ABSTRACT. In the same way we can view R? as complex space C, a two di-
mensional real surface can be seen as a one dimensional complex curve. If we
replace smooth functions by holomorphic ones, the surface becomes a genuine
geometric object of complex geometry. In this way it brings together anayl-
sis and algebra, and topology and geometry. Moreover, complex geometry
is not only confined to surfaces but makes also sense in higher dimensions.
It has many important applications to Riemannian and (complex) algebraic
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In order to do geometry we need two things: A topological space and a prefered
class of functions. We define Riemann surfaces and holomorphic maps in analogy
with smooth manifolds and smooth maps which starts from the notion of a smooth
function. Here, we replace smooth functions by holomorphic ones, see Appendix [A]
for a brief recap. In this first chapter we construct several examples of Riemann

surfaces and holomorphic maps and also discuss various classifications results.
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Unless mentioned otherwise,

X will be a surface, that is, a connected second countable Hausdorff space such
that every point a € X admits an open neighbourhood homeomomorphic to R2.

We note that such a topological space is always metrisable, that is, it is the topology
of open balls for some distance function (or metric) d. We denote by D,(z) an open
ball of radius r around z € X. If X = C and z = 0 we simply write D, for D,(0).
For more specific results on the topology of surfaces we require, see Appendix [C] A
further impotant feature is the existence of partitions of unity. This is a family
{frx : X — [0,1] < R of functions subordinate to an open cover {Uy} of X, that is

e supp fir < U,
e family of supports is locally finite, that is, any point a € X has a neigh-
bourhood V' which meets only finitely many U, so V n Uy = J except for
finitely many k,
and such that

e >, fu = 0. (This is the reason calling {fx} a partition of unity. A priori
the sum can be infinite but in view of local finiteness, f(p) = 0 for all but
a finite number of k.)

Such a partition of unity exists for any open cover of X, see for instance [Fo,
Appendix A].

1. Remark. We will actually assume that X is an orientable surface, that is, it
does not contain an embedded Moebius band (the one-sided surface you get when
you a cylinder by twisting it once, see Figure 1. In practice, we can gloss over
these topological subtleties.

FIGURE 1. A Moebius band

1.1. Riemann surfaces and holomorphic maps. First, we define the concept
of a Riemann surface before we turn to the functions.

Riemann surfaces.
2. Definition (complex charts and holomorphic atlas. A complex chart
is a homeomorphism ¢ : U € X — V < C between open sets U and V. Two such
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charts ¢y 2 : Uy 2 — Vi 2 are said to be holomorphically compatible if the maps

P12 1= 2097 : p1(Ur N Uz) — o(Ur n Uy),

the so-called transition functions, are biholomorphic (see Figure 1[2). We will
usually write Ujo = Uy n U; for the intersection of two open sets U; 2. A holo-
morphic atlas is a system A = {¢, : U; — V; | i € I} of charts such that

o {U;}ier is an open cover of X, i.e. X = |J,.; Us;

e for any i, j € I, ¢; and ¢; are holomorphically compatible.
Two holomorphic atlases 2 and B are holomorphically equivalent if any two
charts ¢ € 2 and ¥ € 98 are holomorphically compatible.

FIGURE 2. Two compatible charts @12 : Ui o c V1o < C

3. Remark. If ¢ :U — V is a complex chart, then for any open subset UcU,

G =|g: UV = ©(U) is a complex chart compatible with ¢.

It is easily verified that the notion of holomorphic equivalence induces an equiva-
lence relation on atlases.

4. Definition (holomorphic structure and Riemann surface). A holo-
morphic structure on X is an equivalence class of holomorphically equivalent
atlases. Every holomorphic structure contains a unique maximal atlas (take the
union of all atlases in the equivalence class). Let 2 be such a maximal atlas. Then
the pair (X, ) is called a Riemann surface.

5. Remark.

(i) Any oriented surface admits at least one holomorphic structure. This is essen-
tially a consequence of the Uniformisation Theorem (which we will not prove
in this course) and the covering theory discussed in Section 1

(ii) Since a holomorphic function is necessarily smooth, the identification C =~ R?
induces on X the structure of a two dimensional differentiable manifold.

(iii) Radds theorem (see for instance [Fol Theorem 23.3]) asserts that a Riemann
surface is automatically second countable so we could drop this condition
from our assumptions on the underlying topological space (the theorem is
false however in higher dimensions).
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We will usually only specify some atlas of a given equivalence class, not necessarily
a maximal one. In particular, if we speak of a chart ¢ of X, then ¢ is not necessarily
contained in a given atlas, but only compatible (and thus an element of the maximal
atlas of the holomorphic structure). More generally, we say that an open set U < X
is a coordinate neighbourhood of X if U is the domain of some compatible
chart. If no confusion arises we usually drop any reference to the atlas and denote
the Riemann surface by X.

6. Examples. Here are some explicit examples. We will construct further ones
by analytic continuation below, see Section 1[T.3]

(i)

(i)

(iii)

®o

The complex plane C. Here, a holomorphic atlas is induced by the equiv-
alence of the atlas 2 = {Id : C — C} which consists solely of the identity.
One usually writes z : C — C for this chart and considers z as a holomorphic
coordinate or parameter.

Domains. Let X be a Riemann surface and Y < X a domain, i.e. a con-
nected, open subset. We define an atlas of Y by taking all charts ¢ : U — ¢(U)
of X with U c Y (since Y is open, U is open in Y if and only if U is open in
X). Hence Y is a Riemann surface, and we will always equip domains of X
with this holomorphic structure unless mentioned otherwise.

The projective space P!. Let

P! = {lines in C? through the origin in C?}.

Since any point (29, 21) € C? determines a unique such line, we can identify P*
with the set {[20 : 21] | (20, 21) € C2\{(0,0)}. Here, [z : z1] denotes the equiv-
alence class of C?\{(0,0)} modulo the action of C* by scalar multiplication,
ie. (z0,21) ~ (wp,wn) if and only if 2y = Awyg, 21 = Aw; for some A € C*. In
particular, we get a projection map 7 : C2\{(0,0)} — P* which also induces a
natural topology on P*. Namely, a set U < P! is open if and only if 7= (U)
is open. In particular, 7 is continuous. For instance, U; = {[z0 : 21] | z; & 0}
is open, for 7~ 1(U;) = {(20,21) | z: & 0}. In fact, we get homeomorphisms

:Uo—C, wollzo:21]) = 21/20,  01: U1 = C, (20 : 21]) = 20/21,
whose induced transition function is o1 = w0y’ : C* — C*, @o1(2) = 1/2
is clearly biholomorphic. This gives P! the structure of a Riemann surface.
Note in passing that since P! = 7(S3) for $3 = C? =~ R*, P! is compact as
the image of a compact set under a continuous map.
Tori. Let wy, wy € C = R? be linearly independent over R. Consider the
lattice

A = Zw; + Zwy = {nwy + mws | n, m € Z}
spanned by w; and we. We consider the torus, the set of equivalence classes

Ty = C/A,

where two points z, 2z’ € C are equivalent if and only if 2 — 2’ € A. Again,
we have a projection map m = my : C — T) and declare a set U to be
open if and only if 77*(U) is open in C. To define a complex structure
on T\ we define an atlas by taking all charts of the following type. We let
V < C be an open subset such that no two points in V' are equivalent under
A. In particuar, 7|y : V. — U = (V) < Ty is bijective and defines a
homeomorphism. Let ¢ = (7]y)"! : U — V. Let us show that any two
of these charts, say ¢; : U; — V;, i = 1, 2, are compatible. For the map
012 = @100y 1 01 (U nUyp) — @o(Up N Us) we have m(p12(2)) = 7(2), that
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is, p12(2) — z € A. Since p12(2) — z is continuous and A discrete, v12(2) — 2z
is a constant in A on any connected component of p1(U; n Us) and thus a
translation. In particular, it is holomorphic. Similarly, <p1_21 is holomorphic.

7. Remark.

(i) P! is also called the Riemann sphere for the following reason: If we think of C
as R? and let oo = [0 : 1], then topologically P! = R? U {0} =~ S? where the
identification of R2U{oo} with the 2-sphere is given by stereographic projection
(see for instance [Fol Exercise 1.1]). It follows that S? can be given a (unique,
see Example 1 structure of a Riemann surface. The superscript 1 in P!
indicates that this is just the first space in the series of higher dimensional
projective spaces P* obtained by taking the lines through the origin in C*+!.

(ii) One can check that the map T\ — S x S! which takes the point repre-
sented by zw; + yws to (exp(2wix), exp(2miy)) is a homeomorphism, and in
fact even a diffeomorphism, that is, any two differentiable atlases are equiv-
alent. However, we will see below that there are inequivalent holomorphic
atlases on Ty, that is, T as a Riemann surface is not uniquely determined

(see Example 1[18)).

Holomorphic functions. Any good mathematical theory has a notion of (iso-)
morphism. In geometry, this is build from the preferred class of functions to which
we come next. The resulting morphisms will be studied in the next paragraph.

8. Definition (holomorphic function). Let X be a Riemann surface and
W < X be an open subset. A function f : W — C is called holomorphic if for
every chart ¢ : U — V with UnW # (J, the complex function fop™ : p(UnW) <
C — C is holomorphic in the usual sense (cf. Appendix [A]). The set of holomorphic
functions on W < X will be denoted by Ox (W) or O(W) for short.

9. Remark.

(i) Any constant function is trivially holomorphic, whence a natural inclusion
C — O(W). It is straightforward to see that the sum and the product of
holomorphic functions are again holomorphic. Since C < O(W), we see that
O(W) is a C-algebra.

(ii) For any domain in C with its standard holomorphic structure we recover the
usual notion of a holomorphic function.

(iii) Any chart ¢ : U — V < C is holomorphic by the very definition of holomor-
phic compatibility. Following the notation for C (cf. (i) of Example 1@, one
also calls ¢! : V — U a local coordinate or uniformising parameter
and writes z = ¢~ !. Then a function f : U < X — C is holomorphic <
f(z) : V — C is holomorphic in the usual sense. Note that almost by defini-
tion holomorphicity is a local property and that it is enough to check it for
some (not necessarily maximal) atlas of X by compatibility.

(iv) Tt is actually enough to check holomorphicity for a single atlas 21 which is
compatible with the holomorphic structure. Namely, if fo o™t : p(U) — C
is holomorphic for all charts ¢ in 2, then f is holomorphic. Indeed, let ¥
be any complex chart of the Riemann surface. Then (neglecting domains of
definition) fov = fop~topo) The notion was taylor-made for the definition
of a holomorphic function.



6 FREDERIK WITT UNIVERSITAT STUTTGART

The classical theorems for holomorphic functionson open sets of C (cf. Section
easily generalise to Riemann surfaces, for instance:

10. Theorem (Riemann’s Removable Singularities Theorem) [Fo, 1.8].
Let U be an open subset of a Riemann surface, and let a € U. If f € O(U\{a}) is
bounded on U = [ can be uniquely extended to a holomorphic function in O(U).

Proof. Shrinking U if necessary we can take a chart ¢ : U — V and consider fop™?! :
V\{p(a)} — C. This is a bounded holomorphic function on V for f is bounded,

hence one can apply the usual version of Riemann’s theorem (cf. Appendix|A)). O

11. Theorem (maximum principle) [Fol 2.6]. Let X be a Riemann surface and
f: X — C be a nonconstant holomorphic function = |f|, the absolute value of f,
does not have a global maximum.

Proof. We proceed by contraposition and assume that M := sup,cy |f(b)] < oo,
that is, |f| attains its global maximum at some point b € X. Hence be S := {a €
X | |f(a)] = M}. We have to show that S = X. First, S must be closed by
continuity of f. Second, S must be also open: Take a chart ¢ : U — V and an open
connected set U; U around a so that fop™! |o(u,) is @ holomorphic function with
a (global) maximum at foe™*(a). By the classical maximum principle, foo ™| 1)
must be constant and thus equal to M, hence a € U; € S. It follows that S is not
empty, closed and open and thus equals X for X is connected. O

The maximum principle has also a surprising effect for compact Riemann surfaces.

12. Corollary (holomorphic functions on compact Riemann surfaces) [Fol
2.8]. Let X be a compact Riemann surface. Then O(X) = C.

Proof. Let f: X — C be holomorphic so that in particular, f is continuous. Since
X is compact it assumes its maximum somewhere. By Theorem 1[T1] this is only
possible if f is constant. O

13. Corollary (Liouville’s theorem) [Fol 2.10].  Every bounded function
f:C — C is constant.

Proof. We consider fopg : Uy = P! — C as a holomorphic function on P\ {[0 : 1]}.
However, since f is bounded, this must be removable by Theorem 1[I0/and f extends
to a holomorphic function f : P! — P!. Hence f is constant by Corollary 1 (]

Holomorphic maps. Now we can define the notion of a holomorphic map.
Taking these as morphisms we can actually define a category, but we will not pursue
this viewpoint further.

14. Definition (holomorphic map). Suppose X and Y are Riemann surfaces.
A continuous map F' : X — Y is called holomorphic, if for every pair of charts
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w1 :U; —> Vy and @3 : U — V4 on X and Y respectively with F(U;) < Us, the
function
wa0Fopl:VicC—VycC

is holomorphic in the usual sense. A map F': X — Y is biholomorphic if there
exists a holomorphic map G : Y — X such that F o G = Idy and G o F = Idy,
that is, I is bijective and has a holomorphic inverse F'~! = G. If a biholomorphic
map X — Y exists we say that X and Y are isomorphic.

15. Remark.

(i) The composition of two holomorphic maps is again holomorphic.
(ii) If Y = C, then holomorphic maps are just holomorphic functions in the sense
of Definition 18
(iii) Two holomorphic atlases 20 and 2" on X are equivalent if and only if the
identity Id : (X, %) — (X,2l') is a biholomorphic map.

More generally, a continuous map F : X — Y is holomorphic if and only if for every
chart ¢ : U € Y — V, the restricted function F*¢ := ¢ o F|p-1y) : F71(U) —
V < C is holomorphic.

16. Proposition [Gu, Lemma 2|. F : X — Y is holomorphic < for any open
subset U < Y, we have F*f € Ox(F~1(U)), that is, we get an induced map

FE: 0y (U) - Ox(F7HU)).

Proof. If F is holomorphic, then clearly Fif € Ox(F~1(U)) for all f € Oy (U).
For the converse we need to check that F' is holomorphic near any p € X. Take
coordinates ¢ and ¢ around p and F(p) respectively, say on U ¢ X and V < Y
with F~1(V) < U. In particular, ¢» € Oy (V). Hence F*iy € Ox(F~1(V)) by
assumption so that F*1op~! = 1o F oy is a holomorphic function in the ordinary
sense. O

17. Remark. It is easily checked that F* is a ring morphism. If F': X — Y and
G :Y — Z are holomorphic maps, then (G o F)* = F* o G*.

18. Examples.

(i) The famous Uniformisation Theorem asserts that any simply-connected Rie-
mann surface is isomorphic to either of the following ones: P!, C or a do-
main strictly contained in C (any two such domains are isomorphic by Rie-
mann’s mapping theorem). In particular, there exists only one compact
simply-connected Riemann surface. Put differently, any oriented compact
surface of genus zero has precisely one holomorphic structure up to biholo-
morphic maps (for instance induced by linear transformations of the form
Alzg : z1] = [Azg : Az ] for A € GL(2,C)).

(ii) Next let us consider a compact Riemann surfaces of genus 1, i.e. tori. Let
A = {miw1 + maws | m; € Z} and A = {myw} + mawh | m; € Z} be two
lattices in C. Let T'= Ty = C/A and T’ = T)» = C/A’ be the corresponding
complex tori. If T and 7”7 are isomorphic via an isomorphism F : T — T’, we
can lift F omp : C — Ty by standard covering space theory (cf. Appendix

in particular Theorem E i to a periodic holomorphic map F' : C — C which
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satisfies mp 0 F = F oy, Since ma/(F(z + ) = F(ma(z + A)) = 7o/ (F(2))
for all A € A we have F(z + \) — F(z) € A/, i.e
F(z +w) = F(2) + anw) + ajuwh (1)
for some integers a;; € Z such that ai1a22 —a12a21 = 1. The latter condition
stems from the fact that the inverse F~! must satisfy a similar relation, that is,
F~Y(z+w)) = F~1(2)+bjwi +biaw, for by; € Z. Moreover, the matrices satisfy
(bij) = (ai;)~*. By Cramer’s rule happens it follows that det(a;;) = +1. By
interchanging the order of wj , we may assume that det(a;;) = 1, that is,
(aij) € SL(2,7Z). Since F(z+ \) — F(z) € A’ is constant in z, differentiating in
z yields F'(z) = F'(z + A). Hence F’ is invariant under A and thus decends
to a function on the torus Ty — C. By Theorem 1 F’" must be constant:
F'(z) = ¢ € C. Hence F(z) = cz + d for a further constant d € C. We
can get rid of d by compounding F' with the biholomorphic map induced by
the translation 7 : Ty — Tas, 7([2]) = [z — d] which lifts to the translation
7:C — C,7(z) = z—d. Soup to a translation, F'(z) = cz. Then Equation
implies
cwy = ap1wy + aows,  Cws = Ao W] + agowh. (2)

If we consider the ratios w = wy/we and W’ = w]/w}, the latter relation gives

!

a1 a2 , ajw + a2

w= W= ——— (3)
a1 a22 a21W" + g9

Conversely, if holds, then there exists a complex constant ¢ £ 0 such
that F(z) := cz satisfies and thus descends to an isomorphism F' :
T — T'. Hence T and T” are isomorphic < w = Aw’ for A € SL(2,Z) and
Aw’ defined as in .

19. Remark. In particular, two nonisomorphic holomorphic structures can give
rise to the same differentiable structure as the previous example of nonisomorphic
tori shows (as observed in Example 1@ (iv), they are diffeomorphic to S x S1).

Next we prove some elementary properties of holomorphic maps.

20. Theorem (Identity Theorem) [Fol, 1.11]. Let Fi o : X — Y be two holo-
morphic maps between two Riemann surfaces X andY . If there exists a set S < X
with a limit point (e.g. S open) such that Fi|s = Fs|s, then Fy = F.

Proof. Let R be the set of all points a € X which have an open neighbourhood U
such that Fi|y = Falu.

Step 1. R is not empty. Indeed, consider charts ¢, : Uy — Vi and @9 : Uy — Vo
with Uy connected, a € Uy and F;(U;) < Us. Since ¢1(S n Uy) contains a limit
point, @9 o Fy o cpfl = poo0Fyo <pf1 : V1 — C by the usual identity theorem for
holomorphic functions, cf. Corollary Hence Fi|y, = Fs|y,, so a € R.

Step 2. R is open. This follows by design.

Step 3. R is closed. Let b € 0R be a boundary point of R. Then F}(b) = Fy(b) by
continuity. Let U be an open neighbourhood of b. Take a chart ¢ : U — V with U
connected and b € U. Since b is a boundary point of R, U n R + (J. Arguing as in
the first step we see that Fy|y = Fy|y, whence b € R.

The result now follows from the connectivity of X. O
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21. Corollary. IfU is connected, then O(U) is an integral domain.

Proof. Indeed, assume that f-g = 0 for f, g € O(U). Then either g or f must
vanish on an open subset of U, and hence on all of U by the Identity Theorem
(applied to the case Y = C). O

Recall that a subset S of a topological space X is called discrete if every point
a € S has an open neighbourhood U in X such that U n S = {a}. From the Identity
Theorem 1[20] we immediately deduce the

22. Corollary [Fo, 4.2]. Let F: X — Y be a nonconstant holomorphic map .
Then F is discrete, i.e. F' has discrete fibres.

Proof. Otherwise, there exists b € Y such that the set S = {a € X | F(a) = b} has
an accumulation point. But then F' = b, i.e. F would be constant. O

23. Example. Consider the holomorphic projection mp : C — Tx. The fibres
can be identified with translated copies of A which is discrete in C.

Next we are proving further elementary properties of holomorphic maps based on
the following local classification:

24. Theorem (local normal form theorem for holomorphic maps) [Fol 2.1].
Let X and Y be Riemann surfaces, and F' : X — Y is a nonconstant holomorphic
map. Suppose a € X and b:= F(a). Then there exists an integer k = 1 and charts
0:U—>VonX and:U — V' onY such that
(i) aeU, p(a) =0 and be U’, y(b) = 0;
(ii) F(U) cU’;
)

(iii) the map o Fop™?

1V — V' is the assignement z — z*.

Proof. 1t is clear that we can find charts satisfying the first two properties, i.e.
Fy = o F oo ! satisfies F1(0) = 0. Hence there exists a k > 1 such that
Fi(2) = 2Fg(2) with g(0) £ 0. On a (simply-connected) neighbourhood of 0 we can
thus take the k-th root of g, i.e. there exists a holomorphic function h defined near
0 such that h*(z) = g(2). If we let ;(z) = zh(z) then ¢; is biholomorphic near 0
onto its image. Further, p(2)* = F(z), whence Fy o o~ (2) = Fi(p~1(2)) = 2¥ as
desired. O

25. Remark. There are two cases to consider: Either k£ = 1 so that F' is locally
injective, or k > 2 and we have a branch point, see Definition 1[36] In particular, k
does not depend on the choice of charts as these are injective. We therefore have
an intrinsic interpretation of the number k, namely as the order of ramification,
cf. Example 1 (ii). Namely, for any open neighbourhood U of a, there exists
an open neighbourhood Uy = U such that f~1(y) n Uy has precisely k elements if
y % b. One calls k also the multiplicity of a for which we write k = v(F, a).

26. Example. Let p(z) = 2F + 3" ¢;2" € C[z] be a nonconstant complex

polynomial considered as a holomorphic map P : P! — P! by setting P([1: z]) =
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[1:p(2)] and f([0:1]) = [0: 1]. Using the chart ¢; near [0 : 1] (cf. Example 1]
(iii)) we have

p1oPoprH(w) = ¢ (P([w : 1])) = { % w™ Z I 8

ZZ:O akwn—k 9

Since 1/ arw™™* # 0 for w sufficiently close to 0, P is indeed holomorphic as it is
bounded near w = 0, and we can argue as for Theorem 1[24] and find a new chart
around o0 = [0 : 1] so that P expressed in these coordinates is of the form w™.
Hence v(P,©) = n.

It follows that as far as local properties are concerned, we may always assume
that modulo charts, F' : X — Y is locally of the form F(z) = z*. This implies
immediately the following

27. Corollary [Fo, 2.4, 2.7]. Let F: X — Y be a nonconstant holomorphic map.
Then

(i) F is open;

(ii) if X is compact, then F is surjective. In particular, Y is compact.

Proof. The map z +— 2¥ is clearly open. In particular F(X) < Y is open. But

if X is compact, then F(X) is compact and thus closed. Hence F(X) = Y by
connectivity of Y. O

28. Corollary [Fo, 2.5]. Let F: X — Y be an injective holomorphic map. Then
F: X — F(X) is biholomorphic.

Proof. We necessarily have k = 1 for F' is injective. O

Meromorphic functions. Next we generalise the concept of meromorphic func-
tions to Riemann surfaces. While in a usual course on complex analysis, these are
treated as a generalisation of a holomorphic function, on Riemann surfaces we can
see them as a special class of holomorphic maps (cf. Proposition 1 which is why
we treat them now.

29. Definition. Let X be a Riemann surface and U < X be open. We call
f : U --» C a meromorphic function on U if f : U* — C is a holomorphic
function defined on some open subset U* < U such that

(i) U\U* contains only isolated points;

(ii) for every point a € U\U* one has

lim | f(z)| = .

z—a

The points of U\U* are the pdles of f. The set of all meromorphic functions on
U is denoted by M x (U) or M(U) for short.

30. Remark.
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(i) Using a chart ¢ : U — C one immediately sees that f € Mx(U) gives rise
to a meromorphic function f o p=! : o(U) --» C in the usual sense (cf.
Appendix . In particular, a is a pole < there exists a minimal m > 1
such that 2™ f o p~1(2) is bounded near a for any chart near a with ¢(a) =0
(this is indeed independent of the chart as ¢ is biholomorphic). We call m
the order of the pole. Therefore we can locally develop f o ¢ into a Laurent
series ), -, apz” where a;, € C and v € Z is the order of ¢1(0).

(ii) M(U) has the natural structure of a C-algebra (and in fact of a field, see
Corollary 1J33). Indeed, for f, g€ M(U) we define f + g and f - g by taking
first their sum and product on the open subset U* where they are both si-
multanuously holomorphic and then extending over any removable singularity
(cf. Theorem 1[10). Note that poles can indeed cancel (consider z and 1/z in
Mc(C)).

31. Examples.

(i) Holomorphic functions: Any holomorphic function is obviously meromor-
phic with empty pole set, i.e. O(U) = M(U).

(ii) Polynomials on P!: Consider again Example 1 where the polynomial
p(z) = 2% + 2, iz’ € C[z] gave rise to the holomorphic map P : P! — P!
by setting P([1: z]) = [1: p(z)] and P([0: 1]) = [0 : 1]. The restriction P|y,
takes then values in C and can be thus regarded as a holomorphic function
defined on P'\{oo}. Read in the chart ¢; with local coordinate w = 1/z over
Uy n Uy, we have P(w) = 37, a;w~" which clearly has a pole at 0 of order
n.

