous surjective map p : X Ñ Y
is called perfect if it has compact fibre. Any such map is proper (cf. [Mu, Exercise
12 §26]) so we only need to show that a covering map with finite fibres is closed.
Let S Ă X be closed and consider fpSq Ă Y . In general, a set A is closed if and
only if there is an open covering tUiuiPI of the total space such that UiXA is closed
in A. Here, we apply this to fpSq with the covering of Y provided by the special
neighbourhoods U in Definition B.16. Since a finite union of closed sets is again
closed, the finiteness of the fibres implies that p´1pUq is a finite union of open sets,
whence the result. �

23. Example. For covering maps with infinite fibres this is false as the example
exp : R Ñ S1 with S “ tn ` 1{n | n P N, n ě 1u shows. Indeed, S is closed while
exppSq accumulates at 1 R exppSq, hence the exp is not closed. (Of course, one sees
directly that it is not proper).

Universal coverings. In this section we will construct a canonical covering for
a wide class of topological spaces – the so-called universal covering.

24. Definition (universal covering). Let p : X Ñ Y be a covering map
between connected topological spaces (e.g. Riemann surfaces). The p is called the
universal covering map if it satisfies the following universal property: For every
covering map f : Z Ñ Y between connected spaces and any choice of points a P Z
and b P X such that ppbq “ fpaq, there exists a unique covering map morphism
g : X Ñ Z with gpbq “ a.
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It follows from the universal property that such a universal covering space, if it ex-
ists, must be unique up to unique isomorphism, cf. Definition E.4 and Remark E.5.
From Theorem B.15 we see that if p : X Ñ Y is a covering map between with
X connected and simply-connected, p must be the universal covering (note that if
p : Z Ñ Y is a covering map and Y Hausdorff, then so is Z). The central theorem
in the theory of covering spaces is this.

25. Theorem (existence of the universal covering space). Let X be a
connected space with a basis of simply-connected open sets (e.g. a Riemann surface)

ñ There exists a connected, simply connected space X̃ and a covering map p : X̃ Ñ

X. X̃ is called the universal covering space of X.

Proof. Fix a(n arbitrary) point x P X. Then one constructs X̃ as the set of homo-
topy classes of curves in X with initial point x where the homotopy is defined as
in Definition B.1 except that the final point usp1q is not fixed. For details, see [Fu,
Theorem 13.20] or [Fu, Theorem 5.3]. �

26. Remark. Our assumptions are not the most general, cf. [Fu, Theorem 13.20]

27. Definition (Deck transformation and Galois coverings). Let p : X Ñ Y
be a covering map. A Deck transformation f : X Ñ X is a fibre-preserving
homeomorphism, i.e. p˝f “ p. Composition of Deck transformations gives a group
which we denote by DeckpX{Y q. Since Deck transformations are fibre preserving,
DeckpX{Y q acts on each fibre. If it acts transitively, then the covering is called a
Galois covering.

28. Remark. Note that under the assumptions of Proposition B.11, the action
of DeckpX{Y q is necessarily free.

29. Example. The covering map p : C˚ Ñ C˚, ppzq “ zk, is Galois, since the
group of Deck transformations are just the k-th roots of unity.

30. Theorem (Deck transformations and the fundamental group). Let

X be connected and p : X̃ Ñ X the universal covering. Then p is Galois and
DeckpX̃{Xq is isomorphic with the fundamental group π1pXq of X.

Proof. Let x̃ P X̃ such that ppx̃q “ x, and let v be a representative of the unique

homotopy class of curves in X̃ from x̃ to fpx̃q. The assignement DeckpX̃{Xq Ñ
π1pX,xq which maps f to the closed curve f ˝ vỹ P π1pX,xq is an isomorphism (see
[Fo, Theorem 5.6]). �

31. Remark. It follows that the universal covering of a manifold X is in fact a
π1pXq-prinicipal fibre bundle, cf. for instance [KoNo, Chapter I.5].

More generally, we have the following relationship between subgroups of π1pX,xq
and covering maps.