Examples 1.[26) and 1J31] (i) show that polynomials P : C — C can be either
considered as holomorphic maps P! — P! or as meromorphic functions P! --»
C. The next proposition shows that global meromorphic functions on a Riemann
surface X --» C correspond to holomorphic maps X — P! which emphasises once
more the special role played by P!. Subsequently, we will tacitely identify these two
viewpoints and think of meromorphic functions as holomorphic functions X — P!
and vice versa.

32. Proposition [Fo, 1.15]. Let X be a Riemann surface and f € M(X). For
each péle p of f, define F(p) := o0, and F = f on X*. Then F : X — P! is a
holomorphic map. Conversely, if F : X — P! is a holomorphic map, then F is
either identically equal to oo = [0 : 1] or else F~1(o0) consists of isolated points and
f:U*:= X\F~Y(0) — C induces a meromorphic function f: X --» C.

Proof. For f € M(X) let P(f) be the set of poles of f. We define a continuous
extension of F: X* = X\P(f) —» C to f: X — P! by setting f(p) = [0: 1] = o.
If » : V — C is a chart such that U n P(f) = {p} such that F(V) < U; in P*
= p1oFoy~t:y(U) — C is continuous. Since and 1 : V — C is a chart of
P! then 1 o F o is continuous, so that the singularity in 1(p) is removable by
Theorem 1101

The converse follows from the Identity Theorem 1]20] O

33. Corollary. The Identity Theorem 1]20 holds for meromorphic functions re-
garded as holomorphic maps. In particular, the set of zeroes and poles of a mero-
morphic functions is discrete. It follows that any meromorphic function which is
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not identically zero can be inverted so that
KX = M(X)
is a field. We call Kx the function field of X.

Unlike for holomorphic functions there are nonconstant global meromorphic func-
tions on compact Riemann surfaces:

34. Example (the function field of P') [Fol 2.9]. We have
Kp = C(T),

that is, any global meromorphic function can be written as the quotient of two
polynomials so that f is rational. Indeed, let f € Kpi. Then f has finitely many
poles ay, ..., a,, and by passing to 1/f if necessary, we may assume that all of these
poles live in Uy. Fixing a coordinate z we have prinicipal parts hj = Zj_:lfyk Cupj(2—
ar)? of the corresponding Laurent series which we can holomorphically extend to
all of P! as they are bounded if z — o (use the Removable Singularity Theorem;
cf. also Example 1. Hence ¢ = f— " hy must be holomorphic on P! and thus be
constant. It follows that f = ¢+ > hy is a rational function. A generator is given
by the meromorphic function [1 : z] — z which is why we usually write Kp1 = C(z)

35. Examples (the function field of 7 and doubly periodic functions).
Next we consider genus 1 surfaces. Nontrivial global meromorphic functions on
complex tori arise for instance from doubly periopdic functions: Suppose as above
that wy, we € C are linearly independent over R and let A = Zw; + Zwy be the
induced lattice. A meromorphic function F' : C --» C is called doubly periodic
if F(z 4 w1) = F(z) = F(z 4+ w2) or equivalently, if F(z +w) = F(z) for all w € A.
In particular, F descends to a meromorphic map F : Ty — P!. For instance, the
Weierstrass p-function with respect to A is defined by

Conversely, any meromorphic function T --+ C gives rise to a doubly periodic
function so we can freely identify these two concepts. From Corollaries 1[T2)and 1[27]
we immediately deduce that any holomorphic doubly periodic function C — C must
be constant. Moreover, any nonconstant meromorphic doubly periodic function
must attain any complex value for it induces a holomorphic map f : Th — P!
which by Corollary 1[27] (ii) is surjective.

This function will be further investigated in the exercise sheets. Furthermore, it
will be shown that

K, = C(2)[X]/(X? = 4(2 — p(w1/2))(2 — p(w2/2))(z — p((w1 + w2)/2)))
-2 Ko [X]/(X? = 4(2 — p(w1/2))(2 — p(w2/2)) (2 = p((w1 + w2)/2)))

(this does indeed only depend on the lattice, and not on the basis w;). In particular,
Kp1 < K, is a finite field extension.



RIEMANN SURFACES 13

1.2. Branch points. We have now introduced the basic objects of study of this
course, namely Riemann surfaces and holomorphic maps between them. Next we
investigate the structure of holomorphic maps in finer detail.

Since the fibres of holomorphic maps are discrete we can make a rough a subdivision
into branched and unbranched holomorphic maps.

36. Definition. Let F' : X — Y be a nonconstant holomorphic map. A point
a € X is called a ramification point of F, if there is no neighbourhood U of a
such that F'|y is injective. If F' has branch points, then F' is called branched or
ramified, and unbranched or unramified else.

37. Remark. There does not seem to be a universal agreement on the distinction
between ramification and branch points in the literature so be careful when using
other texts.

38. Examples.

(i) Let k > 2 be a natural number and let P, : C — C be the map Py(z) = 2*.
Then 0 € C is a ramification point as well as a branch point, while the map
P, : C* — C is unbranched.

(ii) By the Normal Form Theorem 1 any nonconstant holomorphic map F' :
X — Y looks locally like P;,. Hence a € X is a ramification point precisely if
its multiplicity is > 2.

(iii) The mapping exp : C — C* is an unbranched holomorphic map, for exp is
injective on any domain which does not contain two points differing by an
integral multiple of 27i.

(iv) The canonical projection 7 : C'— T onto the torus defined by the lattice A
is unbranched, for 7 is a local homeomorphism.

Thus there are three kinds of holomorphic maps:

e constant maps;
e unbranched maps;
e branched maps.

Of course, there is not much to say about constant maps. We first analyse the
unbranched case.

Covering maps. The first important property of unbranched maps is the follow-
ing characterisation which generalises Example 1[38] (iv).

39. Proposition (unbranched maps are local homeomorphisms) [Fol 4.4].
A nonconstant holomorphic map F : X — Y has no ramification points if and only
if F is a local homeomorphism, i.e. every point a € X has an open neighbourhood
which under F is mapped homeomorphically onto an open neighbourhood of F(a).

Proof. =) Suppose F : X — Y has no ramification points. Hence for a € X there
exists an open neighbourhood U such that F|y is injective. Since F' is open as a
nonconstant holomorphic map, F|y is a homeomorphism between U and F(U).

<) Suppose F : X — Y is a local homeomorphism. Then any point a € U admits
by definition an open neighbourhood U such that F|y is injective. (]

A convere to the previous proposition is this.
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40. Proposition [Fol 4.6]. Let X be a Haudorff space and Y be a Riemann
surface. If F: X — Y is a local homeomorphism = there exists a unique complex
structure on 'Y such that F' is an unbranched holomorphic map.

Proof. We proceed in two steps.

Step 1. Existence. We let 2 be the family of charts constructed as follows. For a
complex chart ¢’ : U' € Y — V around a point in the image of F we let U < X be
such that F(U) c U’ and F|y is a homeomorphism onto its open image. We then
define the complex chart ¢ = ¢’ o F : U — ¢/(F(U)). It is clear that these charts
are compatible (the F' just cancels), and the coordinate neighbourhoods cover X.
Furthermore, F' (trivially) becomes locally bihiolomorphic and is thus holomorphic.

Step 2. Uniqueness. Assume that there is another atlas 2’ such that F' : (X, 2') —
Y is holomorphic. Then Id : (X,2) — (X,2') is biholomorphic since locally,
Id(a) = (p|y)~* o p(a) for a suitable open set U.

O

41. Holomorphic covering maps. A special and very important class of local
homeomorphisms is given by covering maps (see Definition [BJ[16|and Appendix [B|for
further information). We now investigate the relation of holomorphic unbranched
maps with covering maps. Let us start with some basic observations:

(i) f 7 : X — Y is a covering map and Y is a Riemann surface, we obtain a
unique Riemann surface structure on X so that 7 becomes an unbranched
holomorphic map by Proposition 1[0

(ii) A proper unbranched holomorphic map 7 : X — Y is a covering map with
finite fibres by Proposition [BJ22}

(iii) Any Deck transformations of a holomorphic covering is necessarily holomor-
phic. Indeed, we have the following: Assume that X, Y and Z are Riemann
surfaces, and that w : X — Y is an unbranched holomorphic map. Then every
lift of a holomorphic map F : Z — Y to X is holomorphic. This can be shown
by restricting to a neighbourhood U < X such that 7|y is biholomorphic onto
its image [Fol Theorem 4.9]. Since a Deck transformation is a lift of the map
F=mn:7Z=X —Y, it is necessarily holomorphic.

For holomorphic covering maps there are two cases to consider, namely whether
the fibres are finite or not. We assume finiteness first which implies that the map
F: X — Y is proper. In particular, F' is closed, that is, it maps closed sets in X
to closed sets in Y.

The set of ramification points R is a closed discrete subset of X as follows from the
local normal form theorem 1[24] Since F is proper, B = F(R), the set of branch
points, is also closed and discrete. It follows that F'|x\z is a holomorphic covering
map onto Y\B with a well-defined number of sheets by Proposition This
means that every value b € Y\B of F' is taken exactly n times. We also say that
b has multiplicity n. In order to extend that notion over all of Y, we define the
multiplicity p(F,b) of any point b € X by

p(F,b) = > v(F.a)
aem—1(b)

where v(F, a) is the multiplicity of a € X. For ramification points one also considers
the ramification index which is p(F,a) := v(F,a)—1. In particular, R(F) = {a €
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X | p(F,a) > 0}. A covering is simply ramified or has a simple ramification
point at a if p(F,a) = 1, has a double ramification point if p(F,a) = 2 and so
on.

42. Remark. Consider an n-sheeted branched holomorphic covering map F :
X — Y of two compact Riemann surfaces of genus g and ¢’, respectively. A priori,
the ramification index of any ramification point can be any number between 1 and
n — 1. The total sum ], p(F,a), however, is topologically determined. Indeed,
we have the Riemann-Hurwitz formula [Fol 17.14]

2(g—1) =2n(g — 1)+ Y. p(F,a).
aeR

In particular, an unbranched holomorphic covering map must have g — 1/¢’ — 1
sheets. This formula easily follows from Euler’s formula for the Euler characteristic
X(X) =2(g—1) =V — E+ F where E, K and F denotes the total number of
vertices, edges, and faces of a triangulation (taking —E ensures that x(X) is indeed
independent of the chosen triangulation). See also Appendix [C| for a recap on the
topology of surfaces.

43. Proposition [Fo, 4.24]. If F is a proper nonconstant holomorphic map =
w(F,b) is constant on' Y. We call u(F,b) the number of sheets.

Proof. If we take out the ramification points of X, then F restricts to a covering
map of say n sheets. Let b€ Band F~1(b) = {ay,...,a,}. Now for all i there exists
disjoint neighbourhoods U; of a;, and neighbourhoods V; of b, such that F—! (c)nU;
has precisely v(F, a;) elements for ¢ € V;\{b}. Since F is a covering over V\{b}, the
cardinality of F~*(c) for ¢ € V\{b} is n, whence the >, v(F,a;) =n O

44. Example. Let p(z,w) = > fi(w)z* € O(C)[z] a polynomial with coef-
ficients in O(C). We let X = Z(p) = {(z,w) € C? | f(z,w) = 0}, Y = C and
F:X —>Y, F(z,w) = w projection on the second factor. Under mild conditions
(namely 0,p(zq, wg) or dwp(20,wo) *F 0 for (29, wp) € X) the implicit function theo-
rem for holomorphic functions (cf. Remark [A][9|and [GuRo, Theorem I.B.4]) implies
that X is a Riemann surface. Generically, the polynomial has n distinct roots, and
F defines a covering map. It branches over multiple zeroes, see Figure 13

N X

(J:D_

FIGURE 3. The covering map defined by p € O(C)[z] of degree 3
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45. Corollary [Fol 4.25]. A nonconstant meromorphic function over a compact
Riemann surface has as many poles as zeroes (counted with multiplicities).

Proof. Consider the meromorphic function as a holomorphic map X — P!. Since
it is proper, u(F, ) = u(F,0). O

Summarising, a holomorphic map between compact Riemann surfaces F': X — Y
is either constant or a (branched) covering map with finite fibres. Next we study
local normal forms for holomorphic (branched) coverings. In the sequel, we let
D={2eC]||z| <1}, D* = D\{0} and H = {z € C | Im 2| > 0}. Recall from
Example [Bl17|that pj, : DX — D*, pp(z) = z* and exp(i-) : H — D* are covering
maps.

46. Theorem (local classification of holomorphic covering maps) [Fo, 5.10].
Let F : X — D> be an unbranched holomorphic covering map. Then

(i) If the covering has an infinite number number of sheets = there exists a bi-
holomorphic mapping ® : X — H such that the diagramm

X—*.H

e
exp(i-)

D X
commutes.

(ii) If the covering is k-sheeted = there exists a biholomorphic mapping ® : X —
D* such that the diagramm

X _®_ DX
e
Pk
DX

commutes.

Proof. This follows directly from Proposition [Bll32| for Deck (X/D*) must be a
subgroup of 71 (D*) =~ Z. The holomorphicity of ® follows in the same way as for
Deck transformations in (iii) of Paragraph 1[41] O

47. Corollary [Fol 5.11]. Let F: X — D be a proper non-constant holomorphic
covering map such that F restricted to X* := F~Y(D*) — D* is an unbranched
covering map = there exist k € N and a biholomorphic mapping ® : X — D such
that the diagramm

xX-2.p
F/
Pk
D

commutes.
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Proof. By the previous theorem, the restriction of F' to X* factorises via a holo-
morphic map ® : X* — D* into F = pg o ®. If we can extend ® to all of X
we are done. For this we show that F~1(0) consists of a single point a so that we
obtain a continuous, hence holomorphic extension by ®(a) = 0. Indeed, assume
that F~1(0) consisted of n points ay, ..., a, with n > 2. Since they are isolated we
have F~1(D.) € V3 U ... UV, for a small neighbourhood D, around 0 and disjoint
open neigbourhoods V; of a;. Let D be the discs D, with the origin deleted. Then
F~Y(D}) is homeomorphic to p, '(DX) = Dj% which is connected. Since the a;
contradicting the fact that it is contained in the union of at least two nonempty

open subsets with disjoint closures. Hence n = 1. O

are accumulation points of F~1(DX) =~ D’ _, F~Y(D.) must be connected, too,

48. Corollary [Fo, 8.4]. Let S ¢ Y be a closed discrete subset, Y* := Y\S. If
X* is a Riemann surface and F* : X* — Y* a proper unbranched holomorphic
covering map = F* extends to a proper branched covering F' : X — Y for a
Riemann surface X > X*.

Proof. Let b€ S < Y and consider a chart ¢ : V;, — C of Y centered in b and
such that ¢(V;) = D. Since S is a discrete subset, the domains Vj, of these charts
can be chosen to be disjoint. We let V,* = V;\{b}. Since F* is proper, F*~1(V,)
consists of a finite number of components UZX covering V,* kl’; times. Modulo
biholomorphism, F'* \ng (z) = 2 by Theorem 1 (ii). We add ideal points a} to
U} and obtain U := Uj* U{ai}. Weset X = X* U{a}}pes. For each such a point
ai we define a neighbourhood basis by {a}} U (F*~1(W}) n US*), where W, runs
through a neighbourhood basis of b. This turns X into a Hausdorff space, induces
on X* the given topology and defines a proper map F' : X — Y in the obvious
way. To define the structure of a Riemann surface on X, consider the continuation
of the holomorphic maps UZX — V obtained by sending a}; to b. This gives a
biholomorphic mapping ® : U — D corresponding to z € Uf — 2k €V, . Since for
any other chart Uy of X*, a} ¢ Uy n U}, these added maps are clearly compatible
with X*. Thus we obtain a Riemann surface by glueing in the local models of
Corollary 1[47] In particular, F': X — Y is a proper, holomorphic map. O

49. Remark. In a similar vein, suppose that F' : X - Y, G : Z — Y are
proper holomorphic covering maps, and that S < Y is a discrete subset. Then
any biholomorphic map H* : F~}(Y\S) — G~}(Y\S) commuting with F and
G can be extended to a commuting holomorphic map F : X — Z [Fd, Theorem
8.5]. In particular, every Deck transformation F' : X* — X* can be extended
to a (uniquely determined) biholomorphic map F' : X — X which commutes the
covering map. It follows that the holomorphic structure on X in the previous
Corollary 1[48]is uniquely determined.

50. Corollary and Definition (Deck transformations for branched holo-
morphic covering maps). We let
Deck(X/Y) = {G : X —» X | G biholomorphic , F o G = F'} = Deck(X™,Y ™)

be the group of Deck transformations of F' : X — Y, where Y* = Y'\{branch points}
and X* = X\{ramification points}.
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1.3. Analytic continuation and algebraic functions. Our next task is to ac-
tually construct Riemann surfaces, namely as maximal domains of holomorphic
functions via analytic continuation. Historically, this was the first instance of a
Riemann surface which was not a domain in C. This will also open a more al-
gebraic (geometric) way of investigating Riemann surfaces through their function
fields.

Analytic continuation. Let f : U — C be a holomorphic function without
zeroes. Locally, the holomorphic logarithm exists. What is its maximal domain
of definition? The Figure 1[] illustrates the problem for the entire holomorphic
function f(z) = z.

FIGURE 4. Maximal domain of the holomorphic logarithm

It is classical that the holomorphic logarithm exists on any slitted plane (cf. also
Example |Al8). However, if we wish to have a mazimal domain (in a sense to
be specified below) on should rather consider the covering map X - Casin
Figure 1@ By Proposition 1@' X can be turned into a Riemann surface such that
the projection onto the punctured plane C* becomes holomorphic. We will say
that X was obtained by analytic continuation from z. Moreover, the holomorphic
logarithm is globally defined, and we really obtained a pair (X ,log 2) of a Riemann

surface and a globally defined holomorphic function.

In the sequel, X will denote again a Riemann surface.

51. Definition (germ and stalk of holomorphic functions). Let a € X. For
two functions f € O(U), g € O(V) with a € U n'V we say that f is equivalent to
g < there exists an open set W < U n' V with a € W and such that flw = g|lw.
This is an equivalence relation whose equivalence class will be denoted by [U, f]
and which will be called the germ of f at a. Since the precise U is immaterial
we also denote this germ by f,. The operations [U, f]+[V,g] = [U "V, f + g] and
[U, f1-[V,g]l = [U NV, f-g] turn the set

OX,a = {[U’f] | ae U, fE O(U)}
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into a C-algebra which we call the stalk of holomorphic functions at a. If the
underlying Riemann surface is clear from the context we simply write O, for Ox 4.

Further, we let
|O| = |_| Oa

aeX
be the disjoint union of all stalks and define the projection map 7 : |0 — X to be
the map which assigns to each f, € O, its base point a € X.

52. Remark.

(i) Note that [U, f] = 04 = the neutral element of addition in Ox , < f =0 on
some open neighbourhood of a.

(ii) Similarly, we can define the stalk of meromorphic functions Mx o. This also
inherits the algebraic structure of M x (U) and is thus a field (in fact, though
we have not proven this fact yet, Mx , = Quot Ox , — convince yourself that
Ox,q is indeed integral!).

(iii) The germ of a holomorphic function f € O(U) determines f completely if U
is connected, for if [U, f] = [U, g], then f and g agree on some nonempty open
subset of U. Hence we obtain an inclusion O(U) — O,.

The order function which we discuss next is a good example for how one uses germs:

53. The order function. For any a € U ¢ X we define the order function

—m, f has a podle at a of order m
0q : M% 4 = Mx.a\{0a} = Z, o04(f) = n, f has a zero at a of order n > 0
0, else

In particular, f is holomorphic on U < 0,(f) = 0 for all p € U and we have the

(i) product rule: oa(f - g) = 0a(f) + 04(g), that is we have a group morphism
(Ox(U),") = (Z, +);
(ii) non-archimedean property: oq(f + g) = min{o,(f), 0a(g)}
For instance, we have o, (P) = —n for the meromorphic function P of the previous
Example 1[31] (ii). For convenience, we will set 0,(0,) = o0 if we wish to extend oq
over all of Mx q.

Of course, we could have defined the order function at a for meromorphic functions
in, say, Mx(U), but this would be unnatural for we have to choose U, while the
order only depends on the germ.

54. Remark. The order function o, : M?Qa — 7 is an example of a discrete
valuation. Note that O% , is just the subring of M% , given by o, > 0. It is
thus a discrete valuation ring and as such in particular local with maximal ideal
m = {f, | 9,(f,) > 0, that is, those germs which are no invertible near a for f, has a
zero.(see [AtMal, Chpater 1, 5 and 9] for a definition and further discussion of these
concepts).

We topologise |O] as follows: For any open subset U < X and f € O(U), we let
Wy, s be the open set
WU,f = {fa | a e U} C |O‘,

that is, the open set Wy, ¢ can be identified with the image of the section f : U —
|O|, f(a) = £, induced by f (recall that in general, a section of a map 7: X —» Y
is amap o : ¥ — X which satisfies m 0o 0 = Idy). Now a subset B < P(X) of
the power set of some set X is a basis for the topology < (i) the elements U € B
cover X, and (ii) for any U, V € 9B, and a € U n V there exists W € 9B such that
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a€W cUnV. A basis generates a natural topology by taking the intersection of
all topologies on X which contain B, that is, a set is open in X if and only if it is
the union of sets in B.

55. Lemma [Fo| 6.8]. The system {Wy s} with U c X open and f € O(U) forms
the basis of a topology. Furthermore, the projection becomes a local homeomorphism.

Proof. The first assertion is straightforward, see for instance [Fol Theorem 6.8]. To
show that the projection is a local homeomorphism, suppose that f, = [U, f] € |O|
and 7(f,) = a. Then f, € Wy s is an open neighbourhood of f,, and U is an open
neighbourhood of a € X. The projection restricted to Wy ¢ in injective and thus a
homeomorphism onto its image U. (|

56. Remark. The Identity Theorem for holomorphic functions implies that |O] is
Hausdorff, see for instance [Fo, Theorem 6.10]. It follows by Proposition 1[0] that
any connected component of |O] is a Riemann surface. In particular, any function
germ f, € |O| singles out a Riemann asurface X. Further, it defines a holomorphic
function f € O(X) such that f(£f,) = f(a). Indeed, let f(gy) = g(b) for any g, € X.
In particular, f lwy., = gom. Note in passing that X cannot be compact for f is
not constant.

57. Definition. Let u : I = [0,1] — X be a curve from a to b. The germ ¢ € O,
is said to be obtained by analytic continuation along the curve u from the
germ o if there exists a family ¢; € Oy, t € I with pg = ¢ and ¢1 = ¢ and such
that ¢, is locally induced by a holomorphic function, i.e. for all 7 € I there exists
a neighbourhood I and an open subset U, containing u(I;) ¢ X with f € O(U,)
such that £,y = ¢;.

58. Remark. Since I is compact every open cover of u(I) can be reduced to a
finite cover. Therefore the condition of the previous definition can be reformulated
as follows: There exists a partition 0 = tg <t; < ... <tn_1 <t, =1 of I as well
as open connected sets U; < X with u[t;—1,t;] < U; and f; € O(U;) such that

(1) Y= fl,u(0)7 w = Inu()s

(ii) filv, = fi+1|v,, where V; denotes the connected component of the intersection

U; " U, 41 containing the point u(t;),

see also Figure 1[5

Note that by definition, ¢ = f, for some holomorphic function defined near a;
Definition 1/[57] requires this choice to be uniform near ¢, i.e. the same function
does the job for any ¢ sufficiently close to ¢. In this way this condition can be
seen as a continuity property of ;. Indeed, we have the

59. Lemma [Fd, 7.2]. A function germ o € Oy is the analytic continuation of
v € Oy alongu: I — X < there exists a lifting 4 : I — |O| of u such that 4(0) = ¢
and 4(1) = .

In particular, the analytic continuation of a germ, if it exists, is uniquely determined

Proof. =) By design, ¢; = i is the desired lifting (this is precisely the reason why
we required ¢; to be locally induced by a holomorphic function).

<) Let ¢ = 4(t) and 7 € I. There exists a neighbourhood Wy, s of 4(7) € |O| such
that ¢, = (t) = £, for all t € w*(U) = I,. Hence ¢, is the analytic continuation
of ¢ to 1. O
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FIGURE 5. Analytic continuation along w.

From Proposition |BJ{13| we immediately deduce the first part of the

60. Monodromy Theorem [Fo|, 7.3]. Letp e O, and ug : I — X be homotopic
curves from a to b via the homotopy us, s € I. Assume that for every us, there
exists an analytic continuation of ¢ € O, to Us(1) € Oy. Then the endpoint does
not depend on s, i.e. 4g(1) = ts(1) = G1(1) for all s.

Therefore, if X is simply connected and ¢ € O, is a germ which can be analyt-
ically continued along every curve starting at a = there exists a globally defined
holomorphic function f € O(X) such that £, = ¢.