32. Proposition [Fu, Proposition 13.23]. Let Y be a connected topological space
with a basis of simply connected open sets ñ
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(i) for every subgroup H of π1pY, bq there exists a connected space YH and a cover-
ing map pH : YH Ñ Y , and a base point a P XH , such that pH˚π1pYH , aq “ H.
Any other such covering is canonically isomorphic to YH . In particular, the
functor π1 which associates with a connected space the isomorphy class of its
fundamental group yields a bijection between subgroups of π1pY q and (isomor-
phism classes of) connected covering spaces of Y .

(ii) for every subgroup K containing H, there exists a unique covering map YH Ñ
YK which is compatible with the projections. If H is a normal subgroup of K,
then YH is a K{H-principal fibre bundle over YK , and DeckpYH{YKq “ K{H.

33. Remark.

(i) In particular, the universal covering Ỹ is just Yteu. Note that if p : X Ñ Y
is a covering map between connected and locally path-connected topological
spaces, and ppaq “ b, a P X, then p˚ : π1pX, aq Ñ π1pY, bq is an injection
so that we can always regard the fundamental group of X as a subgroup of
π1pY, bq (cf. [Fu, Proposition 13.1]). In this way, the theory of covering spaces
of Y matches the internal group structure of π1pY q.

(ii) It is easy to see that if π : X Ñ Y is a covering and Y is Hausdorff, then so is
X. Hence if Y is a Riemann surface, then there exists a unique holomorphic
structure on X such that π becomes holomorphic (cf. Proposition 1.40).

We summarise the situation for a Riemann surface in Figure B.10. The red colour
designates a normal subgroup.

Figure 10. The correspondence between subgroups and covering spaces.

Appendix C. Topology of surfaces

We recall some elements of the topology of (compact) surfaces and discuss in par-
ticular some topological invariants and their relationship. Since a lot of concepts
are visually clear but quite lengthy to formalise correctly we will mainly appeal to
pictures rather than strict definitions. A good reference is [Fu, Part IX] or [Ki].
In this section Σ will denote the toplogical space underlying a compact Riemann
surface.
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1. Theorem and Definition (genus) [Ki, 4.14]. Σ is homeomorphic to a sphere
with g handles (see Figure C.11). We call g “ gpΣq the genus of Σ. It determines
Σ up to homeomorphism (and in fact up to diffeomorphism, that is, there is only
one uniquely determined differentiable structure on Σ).

Figure 11. The 2-sphere with two handles attached and curves
αi, βi

The genus is thus the basic topological invariant which so strong that it classifies
surfaces. On the other hand, we have already encountered a basic topological
invariant of any topological space – its fundamental group. In the case of a surface
Σ we can compute π1pΣq explicitely. Let F2g be the free group in 2g generators
a1, . . . , ag, b1, . . . , bg, where g is the genus of Σ. Further, let Ng be the smallest
normal subgroup of F2g containing the element

cg :“ a1 ¨ b1 ¨ a
´1
1 ¨ b´1

1 ¨ . . . ¨ ag ¨ bg ¨ a
´1
g ¨ b´1

g ,

i.e. Ng “ tu ¨ cg ¨ u
´1 | u P F2gu. Any surface has curves α1, . . . , αg and β1, . . . , βg

inducing distinct homotopy classes also denoted by αi and βi (see Figure C.11 for
the case g “ 2).

2. Theorem [Fu, 17.6]. The map F2g Ñ π1pΣq given by ai ÞÑ αi and bi ÞÑ βi for
i “ 1, . . . , g induces an isomorphism

π1pΣq – F2g{Ng.

Next consider cell decompositions of Σ, and in particular triangulations. Fig-
ure C.12 shows the standard 0, 1 and 2-simpleces σi, i “ 0, 1 a d 2.
We also call any continuous map σi Ñ Σ an i-simplex and denote it, by abuse of
notation, as σi. A triangulation T consists of a family of i-simpleces glued along
their edges, see Figures C.13 and C.14. Let V , E and F be the number of vertices,
edges and faces respectively.

3. Theorem and Definition (Euler characteristic and triangulations) [Ki,
Chapter 4.3], [Ki, 5.9 and 5.15]. We can always find a triangulation on Σ. The
number

χpΣq “ V ´ E ` F
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Figure 12. The standard (a) 0- (b) 1- (c) 2-simplex

is called the Euler characteristic of Σ and does not depend on T . Moreover, we
have

χpΣq “ 2gpΣq ´ 2.

4. Examples.

(i) The sphere S2: χpS2q “ 2, see Figure C.13
(ii) The torus S1 ˆ S1: χpS1 ˆ S1q “ 0, see Figure C.14

Figure 13. A triangulation of the sphere

Finally, we discuss the (co-)homology of surfaces. An i-chain c is a formal finite
linear combination of i-simpleces, i.e.

c “
n
ÿ

j“1

ajσ
j
i

where aj P Z. We can formally add chains and multiply them by integers. Let CipΣq
the Z-module of i-chains. In order to define a Z-linear differential B : CipΣq Ñ
Ci`1pΣq, i “ 0, 1, we need to introduce orientations. We can orient a 1-simplex
by choosing an initial and a final point. We can orient a 2-simplex by choosing
clockwise or counter-clockwise orientation, see Figure C.15. The boundary Bσi of
an oriented i-simplex is then the i` 1-chain defined as follows:

Biσi “

"

terminal point ´ initial point, i “ 1
εp1qe1 ` εp2qe2 ` εp3qe3 i “ 2,
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Figure 14. A triangulation of the torus

where e1,2,3 are the (oriented) edges of σ2 and where εpiq is ` or ´ according
to whether or not the direction of the edge ei is consistent with the direction
of σ2. We extend B linearly to all of CipΣq so that Bi becomes a Z-linear map
Ci`1pΣq Ñ CipΣq.

Figure 15. The boundary of the standard 1- and 2-simplex

5. Theorem [Ki, 6.10]. Bi`1 ˝ Bi “ 0, i.e. the boundary of a boundary chain is 0.

We also say that C0
B
Ñ C1

B
Ñ C2 defines a complex.

For the next definition we extend the complex Bi : Ci Ñ Ci`1 by 0, i.e. we consider
the complex

0 Ñ C2
B2
Ñ C1

B1
Ñ C0 Ñ 0.

By the previous theorem, im Bi`1 Ă ker Bi. We can therefore define:

6. Definition. The Z-module

HipΣ,Zq “ ker Bi{ im Bi`1

is called the i-th homology group of Σ.
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This is again a topological invariant of Σ. It can be computed as follows.

7. Theorem [Ki, 6.20, 6.24 and 9.17].

(i) H0pΣ,Zq – Z, H2pΣ,Zq – Z;
(ii) H1pΣ,Zq – π1pΣq{rπ1pΣq, π1pΣqs – Z2gpΣq, where rπ1pΣq, π1pΣqs is the sub-

group of π1pΣq generated by elements of the form ra, bs “ aba´1b´1.

In particular, χpΣq “ dimZH0pΣ,Zq ´ dimZH1pΣ,Zq ` dimZH2pΣ,Zq.

8. Remark. Instead of Z we could take coefficients in any other (commutative)
ring. In particular, if we take any other field k, then the previous theorem holds with
Z being replaced by k (this is false if we consider homology on general topological
spaces).

We can also consider the dual complex

0 Ñ C0 :“ C˚0
d0“B

˚
1

Ñ C1 :“ C˚1
d1“B

˚
1

Ñ C2 :“ C˚2 Ñ 0.

Then di`1 ˝ di “ 0 and we can define the cohomology module

HipΣ,Zq “ ker di{ im di´1

(see also [MiSt, Appendix A] for a short introduction).

9. Theorem [MiSt, A.1]. We have

HipΣ,Zq “ HomZpHipΣ,Zq,Zq.