Proof. Only the last assertion requires justification. Let ¢, = [U,g] € O, be the
germ obtained by analytic continuation along some path from ¢, € O,. Since X
is simply-connected, this does not depend on the path for any closed loop can be
retracted to a point, that is, any two paths with the same inital and final points
are homotopic. Then f(b) := g(b) yields the desired holomorphic map. O

61. Example. Consider the function f(z) = z. Then f has no zeroes on C*
so we can locally take its logarithm. Let u(t) = ¢*™ < C* be the unit circle and
let t; = 27j/3 for j = 0,...,3. On a suitable open neighbourhood of u([t;_1,1;]),
Jj=1,2or 3, we define g;(z) = log f = log|z| + iarg; z, where arg; takes values in
[27(j —1)/3 — €,27j/3 + €] for some small € > 0, sce Figure 16} Then g; agree on
the overlaps and thus define an analytic continuation of the germ g; , (o). However,
the circle lies in a not simply connected domain, and indeed, g3(u(1)) = g3(u(0)) =

2mi + g1(u(1)) = 0.

On the other hand, as follows from Remark 1[56] any germ g, of a locally defined
holomorphic logarithm g = log z singles out a Riemann surface X inside 7 : |O] —
C*. The corresponding function § € O(X) extends g to m(U) where U is a maximal
open neighbourhood of g, such that 7| is injective. To generalise this observation,
let 7 : X — X be an unbranched holomorphic map. Then 7 induces an isomorphism
Ty Ox ) = Ox, for any b e X by setting ¥ [U, f] = [~ Y(U), f o 7] since m
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FIGURE 6. Analytic continuation of log z along the unit circle.

is locally biholomorphic. We let mp, = ()~ : Og , — Ox =) be its inverse (we
sometimes drop the base point b to ease notation).

62. Definition (analytic continuation). Let ¢ € Ox,4. A quadrupel
(X,m, f,a) is called an analytic continuation of ¢ if
(1) X is a Riemann surface and 7 : X — X is an unbranched holomorphic map;
(ii) feO(X);
(iii) 7(a) = a and 74 (f2) = .
An analytic continuation (X ST, f, a) of ¢ is maximal if the following universal
property is satisfied: For any other analytic continuation (Z,q,g,b) of ¢ there
exists a holomorphic map F : Z — X such that F(b) =G, g = F*f = f o F and
mol =gq:

(ngvb) L> (X,(,D)

As usual, universality implies that a maximal analytic continuation is essentially
uniquely determined. Guided by the example of the holomorphic logarithm we
prove the

63. Theorem [Fol 7.8]. For any function germ ¢ € Ox , there exists a mazrimal
analytic continuation, namely (|Ox|,,m, f,¢) where |Ox|, is the Riemann surface

of |Ox| distinguished by ¢, and f is the natural function on |Ox|y, ¢f. Remark Z,

This requires first a lemma.

64. Lemma [Fo, 7.7). Let (X7, f,
Ifu:1I— X is a curve with @(0) = a, then ¢ := W*fa(t) is an analytic continuation
of ¢ along u = 7o .

a) be an analytic continuation of p € Ox ~(a)-
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Proof. We need to show that locally, there exists g € Ox (U) such that g,y = ¢;.
Indeed, since 7 is an unbranched holomorphic map, 7| : UcX >UcXis
biholomorphic for suitable open sets U and U. Put g := (ﬂ'\f])*l*f =fo (mg)
U — C. By design, gu(t) = ﬂ*fﬂ(t) = Pt |

Proof. (of Theorem 1 Let X be the connected component of |O| containing ¢,
7 : X — X the restriction of |0 - X, and b = ¢ € |O]. Welet f: X — C
be the corresponding holomorphic function, i.e. f(f,) = f(z). It follows that f is
holomorphic, and f(b) = a. Thus (X, 7, f,b) is an analytic continuation of .

To show that it is maximal, suppose that (Z, q, g, b) is another analytic continuation
of ¢. We define F' : Z — X as follows. Let z € Z and choose a curve @ from b to
z. According to Lemma 1 the function germ g4 (g.) € Ox 4(z) < |O| is obtained
via analytic continuation from ¢ along the curve u = g o 4. It follows that ¢4 (g.)
lies precisely in the connected component determined by ¢ which is just X. Hence
the map F : Z — X, z — ¢4(g.) is well-defined. It is easy to see that F' satisfies
all the required properties. O

Field extensions and algebraic functions. Recall from algebra that a function
field of n wvariables is a finite extension of a field of the form k(x1,...,z,) for
algebraically independent variables x;. For instance, Kp1 = C(t) is a function
field of one variable. While this justifies the term “function field” for P! we now
wish to show that Kx is a function field of one variable for any compact Riemann
surface X. This will be done in two steps. First, consider a branched n-sheeted
holomorphic covering map 7 : X — Y. Pull-back by 7 induces a morphism of fields
m* . Ky — Kx which sends f to 7*f = f on. Since this map is nontrivial it is
necessarily injective, that is, we can regard Ky as a subfield of Kx. Furthermore,
we are going to show that [Kx : Ky| = n so that 7* defines a finite (and in
particular, algebraic) field extension. In a second step (to be carried out later) we
show that every compact Riemann surface admits a branched holomorphic covering
X — P! from which it follows that K x is a function field of one variable.

Our first goal os to show that [Kx : Ky] < nif # : X — Y is a branched
n-sheeted holomorphic covering. We first need to introduce some technicalities.
Let m : X — Y be an n-sheeted unbranched holomorphic covering map, and let
f € Kx. For a special neighbourhood V we therefore have f~1(V) = U?:l U;
with 7|y, : U; — V invertible. Let f; = f o (n]y,)”! € My (V). We consider the
polynomial

Pyg(T) =1_ (T = f;) = Y} 0,17 € My (V)[T], (4)
§=0

where 0; = o(f) = (=1)7s,—j(f1, ..., fa) are given by the n— j-th symmetric poly-
nomial s,—; (e.g. so(x1,...,2n) =1, s1(T1,...,Zn) = 2 &j,...,00(T1,...,Tpn) =
[z;). If we consider another special neighbourhood W with f~1(W) = Ule Uj,
then the functions f; = f o (7r|(~]j)*1 agree with f; on the intersection V n W
up to some relabeling, that is, Py ¢(T)|lv~w = Pw,f(T)|lv~w for o;(fi,..., fn) =
O’j(f Toeees fn) Indeed, the o; are symmetric in their arguments, i.e. invariant un-
der the action of the permutation group &,,, and thus invariant under relabeling.
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Hence the locally defined o piece together to give globally well-defined meromor-
phic functions o;(f) € Ky, j =0, ...,n called the elementary symmetric func-
tions of f. Summarising, we obtain a polynomial P;(T) € Ky [T] which satisfies
Pi(f(a))(m(a)) = 0 for all a € X, that is, 7* Py € Kx [T satisfies

T Py(f) = 0.

More generally, the elementary symmetric functions are well-defined for branched
covering maps 7 : X — Y. Indeed, let C = Y be a closed discrete subset of Y which
contains all critical values of m. Further, let S = 771(C), X* := X\S and Y* :=
Y\C so that in particular, 7|xx : X* — Y™ becomes an unbranched holomorphic
covering. For f € Mx(X*) consider the elementary functions o;(f) € My (Y*).
In the following, we say that a meromorphic function f extends meromorphically
to a if 2™ f is bounded near a for a local coordinate z with z(a) = 0.

65. Lemma [Fol 8.2]. f can be continued holomorphically resp. meromorphically
for all a € S < the o;(f), j = 1,...,k can be continued holomorphically resp.
meromorphically to b = w(a) € Y. In particular, the elementary functions of f €
Mx (X)) are also defined in case of a branched holomorphic covering.

Proof. Assume first that f can be continued holomorphically to all a € 7m=1(b),
be C. Then o;(f) exists outside b and is bounded, hence o;(f) can be extended to
b by Riemann’s Removable Singularities Theorem. Conversely, substituting 7' = f
into 7*P(T) and evaluating at x € X* we get

fr(@) + o (f) (@) f*7Hz) + .+ on(f)(m(z) = 0
so that o; bounded near b implies f bounded near a € 771(b) so that f extends.

Secondly, assume that f extends meromorphically to X. Thus, if z is a local co-
ordinate for Y with z(b) = 0, b € C, then w = 7*z is a local coordinate around
a € m 1(b), and w™f extends holomorphically over a for m big enough. In partic-
ular, oj(w™f) = 2™ o;(f) is holomorphic by the first case, hence o;(f) extends
meromorphically to b. Conversely, if 2¢;(f) can be continued holomorphically to
b for all j, then w™f can be continued holomorphically to all a € m7~*(b), hence f
extends meromorphically. O

66. Remark. The proof also applies if X is a disconnected union of Riemann
surfaces, e.g. the trivial cover of Y by n copies of Y.

From the identity (7*P;)(f) = f* + Z?Zl(w*aj(f))f"’j = 0 we directly deduce
the

67. Theorem [Fol 8.3]. Let m : X — Y be a branched holomorphic n-sheeted
covering map. If f € Kx with elementary symmetric functions ci,...,c, =

U (@ o (N 4 T e () f + 7 on(f) = 0.
In particular, considering Ky as a subfield of Kx via ©* this defines a polynomial

relation on f € Kx with coefficients in Ky so that Ky < Kx is a finite field
extension of degree < n.

68. Remark. We will see later that the degree is actually equal to n.

Summarising, we have seen that any holomorphic branched covering 7 : X — Y
gives rise to a finite field extension Ky < Kx. Conversely we can ask when a finite
field extension of Ky can be realised by a branched holomorphic covering map?
Finite field extensions of k arise by adjoining roots of irreducible polynomials P €
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E[T]. In fact, since we are working with fields of characteristic zero, the existence of
a primitive element (cf. Theorem says that any finite field extension Ky < L
is of the form Ky (f) =~ Ky [T]/(P) where P € Ky[T] is an irreducible polynomial.
We wish to find a Riemann surface X with Kx = L.

69. Theorem [Fol 8.7-9]. Let P € Ky [T] be an irreducible polynomial of degree n
= there exists a Riemann surface X and a branched n-sheeted holomorphic covering
m: X — Y such that P has a root in Kx, that is, there exists f € Kx such
that #*P(f) = 0. The triple (X, m, f) is unique up to biholomorphic mappings
commuting with the covering maps and pulling one meromorphic function back to
the other.

Proof. We proceed in three steps.

Step 1. If P(T) = T" + X_, ¢;T7 € Ox,o[T] and 37_ycj(a)T"" € C[T] has
simple zeroes z1, . .., zn, = there exist germs @1, ..., pn € Ox o such that p;(a) = z;
and P(T) = II}_{ (T — ;). Indeed, let c1,...,c, be holomorphic functions on the
disk Dr < C. Consider the holomorphic function f(w,z) = w™ + 2?21 cj(z)wn .
If wy is a simple zero of the polynomial f(-,0), then it follows from the Implecit
Function Theorem (which holds also for holomorphic functions) that there exists a
holomorphic function ¢ : D, — C, 0 < r < R with ¢(0) = wg and f(¢(z),z) =0
(see also [Fo, Lemma 8.7] for a proof avoiding the use of the IFT).

Step 2. Ewmistence. Let A = A(y) € Ky be the discriminant of P. This is a certain
polynomial in the coefficients of P with A(y) = 0 < P[T](y) = P'[T](y) = 0 (where
P’ is the formal derivative of P in T'). Since P is irreducible, A does not vanish
identically. It follows that there exists a discrete subset S < Y such that for all
yeY* :=Y\S, A(y) + 0 and ¢; € Oy (Y*) are holomorphic. Let X* < |O| =Y
be the set of all germs ¢ € Oy, y € Y™ such that P(p) =0. Let 7% : X* — Y be
the restriction of the natural projection |O] — Y. For any y € Y*, the polynomial

py(T) :=T" + > ¢;(y)T" € C[T]
j=1

has precisely n distinct zeros for A(y) £ 0. By the previous step it follows that for
every y € Y’ there exists an open neighbourhood V' of y and functions f; € Oy (V)
such that P(T) = IIj_(T — f;) on V. Further, 7*~1(V) = U?:1 U; where
U; = f;(V) is the image of the section of |O| induced by f; is a disjoint union
of open sets (the zeros of p, are simple!). Further, 7*[y; — V is a homeomorphism
which shows that 7> : X* — Y ¥ is a covering map. We claim that X * is connected
so that * extends to a branched holomorphic cover 7 : X — Y by Proposition 1[48]
If not, assume for simplicity that there are two connected components X; . We
can regroup the product P(T) = I}_ (T — f;) = 3L (T — fi,) - W2,(T — fi;)
where the two factors comprise the functions giving rise to germs in X; and X,
respectively. By Lemma 1[65] these piece together to two meromorphic functions
P 5(T) € Ky[T]. It follows that P(T) = Pi(T)Py(T), contradicting the irre-
ducibility of P. Finally, let f be the tautological holomorphic function on X. Then
7*P(f) = f*(x) + Z?Zl c¢j(m(z)) f?(x) = 0. By Lemma 1/65| again, we can extend
f to a meromorphic function on all of X such that #*P(f) = 0.

Step 3. Uniqueness. We briefly sketch uniqueness, for details see [Fo, Theorem
8.9]. Suppose (Z,q,g) is another triple with the required properties. Let T < Z
be the union of the poles of g and the branch points of ¢. Let T’ = ¢(T) < Y and
X' =7 Y Y*\T") € X*. To construct a map F : Z\T — X', take z € Z and
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let y = q(z). Then ¢yg. € Oy, solves P(gxg.) = 0 and thus must be in X’ by
design of X*. Tt follows that F(z) = ¢4g. is a continuous map which commutes
with ¢ and 7. By Remark 1[49] this extends to a holomorphic map Z — X which
commutes with 7 and ¢. It is easy to check that F'is in fact biholomorphic.

O

Since f is the root of the polynomial equation P = 0 it is called the algebraic
function defined by P. We also say that (X, 7, f) is the algebraic function
determined by (Y, P).

70. Example. We have seen in Example 1 that Kp1 =~ C(Z), the rational
functions in one variable. Hence for any polynomial P(T) with coefficients in the
ring C(Z) there exists a finite branched covering 7 : X — P! with X a (compact)
Riemann surface and f € Kx such that 7*P(f) = 0. If, for instance, we consider
P(T) =T? — g(Z) € Kp|T] for some polynomial g(Z) € C[Z], then this defines a
compact Riemann surface X on which the (meromorphic) function /g is defined.

71. Corollary [Fol 8.12]. If (X, 7, f) is an algebraic function defined by (Y, P)
with deg P = n, then Kx = Ky (f) = Ky [T]/(P). In particular, Ky < Kx is an
algebraic field extension of degree n.

Proof. By Theorem 1 the field extension Ky < K is algebraic. Let p e Ky [T]
be the minimal polynomial of some fy € K x such that its degree d is maximal. Since
P is irreducible, d = n. We claim that Kx = Ky (fo). Indeed, let g € Kx. Since
Ky is a perfect field (it has characteristic zero), we can find a primitive element for
the field extension Ky < Ky (fo,9) < Kx, that is, Ky (fo,9) = Ky (h) for some h €
Ky (fo,9), cf. Theorem By definition of d, [Ky (h) : Ky] = dimg, Ky (h) <
d, but d > dimg, Ky (fo,9) = dimg, Ky (fo) = d, whence equality of dimension.
Since Ky (fo) is a subspace of Ky (fo,g) we have Ky (fo) = Ky (fo,9) and thus
Ky (fo) = Kx. By Theorem 1 n = dimg, Kx = d > dimg, Ky (f). On the
other hand , dimg, Ky (f) = n for P is irreducible of degree n. Hence d = n and
Ky = Ky (f) = Ky [T]/(P), O

72. Explicit construction of an algebraic function. It is instructive to
consider a special case of Theorem 1)69, Consider a polynomial g(z) = II7_, (2 —a;)
with n distinct roots ai,...,a, which we consider as a meromorphic function on
PL. P(T) = T? — f is irreducible over Kp1 = C(z) (it has no zeroes), so it defines
an algebraic function suggestively denoted (X,m,./g). We are going to construct

m: X — Y explicitly.

Let S = {a1,...,a,} U {00} (in 00, f has possibly a singularity), and Y* = P\S
and X* = 771(Y*) < |Oy]| be the 2-sheeted unbranched covering given by the
germs ¢ which solve p? — g, = 0. In particular, we can analytically continue any
germ in Oy x ,, along any curves in Y*. Now consider what is happing near S. For
je{l,...,n} we choose sufficiently small discs D; := D.(a;) such that D; n'S =
{a;}. The functions g;(z) = IIx+;(z — ax) have no zeroes in D; so that there exist
holomorphic functions h; : D; — C with hf = g;. In particular, g(z) = (2 — aj)h?
on D;. Consider the curve u(t) = a; + re’* < D;. For a given t, we get the
germ @y, = \/?e“/ 2hu(t0). If we continue this germ around the circle we get —¢y,
after completing one loop. This means that 7 : 77_1(DJ~X) — D = Dj\{a;} is the
connected 2—1 covering isomorphic to z — 22, cf. Theorem 1 (otherwise it would
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be disconnected and one would find again ¢y, after the completion of one circle).
So we add a single point to X* over a;j. Locally, 7 looks like z — 22. Now this
constructs the covering over C =~ P!\{o0}. Next we have a look at Dy, := D (), a
disc which is also taken to be so small that Dy, 'S = {0}. There, we can write
f(w) = w" fo(w) for a local coordinate w near co and holomorphic fo(w) 0 on Dy,.
If n is odd we can write f(w) = wh?(w) for h meromorphic, and f(w) = h(w) if
n is even. As before we can consider a circle path around co. In the odd case,
continuation of the germ going around the loop yields minus the germ and we have
to add one point over oo, while the covering 7w : X — Y is disconnected near oo if
n is even, that is, we have to add two points.

Field extensions can be also analysed using Galois theory, see Appendix Let
7 : X — Y be a branched holomorphic covering with group of Deck transformations
Deck(X/Y") (see Definition 1. We explore the relation between the Galois group
Gal(Kx/Ky) and the group of Deck transformations next.

First, we define a representation Deck(X/Y) — Gal(Kx/Ky) as follows. If F €
Deck(X/Y) and f € Kx, define

op(f):=F Yof=foF L (5)
Taking the inverse actually ensures that we have representation, for

(0rooa)(f) = fo(G T oF ) =fo(FoG)™ = area(f).
Clearly, o is the identity on Ky.

73. Definition (Galois covering). Let 7 : X — Y be a branched holomorphic
covering map. Let C < Y be the set of critical values of w. The covering is
called Galois if the unbranched cover X’ = X\r~}(C) — Y’ = Y\C is Galois, i.e.
Deck(X'/Y") acts transitively on each fibre (cf. Definition [BJ27).

74. Theorem (Galois correspondence). Let (X, m, f) be the algebraic function
determined by (Y, P) = the representation induces an tsomorphism

Deck(X/Y) = Gal(Kx/Ky).

Moreover, w : X — Y is Galois if and only if the field extension Ky < Kx is
Galois.

Proof. By construction, op(f) # f for any nontrivial Deck transformation F €
Deck(X/Y') which shows that the reprensetation is faithful, i.e. injective. To show
surjectivity, let o € Gal(Kx/Ky). Then (X, m,0(f)) is also an algebraic function
so that there exists a Deck transformation F : X — X with f o F' = o(f). Hence
0 = op-1, for Kx = Ky (f) so that o is determined by th evalue it takes on f.
Finally, 7 : X — Y resp. Ky < Ky is Galois if and only if Deck(X/Y") resp.
Gal(X/Y') contains n elements, see Definition and [Bo, 4.1.3 and 4.1.4]. O

Plane algebraic curves. Finally, we sketch another way of representing compact
Riemann surfaces — namely as plane algebraic curves. This will also show (modulo
a result we will establish later) that the function field Kx completely determines
X. This paragraph requires some basic knowledge on projective spaces.

As we have already mentioned any compact surface admits a nonconstant meromor-
phic function which defines a branched n-sheeted holomorphic map 7 : X — P! (as
mentioned above, this is a nontrivial analytical fact; once this has been established,
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the theory of Riemann surfaces becomes completely algebraic). In particular, Kx
is a finite extension of Kp1 =~ C(z), that is, there exists f € Kx and a uniquely
determined monic irreducible polynomial P[T] € C(z)[T] such that P(f) = 0 of
degree n. After clearing the denominators we can regard P as an element in C[z, T
which we write as C[w, z] to make it look more symmetric. Let n = deg P. Now
take its associated homogeneous form Q(u,w, z) = u"P(w/u,z/u). This is now a
homogeneous polynomial for which we consider the zero locus C' = Z(Q) < P2, the
associated plane algebraic curve.

75. Proposition [Gu, Lemma 31]. With every plane algebraic curve we can
associate a Riemann surface X (C) in a natural way.

Proof. We first restrict attention to U = {[u : v : w] | u # 0} =~ C?> = P2. Then
C is given as C, = {(v,w) | P(v,w) = 0} < C. Consider P(z,w) as a polyno-
mial in C(w), and let A(w) be its discriminant (a polynomial in w). Generically,
A(w) # 0 and at such a point, the polynomial P(v,w) has precisely n distinct
roots v1,...,v,. This entails 0, P(v;, w) so that by the implicit function theorem,
Cx = Cy n (A71(0))¢ is locally given by holomorphic functions (¢;(w),w). In
particular, projection on the second factor defines an unbranched covering map
m: Cr — (A7Y0))¢ = C. By Corollary 1}41] this extends to a branched holo-
morphic covering map C,, — C which gives C,, a uniquely determined holomorphic
structure. Next repeat this argument on the sets V' = {v £ 0} and W = {w =+ 0}.
Since the holomorphic structure is uniquely determined on the corresponding Rie-
mann surfaces C,, and C,,, they all agree on the overlaps and glue thus to a globally
defined Riemann surface X (C). O

It is true, though we cannot prove it yet, that if C' is associated with X, then
X =~ X(C). In particular, we have the

76. Corollary [Gul Corollary to Theorem 27]. The function field Kx determines
X wup to biholomorphic maps.

2. THE THEOREM OF RIEMANN-ROCH

Having discussed the general structure of Riemann surfaces we next analyse general
properties of an abstract compact Riemann surface X.

2.1. Differential forms, sheaves and cohomology. In order to investigate X
further, we first need to introduce a higher form of live than ordinary holomorphic
functions, namely differential forms.

Differential forms. Let U — C be an open subset. We identify C with R? in the
standard way, namely z = x + iy. As before we denote by C*(U) the C-algebra
of functions f : U — C =~ R? which are smooth. Apart of the usual derivation
operators 0, aand 0y we introduce

0:=0, := %(ax —i0y) and 0:=0; = %(81 +10y).

As explained in the Appendix [A] the kernel of 0 : C*(U) — C*(U) is just O(U),
the C-algebra of holomorphic functions.

Recall that a function f : U — C for U an open set of a Riemann surface X is
smooth if and only if foy : (U NV) — C is smooth for any chart ¢ : V' — C with
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V nU #+ . Locally, the differential operators make also sense on the coordinate
neighbourhoods of X, but of course 0, and J, depend on the chart. However, the
condition

0z f(a) = 0y f(a) =0 (6)
is invariantly defined for a change of coordinates ¢;; is biholomorphic so that both
Outpij(a) = 0ypij(a) + 0. We let m, be the germ of smooth functions such that (6]
holds. This is in fact a maximal ideal of C'§{ , the germs of smooth functions on X
at a.

1. Definition (cotangent space). The quotient space
T#X :=m,/m2

is the cotangent space of X at a. It is a complex C-vector space in a natural
way. If U is an open neighbourhood of a and f € C¥(U), then the differential
dof € T} X is the element

dof == (f — f(a)) mod m?

(note that f — f(a) € m, for it obviously vanishes at a). In particular, d,c = 0 for
any constant function.

2. Proposition [Fol 9.4]. IfU < X is a chart with coordinate z = x + iy, then
(doz, day) as well as (daz,dqZ) form a basis of TX and for any smooth function
defined near a, we have

dof = azf(a)dax + ayf(a)day
= 0,f(a)dez + 0y f(a)d,z.

Proof. We will carry out the proof for (z,y), the case (z, Z) working similarly.

Step 1. (d,x,day) is a basis of T:*X. First of all, they generate T* X for if we
expand [f] € T.¥ X for a smooth representative f € m, into a Taylor series f(x,y) =
c1(z — z(a)) + ca(y — y(a)) + f for ¢19 € C, then f(a) = f € m2 so that taking the
differential yieds d f = c1dqx + cadyy. This is zero < ¢1(x —x(a)) + c2(y — y(a)) =
Y. gih; with finitely many g;, h; € m2. Hence 0, and 0, evaluated at a implies
cp =0and ¢y =0.

Step 2. Expresssion of d,f with respect to this basis. If f is smooth near a, then
its Taylor series gives

f—=fa) = f(a)(x —a) + 0y fla)(y —a) + f
with f e m2. Hence dyf = 0, f(a)dyz + Oy f(a)dqy.

3. Cotangent vectors and their type. If (U,z) and (U, 2) are two different
coordinates around a € X, then

¢:=0,2(a) e C* and0 = 032(a) = 0.
Hence d,z = 0,%/z — a) + terms in m?2 so that d,Z = cd,z and d,z = ¢d,z. Hence
both dgz and d,Z as well as d,z and d,z span the same complex vector space
THO*X := Cdyz, TO'*X :=Cd,Z2.
In particular, we can decompose d, f into a (1,0)- and (0, 1)-component denoted
0f(a) and 0f(a) respectively, that is,
07(@) = 0:f()daz and  3f(a) = 0. F(a)daz.
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4. Definition (cotangent bundle and 1-forms). The cotangent bundle is
the set T*X = (J,cx T X. We denote by 7 : T*X — X the natural projection
wich assigns to A € T X its base point m(A) = a. A 1-form over U < X open is a
section of T* X, i.e. a map w : U — T*X such that 7 o w = Idy. Similarly, we can
define T1%* X and T9'* X with (1,0) and (0, 1)-forms as sections.

Note that any 1-form w can be locally written as w = fdx + gdy for functions
f, g : U — C defined on the coordinate neighbourhood U. Similarly, (1,0)- and
(0,1)-forms can be written as fdz and gdz.

5. Definition (smooth and holomorphic 1-forms). A 1-form w is called
smooth if locally w = fdx + gdy for smooth functions f and g over U. A similar
definition applies for smooth (1,0) and (0, 1)-forms. We denote by AL (U), A0(U)
and A%!(X) the space of smooth 1-, (1,0)- and (0, 1)-forms. Moreover, we call a
1-form holomorphic if locally w = fdz for f € O(U). We write Q' (U) for the
holomorphic 1-forms over U. In particular, a holomorphic 1-form is a smooth
(1,0)-form.

6. Examples. For every smooth function, df(a) := d,f, 0f and 0f are smooth
1-, (1,0)- and (0, 1)-forms respectively. If f € O(U), then 0f € QY(U).

7. Remark. Note that we can multiply any smooth 1-form by a smooth func-
tion etc. so that AN (U), AY*(U) and A% (U) are C%€-modules in a natural way.
Similarly, Q1 (U) is an Ox (U)-module.

Recall from your linear algebra course the exterior product A2V of a vector space
which was generated by elements of the form v Avg,v; € V, subject to the relations
(v1 +v2) Avg = V1 Avs+ V2 Avs, (A1) A v2 = A(vp A vg) where A is a scalar,
and v A vy = —v2 Awvi. If eq,...,e, is a basis for V, then e; Aej, i < jis a
basis for A2V. Aapplying this pointwise we define the second exterior power of the
cotangent bundle by

NT*X = | A°TEX.

aeX

A basis is given by d,x A dgy resp. dgz A doZ. It follows that similar constructions
such as AQT;(’O*, AzTg(’l* must be trivial for d,z A dyz = 0 etc. Now a (smooth) 2-
form is a section of A2T* X locally of the form w, = f(a)d,zAdey = 2if(a)dazAd,Z
for f smooth. We denote the space of smooth 2-forms over U by A% (U) or Ay (U).
Note that Q% = 0. Note that we have a natural map

AL (U) x AL (U) - A% (U), (w,0) —»w Ao

If locally, w = fdx + gdy and o = fdx + gdy, thenw A 0 = f§— gf)dx A dy.

8. Remark. Since A°V = k the ground field of V we have A°T*X = X x C so
that A% (U) =~ C¥(U), the smooth sections over U.

9. Exterior derivative of forms. We now extend the differential to map d :
A% (U) — A% (U) for any open subset U of X, and similarly @ : AY' (U) — AL (D)
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and @ : AV (U) — AYN(U). Tflocally w = 3, f;dg; for functions f; and differentials
dg; (we know such a representation to exist) we let

dw =) dfi A dg
ow = Z ofi A dg;
ow = Z&fi A dg;.
For instance, if w = fdz + gdz, then
dw = (—0f + 0g)dz A dz
ow = —0fdz A dz
0w = 0gdz A dZ.
A priori this depends on the coordinates (z,z) but it is straightforward to show

that different coordinates give the same result (this follows essentially from the
skew-symmetry of A, see [Fo, 9.13]).

10. Elementary properties. Let f € CE(U) and we AL (U). Then
(i) dw = ow + ow. In particular, w € Q% (U) < 3%: 0.

(ii) dodf = 0o df =00df =0. In particular, 0o 0f = —0 o0 0f.

(iii) d(fw) =df A w+ fdw etc.

The proof is straightforward and a good exercise.

11. Definition (closed and exact differential forms). A differential form w
is closed if dw = 0, and exact if w = do.

12. Remark. In two dimensions it is elementary to see that a closed form is
locally exact. For general smooth manifolds this is known as Poincaré Lemma (we
are going to prove a ¢0-version of this in Theorem 2.

13. Proposition [Fo, 9.16]. IfU < X open =
(i) every holomorphic 1-form is closed;
(ii) every closed 1-form in AX°(U) is holomorphic.

Proof. If we Q4 (U) < AﬁéO(U)7 then dw = 0 for it is holomorphic, and dw = 0 for
it is of type (1,0). Therefore dw = 0w + 0w = 0. Similarly, if w € A;O(UL then
0 =dw = ow. O

14. Pull-back for differential forms. Finally, we discuss the pull-back of
differential forms. Recall that a holomorphic map F': X — Y induced a map Fy} :
Oy (V) = Ox(F~1(V)) for any V < Y open by letting F*(f) = f o F. Of course,
requiring only smoothness of F gives merely a map Fy : C2 (V) — CE(F~Y(V)).
This can be generalised to a map

F* A3 (U) — A5 (F(V))
on differential forms as follows. Namely, if f € C3°(V'), then we define

F*df :==d(F*f) =d(foF)
and we extend F'* as an algebra morphism over all of A*, i.e.

F*(wAT)=F*w A F*r.

It follows in particular that
Fdw = d(F*w).
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With these rule we can compute the pull-back of w € A}, (V) for any w.

15. Application: Integration of 2-forms. If w € A%(X) for a (compact
Riemann) surface we want to make sense out of the expression  w, the integral
of w over X. We first consider the case of a domain X = U < C. We assume that

suppw = {z € U | w, + 0},
the so-called support of w. If w = fdx A dy, then suppw = supp f where f is the

usual suport of a function. Since the differential of a biholomorphic map never
vanishes, this is indeed independent of the concrete coordinate system we use to

express w. We now define
| wi= | swdedy,
U U

where dxdy denotes the Lebesgue measure of U under the identification with an
open subset of R? using the coordinates x and y. Now if p(x,y) = u(z, y) +iv(x,y) :
V — U is a biholomorphic map, then its functional determinant is det Jacy =
0,udyv — dyud,v = |¢'|?, the latter in view of the Cauchy-Riemann equations. By
the usual transformation formula for integrals, we have

| sdway = | (sl Pdody.
U 1%
On the other hand, writing w = if/2dz A dZ, we have p*w = i(f o ¢)/2dp A dp =

|¢’|>w we obtain
fw=f w=f<p*w, (7)
U o(V) %

that is, the number SU w is invariant under change of holomorphic variables (more
generally, one can show that it is invariant under oriented diffeomorphisms so inte-
gration is really a feature of the underlying differentiable surface).

Next consider a chart ¢ : U — V of the Riemann surface X. If w € A% (X) is a
2-form with support in U we define

fpm e

It follows from that this is indeed independent of the given chart, since any other
chart gives rise to a biholomorphic transition function ¢ which does not change the
value of {,; w

Finally, let w € A% (X) be a general 2-form with copmact support (this is automatic
if X is compact and ensures that the integral is finite). Cover X by coordinate charts
Uy and take a partition of unity {fx} subordinate to {Uy} (see the introduction of
Section [1| for the notion of a partition of unity). Then w = > (frw) is the locally
finite, hence well-defined sum of differential forms wy = frw with compact support
in the chart domain Uy. We then define

JX “T Zk: Uk(ka)'

A tedious, but straight forward computation shows that this is indeed well defind,
that is, independent of the partition of unity {(Uy, fi)}. This defines the integral
of w which has the following properties:

(i) Linearity. If A\ e C and w, 7 € A?(X) are 2-forms of compact support, then

Jowen=a] v =

Again, this is a direct verification.
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(ii) Stokes’ Theorem. Assume that X is compact nad w € A'(X). Then

f dw = 0.
X

This can be reduced to the case SU dw, where U < C is an open set with

compact closure and smooth boundary dU. For instance, if U = Dg\D, for
two discs with R > r, then

with the obvious restriction of 1-forms. By passing to radial coordinates one
can directly compute the integral, see [Fa, 10.19-20].
(iii) Poincaré-Pairing. Let X be compact. The bilinear map

A(X) > ANX) > C,  (w,7) o JXW AT

is non-degenerate, that is, if §,, wA7 = 0 forall 7 € A'(X) = w = 0 (Exercise).

Sheaves. The objects A0, QP etc wich are associated with a Riemann surfaces are
examples of sheaves a concept we investigate next. Sheave and their cohomology will
be a powerful tool in the investigation of Riemann surfaces, but they are actually
important in many areas of geometry. The following definition is completely general
and valid for any topological space X. Soon, however, we are going to specialise to
the case of a Riemann surface.

16. Definition (sheaf). Let X be a topological space. A sheaf (of abelian
groups) F over X is a topological space together with a continuous map 7 : F — X,
the projection such that

(i) = is a local homeomorphism;

(ii) for each point p € X, the stalk F, := 7 !(p) is an abelian group;

(iii) the group operations are continuous. Concretely, consider 7*F := {(s,t) |
m(s) = w(t)} € F x F together with the induced topology. Then the assigne-
ment (s,t) € 7*F +— s —t € F is continuous.

A sheaf map F' : F — G between sheaves 7 : F > X and @ : § — X is

a continuous map such that # o F = 7. In particular, any sheaf map is stalk

preserving, i.e. F(F,) < G,. A sheaf morphism is a sheaf map which is also a

group morphism on any stalk.

17. Remark. In the same way, we can consider sheaves of rings, fields, vector
spaces etc.

18. Examples.

(i) Let G be an abelian group which we equip with the discrete topology — every
set is open. Then G = X x G together with the product topology and m =
projection on the first factor, is a sheaf: U, := U x{g}, U < X openand g € G
is a basis for the topology, and 7 restricted to Uy is obviously a homeomor-
phism. Note that this might not be the “natural” topology for groups such
as C (In case of a Riemann surface, E = X x C for X a Riemann surface and
with the product topology with respect to the standard Euclidean topology
on C, E would be the trivial vector bundle, and not a constant sheaf.)

(ii) Let X be a Riemann surface. Then 7 : |O| — X is a sheaf, cf. Section [[|[I.3]
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In view to understand the last example better it is instructive to consider the
topology of a sheaf 7 — X from a different perspective. A section of F over u ¢ X
open is a continuous map o : U — F such that moo = Idy. In particular, o(p) € Fp.
We denote the set of sections over U by T'(U, F). Now pick any s € F and an open
neighbourhood V of s in F such that 7|y is a homeomorphism onto its image. It
follows that o := (r]y/) ™! is a section whose image is an open neighbourhood of s.
In fact, if 7 is any other section with 7(p) = s taking a suitably small neighourhood
V of s shows that 79 = 7|,-1(y takes values in V so that 7o = (w[y)~", that is,
any section is locally of this form. In particular, any section o is an open map, and
the images of sections form a basis of the topology. Furthermore, if o, 7 € T'(U, F),
then compounding with the continuous group operations gives a continuous section
f—g€eT(U,F), that is, I'(U, F) defines a group in a natural way. In particular,
for any U there exists o9 € y(U, F) defined by oo(p) = 0, = the zero element
in F,, the so-called zero section. Note that in passing, the fact that = is a
local homeomorphism garantuees local existence of non-trivial sections. In general,
however, T'(X, F), the group of global sections, might consist of the zero section
only.

If F: F — G is a sheaf map, then we have an induced map F, : I'(U, F) - I'(U, G)
defined by Fyo = F oo for F is continuous. In particular, a sheaf map is open and
a local homeomorphism for the sections generate the topology. If, furthermore, F
is a sheaf morphism, then F is also a group morphism.

Now with a sheaf we have associated the family of groups I'(U, F). To what extent
does this determine the sheaf F? We first axiomatise the properties of I'(U, F).

19. Definition (presheaf). A presheaf (of abelian groups) over X is an
assignment U — JFy of abelian groups for any open set U of X, together with
morphisms pyy : Fy — Fy, the so-called restriction maps, for any pair V < U
of open subsets of X, which satisfy

o F@ = 0;

e puvu = IdF,;

e pyw © puv = puw for any triple W < V < U of open subsets of X.
We sometimes also write g|y for pyy (g) if no confusion arises. A presheaf map is
a family of maps Fyy : Fy — Gy which commutes with restrictions, i.e. ng oFy =

Fyo p{]TV. It is a presheaf morphism if it is group morphism for any open subset
U of X.

20. Examples.

(i) Let G be an abelian group. Then Fy = G for U + & and pyy = Idg is a
presheaf, the so-called constant presheaf associated with G which we denote
by G.
(ii) Let X be a Riemann surface. Then Ox (U) = holomorphic functions U — C
defines a presheaf together with the usual restriction maps.
(iii) For any sheaf F, Fy := I'(U,§) defines a presheaf, the presheaf of sections
of F.

21. Sheafification. Conversely, consider a presheaf Fy;. Then there is a naturally
associated sheaf §. We construct F as the union of “stalks” F), for p € X. Towards
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that end, let U(p) = {U < X open | p € U}. Then

Fp = lim Fy,
Uel(p)

that is, the stalk is the direct limit of Fy; which inherits a natural structure as an
abelian group. By definition, an element s € F,, is an equivalence class represented
by an element g € Fy for some U € U(p), with elements g € Fy and h € Fy
for U, V € U(p) identified if there exists an open subset W < U n V in U(p)
with puw(g) = pvw(h) (the “germ” g, of g). This defines F = Upex Fp as
a set, together with m = projection on the base point. Note that we get maps
pup : Fu — Fp, pup(9) = gp the germ of g at p e U. As a base of topology we take
the images of locally constant sections o : U — F, that is, locally o (p) = g, for some
g€ Fy,V cU. It is easy to check that this defines indeed a base of topology [Gul,
Section 2.b] for which 7 is clearly a local homeomorphism with stalks 71 (p) = F,,
and local sections I'(U, F) = {o : U — F | o locally constant}. Further, it is not
difficult to see that the group operation is continuous, cf. again [Gul Section 2.b].

22. Examples.

(i) Let X be a Riemann surface and consider the presheaf Ox(U). The associ-
ated stalks Ox p, p € X, are just germs of holomorphic functions (fixing a
local uniformising coordinate z these can be identified with C{z}, the ring of
convergent power series in z). Conversely, the presheaf of sections of |Ox| is
just Ox (U).

(ii) Let G be the constant presheaf associated with the abelian group G. Tt
follows that the local sections o € T'(U, G) which are locally constant are
just the continuous maps o : U — G, where G is endowed with the discrete
topology. It follows that if U is an open set with n connected components,
then T'(U, é‘w) =~ ™. In particular, the sheaf of sections of G is not isomorphic
to G.

It is clearly in order to characterise those presheaves which arise as presheaves of
sections.

23. Definition (complete presheaf). A presheaf F on X is called complete
if for any open covering {V;} of an open subset U of X, the following conditions
hold:
(i) If s € F(U) is such that s|y, = 0 € F(V;) for all 4, then s = 0 in F(U) (“s is
determined by restriction to open subsets”, “local injectivity”).
(ii) If there exists s; € F(V;) for each i such that s;|v,~v; = s;j|v,~v;, then there
exists s € F(U) such that sy, = s; (“local compatible sections can be glued
together”, “local surjectivity”).

24. Examples.

(i) If X is a Riemann surface, then the presheaf of holomorphic functions Ox (U)
is a complete presheaf. Similarly, we can consider the complete presheaves
e O%(U) = nowhere vanishing holomorphic functions U — C (modelled
on the multiplicative group Ox (U)*)
e M x = meromorphic functions, M% = meromorphic functions not iden-
tically zero
o OF = sheaf of holomorphic p-forms
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e the “smooth sheaves” C® of smooth functions or AP of smooth p-forms

etc.
(ii) G is not complete for if U = Uy Uy has two (disjoint) connected components,
the local sections g; € G(U;) do not glue to a section in G(U) unless go = ¢1.

25. Proposition |[Gul Lemma 3]. A presheaf Fy arises as a sheaf of sections <
Fu is complete. In fact, Fy is complete < Fy =~ T'(U, ]:"), where F is the associated
sheaf. In particular, we can identify sheaves and complete presheaves in a natural
way, and we will therefore refere to a complete presheaf simply as a sheaf.

Proof. Only the converse requires proof. So assume that Fy; is a complete presheaf,
and consider the sheaf F associated with Fy. We show that the natural group
morphism vy : Fyr — T'(U, F) which associates with g € Fy; the section v (g)(p) =
9p, is a bijection.

v is injective. Assume that g, = 0, for all p € U. This means that locally, the
section ~yy(g) restricts to the zero section. By the local injectivity property we
conclude v(g) = 0.

~ is surjective. Let o € T'(U, F). Then locally, 0|y, = v, (ga) for a suitable cover
U =JU,. Since 9alv.nvs and gglu, ~us map to oly, ~v, under qy, ~v, we have
JalU.~Us = 98lU.~Us Dy the injectivity just established. Hence there exists g € Fir
which restricts to g, over U, by the local surjectivity property. O

26. Remark. In view of the local nature of a complete presheaf F;, it is already
determined by Fy, for a base {U,} of the topology of X. Indeed, we have

Fu = lm Fy,,
UncU
where lim denotes the projective limit of the partially ordered set {U, | Uy < U}.
This is the subset {(ga)a € [[4Ua | 9o = pusv.9p if Un = Ug}. Therefore we
will often only specify complete presheaves for a base of topology. Similarly, it is
enough to define presheaf morphism for F(U,) — G(U,). We leave the details as
an Exercise.

27. Further types of sheaves. Let m: F — X be a sheaf.

(i) Restriction of a sheaf. If E — X is any subset we call F|g := 7 1(E) the
restriction of F. For p € E we have (F|g), = F,. For instance, if U ¢ X is a
connected open subset of a Riemann surface X we can consider the restriction
Ox |y which is just the sheaf of holomorphic germs of the Riemann surface U.
(If U is not open, for instance, U = {p} is a point, then Ox|g is in general not
even a subsheaf of continuous functions C% = [ J C’%,p over I, for instance
Ox|{p} = OX,p > C{Z}, but C?p} = (C)

(ii) Subsheaves. Let G — F be an open subset. Then G is a subsheaf of F if for
all pe X, (mlg)~(p) = G, = G N F, is a subgroup of F,. Projection is the
restriction of w to G.

(iii) Quotient sheaves. If G — X is a subsheaf of F we can define the quotient
sheaf Q = F/G as follows. The stalks Q, are just the quotient groups F,/G,.
We let @ = J, @, and take the natural projection to X. We have a natural
quotient map ¢ : F — Q by projecting any stalk to the quotient F,/G,. A set
U < Q is by definition open if ¢~ }(U) = F is open. It is easy to see that this

peX
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gives Q the structure of a sheaf. It follows that a section o : U — Q can be
locally lifted to a section ¢ : U — F with go ¢ = 0.

28. Example (skyscraper sheaf). Let X be a Riemann surface with Ox the
sheaf of holomorphic functions. Choose a point p € X and consider the subsheaf

S(U) ={feOx(U)| f(p) =0 whenever z € U}.

This is indeed a subsheaf for S is open in Ox (the sections of S which form a basis
for the topology of S are also open in Ox) and S, = Ox , NS is clearly a subgroup
(actually the maximal ideal) of Ox . The quotient sheaf @ = Ox/S is then the
union of stalks Q, = {0} if a + p and Q, = Ox,/S, = Ox,/m = C. We can
extende this construction to any discrete set of points. The resulting sheaf is called
a skyscraper sheaf for obvious reasons.

29. Exact sequences. Let F': F — G be a sheaf homomorphism. Then we let

ker F' = | J ker F, = F~*(0)
aeX
and
imF = U im F,
aeX

be the kernel and the image sheaf respectively. In terms of presheaves, these are
the sheaves associated with the presheaves Fyy = ker Fy and Gy = im Fy. It follows
that im F' =~ F/ker F. Note in passing that while the kernel presheaf is already
complete, the image sheaf is not. This enables us to define an exact sequence of

sheaves

which by definition means that im F' =~ ker G as sheaves. In particular, if we let 0
denote the trivial sheaf with stalks the zero group, a sequence
g Q 0

is exact < F' is an injection, that is, F' is an isomorphism onto a subsheaf of G,
and G is a projection, that is a sheaf morphism whose image is all of (). Hence
such a so-called short exact sequence is equivalent to

0 S—=F—"~F/S 0,

F G

0 F

where S is a subsheaf of F, and ¢ and 7 are the natural injection and projection
maps.

A prime example of such a short exact sequence is the exponential sequence of
a Riemann surface given by

exp

0 7 —>0Ox

0% 0,

where Z denotes the constant sheaf associated with Z, and where exp is the holo-
morphic exponential map which maps a germ [U, f] to [U, exp f] (thinking of U as
a domain in C via a chart). Since we can always choose U to be simply-connected,
we can take logarithms of nowhere vanishing holomorphic functions over U so that
exp is indeed surjective. On the other hand, the sequence on presheaf level

exp

0 Zy —= Oxu

O% v 0,

is not exact for general U for it fails to be surjective (ultimately, this reflects the
fact that the presheaf im Fyy is not complete).
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Cohomology. One of the principal uses of sheaves is to consider their associated
cohomology theory. This gives rise to natural invariants of the underlying space.
Again, the formalism applies to any topological space X, but of course, we are
mainly interested in the case of a Riemann surface.

We start with some definitions for a general topological space X. Let U = {U,}
an open covering of X. Further, let N(U) be the nerve of U, which we define as
follows. The elements U, of U are called the vertices. Any choice of ¢ + 1 subsets
Uop,...Uq span a g-simplex o = (Uy,a,Uy). The open set Uy n...nU; = |0
is called the support of the simplex o. Then the nerve N(U) is the set of all
g-simpleces, q¢ = 0.

Next let F — X be a sheaf. A g-cochain of i/ with coefficients in the sheaf F
is a function f which assigns to every ¢-simplex in N (U) a section f(o) € I'(|o|, F).
We denote the set of g-cochains by C?(U, F), so

Co(ua‘F) = H]:(Ua)

C'U,F) = [ | FUa 0 Us)
a+f

This set inherits the natural algebraic structure of F, so if F is a sheaf of abelian

groups, (f + g)(o) = f(o) + g(o) € T'(|o|, F). We define a group morphism
§7:CIU,F) — CTHU, F),

the so-called coboundary operator, for f € CY(U,F) and 0 = (Up,...,Uqgy1) €

N(U) by

q+1

8%(f)(o) = Z(_l)ipiltﬂ(f(UO? Ui1,Uir1, -, Ugi1)) € T(Uo 0 .o 0 Uy, F),
i=0

where p;|;| denotes the restriction map from TUoynUi—1nUis1... 0 Uyy1,€) to
I(|o|,F). Then CY(U;F) becomes a (differential) complex, i.e.
591 0 67 = 0,

which is a straightforward, if tedious, computation. For sake of simplicity we often
write 0 instead of §¢. Next we consider the subgroups

ZYU,F)={feCIU,F)|df =0} = kerd,
the ¢-cocycles, and
BYU,F) =61"tCTHU,) = im o9t
the so-called g-coboundaries. Since 62 = 0, B¢ ¢ Z%, and the quotient group
ZY9U,F)/BLU,F), q>0
z°U,3), g=0

is the g-th cohomology group of U with coefficients in the sheaf F. These
cohomology groups obviously depend on the covering U, so we still need to work
in order to turn this into an invariant of the underlying topological space. For H°
ths is easy.

HIU, F) = {

30. Lemma (0-th cohomology and global sections) [Gu, Lemma 4]. For any
covering U of X we have
H°(U,F) =T(X,F).
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Proof. A zero-cochain f € C°(U, F) assigns to each U € U a section f(U) € T'(U, F).
By definition, f € HY(X,F) < 0f = 0. If we let Uyp := U, n U denote pairwise
intersections for U, and Ug in U, the latter condition means that

6f(Uap) = f(Ua)lv.s — f(Up)
that is, if Uag + & then the local sections f(Uyg) € I'(Uyp) agree on intersections
and there exists a global section f € I'(X, F) which restricts to f(U,). Conversely,

a global section f € T'(X,F) obviously produces local sections f(Uy) = flu. in
I'(Uy) which agree on the overlaps. O

Uap — 07

Next we investigate H? for ¢ > 0 and various coverings. We call a covering V =
{V.} a refinement of U = {U,} if there exists a mapping p : V — U such that
Vo € pu(Vy) for all V, € V. Put differently, any vertex of ¥V must sit inside some
vertex of U. The map p is called the refining map. It induces a map

w:ClU,F)— CIV,F)
as follows. If f € CYU,F) and 7 = (Vy,..., V) is a g-simplex in N(V), then
1) Vo, Vy) = f(u(Vo), - .., (Vy))7)- Note that & + Vo ... n Vg < u(Vo) n
. (V) so that (u(Vo),. .., u(Vy) is a g-simplex of N(U). Clearly, u is a group
morphism and commutes with J, i.e. pod = é o u. It therefore descends to a group
morphism
p*  HIU, F) — HYV, F).