In particular, H1pΣ,Zq “ HomZpπ1pΣq,Zq.

10. Remark.

(i) In general, only the defining complex of cohomology is dual to the complex of
homology. The cohomology modules are not dual to the homology modules
for general topological spaces.

(ii) As for homology we can replace Z by the fields Q, R and C.
(iii) Homology and cohomology can be defined more generally for any topological

space (though it might be a difficult invariant to compute), in particular non-
compact surfaces. The only result we need in this course is that H2pΣ,Zq “ 0
for any noncompact surface.

Appendix D. Field extensions

A field extension is an embedding k ãÑ K of the ground field k into some bigger
field K (note in passing that any nontrivial k-linear map between fields is ncessarily
injective). In particular, we may view K as a k vector space; it is customary to
write K{k for the field extension and rK : ks for dimkK, the degree of the field
extension, but we will not do that. There are several types of field extensions which
are important for us. A good reference is [Bo].

1. Definition (finite and algebraic field extensions). A field extension
k Ă K is finite if the dimension dimkK ă `8. Moreover, k Ă K is algebraic if
for any α P K there exists f P krxs such that fpαq “ 0.

2. Proposition. A finite field extension is algebraic.
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Proof. Indeed, if α P K, then there must be an n so that t1, α, α2, . . . , αnu becomes

linearly dependent over k, that is αn “
řn´1
i“0 aiα

i. We let krαs denote the subring

of K generated by k and α, that is, krαs “ t
řn´1
i“0 aix

i | ai P ku. Since this
is an integral domain and krxs Euclidean, so in particular a PID, the kernel of
krxs Ñ krαs, X ÞÑ α, must be a principal ideal, so ker “ pfq for an irreducible
element f . In particular, pfq is maximal so that krαs “ kpαq :“ Quot krαs is
actually a field. Moreover, dimk kpαq “ deg f . Indeed, krxs is Euclidean so that
g “ qf ` r with uniquely determined polynomials deg r ă deg f . It follows that
equivalence classes 1, x̄, x̄2, . . . , x̄n´1 form a k-basis of krxs{pfq – kpαq. �

3. Remark. If in the proof of the previous proposition we normalise the polyno-
mial f so that it is monic, i.e. f “ xn ` an´1x

n´1 ` . . . ` a0, then f is called the
minimal polynomial of α and is uniquely determined. In general, if f P krxs is
irreducible, then k Ă krxs{pfq is a finite extension in which f has a root.

4. Examples.

(i) Let k “ R and f “ x2 ` 1, then C “ Rrxs{px2 ` 1q.
(ii) Q̄ “ tα P C | α algebraic over Cu be the algebraic closure of Q. Then

Qp n
?

3q Ă Q̄ has minimal polynomial Xn ´ 3 since it is irreducible by Eisen-
stein’s criterion. It follows that dimQ Qp n

?
3q “ n. In particular, dimQ Q̄ “ 8

which shows that algebraic extensions need not be finite in general.

As the first example shows, a field k need not be algebraically closed, i.e. there
are polynomials f P krxs which do not admit a root in k. However, we have the
following

5. Theorem (existence of the algebraic closure). For any field k there exists
an algebraic field extension k Ă K such that K is algebraically closed field.

Proof. See [Bo, Theorem 3.4.4]. �

Item (ii) in the previous example can be generalised as follows:

6. Definition. If k is a field and K an algebraically closed field so that k Ă K is
algebraic, we call

k̄ “ tα P K | α is algebraic over ku

the algebraic closure of k. The field k̄ is determined up to isomorphism which
restricts to the identity on k (cf. [Bo, Corollaries 3.4.7 and 10]).

7. Definition (Galois extensions). A field extension k Ă K is normal if any
irreducible polynomial f P krxs which has a root in K splits into linear factors in
Krxs. Further, k Ă K is called separable if it is algebraic and every a P K is the
root of a separable polynomial in krxs, i.e. a polynomial whose roots are simple.
A field extension is Galois if it is normal and separable. In this case, the group
of automorphisms of K which leave k fixed is called the Galois groupof the field
extension k Ă K and written GalpK{kq.