Although a refinement map is not uniquely determined, its induced map at coho-
mology level is:

31. Lemma [Gu, Lemma 5]. IfV is a refinement of U, and if p:V — U and

v:Y — U are two refining maps = p* = v*.

Proof. Let ¢ = 0. An element f € H°(U,F) is a collection {f(U,)} such that
fWUa)lv.s = f(Up)|u.,- Hence u(f) is the collection {f(u(Va))}. Under the identi-
fication with global sections, both {f(Uy)} and {f(u(Va))} glue to the same global
section, and similarly for v. Hence p* = v* = 1d.

Let ¢ > 0. We need to show that if f € Z%(U,F), then v(f) — u(f) = 50(f)
for some §(f) € C471(V,F). Modulo coboundaries, this means that v = y, i.e.
v¥ = p*. We define 6 : CI(U,F) — CTTY(V, F) as follows. If f € CI(U,F) and
7= Vo,...,Vg—1) € N(V), then

0N Vo, Vor) = Z_](—l)jf(M(Vo), s (V) v (Vi) v(Vam1) iz -
§=0

Now this has at least on p- and one v-entry in every summand. Taking the differ-
ential, a short computation on 7 = (Vp,...,V;) shows that

80(f)(Vos -, Ve) = D=1 6 f (u(Vo), - -, n(V3), v(V5), -, v(Vg))ljoy
j=0
+ V() (1) = 1* ()7,

whence the assertion if §f = 0. O

Now we can define a partial ordering on the set of coverings as follows. We write
Y < U if V is a refinement of Y. By the previous lemma there is a well-defined
map pyy @ HI(U,F) — HI((V,F) which is transitive, i.e. pyw o pyy = puw, and
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such that py; = 0. Note that the set of coverings is directed, that is, for any two
coverings Y and V one can find a covering W such that W < U and W < V (take
for instance as vertices in W the intersections of the vertices in & and V). We can
therefore define
HY(X,F) =lim HI(U,F)
u

which by definition is the group obtained by taking the product @,, H4(U, F) and
by identifying two elements f € H1(U, F) and g € H1(V, F) if there exists a common
refinement W of U and V such that the images of f and g in HY(W, F) agree. In
particular, for each covering U there is a natural map H4(U, F) — HI(X,F). The
cohomology thus obtained is usually referred to as Chech cohomology. If we wish
to distinguish it from other cohomology theories we sometimes write H? instead of
H for emphasis.

32. General definition of direct limits. More generally, we can define the
direct limit of groups as follows. Let {G,;}ic; be a family of groups indexed by a
directed set I, i.e. we have a partial ordering < and for any two elements ¢ and j
in I there exists k € I such that k& < i, j. Furthermore, we assume that for each
j <1 we have a group morphism p;; : G; — G such that for all i € I, uy; = Idg,
and fi;, = ik © fti; whenever k < j < i. Then (Gj, p;j) is a directed system and we
can define the direct limit li_r)mie s G} as follows. Consider the direct sum @, G; of
abelian groups, together with the subgroup R generated by elements of the form
x; — pij(x;) for all j < i and x; € G;. We define

h_I)HGZ‘ = (—B Gz/R,

el i
that is, two elements in g; € G and g; € G, j < i are equivalent if and only if there
is k € I such that p;(g;) = pij(g:). If welet p; : G; — h_r)nl G; be the restriction of
the natural projection @, G; — h_H)lZ G; restricted to G, then

(i) pi = pj o ps; whenever ¢ < j;
(ii) every element in lim G; can be written as ;(z;) for some z; € Mj;
(iii) the direct limit is characterised by the following universal property: Let G be
a group with group morphisms «; : G; — G such that o; = «; o 1;; whenever
7 < i. Then there exists a unique group morphism « : h_II)lZ G; — G such that
a; = o,
see for instance [AtMal Exercice 2.14-16].

33. Remark. We can replace the indexing set I in the definition of the direct
limit by any cofinal subset J. Recall that a subset J of a directed set I is cofinal if
for all i € I there exists j € J with j < i. Here are two examples:

(i) We can define the stalk F, of a complete presheaf by

Fp= lim Fy,
Ueld(p)

where U(p) is a neighbourhood base of p. Then an element ¢ € F, is rep-
resented by a section f € F(U) for a sufficiently small open set U con-
taining p. If we denote by ¢ = uy(f) = [U, f] the resulting equivalence
class, then [U, f] = [V, g] < there exists W € U(p), W < U n V such that
pow (f) = Flw' = pvw(g) = glv. Tn particular, [W, flw] = [V, glv].

(ii) Since the set of coverings given by bases of the topology of X is cofinal in
the set of all coverings we can take the direct limit over bases of topology.
A cohomology class in H?(X,F) is then represented by a cohomology class
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cy € HIU,F) by (ii) of 232 (which in turn is represented by a cocycle
§ueZ'U,T))

From Lemma 230 immediately follows

34. Corollary.
HY(X,F)=T(X,F)

Having defined cohomology for arbitrary sheaves we now face the problem to com-
pute it for a given sheaf. In practice we will encounter three types of sheaves on
a Riemann surface X: topological sheaves such as the constant sheaves Z or R,
“smooth” sheaves such as C¥ or A%, and “holomorphic” sheaves such as Ox or
QPp.

Topological sheaves. To compute cohomology groups like H?(X,Z) one can appeal
to results from algebraic topology. Assume that X admits the structure of a sim-
plicial complex(this is always the case for a surface). Then simplicial cohomology
H1(X,Z) is defined and we have

HY(X,Z) =~ HY(X,Z).

Since simplicial cohomology equals ordinary singular cohomology we find, for in-
stance for a compact Riemann surface X that

HY(X,2) =7, H°X,Z)=17% H°X,Z)=27,

where g denotes the genus of the Riemann surface, see Theorems [C][7] and [0] Here,
we first construct an isomorphism between the cohomology groups of a simplicial
complex Kx underlying the topological space X, and the cohomology groups of an
associated open covering Uy . Towards this end recall that the star of a vertez St(v)
of Kx is the interior of the union of all simplices containing v as a vertex. Then
Uk = {St(v) | v vertex of Kx} defines an open covering. Moreover, (1),_, 1St(va) |
¢ and connected < vy, ..., v, are the verteces of a g-simplex. We can then define
a map CY(Uk,Z) — C1(Kx,Z) (the latter group being the group of simplicial
cochains) by sending f to Y f(c)o where the sum is being taken over the connected
o0 € N(Ug). This induces an isomorphism H9(Ug,Z) =~ H(K,Z) and taking
succesive subdivisions of K = Kx yields refinements U whch are cofinal in the
set of open coverings. Passing to the limit gives H9(X,Z) =~ HY(X,Z).

Smooth sheaves. Here, the so-called long exact sequences plays a key role. For a
motivation, consider a short exact sequence of sheaves

0 G——=F—=0Q 0.
For any open set U we get an induced sequence at the level of the presheaves of
sections,

Lk Tk

0 g() F(U) QU).

As we have discussed above, 7, is not surjective in general. Cohomology can be
regarded as a measure for the inexactness of this sequence (at least for U = X).
For this we need to restrict our discussion to paracompact (Hausdorff) spaces, for
instance surfaces. Recall that a Hausdorff space is called paracompact if every
open covering has a locally finite refinement. In particular, it suffices to take the
direct limit over locally finite coverings in the definition of cohomology.
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35. Theorem (Long exact sequence) |[Gu, Theorem 1]. If X is a paracompact
Hausdorff space, and if

0—>G—>F—"50—>0

is an exact sequence of sheaves of abelian groups over X, then there exists a long
exact sequence

0 — = H(X,G) —*~ HO(X, F) —™~ H(X, Q) 2~ H'(X,G)*

HY(X, F) "= HY(X, Q) — > H3(X,¢) — >

Here, 14 and my are the induced maps on cohomology — they commute both with
d (so that they define maps between the cohomology groups with respect to U) and
with refinements (so that they induce maps at cohomology level H1(X)).

Proof. We sketch the proof. For more details, see [Gul, Theorem 1].

Construction of the coboundary operator. First choose an open covering U of X. For
each simplex o € N(U) there is an induced exact sequence 0 — G(|o|) — F(|o|) —
Q(|o|). Since the coboundary groups C%(U,G) ete. are direct products of T'(|o|, G)
we get an induced exact sequence 0 — C9(U,G) 25 CIU, F) 5 C1(U, Q). In order
to obtain a short exact sequence we replace C?(U, Q) by the image 7, (C1(U, F)) =:
C%(U, F). Then m, and 1, commute with the differential §. If we define

H'U,Q) = {f e C'U,Q) | 6f = 0}/6C* (U, Q),

we then get an induced exact sequence at cohomology level
HIYU,G) —*> HI(U, F) —> HI(U, Q).

We can now define 8, : HY(U,Q) — HI1(U,G). Namely, take [c] € HI(U, Q).
Then c € C4(UQ) is in the image of 7, i.e. there exists f € C1(U, F) with s f = t.
But dmef = m0f = dc = 0, so that there exists g € C9THU,G) with 149 =
f. We let dx[c] = [g]. Since iy is injective, we have indeed dg = 0, and the
definition is independent of the choices made (check). Two issues remain: First,
the independence of the covering and second, to get rid of H4.

Independence of the covering U. Consider a refinement p : V — U. We have
two long cohomology sequences associated with U and V respectively, which are
interrelated by p* (it is immediate to check that p* H4(U, F) < HY(V, F)). Since u*
commutes with ¢4, T4 and d, taking the direct limit commutes with the cohomology
squence and yields an exact cohomology sequence

= HYX,G) — = HI(X, F) —" > HU(X, Q) — ¥~ HI*(X,G) — > ....

HY(X,Q) = H1(X,Q). Here we use the paracompactness of the space. We will
show that for a given cochain ¢ € C(U, Q) there exists a refinement p : V — U and
f e CYV,F) such that pu*c = m, f, that is, any Q-cochain lies in the image of T,
possibly after refining the covering. Since X is paracompact we may assume that
U is locally finite. For each p € X we then choose an open neighbourhood V,, of p
in X such that

(i) f V, nUs + & = V,  U,: Since U is locally finite, there exists an open
neighbourhood V), of p which intersects only finitely many U,,. Shrinking V,,
further if necessary implies that Vj, < ), Uq,.
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(ii) If o = (Uo,...,Uq) € NU), h € I'(|o],Q) and V,, < |o] = h|y, = m(g)
for some g € I'(V},, F): Use the fact that Q is a quotient sheaf, shrinking V,,
further if necessary.

For each p € X define a refinement V = {V,},ex by choosing U, = u(V,) € U
which is possible by (i). For any g-simplex 7 = (Vp,,...,V},,) € N(V) we have
IT| € Upy 0 ...0Up,. Then V) nU,, + & so that V,,; = Uy, again by (i). It follows
that |7| c Vi, € Up, 0 ... n Uy, = |u(7)]. Hence if c e C1(U, Q), then

pre(r) = c(u(r)lir = (c(um)lv,, ) lir-

However, c(u(7))|v,, = s« f for a section f € I'(V,,, F) by (iii) with o = p(7). This
proves the claim and finishes the proof. O

In view of the long exact sequence, the following property of sheaves is of interest.

36. Definition (acylic sheaf). A sheaf F is called acyclic & HY(X,F) = 0 for
q > 0.

37. Examples of acyclic sheaves [Gq.

(i) soft (“mou”) sheaves: If A — X is a closed subset, then I'(X, F) — I'(A, F)
is surjective.
(ii) flabby (“flasque”) sheaves: If U < X is an open subset, then I'(X,F) —
I'(U, F) surjective.
(iii) fine sheaves: We will treat these below.

This gives rise to the following way of computing sheaf cohomology in general
provided one has an acyclic resolution of a sheaf F, i.e. an exact sequence of the
form

do dy do

0 F Fo Fi Fo

where the sheaves F; are acyclic sheaves, and d; : F; — F; 1 are sheaf morphisms.

38. Theorem [Gul Theorem 3]. ) If X is paracompact, and F is a sheaf admitting
an acyclic resolution, then

HYX,F) = kerdy(X)/imdy_1(X)
for g > 0.
Proof. Let KC; = kerd; c F;. First we get a short exact sequence of the form

0 F Fo—Ys k4 0

from which we deduce that H'(F) =~ H°(K;)/imdy and HITY(F) ~ HY(K;) for
q = 1 since Fy is fine. Now the exact sequences

0— K, —> F —=

vield HI(KCy) = HIY (k) = ... = HY(K,) = H(Ky11)/ im d,. O

Kiv1 0

39. Example: De Rham cohomology. Though one can show that an acyclic
resolution always exists. However, in practice one uses concrete natural resolutions.
For instance, we will see in a moment, at least in the case of the differentiable
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structure underlying a Riemann surface, that the sheaves of differential forms A%
are fine. In particular, for any differentiable manifold M we get a fine resolution

do

0 C A9, prp—

In particular, H9(M,C) = kerd,/imd,_1 =: H},z(M), where the right hand side
defines the so-called de Rham cohomology. By the considerations above we
obtain in particular that H7(M,C) =~ H},, (de Rham’s theorem) — although de
Rham cohomology is defined in terms of the differentiable structure, the resulting
cohomology theory is a topological invariant!

We say that a family {74 }aca of sheaf morphisms F — F is a partition of unity
for the sheaf F subordinate to the locally finite covering U = {Ug }aen if

o 0o (Fp) =0 for all p ¢ Uy;

e >, Nalg) =g forall ge F.
As for usual partitions of unity, local finiteness ensures that the sum )., 7,(g) is
finite. We say that F is a fine sheaf if it admits a partition of unita for any locally
finite covering. For instance, the sheaf of smooth functions C¥ over a Riemann
surface is fine, for a usual partition of functions {(U,, fa)} (as we used to define
integration) induces a partition of unity by extending f, by 0 to all of x which acts
on C* by multiplication.

40. Theorem (fine sheaves are acyclic) |[Gu, Theorem 2]. IfU = {U,}
is a locally finite covering and {n,} a partition of unity of F subordinate to U =
HYU,F) = 0 for all ¢ > 0. In particular, HY(X,F) = 0 for all ¢ > 0 if X is
paracompact and F fine.

Proof. Let f e Z19(U,F), ¢ > 0. We want to show that f is exact, that is, f = dg
for some g. The 7, induce morphisms 745 on C1(U,F) such that f = > g4 f, so
we need only to show that 7.4 f = dg, for any fixed a. We define g,, as follows. Let
7= (Vo,...,Vg—1) be a g — 1-simplex. If U, n |7| = &, then go(7) = 0 € I'(|7|, F).
Otherwise, let

ga(T) = 6|‘r|(77a*f)(Uaa T)

where e/, : T(Us n |7]) — T(|7|) denotes extension by zero. Then g € C7~' (U, F)
and if 0 = (Uo, ey Uq s, Ty = (Uo, ceey Ui—l; Ui-&-l, ey Uq), we have by a short
computation

0ga(0o) =

e

(71)1-9@(0'1‘)“0\ = Naxf(0) — €|g|577a*f = Nax f(0)

1=0

for §f = 0. Defining g = 3., ga yields f(0) = X, nlaxf(0) = 2, (6ga)(0) = (dg) as
required. O

A further application of fine sheaves is

41. Theorem (Leray) [Gul Theorem 5]. Let F be a sheaf of abelian groups
over a paracompact space X, and let U = {U,} be a Leray covering, i.e. an open
covering of X such that H(|o|, F) =0 for all c € N(U) and g = 1. Then

HY(X,F)~HYU,F)
for all ¢ = 0.
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Proof. Pick an acyclic resolution

do dy

F1 Fo dz

0 F Fo

for F (as remarked above, this always exists). It follows that H7(X,F) is isomor-
phic to kerd,(X)/imd,_1(X). Restriction to |o| for 0 € N(U) yields an acyclic
resolution which computes H?(|o|, F). Since H%(|o|, F) = 0 it follows that

dox

do dl
0 ——TI(lo|, F) —TI(lo|, Fo) —>T(lo|, F1) —= (o], F2) = ...

defines actually an exact sequence. As the cochain groups are just direct products
of groups I'(|o], F;) it follows that we also obtain an exact sequence

0 — > CUU, F) —— CUU, Fo) - 0o, F1) —25 U, Fo) 25 .

The morphisms commute with the differential. Consequently, these sequences can
be grouped together to give the following big commutative diagramm:

0 0 0 0

0——TI(X,F) ——=TI(X, Fo)) —=TI(X, 7)) —=T(X, ) LR

5 5 5 5
0 — > CY U, F) —— C (U, Fo) —2% o2, F1) —255 02U, Fo) 25
) ) ) )

It follows from our initial considerations that all the rows except for the first are
exact. Similarly, all the columns except for the first are exact. Since the inexactness
of these sequences is precisely measures by cohomology, a simple diagramm chase
gives the result. O

Though the existence of a Leray covering is a priori unclear we will see powerful
applications of this theorem later on.

Holomorphic sheaves. These are at the heart of theory of Riemann surfaces and
need to be computed individually.

42. Definition (Dolbeault cohomology). Let X be a (compact) Riemann
surface, and let O = Ox be the sheaf of holomorphic functions. Then H?(X, O) is
called the ¢g-th Dolbeault cohomology group.

We know already that H%(X,0) = C, that is, the only globally defined holomorphic
functions are the constant functions. To compute H4(X,O) (at leasfor ¢ > 0, let
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U < C be an open set. Recall that the Cauchy-Riemann operator ¢ = (0, + i0,)/2
which induces the sequence

0

0 Ox cz cz

by acting on germs represented by holomorphic functions defined over charts. We
then prove the

43. Theorem [Gu, Theorem 4]. Let U < C be a domain, and let g € C*(U) =
There exists f € C*(U) such that 0f = g.

Proof. We proceed in two steps

Step 1. Let D < U be a domain such that D is compact and contained in U =
There exists f € C®(U) such that 0f|p = g|p. Pick a smooth functoin p on C such
that p(z) = 1 for z € D and p(z) = 0 for z € C\U, and supp p is compact. Then we
can define a smooth function h by

h(z) = p(2)g(z) for ze U, h(z) =0 for ze C\U.
Note that h|p = g|p. We put

fo) = = [ PO e e

oM Je €
The integral is well-defined for we have, passing to polar coordinates & = re*?, that
(d€ A d€) /€ = —2ie¥dr A df so that we are integrating a smooth function with
compact support. In particular, differentiation commutes with integration. Note
that by the chain rule differentiation of h(z + ) is symmetric with respect & and
z. Moreover, 0¢ is &-linear. It follows that

dé A dE

€

1 de A dé

1 7h(z+§) -
- Lazig de A dE.

010 = 5 | iz +9)

2mi
Next fix 2z € C, a disc Dg whose radius R is large enough that supp h < Dg, and a
disc D, such that D, ¢ Dgr. We denote by g respectively v, the circles bounding
Dpg and D, with positive orientation. Then

2mi0z f(2) = lim ag—(w
>0Jpp\D. 13

h(z + &)

)df/\ dé

= lim d
=0 Jpp\D, ( 13

and Stokes’ Theorem implies that

2m'azf=y§(1)Leh(Z;5)

dg)de,

de.

Parametrising v, by & = ee?? yields
27

2mid f(2) = lim h(z + ee')idd
e~V Jo=0

= J% h(z)ido

6=0
= 2mih(z).
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Hence f is the desired function.

Step 2. Conclusion. Select a sequence of domains D,, U as in the first step such
that

i Dn < Dpy1;

o U=U,_; Du;

e any f € O(D,_1) can be approximated uniformly well by f; € O(D,,) over

D, _s.
The existence of such a sequence is garantued by Runge’s approximation the-
orem, see [Fo, Section 25, in particular Theorem 25.4]. We claim that there
exists a sequence of functions f, € C*(D,) such that df = g over D, and
|fn(2) = fa_1(2)] < 27 for all z € D,,_5. We proceed by induction. By the
first step there exists a smooth function h,, € C*(U) such that dhy = g over D,,.
For n = 0 and n = 1 there is nothing more to show if we put f; = h;. If n > 2, then
hy and f,_1 are both smooth over D,,_1, and 0(h,, — fn_1) = 0 over D,,_1, that is,
hy — fn—1 € O(D,—1). Now we choose an aproximating function h € O(D,,) such
that sup_cp , |hn(2) = fao1(2) — h(2)| < 27" and put f, = hy, — h.
The resulting sequence {f,(z)} is Cauchy and therefore converges to some limiting
value f(z). Indeed, consider
0
F(2) = fara() + D (fm1(2) = fm(2))-
m=n+2

Since |fm41(2) — fm(2)] < 27™ for z € D,, © D,,_o the series f,, converges with
respect to the supremum norm over D,,. Since the individual terms in the series
are holomorphic, so is their sum. Consequently, f € C*(D,,_3) and df = g. Since
the fmaily D,, exhausts U, the result follows.

d

For a general Riemann surface X Theorem 2[43] implies that we have an exact
sequence (the Dolbeault sequence of X)

3

0 Ox AR —C

A —=0 9)
Since the A7 are fine sheaves we immediately obtain the
44. Corollary (Dolbeault). H4(X,0) =0 for ¢ > 1.

45. Remark. We will see later that H!(X,0) =~ CY, where g is the genus of the
underlying surface.

2.2. Line bundles and divisors. We have seen that on a compact Riemann sur-
face only constants define global holomorphic functions. Now considering Ox as a
sheaf it is free in the sense that Ox (X) = I'(X, Ox) are just functions X — C, that
is, a global section o : X — Ox can be represented by global holomorphic functions
f: X —>C,o(p) = (p, f(p)). In this section we will introduce line bundles. Morally,
these are sheaves which are locally of the form U x C. Unlike Ox these sheaves
can possess nontrivial global sections. Closely related to this are divisors which we
will investigate first.

Divisors. Recall that O% is the germ of nowhere vanishing holomorphic functions,
that is f € O%(U) & fe Ox(U) and f(z) + 0 for all z € U. Furthermore, M* is
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the sheaf of not identically vanishing meromorphic functions, that is, f € M*% (U)

< f#£0.

46. Definition (sheaf of divisors). The quotient sheaf Dx = M% /O% is the
sheaf of germs of divisors. A section D € T'(U, Dx) will be called a divisor on
U. (Note that these definitions make also sense on noncompact RIemann surfaces).

A germ D, € D, p € X, is thus an equivalence class of a nontrivial meromorphic
function which is defined up to an invertible holomorphic function. This leads to
a particularly simple description of divisors in terms of the order function o, (1]
Clearly, o, descends to the quotient D, = M% /Oxx , and actually induces an
isomorphism D, = Z. Furthermore, a section D € I'(U, D) is locally represented
by a nowhere vanishing meromorphic function whose zeroes and poéles are isolated.
Applying this isomorphism pointwise implies that o, (D(p)) = 0 except for a discrete
subset of U which is finite if U is relatively compact in X. Consequently, we
can identify D with the locally finite formal sum »; iy 0,(D(p))p of poitns with
coefficients in Z. The multiplicative structure of D corresponds to an additive
structure on these formal sums for o,(f - g) = 0,(f) + 0,(g). We therefore get an
alternatve description of D, namely as the complete presheaf D(U) consisting of
sections U — Z which are zero except for a discrete subset of U together with the
natural restriction maps. Moreover, this obviously defines a flasque sheaf so that in
particular, H%(X,D) = 0 for ¢ > 1. Note that there is a naturl partial ordering for
divisors. We say that D € Dx(U) is positive if D = >’ a,p with integers a, > 0.
We write D >0and D> D' < D — D' > 0.

47. Example: the divisor of a meromorphic function. With any nontrivial
meromorphic function f € M% (U) we can associate a divisor (f) := >} 0p(fp)p-
Divisors of this form are called principal. Note that a prinicpal divisor is positive
< f is holomorphic.

The map which associates a principal divisor with a meromorphic function gives
rise to the exact sequence

0— 0% > Mt oDy 0,

where ¢ is the natural inclusion mapping. In particular, we get an induced map

(X, M%) - I'(X,Dx). Since Dx is flasque, globally defined divisors exist in
abundance. The existence of nontrivial meromophic functions is less obvious. A
first existence result is this:

48. Theorem (Weierstrass) [Gu, Theorem 6]. If U is a domain in C, then we
have an exact sequence of groups

0 —=T(U,03) — = T(U, M}) - T(U, Dy) —= 0,

In particular, any divisor on U is principal.