The central theorem of Galois theory is this:

8. Theorem (Galois). Let k Ă K be a finite Galois extension ñ there is
a correspondence between subgroups of GalpK{kq Ø fields k Ă L Ă K. More
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precisely, given H Ă GalpK{kq, L is the field fixed by the endomorphism σ : K Ñ K
in H Ă GalpK{kq while given a field k Ă L Ă K we get the subgroup GalpK{Lq.

Proof. See [Bo, Theorem 4.1.6]. �

Next we consider separable field extensions.

9. Definition. A field k is called perfect if any algebraic field extension of k is
separable.

In characteristic 0 every algebraic field extension is separable [Bo, Remark 3.6.4],
since any irreducible polynomial over a field of characteristic 0 is separable [Bo,
Proposition 3.6.2]. Hence any such field is perfect. Further examples are finite
fields or algebraically closed fields are also perfect. One of the main features of
finite separable extensions is the

10. Theorem of the Primitive element. If k Ă K is a finite separable field
extension, then there exists a so-called primitive element α P K such that K “

kpαq.

Proof. See [Bo, Proposition 3.6.12] �

Next we consider non-algebraic field extensions.

11. Definition (transcendence base). Consider a field extension k Ă K.
Elements α1, . . . αn P K are algebraically independent if the natural surjection

krx1, . . . , xns Ñ krα1, . . . , αns Ă K Ñ 0

sending xi to αi is actually an isomorphism of k-algebras, that is, we have an injec-
tion krx1, . . . , xns ãÑ K sending xi to αi. Put differently, if there is a polynomial
relation of the form fpα1, . . . , αnq “ 0 for f P krx1, . . . , xns, then f “ 0. A family
B “ tαiuiPI is algebraically independent if the previous definition applies for any
finite subset of B. If in this case the field extension kpBq Ă K is algebraic, then
A is called a transcendence base. If K “ kpBq for some transcendence base, we
call the field extension k Ă K purely transcendental. A finite field extension of
a purely transcendental one defines a so-called function field.

Any field extension k Ă K can be factorised into a purely transcendental field
extension k Ă kpBq Ă K, where the latter field extension is algebraic:

12. Proposition and Definition (transcendence degree). Any field extension
k Ă K admits a transcendence base. Any two transcendence bases have the same
cardinality which we call the transcendence degree and write trdegkK.

Proof. See [Bo, Proposition 7.1.3 and Theorem 7.1.5]. �

13. Proposition (Zariski’s lemma). Let k Ă K be a field extension, where K
is a finitely generated k-algebra. Then k Ă K is a finite field extension.
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Proof. Let K “ krα1, . . . , αns. If K is algebraic over k, we are done. So assume
otherwise and relabel the αi in such a way that x1, . . . , xr are algebraically inde-
pendent over k, and xi are algebraic over the field L “ kpα1, . . . , αrq. Hence K is
a finite algebraic extension of L and therefore a finite L-module. By Noether nor-
malisation, L is a finitely generated k-algebra, that is, L “ krβ1, . . . , βss. But this
can only happen if L “ k. To see this rigourosly, we note that each βi P L so that
βi “ fi{gi for polynomials fi and gi in x1, . . . , xr. Now there are infinitely many
irreducibles in the factoriel ring krx1, . . . , xrs (there are infinitely many primes just
by the same argument as for Z). Hence there is an irreducible polynomials which
is prime to any of the finitely many gi (for instance, take h “ g1 ¨ . . . ¨ gs ` 1
would do). Therefore, h´1 P L cannot be a polynomial in the yi (clear the common
denominator and multiply by h). Contradiction. �

Do not confuse the notion of a finitely generated k-algebra K with a finitely gen-
erated field extension k Ă K. If K is a finitely generated k-algebra, then there
exist αi P K such that K “ krα1, . . . , αns. The previous proposition then says that
no subset of these generators is algebraically independent. If k Ă K is a finitely
generated field extension, then K “ kpα1, . . . , αrq where we can label the αi in
such a way that α1, . . . , αn form a transcendence base so that kpα1, . . . , αnq Ă K
is an algebraic, in fact finite extension of the purely transcendental field extension
k Ă kpα1, . . . , αnq.