Proof. Surjectivity follows from the ling exact sequence provided we can show that
HY(U,0%) =0. Let X = U. From the exact sequence

exp

0 Z——= Ox o% 0
we deduce the exact sequence

HY(X,0x) — HY(X,0%) — H2(X,Z) — H2(X, Ox).
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But we know already that H'(X,Ox) = H?(X,0Ox) = 0 from which we obtain
HY(X,0*) ~ H?*(X,Z). But since X is noncompact, H*(X,Z) = 0 (this is a
general topological fact for noncompact surfaces) from which the result follows. O

49. Remark. More generally, this result holds for any noncompact Riemann
surface X as they satisfy H?(X,0x) = 0, see [Forster]. One can actually ex-
plicitely construct the meromorphic function via Weierstrass’ factor theorem [A]28]
The virtue of our approach lies in the relative simplicity of the proof, once the
vanishing of H%?(X, Ox) is established.

50. Corollary. IfU is a domain in C, then Quot O(U) = M(U).

Proof. Tt is clear that Quot O(U) < M(U). Conversely, let f € M(U). By the
Weierstrass Theorem 2[48| we can find a holomorphic function h € O(U) whose
divisor gives precisely the pole divisor of f (i.e. the divisor consisting of the poles
of f together with their multiplicity). In particular, g := h- f € O(U) so that
f=g/heQuotO(U). O

Next we investigate the exact sequence 0 — O* — M* — D — 0 using the fact
that D is an acyclic sheaf.

51. Definition (divisor class group). Two divisors Dy and D5 in I'(X, D) are
linearly equivalent if Dy — Dy = (f) for f € T'(X, M*). The group
Cl(X) =T'(X,D)/(T'(X, M¥))

is called the divisor class group of X.

The long exact sequence yields the short exact sequence
0——Cl(X) — HY(X,0%) —= HYX,M*) ——=0

We investigate the cohomology group H'(X,0*) next.

Holomorphic line bundles. We start with the

52. Definition (holomorphic line bundles). A holomorphic line bundle ¢
is an element in H'(X,0*). We call H'(X, O*) the group of holomorphic line
bundles.

As explained in 2[32] and the subsequent remark, we can represent a holomorphic
line bundle ¢ by a cocycle which we write {45} € Z1 (U, OF) for a base U = {U,}
of the topology of X. Writing the group operation multiplicatively the cocycle
condition implies

gaﬁ : gﬂ'y'Uag., = Ea’y'UaBﬂ,a
where Uyg = Uy nUp, Uagy = Uy nUg N U, etc. and where Uyg, + . It follows
that if V = Usp + & and V = UVDUWEL{ is a covering by open sets in U (U is a
base of the topology!), then

gaﬁ = 5;;

Indeed, 1 = (6€)apy = Epy6ayaplu, € OF(U,) and 1 = (66)pay = €aréy Epalu, €
o* (Uv)- Hence 1 = (‘%)Bav : (55)(%“/ = (fab’ 'fﬁa)‘Uw-
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Next we associate a sheaf O¢ with every ¢ € H'(X,0*). For each a, we let
O¢(Uy) =T Uy, O) = Oc(Uy). However, for Ug < U, we let

Pas(f)(P) = Epa(p) - f(p)

instead of the usual restriction morphisms. The cocycle condition garantuees
that pgy0pas = pay. In particular, O (U, ) together with the “restriction functions”
pap determine a presheaf since they are defined for a base of the topology, cf.
Remark2[26] It is easy to see that it is complete and independent of the representing
cocycle.

53. Definition (sheaf of holomorphic cross-sections). We call the sheaf
O¢ just constructed the sheaf of holomorphic cross-sections of {. We call the
cocycle £,3 representing £ an atlas of £ if the underlying base of topology consists
of coordinate neighbourhoods of X and O¢(Uy,) = O(U,).

In particular, a global section s € I'(X, O¢) is determined by a collection of lo-
cally defined holomorphic functions s, = pxuv, (s) € O(U,) which satisfy s.|v,, =
§apsplu., whenever Uyg + J. Indeed, let p € Uyp and let Uyg > U, be an open
set in U containing p. By design, pa,(5a)(p) = pxuv, (5)(p) = ppy(s5)(p) whence
&ya(p) - 5a(p) = €+ () - €pa(p) - 5a(p) = €61 (P) - 55 (p).

54. Remark. To understand the terminology, we interpret { = {{,3} given by an
atlas geometrically by considering the cocycle as a family of holomorphic functions
€ap : Uap — C* = GL(1,C). We can then define

Le = | |Ua x C/ ~,

where two elements (z,s) € Uy x C and (w,t) € Ug x C are equivalent if and only
if w =z and s = {,pt. Clearly, this is an equivalence relation. The natural map
| |Ua x € — L¢ topologises this space. Furthermore, we have a natural projection
m¢ + Lg — X whose fibre is just C. In a sense, it is like a sheaf except that its
topology is of product type, that is, locally it is homeomorphic to U, x C. L¢
is calle a holomorphic line bundle. In particular, it is an example of a higher
dimensional complex manifold. As for sheave we can consider sections o : U — L¢
which satisfy m¢ o 0 = Idy. Since L is itself a complex manifold we can require
these to be holomorphic. The holomorphic sections over U are then just given by
Oc.

Of course, L¢ depends a priori on the cocycle £,3 rather than the cohomology
class £. However, there is a natural notion of a morphism of a line bundle, and
one can show that cohomologous cocycles give rise to holomorphic line bundles.
Summarising, a cohomology class of £ determines an isomorphism class of line
bundles L.

55. Example. The trivial cohomology class 1 gives rise to the holomorphically
trivial line bundle X x C, i.e. O¢ = Ox. In particular, any global section must
be constant if X is compact, i.e. H(X,0;) = H(X,Ox) = C.

In fact, we have the

56. Lemma. A line bundle & is holomorphic trivial, i.e. ¢ = 1 € HY(X,0%) <
there exists a global section s € T'(X, (92‘), that is, s is nowhere vanishing.
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Proof. =) Then I'(X, O¢) = I'(X, O) so that any nontrivial constant will do.

<) Assume that s € I'(X, O¢) such that (s) = 0. By definition, for any collection
{sq} representing s we have s, = o555. Since sg and s, are nowhere vanishing we
have a5 = Sa/sg, whence (6{sa})as = 555" = £ga so that £ = §s. Hence £ = 0
in H'(X, O). O

It follows that for a nontrivial bundle £ any holomorphic section has at least one
zero. We often refer to a holomorphically trivial bundle simply as a trivial bundle,
but it is important to keep in mind that there are several notions of triviality, see
also our discussion of Chern classes in Section 2[2.3] In order to investigate global
sections further, and in particular to study existence of nontrivial global sections,
it is useful to consider line bundles of the type £ = §,.D for some D € I'(X, D).
We denote its sheaf of sections by Op := Os,p. This has a useful reformulation
as follows. Consider the subsheaf O, p which we define as follows. For any point
p € X we let the stalk be given by

(Om,p)p ={¢=1[U, fle M, | either f=0or (f) = D|v}

and let Opm,p = Upex (Om,p)p- This defines obviously a subsheaf of M and we
have the

57. Proposition [Gu, Lemma 7]. The sheaves Op and Opn,p are isomorphic. In
particular, we can consider the sheaves of sections O¢ as subsheaves of M for any
line bundle &.

Proof. We consider again the exact sequence 0 — O* — M* — D — (0 with
induced boundary operator d,. Any divisor D € T'(X, D) is locally induced by a
meromophic function, that is, there exists an open covering U = {U,} together
with meromorphic functions d, € My such that (do) = Dy, and &up = dp/da
is the cocycle defined by d4D. To define the isomorphism On,p — Op take a
germ f € (Oam,p)p with which we associate the meromophic germ f, := f/d, if
p € U,. Since (fo) = (f) — (da) = 0 this germ is necessarily holomorphic at p.
Furthermore, if p € U, n Ug then f, = f/do = f-&ap/ds = Eapfs. In particular,
fa defines a function germ in (Op),, and the resulting map is easily seen to be an
isomorphism. O

58. Corollary. The nontrivial global sections of Op = 0D correspond precisely
to meromorphic functions f € M* with (f) = D.

It is natural to ask when a line bundle £ is of the form d,D. Obviously, the
obstruction against this is the cohomology module H' (X, M*). Its vanishing has
an interesting interpretation in terms of Mg, the sheaf of meromorphic cross
sections which is constructed in the same way as O¢. For a cross section s €
I'(X, M) we can define the order of s at p by setting 0,(s) = 0,(sq) if p € U,.
Since s, is well-defined up to a nowhere vanishing holomorphic function which has
order 0, this is well-defined. For any not identically vanishing section s we can
therefore define the divisor of the cross section s by

(s) = Z op(s)p.
peX
In particular, I'(X, O¢) = {s € T'(X, M) | (s) = 0}.
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59. Lemma. H'(X,M*) =0 < for all £ € H'(X,0%), HY(X, M¢) + {0}, that
is, & admits a global meromorphic section.

Proof. As for holomorphic sections on eshows that ¢ = [1] in H!(X, M*) < there
exists s € I'(X, Mf), i.e. s is not identically zero < I'(X,M¢) + 0. By the

L .
exact sequence 0 — O* - M* — D — 0 we can represent write every element

ne HY X, M*) as g = 1,£ for £ € HY(X,0%). It follows that H*(X, M*) = 0 if
and only if for every line bundle £ € H'(X, 0*%), I'(X, M¢) + {0}. O

We will see later that indeed H'(X, M*) = 0 for any compact Riemann surface,
cf. Theorem 2[74] This basic analytic existence result is at the heart of the theory
of Riemann surfaces. For the moment we continue to study the cohomology of O¢.

Towards that end we want to generalise the Dolbeault sequence 0 — O — A%0 KA
ALY — 0 to an acyclic resolution of O¢. Namely, in the same vein as O¢ and Mg
we can define smooth cross sections C¢° of § or {-valued (p, q)-forms A?q. For
instance, taking an atlas {,g of { we define

ALY = T(U,, ART) = ARI(U,).

For Ug < U, we take again the restriction functions provided by &£gq, i.e. pag :
Ag’q(Ua) — Ag’q(Ug) is given by pag(pa)(®) = £8a(p) - Ya,p- For instance, if
Vo = fadza € AYO(U,) for some local coordinate z, on U,, then pga(pa)(p) =
€08 (D) fa(p)dpza. The resulting presheaves are complete and fine, and they reduce
to the usual sheaves if £ is trivial. Furthermore, global sections are given locally as
above by forms ¢, which satisfy ¢g = £gap. Note that the exterior differential
d: A, — A% does not induce a map AL — AR for the holomorphic functions
€ap : Uap — C* do not commute with d, for dé,p = 0€.3. However, they commute
with 0 so that we can consider the Dolbeault-Serre sequence

0—> 0 —> A2 s 42—,

Since in a coordinate neighbourhood this reduces to the ordinary Dolbeault se-
quence @[) this sequence is exact and defines an acyclic resolution of O,. We
immediately deduce from this the

60. Theorem (Dolbeault-Serre) [Gul Theorem 8]. Let X be a (not necessarily
compact) Riemann surface, and & € H (X, O*) be a holomorphic line bundle =

H'(X,0¢) =~ T(X, AP") /0T (X, AL°)
HY(X,0) =0, q>2.

It remains to investigate H?(X, O¢) in more detail for ¢ = 0, 1. As a first step, we
need that H(X,O¢) and H'(X, O¢) are finite dimensional.

61. Theorem [Gul Section 4.c|]. For all £ € H'(X,0%), dimc HY(X, O¢) < o0 if
qg=0,1.

Proof. (Sketch for ¢ = 0) The main idea is to show that H(X, O¢) can be identified
with a locally compact Hilbert space. Then H(X, O¢) must be finite dimensional
by general arguments from functional analysis.
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Step 1. Define a Hilbert space structure on O. One first considers the square
integrable holomorphic functions

To(U,0) = {f € O | fU F(2)2d= A d= < o)

and shows that this defines a Hilbert space. Furthermore, one can prove that
the restriction operators pyy : I'o(U, O) — T'o(V, O) are bounded linear operators

between Hilbert spaces which are compact, if V' is compact and contained in U.

Let U = {U,} be an atlas of £. Out of I'g we can construct the differential complex
§: ClU,O0¢) — CIT (U, O¢) between Hilbert spaces. We consider the associated
cohomology groups which will be denoted by H{ (U, O¢).

Step 2. We have Hj(U,O¢) =~ HY(U,O¢) =~ HI(X,O¢). This is essentially an
application of Leray’s theorem as H9(|o|, O¢) = H(|o|,O)(= 0 for ¢ > 1).

Step 3. Finally, we show that Hi(U,O¢) are Hilbert spaces and that refinement
maps induce bounded compact operators between cohomology and that H(U, O¢)
is a locally compact Hilbert space, hence finite-dimensional. Again, this follows
essentially from functional analytic considerations.

O

In particular, the difference dim¢ H%(X, O¢)—dime H' (X, O¢) is well-defined. That
this is a computable topological quantity is the content of the famous

62. Theorem (Riemann-Roch) [Gu, Theorem 13]. Let X be a compact Riemann
surface of genus g, and let £ € HY(X,0%) be a complex line bundle =

dime H%(X, O¢) — dimc H*(X,0¢) = 1 — g + ¢(§),

where ¢(§) = X ,cx 0p(s) is the so-called Chern class of £ given as the sum of all
orders of a montrivial meromorphic section s of £ (whose existence has yet to be
justified). In particular, if c¢(§) > g — 1, then O¢ admits non-trivial holomorphic
sections.

Serre duality. While H°(X, O¢) has an easy interpretation as the space of global
sections, the module H*'(X, O¢) lacks such a simple interpretation. This makes the
computation of its dimension quite difficult in general. However, in the special case
of Riemann surfaces, this can be expressed in terms of the dimension of the space
of global sections of some further sheaf:

63. Theorem (Serre duality) [Gu, Theorem 9]. Let X be a compact Riemann
surface, and let £ € H (X, O*) be a holomorphic line bundle = There is a natural
isomorphism

H'(M,0¢) =~ H°(X,Q¢ )%

In particular, dim¢ H'(M, O¢) = dim¢ H°(X, Qé_l)*.

Recall that Q! is the sheaf of holomorphic 1-forms, sometimes also called the sheaf
of abelian differentials. The proof is functional analytic in nature, the interested
read might consult [Gu, Chapter 6]. We merely outline the duality between these
two spaces. First note that we have a natural bilinear pairing

D(X, AP x T(X, A0 - T(X, AR, (p) A g
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(write out what this means in local coordinates — since we multiply ¢, and ¥,
by £z~ and fﬁj when passing to g and g these contributions cancel and we
can glue the locally defined forms (1, 1)-forms to a global one). This (1,1)-form
gives a complex number by integration (X is compact so we do not worry about
convergence issues):

FOXARY) % TG AL = DAY, (o) = o= [ o nw,

Now if 0f € oT(X, AZ%) = T(X, A¢") and ¢ € T(X, Q¢ ) © T(X, A% so that
0p =0 and o(fy) € A2°(X) = 0, we have

@ty = arnv=| arw=o
X X
by Stokes theorem (see Paragraph 2[15)). The pairing (-, -) thus descends to

HY(X,0¢) x H'(X, Q1) = C,  ([¢],%) = g, ¥).

Serre’s assertion is that this map is non degenerate. Note that while the isomor-
phism in Theorem 2J63|is natural, the isomorphism H°(X, Qé,l)* ~ HO(X, Qé,l)
(which exists by finite dimensionality) is not.

To conclude this section we reformulate Serre’s duality theorem in terms of the
canonical line bundle Kx which avoids the use of differential forms by interpreting
these as sections of Kx. As the name suggests the fact that Kx exists naturally
on any Riemann surface and is (at least for X compact) nontrivial makes this a
particularly interesting line bundle. To define it let ¢4 be a maximal atlas of X
consisting of local charts z, : U, — C. We denote by fags : 28(Uag) = 2a(Uag) the
resulting transition functions, i.e. we have

za(p) = fap(p)(25(P))
for all p € Uys. We then define a cocycle rq5 € Z1 (U, O*) by
1
as(28(P))

Indeed, if p € Uapy, then 2o(p) = fay(24(p)) = fap(fsy(24(p))) so that by the
chain rule for holomorphic functions,

Koy (D) = [Farn (5 ()]
= [f&ﬁ(fﬁv(zw(p))) : fén,(zv(p))]
= [£a5(z5(0)) - fo (2, (@)

= kap(P) - Kipy(P)-

Rag (p) =

-1

64. Definition (canonical line bundle). We call the holomorphic line bundle
k € H'(X,0*) the canonical line bundle.

Next we consider the sheaf Q' of holomorphic 1-forms. In terms of the maximal
atlas U, a section ¢, € Q1 (U,) is given by ¢, = godz, with g, € O(U,) and
9o (P)dpza = gs(p)dpzs if p € Unp. Since dpza = fi,5(28(p))dpzs = n;é(p)dpzm
this means that

Ja = Kapdp
so that {g,} defines a section of x. Hence Q' = O, and more generally, Qf = Oy
(where the product € in H!(X, O*) is represented by the product cocycle ra5-€ap)-
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Similarly, Aé’o = Ag,ﬁo = Cf;%, the smooth sections of the holomorphic line bundle
k€. With this notation, we can restate Serre duality as

HY(X,0¢) = HY(X,0,¢-1)*.

2.3. Statement and proof of Riemann-Roch. We are now prepared to prove
Theorem 2[62] We start by defining Chern classes, before we turn to the proof of
Riemann-Roch.

Chern classes. We have seen in Lemma 2J56]that a line bundle is holomorphically
trivial < there exists a global section s € O% (X). More generally, we could ask
for a smooth nowhere vanishing section, i.e. a family {f,} with f, € C**(U,) such
that fo, = &.pfs. If it exists we say that £ is smoothly trivial. Geometrically,
this means that the corresponding line bundle L — X is isomorphic to X x C via
a smooth (instead of a holomorphic) map. Still, such smooth trivialisations may
not exist and we define obstructions against its existence via Chech cohomology.
This will eventually lead to the definition of the Chern class of a holomorphic line
bundle.

To start with we consider the exponential sequence 0 — Z — O — O* — (0. This
leads to the exact sequence H'(M,Z) — H'(M,0) — HY(M,0*) - H*(M,Z) —
0 for H%(X,0) = 0 by Corollary 2 Consequently, the sequence

é
0 —— HY(M,0)/H(M,Z) — H' (M, O0*) —*>H2(M,Z) —0
is exact.

65. Definition (Chern class). We call ¢ := J, the characteristic map and
c(€) := 64 the Chern class of the line bundle &.

To understand its geometric meaning, consider the smooth exponential sequence
0 >7Z — C® - C® — 0. The inclusions ¢ : O — C® etc. give rise to the
commutative diagramm

HY(X,0) — HY(X,0*) ——= H*(X,Z) —=0

T
HY(X,C®) ——= HY(X,0®*) *—~ H?*(X,Z) —=0

Now C® is a fine sheaf so that H1(X,C®) ~ H?(X,Z). It follows that the complex
line bundle associated with ¢ € H'(X,C%*), that is, we glue the local models
Uy x C via the smooth transition functions &, : Uag — C*, is actually classified
by ¢(§). In particular, ¢(§) = 0 < there exists a global section {fo} of CZ°*(X)
with fo = &upfs. For a holomorphic line bundle £ € H'(X,0%), ¢(£) = 0 means
1x(§) = 0 by the commutativity of the diagramm, that is, t4x(§)ag = fa/fa for
smooth f, € C®*(U,).

66. Remark.

(i) Similarly, we can topologically trivialise £ < there exists a global nowhere
vanishing continuous section of £. Since we can approximate such a continuous
section arbitrarily closely by a smooth section, a bundle ¢ is topologically
trivial < ¢ is smoothly trivial. In this sense, ¢(€) is a topological invariant of
& which classifies £ completely as a complex vector bundle. Note, however, that
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even the smoothly trivial bundle X x C might carry nontrivial holomorphic
structures.

(ii) The previous discussion holds for any, in particular, noncompact Riemann
surface. Since in this case H?(X,Z) = 0 we immediately deduce that any
holomorphic line bundle is smoothly trivial. In fact, though this is beyond
the scope of our course, one can show that it is even holomorphically trivial,
see [Fol 30.3].

Henceforth we restrict our attention again to compact Riemann surfaces. Then
H?(X,Z) = Z so that ¢(£) can be considered as an integer. We will give two different
descriptions of this integer. The first is based on the inclusion 0 — H?(X,Z) —
H?(X, C) induced by the inclusion Z = C. In general, the latter inclusion only gives
amap H?(X,Z) — H?(X,C) which is not necessarily injective. From the universal
coefficient theorem, however, it follows that H?(X,C) ~ H?(X,Z) ®z C. On the
other hand, de Rham’s theorem asserts that H?(X,C) ~ A%(X)/dA'(X) so that
we can represent c(¢) by a differential form ¢(¢) € A?(X). Integration of this yields
the isomorphism H?(X,C) =~ C, since SX p is independent of the representative
by Stokes’ Theorem. This form ¢(€) can be made explicit. In the sequel, let C¥°
denote the sheaf of real-valued smooth functions.

67. Proposition [Gu, Lemma 14]. Let £ € H'(X, O*) be represented by {ap} €
ZYU,0%), and let {ho} € CO(U,CF*} be such that ha(p) = |€ap(p)|*hs(p) for
p € Usp. Then

1 -
Yo = =——00log h,
2

defines a smooth 2-form such that

(€)= jX v

68. Remark. Without loss of generality we can choose h,, > 0. The transforma-
tion law ha(p) = €as(p)hs(p)Esa(p) is that of a hermitian metric: In general, if
h = (h;;) defines a hermitian metric on C" in terms of a given basis, then a base
change implemented by the matrix A = (4;;) € GL(n,C) is given by AT - h - A.
Given a hermitian metric on £ induces a hermitian metric on the corresponding
line bundle L by h,(v,w) = vhe(p)w for v, w € L,. Now a hermitian metric
always exists. Indeed, {|€,5|?} defines a cocycle in Z* (U, CF*). Since the real ex-
ponential exp : CF° — CZ* defines a sheaf isomorphism and Cf° is obviously fine,
0 = HY(X,C%) = HY(X,Cg*). (In particular, any real line bundle — obtained
by glueing the local models U, x R — must be trivial) It follows that the cocycle
{|€45]?} must be a coboundary, i.e. equal to §{ha}as = hg/ha. The 2-form ¢ can
then be interpreted as the curvature of the hermitian metric. For the special case
of the holomorphic line bundle —k this has an interpretation in terms of the Gauss-
ian curvature of a Riemannian (sic!) surface, and Riemann-Roch then essentially
becomes the famous Gauf-Bonnet theorem, cf. also 2[77] (iii)

The relationship between hermitian metrics on complex vector bundles and topo-
logical invariants, the so-called characteristic classes, is at the heart of Chern-Weil
theory.

Proof. The result will follow from a detailed analysis of the characteristic map dy :
H(X,0*) — H?(X,Z) and the de Rham isomorphism H?(X,C) ~ A%(X)/dA' (X).
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Consider the exact sequence 0 - Z — O — O* — 0 and represent £ by a cocycle
&ap such that U,g is simply-connected if nonempty (take an atlas of £ and refine
further). In particular, we can take the logarithm and obtain a cochain o,g =
(log €ap)/2mi so that exp(oap) = £ap. By definition, ¢(§) = 64§ = [cap,] Where
Capy € Z*(U,Z) is the coboundary capy = (00)agy = 0py — Tany + Tap. In order
to represent this class by a 2-form we take the standard acyclic resolution of C to
compute H?(X,C), namely

0 C cr Lot d g2 0.

This gives rise to the exact sequence 0 — C — A” — Al — 0 where A} denotes
the closed 1-forms (this corresponds to the sequence 0 - F — Fy — K1 — 0 in
Theorem 2. Regarding cqg. as a cocycle in C?(U, C) it is the coboundary of the
cocycle 045 in C1(U,C®). In particular, doag € Z* (U, A}). On the other hand, the
exact sequence 0 — AL — A! — A2 — 0 (corresponding to 0 — K3 — F; — Kz —
in Theorem 2[38) shows that do,g, regarded as an element in Z'(U, A') via the
inclusion 0 — A} — A', must be the coboundary of a cochain in C°(U, A') for
H'(X,A') =0, A! being fine. It follows that we need to find 7, € C°(U, A') such
that doag = (7o — 78)|v.,, OF equivalently, we need a family of smooth 1-forms
7o € AL(U,,) satisfying
To = %dlogfag +73 in Uy nUg.

In particular, dr, = d7g on U,g so that ¢, = d7g pieces together to a well-defined
2-form ¢ which represents the cohomology class [cag,] € H*(X,C).

We can now conclude by constructing 7, as follows. By assumption, logh, =
loghg + log€ap + logéap over U,z. Since the functions .5 are holomorphic,
dlogé,s = dlog&,ps and dlogé,s = 0. Taking 7, = i/2m - dlog h, does the job,
and ¢, = dr, = /2700 log h,. O

Let fe HY(X, M) be a nontrivial meromorphic section of £. The integer

deg(f) = Y 0p(f)

peX

is called the total order or the degree of f. Since X is compact, o,(f) & 0 only
for a finite number of points p.

69. Theorem [Gul, Theorem 11]. For any line bundle £ € HY (X, O*) over a com-
pact Riemann surface X, and any nontrivial meromorphic section f € HO(X, M*),

we have
c(€) = Y, op(f)-

peX
In particular, any nontrivial meromorphic section has the same total order.

Proof. We are building a hermitian metric from f and apply the previous proposi-
tion. Namely, let py,...,p, the finite number of points of X where o,(f) + 0. We
represent ¢ by a cocycle £,3 where we choose the covering in such a way that for
all i = 1,...,n, there exists an open neighbourhood V; of p; contained in U,, for
some oy, but V; n Uy = J if a + o;. We have f, = £45fp on Ugp + . We let
hea = |fal®* > 0 on U,\|J; V; and extend it smoothly and positively over | J, V;. In
particular, h, = |§a5|2h5 so that h defines a hermitian metric on £. (Intiutively, f
defines a trivialisation of £ near p whenever o,(f = 0; we then let |f|> be the norm
of the trivialisation.)
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Next we evaluate ¢(§) using the previous proposition so that

1 _
c(&) = J 00logh ! f 00hg,.
2i 21 Jx

Outside | J; Vi we have h, = |fal? = fa - fa so that
00log hg = 00(log f, + log fo) = 0.
Indeed, f, = fa(2) is holomorphic in z so that df = 0 and 0f = W = 0. Hence

c(€) = %ZJ y 0010g he,
= 2MZJ dolog hg,

=5 Z alog R,

by Stokes’ theorem. But h, = |fa|? on the boundary oV; of V;,, whence 0log h, =
(log fo) = fo) fa- Consequently,

" 2mi Z Z o (f)

by the Rouché’s formula [Al31] (which is essentially the residue theorem). d

ov; foc

Since any global holomorphic section defines in particular a meromorphic one with
nonnegative total order we immediately dedude the

70. Corollary. If ¢(§) < 0 then there are no nontrivial global holomorphic sections
of &, that is, H*(X,O¢) = 0.

As a further corollary we note

71. Corollary. If £ = 6,D, D =Y a;p; = ¢(§) = —deg D = — > a;.

Proof. Indeed, if we represent D locally by do € M*(Uy) then up = (0xD)ap =
dg/d. Hence we obtain a meromorphic section s = {1/d,} whose induced divisor
is (s) = —D. O

Proof of Riemann-Roch. For the rest of this section X will be a compact
Riemann surface. Let £ € H!'(X, O*) be a holomorphic line bundle. We define

(&) = dim HO(X, O¢) — dim H' (X, Og) — ¢(¢)
= dim H%(X, O¢) — dim H° (X, O,e-1) — ¢(£),

where we used Serre duality for the last line.

72. Remark. The integer
X() = dim H%(X, O¢) — dim H' (X, O¢) = x(€) + ¢(€)

is called the (holomorphic) Euler characteristic of ¢.
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We know already that this quantity is well-defined. We will need to show that it is
independent of £ and that it equals x(§) = 1 — g where ¢ is the genus of the surface.
First we investigate the case of a divisor.

73. Lemma. Let D e D(X), and letn = 5,D € H'(X,0*) =
X(&n) = x(8)-

Proof. If D = ) a;p; then x(¢ - 6.D) = x(IL;£n;"*) where n; = 04p;. Hence it is
sufficient to prove the assertion for a point bundle n = d4p, p € X. In analogy with

the sheaves considered in Proposition 2[57 we introduce the subsheaf Oaq, p,¢ of
M defined by

(O, p,¢)g = {lU, fl€ (Me)q | f=0or (f) = Dlu}.

Since D = p > 0, Opq, p, ¢ is actually a subsheaf of O¢, and we can consider the
quotient sheaf Q@ = Og/Opm, p,e. This is a skyscraper sheaf of the form

_J Oifg+p
Qq_{ Cifg=p

(the stalk Onq, p, ¢ at p is just the maximal ideal m of the local ring (O¢), given by
noninvertible sections). In fact, Oaq, p,e = Ogy (this follows as in Proposition 2/57).
From the resulting exact sequence 0 — Og, = O¢ > S — 0 we deduce the long
exact sequence

0—= HO(X, Ogy) — HO(X,0¢) %> HO(X, Q) >

—— HY(X,0gy) —> H'(X,0¢) —= H'(X,Q) —> 0 —> ...

Since Q is a skyscraper sheaf it is flabby and thus acyclic with H°(X, Q) =~ C.
From this and the exactness of the sequence it follows that

o dimim 7, + dim H(X, O¢,) = dim H°(X, O),
o dim H'(X, O¢) + dimker 1y = dim H!(X, O,¢),

e 1 =dimimm, + dimker ¢y,

that is, we find for the alternating sum
dim H%(X, Og,) — dim H' (X, Og,) + 1
= dim H(X, O¢) — dim H' (X, O¢).

Since 1 = —c¢(n) = c(n~1), adding ¢(§) to both sides and using ¢(§) + ¢(n~1) =
c(én~1) gives the desired formula y(én~1) = x(£). O

As an important consequence we deduce from this and Lemma 2[59] the

74. Theorem [Gu, Theorem 12]. On a compact Riemann surface X,
HY (X, M*) =0,

i.e. every line bundle on M has a nontrivial meromorphic section and is thus of the
form 6D for some divisor D uniquel determined up to (f) for f e M%(X).
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Proof. Since a line bundle comes from a divisor if and only if it admits a meromor-
phic section, it is enough to show that there exists a line bundle 17 = 64 D such that
&n admits a meromorphic section. We will actually be able to show that we can
find a holomorphic line bundle 5 such that £n has in fact a holomorphic section.
Suppose to the contrary that H%(X,Og,) = 0 for all D € D(X). By the previous
lemma,
$Uen) = dim HO(X, Og,) — dim HO(X, Og-1-1) — c(&n)
is independent of D so that by our assumption,
dim H?(X, Ope-1,-1) + c(€n) = ¢

for some constant independent of D. Choosing D suitably we can arrange for
c(k€ 7Y = ¢(k) — c(€) — e(n) < 0 so that k€ 1~ admits no nontrivial holo-
morphic sections by Corollary 2 But then ¢(n) = ¢ — ¢(€) is independent of D,
a contradiction. O

75. Corollary. We have
CI(X) = H'(X,0%),

that is, the divisor class group is isomorphic to the group of holomorphic line bun-
dles.

76. Corollary. The number x(§) is constant and does not depend on &.

Proof. Since every line bundle £ comes from a divisor, we have x¢) = x(1-¢&) =
x(1). O

In particular, we find
() = x(1) = dim H°(X,0) — dim H*(X,0,.) — ¢(1) = 1 — dim H°(X, O,,),
We call the constant
g:=dim H'(X,0,)
the arithmetic genus of X. To interpret g in terms of the topology underlying
the Riemann surface we consider the exact sequence

d d

0 C @) Ol 022 =0
(a holomorphic 1-form w € Q! is closed, hence locally of the form w = fdz = dg
for g € C*® — it is easy to see that g is holomorphic, hence the sequence is indeed
exact). This gives rise to the long exact sequence

0 —— H°(X,C) — H°(X,0) — H°(X, Q') ——

—— H'Y(X,C) — HY(X,0) — H'(X,Q!) ——

— H?*(X,C) 0
Now HY(X,C) =~ H°(X,0) =~ H?(X,C) =~ C, and as above it follows that
dim H°(X, Q') — dim H*(X,C) + dim H'(X,0) —dim H* (X, Q') +1=0

By Serre Duality we have dim H'(X,0) = dim H*(X, Q') = dim H°(X,0,) = ¢
and dim H*(X, Q') = dim H°(X, O) = 1. Consequently, 2g = dim H*(X, C) which
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means that g equals also the topological genus of X (while this is only define in the
surface case, the arithmetic genus can be defined for arbitrary complex manifolds).
It also follows that

X§)=1-g

which completes the proof of Theorem 262}

77. Applications of Riemann-Roch. Finally, we discuss some applications of
Riemann-Roch.

(i)

Existence of nontrivial holomorphic sections. Given a line bundle £ over X one
is naturally interested in the holomorphic sections and their zeroes: Assume
that there are nontrivial sections sg . .., s, € H*(X,&). Then p — [so(p) : ... :
$n(p)] € P is well-defined whenever p is not a base point, i.e. s;(p) = 0 for all
p. Here, we think of the s; as trivialised sections of the associated line bundle
L¢. Of course, the n + 1-tupel (so,...,sn(p)) depends on the trivialisation.
But any other trivialisation multiplies this n + 1-tuple by a nonzero complex
number so that the line [so(p) : ... : s,(p)] € P" is well-defined. It turns out
that we that there are no base points and that the map X — P” is actually
an embedding if there are sufficiently many sections. In fact, there exists an
integer n so that considering £™ instead of n provides such a line bundle with
sufficiently many sections (we also say that & is ample. To see how Riemann-
Roch can be of help here, consider £ = k, the canonical line bundle.Then

X(k) = dim H*(X,0,) — dim H (X, 0,) — c(k) = g — 1 — ¢(k)
so that
(k) =2(g—1). (10)

This implies not only that a holomorphic 1-form has at exactly 2(g— 1) zeroes
counted with mulitplicity, but also that

dim H°(X,0,) = g — 1.

It follows that any Riemann surface of genus > 2 has nontrivial holomorphic
1-forms. We discuss further case of existence in the problem class.
Dimension of the Teichmuller space. Given a compact surface we can ask
how many ineqgivalent Riemann surface structures we can define on X. This
question can be asked more generally for any (compact) manifold of arbitrary
dimension. Specialised to the case of a Riemann surface X the answer is
this. Fixing one particular Riemann structure the answer is this (cf. for in-
stance [?, 6.1.5 and 6.1.6]): The space of possible Riemann surface structures
is a smooth complex manifold Tx (the Teichmiiller space of X) if and only
if H?(X,0,.-1) = 0 (which is always the case, cf. Theorem 2, and in this
case its dimension is dim H(X,0,-1). To compute the latter we note that
by Riemann-Roch

dim HY(X,0, 1) =1—g+c(k™1) —dim H*(X,0,1)

Now ¢(k71) = —c(k) = 2(1 —g) < 0 for g < 2 which implies H*(X,0,-1) =0
by Corollary 2[70] Hence dimTx = 3(g — 3) if g > 2. That X carries at
least one Riemann surface structure is of course nontrivial. This follows for
instance from the fact that the fundamental group of any compact surface
acts as biholmorphically via Deck transformations on the unviersal covering
C, cf. for instance also the discussion in |Gul §9]. Summarising, we also yield
a smooth Teichmller space which is of dimension 0 on the sphere, of dimension
1 on a torus, and of dimension 3(g — 3) on a surface of genus > 2.
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(iii) Expressing the Chern class ¢(k) as an integral over X as in Proposition 2.77,
Riemann-Roch actually gives the famous Gauss-Bonnet-Theorem for Riemann-
ian (sic!) surfaces, that is, surfaces equipped with a Riemannian metric. In-
deed, underlying the real tangent space and ist Riemannian is the dual of the
holomorphic line bundle s together with a hermitian metric. The integrand
i001og h can then be interpreted as the Gaussian curvature of the Riemann-
ian metric.

APPENDIX A. HOLOMORPHIC FUNCTIONS

We briefly recall the most important features of holomorphic functions. For a
general reference see for instance [Ah] or [Re]. As a matter of notation, we let D (zg)
be the open disc of radius € around zg € C, i.e. Dc(z9) = {z € C| |z — 20| < €}.

1. Definition. Let U — C = R? be an open subset. A function f : U — C is
called complex differentiable at a € U or holomorphic at a € U if
fl(a) .= lim f(Z) B f(a’)
z—a  z—a
exists. In this case, f’(a) is called the complex derivative of f at a. If is

holomorphic for every a € U we say that f is holomorphic on U and let O(U) be
the set of holomorphic functions on U.

2. Example.

(i) f : C - C, f(z) = ¢ € C the constant functions are holomorphic on C
with f’(a) = 0, whence C < O(C) (identifying constant functions with their
complex value).

(ii) f:C — C, f(2) = ¢z, ce C is holomorphic with f/(a) = c.

(iii) If f € O(U) and V < U is an open subset, then f|y € O(V). In particular,
CcOo(U)

Functions which are holomorphic on all of C are also called entire. As for the
usual (real) differentiability we can prove in exactly the same way the following
differentiation rules.

Then

= f'(a) + g'(a);
(@) + f(a) - g'(a).

3. Proposition. Let f, ge O(U

)-

(i) f+geOU), and (f+9) (a)

(ii) f-g. and (f-g)'(a) = f'(a)-g

In particular, O(U) is a C-algebra.

(i) If g is a function which is holomorphic in a, and f is holomorphic in g(a),
then f o g is holomorphic in a, and we have

(fog)(a) = f'(9(a) - g(a).

4. Example. Since O(U) is a C-algebra and z € O(U) by restriction, any
polynomial f(z) = Y1 ja;2" isin O(U), and f'(a) = Y},_,ia;2""'. More generally,
let f: U — C be analytic, that is, for any zyp € U exists an ¢ > 0 such that
D.(29) € U and

a0
Zal z—2)" z € Dc(zp)
i=0
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where the convergence is absolute and uniform in z. It follows that f is holomorphic
and differentiating term by term yields

f(z) = Z ia;(z — 29)" 2 € De(20)
i=0

as in the real differentiable case. For instance, the complex exponential function

is entire.

In terms of real differentiability we can express the condition to be holomorphic as
follows. Under the identification C = R?, z = x + iy corresponds to (x,y).

5. Theorem. A function f : U — C is holomorphic in a € U < f is real
differentiable in a and the Cauchy-Riemann equations

ozu(a) = oyv(a), oyu(a) = —0zv(a)
hold. In particular, any holomorphic function is continuous.

Proof. See for instance [Pd, 9.4]. O

In practice, we will use the previous theorem as follows. We let

1 . 1 )
0-5(0) 1= 5 (6uf ~i0,F)(@), 0:f(a) i= 5(0uf +i6,f)a)
We also write ¢ for 0, and 0 for 0s. Then we obtain the following

6. Corollary. A function f € C*(U) is holomorphic at a <

of(a) = 0.
In this case, f'(a) = df(a).

7. Remark.

(i) Of course, the regularity assumption of Corollary A@ is not optimal, but it
will simpliyfy the subsequent discussion since where we use Stokes’ Theorem
to derive Cauchy’s integral formula. At any rate, this will be sufficient for our
purposes.

(ii) To see where the Cauchy-Riemann equations comes from, consider a smooth
function f(z,y) = u(x,y) + iv(x,y) : U — C = R2. Its real derivative at a
with respect to the real standard basis e; = 1, e5 = 4 of R? is

_ (Ozu Oyu
Daf = <6’Iv ayv)'
This is a real linear map, that is D, f(Av) = AD,f(v) for all v € R?, X € R.
When is it complex linear? Multiplication with 7 sends e; = 1 to e; = i and

e =1 to—1=eq,s0 D,f is complex linear if and only it commutes with the
corresponding matrix, i.e.

0 -1 0 -1
pure ()= (0 ) enur
It is easy to see that this holds < the Cauchy-Riemann equations hold. Sum-

marising, a smooth function f : U — C =~ R? is holomorphic < its differential
is complex linear.
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(iii) In general, a complex linear map A : R? — R? is given by a matrix of the

form
a b
= (5 1)

which after the identification R? =~ C corresponds to the complex linear map
given by multiplication with a +ib. Hence, seeing D, f as a complex number if
D, f is complex linear, i.e. f is holomorphic, we have D, f = 0,u —id,u = 0f.

The upshot of this ¢-0 formalism is that we can treat a holomorpic function as a
“differentiable” function in z whose derivative at a is given by ¢f(a) and for which
the usual differentiation rules hold.

8. Example.

(i) f(z) = 2* is holomorphic for df(a) = 0 and df(a) = ka*~1.

(ii) The exponential map exp : C — C* defined by exp(z) = >, 2F/k! is
holomorphic (more generally, any power series which converges absolutely
and uniformly on some open disc is holomorphic there). Note thta exp defines
a group morphism if C and C* are endowed with their usual group structures
of addition and multiplication of complex numbers. In particular, kerexp =
2miZ.

(iii) If f € O(U), then a logarithm of f is a function g € O(U) such that
exp(g) = f. Of course, f(z) £ 0 for all z € U is a necessary condition
for a holomorphic logarithm to exist, but due to monodromy issues (cf. also
Section it is in general not sufficient. However, the logarithm exists
if e.g. U is simply connected. In this case, one can also consider the k-th
holomorphic root of f, namely h € O(U) with h* = f. Take, for instance,
h = exp(g/k), where g is a holomorphic logarithm (see also [Rel Section 9.3]
for instance).

(iv) f(z) = |2|? = z - 2 is not holomorphic, for it depends on z: df(z) = z.

(v) Let f: U —>C, g:V — U c C two smooth functions so that fog:V — C
is also smooth. Then for all a € V,

a(f o g)(a) = 0f(g(a)) - 6g(a) + 0f (9(a)) - g(a),
0(f o g)(a) = 0f(g(a)) - 0g(a) + 0f(g(a)) - 05(a)

(see for instance |[Re, p.68]). In particular, if f and g are holomorphic, so is
f o g and we obtain the holomorphic chain rule

d(fog)a)=(fog)(a)=f'(g(a)) g (a)

9. Remark. In analogy with real analysis we can also consider holomorphic
functions in several variables. A function f = (f1,...,fm) : U c C* - C™ is
holomorphic < f; : U — C is contininuous and f(z1,...,2,) holomorphic in any
single variable z; in the sense above. Then many familiar theorems of real analysis
still hold, in particular the implicit function theorem which allows to set up a theory
of complex manifolds along the lines of differentiable manifolds. For instance this
theorem for holomorphic functions f : U = C? — C reads as follows. If f = f(w, 2)
is holomorphic and if 0, f(a) # 0, then there exists a holomorphic function g = g(w)
defined in some neighbourhood of a such that f(w,g(w)) = f(a). Put differently,
we can eliminate holomorphically the variable z from the equation f(w,z) = f(a).
See also [GuRo] for more details on holomorphic functions in severable variables.
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Before we come to the next theorem we define
dz = dx + idy, dz = dx —idy.
We can think of (dz, dZ) as the basis dual to (,7). In particular,
df = ofdz + 0fdz.

The volume element dx A dy used for integration is then idz A dz/2. Recall
also that for the line integral of a continuous f defined on the nighbourhood of a
piecewise C'! curve « : I — C is defined by

f f(2)dz = Lmu)) ().

This is indepenent of the particular parametrisation of v, and if we write f =
(u,v) = u +iv and v = (z,y), then S'y fdz = S,Y(uda: —vdy) + iS,Y(vdx + udy). We
can now state the central theorem for holomorphic functions.

10. Theorem (Cauchy’s integral formula). Letw € D := D.(z) < C and
f e CY(D) (that is, f is continuously differentiable on D and continuous on D) =

f(w)—i( (z)d,z—i—JA L(Z)dZ/\dZ).

2mi N Jop 2 —w z—w

In particular, we have for f € C*(D) n O(D) that

flw) = 1 (2) dz.

27 Jop 2 —w
Proof. The proof requires some familiarity with the exterior form calculus, see also
Section 2]
Let Ds = Ds(w) < D and
1
1,

2wz —w

N (z) =

which is defined on D\Ds. Its exterior derivative is the continuous 2-form on D\Dj
given by

1 1
dm(2) = 55 T

ofdz A dz.

In particular, the integral on the left hand side exists which via Stokes gives

J d77=f n—f 1. (11)
D\D, oD oDs

Now parametrise dDs by v(t) = w + de’. then

1
po L[ 1R,
211 Z—w
oDs

~
1 27 5 it )
B (Ch
27TZ 0 (Selt
1 27 )
= — de')dt.
57 Jo fw + 0e™)

The latter expression converges to f(w) as § — 0 (consider f(w+de'’) as a function
in 0 and apply Taylor’s theorem). On the other hand

0 0

|7fd2 Adz| = 2ﬂr|dr A dt| < 2¢ldr A di]

z—w T
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where we introduced polar coordinates x = rcost and y = rsint so that dz A dz =
2irdr A dt. Hence dn is absolutely integrable which implies

f dn:j dU:JdU— dn.
D\D5 D\Dtj D Ds

However, | §, dn| < C6? for some constant C' which by implies

Jdn=f 77—|—1im( dn—J n)=f6Dn—f(w),
D oD =0 " Jp; dDs

whence the result. (Note that we cannot apply Stokes to SD(; dn for dn is singular
at w e Dg.) O

We will now draw several very powerful corollaries.

11. Corollary. Let f € O(U).

(i) f is analytic. More precisely, for all zo € U we have f(z) = Y5, ax(z — 20)
for z € Dc(z0) where € > 0 is any real number < dist(zg, 0U).

(ii) If U is connected and Z(f) = {z € U | f(z) = 0} has an accumulation point,
then f =0 (“Identity Theorem” ).

k

Proof. (i) By Cauchy’s theorem for all w € D = D.(z) we have

) = = [ L2q,

2mi Jop 2 —w

1 6,
2w LD (z—Zo)—(w_zO)d

R N (IR S
= 21 oD %2 — %0 171‘::7;3

_ 1 /(2)

o LD %Wﬂ’z)w — 20)"
L e .
_,;O(QM' LD (zfzo)kJrle)(w 20)"~.

Note that all we used is that D < U and |w — 29| < |z — 20| since w € D and z € D.
Hence the computation is valid for any e < dist(z, oU).

(ii) Let 290 € Z(f) and f # 0 near zo. By (i) we can write f(z) = (2 —2¢)"g(z) with
9(z0) # 0 and m > 1 unless f = 0 near z in some open neighbourhood V of zj.
Hence g(z) % 0 for z sufficently close to zg, so that Z(f) nV = {z0}. So whenever
Z(f) has an accumulation point a, then f must vanish identically near that point.
Since a power series around zq is identically zero on D (zg) if its zero set has an
accumulation point (see for instance [Pd, 9.40]). This entails that f = 0on U if U is
connected. Indeed, let f = 0 on V, near the accumulation point a and let z € Z(f).
Choose a curve u : I :=[0,1] — C from a to z and let ¢ < dist(Imw, 0U). Then f
vanishes on D.(zg,€). If w € D.(20, €)nImw, then f vanishes on D.(zg,€)uD.(w,¢€).
Since Imu is compact we find after a finite number of steps that z lies in a disc
of radius € on which f vanishes. Hence Z(f) is open. Since it is closed for f is
continuous, Z(f) = u for U is connected. O

12. Remark.
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(i) Because of (i) of the previous corollary one uses the terms “complex analytic”
and “holomorphic” interchangeably. Note that in particular, a holomorphic
function is automatically C* (which also immediately shows that there are
C' functions which are not holomorphic).

(ii) If U is connected, then O(U) is an integral domain.

13. Corollary (mean value inequality). For all f € O(U) we have |f(w)| <
max.cop, (w) | f(2)| whenever 0D (w) < U.

Proof. From Cauchy’s theorem we immediately get that

2m
|f(w)| < 1 JD( ’f(z) |dz:i fw+ee)dt < max |[f(2)|.

= 21 J; (w) 2T W 27 0 z€0D (w)

14. Corollary (holomorphic functions are open). Let f € O(U) be noncon-
stant and U connected = f is open, i.e. images of open sets are again open.

Proof. We proceed in two steps.

Step 4. Let D be an open disc around w € U whose closure D is contained in U, and
such that min,eop | f(2)| > | f(w)| = there exists zo € D with f(zy) = 0. If not, there
exists an open neighbourhood V of D where f(2) # 0 so that g := 1/f|v € O(V).
By assumption, max,esp |g(2)| < |g(w)| which is impossible by the mean value
inequality.

Step 5. Conclusion. Let z € D. We need to show that there exists ¢ > 0 such
that D.(f(z)) < f(D). Since f is not constant, there exists § > 0 such that
f(2) ¢ f(0Ds(z)). (Otherwise, there would exist for any § > 0 an element z5 € 0Dy
with f(z) = f(zs) which by the Identity Theorem implies f = const on U, a
contradiction.) For such a ¢ we define 2¢ := min,eop,(2) [f(w) — f(2)| > 0. Now
for all w e dDs(z),

ve De(f(2) = |f(w) —v| = |[(fw) = f(2)| = [f(z) —v] > 2e —e> e

Hence minyeop,(z) |f(w) —v| > € > |f(2) —v[. By the first step this yields a
20 € Ds(z) such that f(z9) — v = 0, whence f(z9) = v € f(Ds(z)).

O

15. Corollary (maximal principle). If for f € O(U), z € U is a local mazimum
of |f|, then f must be constant.

Proof. Let z € U be such that |f(z)| = | f(w)| for all w € D := D(z) < U. But then
f(D) is not open, for if it were, there would exists a disc Ds(f(z)) < f(D) and thus
f(w) € Ds(f(z)) with we D and |f(w)| > |f(2)|. Hence f must be constant. [

16. Corollary (Liouville). If f is entire, i.e. f € O(C) and bounded =
f = const.
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Proof. Assume that |f(z)] < M for all z € C. If w € C and ¢ > |w| we have from
Cauchy that

1 1 1 w f(z)
fw)— f(0) = — f(z —fdz=—,f ————dz.
(w) 0) 273 Jops(0) ( )(z—w z) 2mi Jop,(0) 2(2 — w)
It follows that |f(w) — f(0)] < |w|max;—s gﬁ?)ll < |w|M max, ;s ﬁ Now
|z —w| = ||z — |w|| = § — |w]| so that finally,
|w] - M
- <
) - 0 < S
Since we can choose ¢ arbitrarily big, f(w) = f(0). O

17. Remark. The previous statement is obviously false for smooth functions as
the existence of cut-off functions demonstrates.