14. Proposition and definition (separably generated field extensions).
A field extension k Ă K is separably generated if there is a transcendence base
B such that kpBq Ă K is a separable algebraic extension. In this case, B is called
a separating transcendence base. For a finitely and separably generated field
extension k Ă K “ kpα1, . . . , αrq the set of generators tαiu contains a separating
transcendence base.

Proof. See [Bo, Proposition 7.3.7] �

15. Proposition (perfect fields and separably generated field extensions).
If k is a perfect field, any finitely generated field extension k Ă K is separably
generated.

Proof. See [Bo, Corollary 3.7.8]. �

Appendix E. Category theory

We discuss the basic notions of category theory. For a further development see for
instance [GeMa].

1. Definition (category). A category C consists of the following data:

(i) A class of objects Ob C;
(ii) for any two objects A, B P Ob C a set MorCpA,Bq of morphisms. We denote

an element of MorCpA,Bq usually by AÑ B.

Furthermore, for any three objects A, B and C P C there exists a map

˝ : MorCpA,Bq ˆMorCpB,Cq Ñ MorCpA,Cq, pf, gq ÞÑ g ˝ f

such that MorCpA,Bq is a monoid, i.e.
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(i) ˝ is associative, i.e. pg ˝ fq ˝ h “ g ˝ pf ˝ hq;
(ii) for all A P Ob C there exists a morphism IdA P MorCpA,Aq, the so-called

identity of A such that for all B P Ob C and for all f P MorCpA;Bq and
g P MorCpB,Aq we have

f ˝ IdA “ f and IdA ˝g “ g.

To simplify the notation we often write Mor instead of MorC . A category C is small
if Ob C is a set.

2. Definition (isomorphism). Let C be a category. A morphism f P

MorCpA,Bq is called a (categorical) isomorphism if there exists g P MorCpB,Aq
such that g˝f “ IdA and f ˝g “ IdB , that is, f has a two sided inverse. In this case
we also write g “ f´1. If C is small, then being isomorphic defines an equivalence
relation on Ob C and we denote by IsopCq the set of equivalence classes.

3. Examples. (see also [GeMa, Section II.§1.5] for examples.)

(i) The basic example is the category SET of sets with maps as morphisms. Note
that there is no set of sets (cf. Russell’s paradoxon) which is why the objects
form a class, not a set. On the other hand, MorSET pA,Bq Ă A ˆ B is of
course a set. Isomorphisms are just bijective maps. Further examples in this
vein are given by algebraic categories such as the category of abelian groups
ABG or A-modules MODA with the corresponding notion of (iso)morphisms
(group morphisms, A-linear (bijective) maps, etc.) or geometric categories
(e.g. category of varieties with (bi)regular maps as (iso)morphisms). This
also explains the general notation AÑ B for morphisms.

(ii) More exotic examples include the catgeory CpIq of a partially ordered set
I, where Ob CpIq “ I, and MorCpIqpi, jq consists of one element if i ď j
and is empty otherwise. In particular, MorCpIqpi, iq “ tIdiu and an element
f P MorCpi, jq is an isomorphism if and only if i “ j and f “ Idi. If X is
a topological space we can consider the category TOPX . Here, the objects
are the open subsets of X (a subset of the power set of X), and MorpU, V q is
the inclusion if U Ă V and the empty set otherwise. Again, MorpU,Uq “ IdU
and f P MorpU, V q is an isomorphism if and only if U “ V and f “ IdU .
Finally, we can consider the category SHEAFX whose objetcs are sheaves on
X, and MorpF ,Gq are sheaf morphisms. Here, the notion of isomorphism is
the catgeorical one, i.e. ϕ : F Ñ G is an isomorphism of sheaves if and only if
it has a two sided inverse (cf. Definition ??.??). The definition of injective and
surjective sheaf morphism was designed in such a way that an isomorphism is
precisely a morphism which is injective and surjective, cf. Exercise ??.??.

4. Definition. An object U of a category is called universally repelling (at-
tractive) if for any other object A there exists exactly one morphism U Ñ A
(AÑ U). For sake of brievety we also call U simply universal.

5. Remark. It follows immediately from the definition that if U is universal, then
MorpU,Uq “ tIdUu, and U is unique up to unique isomorphism.

6. Example.

(i) Let M1, . . . ,Mr be a finite number of A-modules. We construct a categaory
C as follows. Take r-multilinear maps from f : M1 ˆ . . .ˆMr Ñ N , where N
is some further A-module, as the objects of our category C. For two objects
f : M1 ˆ . . . ˆMr Ñ N , g : M1 ˆ . . . ˆMr Ñ L, let a morphism f Ñ g P
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Morpf, gq be an A-linear map h : N Ñ L such that g “ l ˝ f . Then the tensor
product is a universally repelling object for C.

(ii) Let X be a topological space which admits a universal covering space p : X̃ Ñ

X. This is a universally repelling object in the category of covering maps of X
whose objects are covering maps p : Y Ñ X, and whose morphisms between
two covering maps p : Y Ñ X and q : Z Ñ X are continuous maps f : Y Ñ Z
such that q ˝ f “ p.

We can also consider “maps” between categories.

7. Definition (functor). For two categories C and D we call F : C Ñ D a
functor an assignement which associates with any object A in C an object F pAq in
D, and for any two objects A and B a map MorCpA,Bq Ñ MorDpF pAq, F pBqq (F
is covariant) or MorCpA,Bq Ñ MorDpF pBq, F pAqq (F is contravariant) taking
f to F pfq, and having the following properties:

(i) F pIdAq “ IdF pAq;
(ii) F pf ˝gq “ F pfq ˝F pgq (F covariant) or F pf ˝gq “ F pgq ˝F pfq (F contravari-

ant);
(iii) A presheaf onb X can be regarded as a contravariant functor TopX Ñ AbG.

8. Remark. If F is a covariant (contravariant) functor, we often write f˚ (f˚)
for F pfq.

9. Examples.

(i) The basic example of a covariant functor is the so-called forgetful functor
from a category C to Set which associates with say an A-module its underlying
set,and with an A-linear map its underlying set theoretic map.

(ii) The assignement which takes an A-module M to its dual module M_, and
an A-linear map f : M Ñ N to the dual map f_ : N_ Ñ M_ defined by
fpλqpmq “ λpfpmqq for all m PM is a contravariant functor.

(iii) Consider the category TOP˚ of pointed topological spaces pX, aq as objects
together with continuous maps between them as morphisms, i.e. f : pX, aq Ñ
pY, bq satisfies fpaq “ b. The assignement pX, aq ÞÑ π1pX, aq “ the fundamen-
tal group of X, f : pX, aq Ñ pY, bq ÞÑ f˚ : π1pX, aq Ñ π1pY, bq is a functor
between TOP˚ and GRP, the category of groups.

A useful notion of “isomorphic” catgeories is this.

10. Definition (equivalence of categories). Two small categories C and D are
(covariantly) equivalent if there exists a covariant functor F : C Ñ D such that
F

(i) induces a surjective map on isomorphism classes IsopCq Ñ IsopDq. Put dif-
ferently, for any object y in D there exists an object x in C with F pxq is
isomorphic with y.

(ii) full and faithful, that is, for any two objects x1, x2 in C the induced map
F px1, x2q : Morpx1, x2q Ñ MorpF px1q, F px2qq is surjective and injective.

An analogous definition applies for contravariant equivalent categories.

11. Example. The category of affine varieties over k is equivalent with the
category of finitely generated k-algebras without zero divisors.
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