18. Holomorphic logarithm. A final aspect of holomorphic functions we want
to discuss is the existence of holomorphic logarithms. By definition, a holomorphic
logarithm of a holomorphic function f € O(U) is a holomorphic function log g which
satisfies exp(logg) = g. To illustrate the problem, consider the identity function
z = re'®8(2) where arg(z) € [0,27) gives the argument of z, i.e. its angle for
standard polar coordinates (r, ¢) of R? =~ C (with the convention that arg(0,y) = 0
for y > 0). If for z + 0 we define log z = log r + i arg(z), then obviously exp(log z) =
re'®e(#) — z and by the local injectivity of exp we know that this is the only
solution if we restrict to suitable small domains and ranges of the functions involved.
However, we cannot define log z globally on C* for going around the origin once
shows that arg(z) is not continuous — the limit lim,_,2,_ arg(re’?) = 0, not . We
therefore can only take holomorpic logarithms of holomorphic functions f : U — C
defined on simply-connected domains such that f(z) £ 0 for all z € U, for instance
by taking a small disc around any z where f is defined with f(z) # 0. Once we have
defined holomorphic logarithms we can also define holomorphic roots, for instance

Vf = exp(3log f) etc.
Next we will consider singularities of holomorphic functions.

19. Definition (singularities of holomorphic functions). If f e O(U\{z0}),
then zq is called a singularity of f. If f is bounded near zg, then the singularity is
called removable. If there exists m € N such that (z — z9)™ - f(z) is bounded near
zo, and if m is taken to be minimal with this property, then z is called a pole of
order m of f. In all other cases, f is called an essential singularity.

We investigate these types of singularities next. First we characterise removable
singularities.

20. Theorem (Riemann’s removable singularities theorem). Let f €
O(U\{z0}), and zo € U be a singularity. Are equivalent:
(i) zo is removable;
(ii) lim, 00 (2 — 20)f(2) = 0;
(iii) f extends to a continuous function on all of U;
(iv) f extends to a holomorphic function on all of U.

21. Remark. Note that the extension, if it exists, is uniquely determined by the
Identity Theorem A[20]
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Proof. Up to a translation we may assume without loss of generality that zg = 0 and
put U* = U\{0}. Tt is clear that (iv) = (iii) = (i1) = (¢) and (i) = (ii) = (i4i).
We are now going to prove the nontrivial direction.
(i)=>(iv): Let g(z) := zf(z) on U'imes and g(0) := 0. By assumption, g is
continuous in 0, hence on all of U. Moreover, h(z) := z2g(z) € C°(U) n O(U*), and
h(0) = 0. It follows that

M) —hO0) _ B

z z

so that h is holomorphic with A’(0) = 0 and hence analytic near 0, i.e.

[e¢] 0
h(z) = Z a;z' = 2* Z aip02' = 22 f(2).
i=1 i=0

It follows that Z?OZO ai+27" is the desired holomorphic extension of f. O

Next we consider the case of poles.

22. Proposition (characterisation of poles). Let f € O(U\{z0}), 20 € U be a
singularity, and n be an integer = 1. Are equivalent:

(i) f has a pole of order n at zo;
(i) there is a function g € O(U) with g(z9) £ 0, and such that

f2) = e

(z — zo)"
(iii) there is an open neighbourhood V' of zy in U and h € O(V) without zeroes on
V\{z0}, with a zero in zog of order n, and such that f = 1/h on V\{zo};

(iv) there is a neighbourhood V' of zg lying in U and positive constants ¢, C such
that for all z € V\{zo}

e < |f(2)llz - zl" < C.

In particular, the function O(U\{zop}) has a pole at zo if and only if lim,_,,, f(z) =
0.

Proof. Let U* = U\{z0}. Again we assume for simplicity that zo = 0.

(i)—(ii) Since z"f € O(U*) is bounded near zy we can remove the singularity
and obtain a holomorphic function g(z) = 2"f(z) € O(U). If g(0) = 0, then
g(2) = 23(z) with g € O(U) which implied that §(z) = 2”71 f(z) on U* so that
2"~1f(z) would be bounded near zg — a contradiction to the minimality of the pole
order n.

(ii)=(iii) Since g(0) * 0, g does not vanish on a neighbourhood of 0. Thus h(z) =
2™/g(z) yields the desired function.

(iii)=(iv) On a suitable neighbourhood V" of 0, h(z) = 2™h(z) for h e O(V) with
h(0) # 0. Hence there exist constants ¢ and C' such that ¢ < |h(2)| < C. Since
|f(2)]7t = |z|™|h(2)], the claim follows.

(iv)=(i) By assumption, 2™ f is bounded. Furthermore, |z|™~1f(z)| > C/z which
shows that 2™~ !f is not bounded near zy = 0, whence m is minimal and equals
the order of the pole. O
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23. Proposition (development into a Laurent series with finite principal
part). Let f € O(U\{z0}), and let zy be a pole of order n. Then there exist complex
numbers by, ..., b, with b, + 0, and a holomorphic function f € O(U), such that

bm bm. bm

G-z oz T mﬂ(z), z € U\{z0}.

fz) =

The numbers b; and the function f are uniquely determined. Conversely, any func-
tion of this form has a pole of order n at zy.

Proof. By (i) of Proposition AR2 f(z) = g(2)/(z — 20)™ on U\{zo}, where g €
O(U). Hence g is analytic around zg, and developping into a series around z( yields
the Laurent series of f. The remaining assertions are clear. O

Finally, we characterise essential singularities.

24. Theorem (Casorati-Weierstrass). Let f € O(U\{z0}), and z0 € U be a
singularit. Are equivalent:

(i) zo is an essential singularity;
(ii) for every neighbourhood V. U of zy, the image f(V\{z0}) is dense in C;
(iii) there exists a sequence z, in U\{zo} with lim z,, = 2q, and such that the image
sequence f(z,) has no limit in C U {o0}.

Proof. Let as above U* := U\{zp}. We prove the nontrivial assertion (i)=-(ii) by
contradiction. Assume therefore that there exists no such neighbourhood V' of zg
in U, that is, there exists a disc D := D.(a) < C such that D n f(U*) = . In
particular, | f(z) — a)| > r so that the function g(z) := 1/(f(z) — a) is holomorphic
and bounded on U*. Therefore, the singularity of g in zy is removable. Thus
either f(z) = a+ 1/g(z) has a removable singularity if g(zp) + 0, or it has a pole if
g(z) = 0. However, we assumed zy to be essential, contradiction! O

25. Example. Using Proposition A2 it is easy to see that exp(1/z) has an
essential singularity at z = 0.

It is actually desirable to allow poles which gives rise to the following definition.

26. Definition (meromorphic function). A function f is called meromorphic
on U if there is a discrete subset P(f) < U, the pole set, such that U\P(f)
is holomorphic in U\P(f) and has a pole at any zy € P(f). In particular, a
meromorphic function on U is holomorphic if and only if P(f) = . We often set
f(2) := oo for z € P(f) and consider a meromorphic function as a map f : U —
C u {0} = PL.

27. Examples.

(i) Let g, h € C[z] be two polynomials. Then f = g/h is a meromorphic function
whose pole set is given by the zero set of h. We call f also a rational
function.

(ii) The cotangent function cot z = cos z/sin z is meromorphic, but not rational.
Indeed, it has pole set P(cot z) = Z(sinz) = 7Z which is countably infinite.
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To discuss further existence theorems of holomorphic and meromorphic functions we
first introduce the order function. If f € O(U) is not identically zero, then there
is a minimal natural number v, (f) such that f(z) = f'(z) = ... = f(mV(2) =0
and f™ £ 0. If f = 0 we put v,(0) = c0. We extend this to the case of meromorphic
functions by letting v, (f) = —m if 2z is a pole of f of order m. Thus if f and g are
meromorphic on U,
(i) f is holomorphic at z € U < v.(f) < 0. In this case, f(z) =0 < v,(f) > 0.
(ii) Vz(fg) = Vz(f) + Vz(g)'
(iii) v,(f + g) = min{v,(f), v.(g)} with equality whenever v,(f) + v,(g).
We have two classical existence results.

28. Theorem (Weierstrass). Let U < C be open, and let S < U be a discrete
subset, and o : S — Nsqg be a given function. Then there exists f € O(U) with
Vo (f) = o(a) for all a € S. Put differently, we can always construct holomorphic
functions with given zeroes of any order.

29. Theorem (Mittag-Leffler). Let U < C be open, and let S < U be a discrete
subset. Then there exists f € M(U) with P(f) = S and such that the Laurent series
of f has any given prinicipal part at that point.

We give (at least partial) proofs in Section see also [Fo, Theorems 26.3 and
26.7]. Weierstrass’ theorem is actually a corollary to the Weierstrass Factorisation
Theorem.

It is clear that we can add and multiply meromorphic function over U in a natural
way, namely by adding or multiplying the holomorphic functions outside the pole
set and by computing the new pole set of the result; P(ftg), P(f-g9) < P(f)uP(g).
Moreover, we can also divide by meromorphic functions. This turns M(U) into a
C-algebra. If f € M(U) its zero set Z(f) is discrete. Now on U\(P(f)u Z(f)), [ is
holomorphic without zeroes, so that 1/f is defined and also holomorphic. Moreover,
20 € Z(f) becomes a pole of 1/f of same order as the zero of f. Moreover, since for
z0 € P(f), (20 — 2)™ f(z) is bounded for some m, lim,_,,, 1/f(z) = 0 so that 1/f
has a removable singularity in z. It follows that M(U) is actually a field. In fact
we have the

30. Proposition. Let U < C be connected. Then M(U) = Quot O(U), that is,
M(U) is the quotient field of the integral domain O(U).

Proof. It is clear that Quot O(U) <« M(U). Conversely, let f € M(U). By the
Weierstrass Factorisation Theorem A[28] we can find a holomorphic function h €
O(U) whose zero set is precisely P(f) and such that v,(g) = —v.(f). In particular,
if g=h-f, we have v,(g9) = v,(g9) + v(f) < 0 so that g € O(U). Hence f = g/h €
Quot O(U). O

Finally, we mention how zeroes and poles can be detected by integration. Let
f € M(U) be a meromorphic function, and let D be any disc in U containing
finitely many poles and zeroes of f. We let Zp(f) = ZpED,op(f)>O op(f) and
Pp(f) = ZpED,Op(f)<0 op(f) the total order of zeroes and poles of f in D, that is,
the number of zeroes and poles counted with multiplicity. As a corollary to the
so-called residue theorem [P3l Section 9.8] we obtain
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31. Rouché’s formula. If f € M(U) and D is any disc in U containing finitely
many zeroes and poles of f =

1 f'(2)

2mi Jop f(2)

dz = Zp(f) — Po(f).

APPENDIX B. COVERING SPACES

In this appendix we summarise, mostly without proof, the basics of homotopy
theory and covering spaces. For details see [Fol Chapter 1, §3-§5] or [Ful Chapter
11-13]. Here, X will denote a topological space.

The fundamental group. A (parametrised) curve is a continuous map
w:l:=1[0,1] c R - X. u(0) € X is called the initial point and u(1) € X
the final point. We say that u joins u(0) to u(1). A reparametrisation is a
continuous map ¢ : I — I such that ¢(0) = 0 and ¢(1) = 1. The curve u o ¢ is
called a reparametrisation of u. They have, of course, the same image, so be careful
to distinguish between the locus of points defined by imu and the map u itself.

1. Definition (homotopy of curves). Two curves v and v : [ — X from a € X
to b € X are called homotopic, and we write u ~ v, if there exists a homotopy
or deformation, i.e. a continuous map H : I x I — X such that for all s, t € I we
have

H(0,8) =a and H(1,s) =b;
see also Figure B[7]

FIGURE 7. Homotopy of the curves ug and wuy

2. Lemma [Fol Theorem 3.2 and Lemma 3.3]. Homotopy defines an equivalence
relation on the set of curves between two given points a and b in X. In particular,
u is equivalent to any of its reparametrisations. We write [u] for this equivalence
class.
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Next we aim to define a group structure on the set of closed curves, i.e. curves
w: I — X with u(0) = u(1).

3. Definition (product of curves, inverse and constant curves). Let u :
I — X be a curve from a to b.

(i) fv: I — X is a curve from b to ¢, then the product curve u=v: I — X is
defined by

[ w2t for 0 <t<1/2
(uv)(t) = { v(2t—1) for1/2<t<1

(ii) The inverse curve v~ : I — X is defined by
u” (t) :=u(l —t) for every t € I.

(iii) The constant curve at a is the curve u, : I — X defined by ug(t) = a for
alltel.

(iv) The curve u : I — X is null-homotopic if it is homotopic to the constant
curve at u(0).

Note that taking products or the inverse is compatible with the relation of homo-
topy, that is,

Up ~ V1, Uy~ Vg =>Up *Up ~ U *Uy and U] ~ Uy .

We are now prepared for the

4. Theorem and Definition [Fol Theorem and Definition 3.8].  Let X be
a topological space and a € X is a point. The set m(X,a) of homotopy classes
of closed curves at a forms a group under the product and inverse as defined in
Definition B[3 This group is called the fundamental group of X with base
point a.

A priori, the fundamental group depends on the base point. However, if a and b
are two points in X which are joined by a curve u, then we can define a group
isomorphism

Ty :m(X,a) > 7 (X,0), [v]— [u” *v=*u]

This motivates the following

5. Definition ((locally) arcwise connected). X is arcwise connected if
any two point can be joined by a curve. An arcwise connected space is connected,
the converse is true if X is in addition locally arcwise connected, that is, every
point has a neighbourhood basis of arcwise connected sets. Since for an arcwise
connected space, the fundamental group is determined up to group isomorphism we
usually speak of the fundamental group of the arcwise connected space and write
1 (X)

6. Example. A Riemann surface is always locally arcwise connected for it has
neighbourhoods homeomorphic to R2. Since they are connected, they are automat-

ically arcwise connected.

7. Definition (simply connected). An arcwise connected space X is called
simply connected if its fundamental group 71 (X) is trivial.

8. Examples.
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(i)

(iii)
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A subset X < R” is star-shaped with respect to a € X if for every
point b € X, the line segment ta + (1 — )b, ¢t € I, is contained in X, see
Figure B In particular, X is (arcwise) connected. If X is star-shaped, then
X is simply connected. Indeed, if u is a closed curve at a, H : I x I — X,
H(t,s) = sa+ (1 — s)u(t) is a homotopy from u to u,. In particular, C =~ R?
or any slitted plane such as C\R > 0 are simply connected.

The Riemann sphere is simply connected. Indeed, let u be a closed curve, say
at o0 = [0 : 1]. If u is contained in U; < P!, then we can deform u into u,, for
U, is star-shaped. If not, we factorise u = uy * ... * u, by subdividing I into
smaller intervals and reparametrising the resulting curves, so that the uog, 1
lie entirely in U; and wusy lie entirely in Uy. Now we can slightly deform the
curves ugy, into Ugg so that they lie in Up\{[1 : 0]} < U;. Hence u can be
deformed to w' = w; *@Ug *. .. which lies in Uy and is therefore null-homotopic.
The torus is not simply connected. In fact, m(Th) =~ Z[a] @ Z[5], where
the curve n[a] means winding round n times «, and similarly for [3], see
Figure B@ and Appendix |C| (recall that T} is homeomomorphic to S* x S,

cf. Remark .

FIGURE 8. A starshaped domain in the plane

FIGURE 9. The generators a and 8 of the fundamental group of the torus
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The previous example immediately implies that T cannot be homoemorphic to P!
for the fundamental group is a topological invariant.

9. Definition (pushforward map). Let f: X — Y be a continuous map
between two topological spaces. Then we define the pushforward of f by

feim(X,a) = (Y, f(a),  falu] =[fou].
This is indeed well-defined and satisfies (f o g)x = fx 0 g« (see [Fol 3.15]).

10. Application: The fundamental group is a topological invariant. It
follows that if f is a homeomorphism, then fy and f; ' are defined, and Idy, (x,0) =
(f~Yof)s = fi'o fs, and similarly for m (Y, f(a)). Hence fy and f; ' are group
isomorphisms which are inverse to each other. In particular, the two fundamental
groups must be isomorphic.

Lifting of curves and covering maps. One is often confronted with the
following lifting problem: Given two continuous maps p: X — Y and f: Z —> Y,
when does there exists a (unique) map g : Z — X such that pog = f?

Iy
This question leads to an important subclass of homeomorphisms, namely covering
maps. Since we are mainly interested in applications to Riemannian surfaces we
will assume that X and Y are Hausdorff spaces which slightly simplifies the
presentation. While existence of lifting is a subtle issue, uniqueness holds if p is a
local homeomorphism:

11. Proposition (uniqueness of liftings) [Fo, Theorem 4.8]. Letp: X — Y
be a local homeomorphism, and let f : Z — Y be a continuous mapping from some
connected topological space Z. If g1 and go are two liftings of f in the sense above
which agree in one point, i.e. gi1(z) = g2(z) for one z € Z, then g1 = gs.

To discuss existence we first consider a special case.

12. Definition (curve lifting property). A continuous map p : X — Y is
said to have the curve lifting property if for every curve u : I — Y and every
point @ € X there exists a lift @ : I — X such that @(0) = @ and poa = u. (By
Proposition B the lift is uniquely determined by a.)

Next we give a criterion when homotopy is preserved under lifts.

13. Proposition [Fol Theorem 4.10]. Let p: X — Y be a local homeomorphism.
Let H:IxI—Y be a (continuous) homotopy with H(0,s) = a and H(1,s) = b,
and let a € X be such that p(a) = a. If all curves us(t) := H(t,s): I - Y can be
lifted to X with initial point a, then fl(t, s) =1, : I x I - X defines a homotopy
between o and @y. In particular, Gs(1) is constant so that iy and Gy have the same
endpoint.

14. Corollary (constant number of sheets)[Fd, Theorem 4.16]. Ifp: X - Y
has the curve lifting property and Y is arcwise connected, then for any two points
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a and be Y, the fibres p~*(a) and p~1(b) have the same cardinality. In particular,
P 18 surjective.

The curve lifting property gives a handy criterion for the existence of lifts of general
maps:

15. Theorem [Fo, Theorem 4.17]. Let p : X — Y be a local homeomorphism
which has the curve lifting property. If Z is a connected and simply connected
space, and f : Z — Y a continuous map, then there exists a lift of f which is
uniquely determined by any choice of points f(a) =b, a€ Z and be X.

It remains to find conditions which ensure the curve lifting property.

16. Definition (covering map). A local homeomorphism p : X — Y is called
a covering map if every point a € Y has an open neighbourhood U such that its
preimage p~!(U) can be represented as
p_l(U) = U Ui7
iel

where the U;, ¢ € I, are disjoint open subsets of X, and all the maps p|y, — U
are homeomorphisms. Any open neighbourhood U with this property is said to
be special. A morphism of covering mapsp: X - Y andgqg: Z - Y is a
continuous map f : X — Z such that the diagramm

s
// \Lp
A
q

Z ——Y.

commutes.

17. Examples.

(i) Consider the holomorphic mapping py : C* — C*, pi(z) = z*. Since the k-th
roots of unity form a discrete finite subset of C* it is clear that py is a covering
map. If we holomorphically extend p; to a map C — C by sending 0 to itself,
then 0 is a ramification point (considered as a point in the domain) as well as
a branch point (considered as a point in the range). Its ramification index is
k — 1 and its multiplicity is k.

(ii) The holomorphic exponential exp : C — C*, exp(z) = X, _, 2"/k! is an un-
branched holomorphic covering map. Indeed, exp is injective on every subset
U < C such that no two points zy and z; differ by an integer multiple of 27i.

(iii) In a similar vein, the projection map 7p : C — T} is an unbranched holomor-
phic covering map.

18. Remark. Let D = {z € C| |z| < 1} be the open unit disk in the complex
plane, and let p : D — C be the canonical injection. Then p is a local homeomor-
phism, but not a covering map for any point z € C with |z| = 1 has no special
neighbourhood.

19. Proposition (local homeomorphisms and covering maps) [Fd, Theo-
rems 4.14 and 4.22]. Every covering map p: X — Y has the curve lifting property.
Conversely, if Y has a basis of simply connected open sets (e.g. Y is a Riemann sur-
face), then a local homeomorphism which has the curve lifting property is a covering
map.
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20. Application: Logarithm of a holomorphic function. Let X be a simply
connected Riemann surface and f : X — C a nowhere vanishing holomorphic
function. A logarithm of f is a function g : X — C such that exp(g) = f for the
holomorphic exponential exp : C — C*. This can be expressed in terms of liftings:

7
i - lexp
7f
X ——C*.
By Proposition B[TF| a lift g exists which is clearly holomorphic since exp is a
covering map. Moreover, it is uniquely determined by points x € X and z € C such
that f(x) = exp(z), namely g(z) = 2.

Another condition which ensure that a local homeomorphism is a covering map is
properness.

21. Definition (proper map). A topological space is locally compact if
every point has a compact neighbourhood. A continuous map between two locally
compact spaces is proper if the preimage of any compact set is again compact. In
particular, any proper map is closed, for in a locally compact space a set is closed
if and only if the intersection with every compact set is compact.

22. Proposition. Let p: X — Y be a local homeomorphism. Then p is proper <
p s a covering map with finite fibres.

Proof. =) See [Fd, Theorem 4.22].

<) We briefly sketch the converse. A closed continuous surjective map p: X — Y
is called perfect if it has compact fibre. Any such map is proper (cf. [Mul Exercise
12 §26]) so we only need to show that a covering map with finite fibres is closed.
Let S © X be closed and consider f(S) c Y. In general, a set A is closed if and
only if there is an open covering {U; };cr of the total space such that U; n A is closed
in A. Here, we apply this to f(S) with the covering of Y provided by the special
neighbourhoods U in Definition B[I6] Since a finite union of closed sets is again
closed, the finiteness of the fibres implies that p~!(U) is a finite union of open sets,
whence the result. (]

23. Example. For covering maps with infinite fibres this is false as the example
exp: R — S with S = {n+1/n|neN, n > 1} shows. Indeed, S is closed while
exp(S) accumulates at 1 ¢ exp(.S), hence the exp is not closed. (Of course, one sees
directly that it is not proper).

Universal coverings. In this section we will construct a canonical covering for
a wide class of topological spaces — the so-called universal covering.

24. Definition (universal covering). Let p : X — Y be a covering map
between connected topological spaces (e.g. Riemann surfaces). The p is called the
universal covering map if it satisfies the following universal property: For every
covering map f : Z — Y between connected spaces and any choice of points a € Z
and b € X such that p(b) = f(a), there exists a unique covering map morphism
g: X — Z with g(b) = a.
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It follows from the universal property that such a universal covering space, if it ex-
ists, must be unique up to unique isomorphism, cf. Definition [E]d] and Remark
From Theorem B[IF| we see that if p : X — Y is a covering map between with
X connected and simply-connected, p must be the universal covering (note that if
p:Z — Y is a covering map and Y Hausdorff, then so is Z). The central theorem
in the theory of covering spaces is this.

25. Theorem (existence of the universal covering space). Let X be a
connected space with a basis of simply-connected open sets (e.g. a Riemann surface)
= There exists a connected, simply connected space X and a covering map p: X —

X. X is called the universal covering space of X.

Proof. Fix a(n arbitrary) point 2 € X. Then one constructs X as the set of homo-
topy classes of curves in X with initial point x where the homotopy is defined as
in Definition B[] except that the final point us(1) is not fixed. For details, see [Ful
Theorem 13.20] or [Ful Theorem 5.3]. O

26. Remark. Our assumptions are not the most general, cf. [Ful, Theorem 13.20]

27. Definition (Deck transformation and Galois coverings). Letp: X - Y
be a covering map. A Deck transformation f : X — X is a fibre-preserving
homeomorphism, i.e. po f = p. Composition of Deck transformations gives a group
which we denote by Deck(X/Y'). Since Deck transformations are fibre preserving,
Deck(X/Y') acts on each fibre. If it acts transitively, then the covering is called a
Galois covering.

28. Remark. Note that under the assumptions of Proposition B[IT] the action
of Deck(X/Y") is necessarily free.

29. Example. The covering map p : C* — C*, p(z) = 2z¥, is Galois, since the
group of Deck transformations are just the k-th roots of unity.

30. Theorem (Deck transformations and the fundamental group). Let

X be connected and p : X — X the universal covering. Then p is Galois and
Deck(X/X) is isomorphic with the fundamental group m (X) of X.

Proof. Let & € X such that p(Z) = z, and let v be a representative of the unique
homotopy class of curves in X from & to f(Z). The assignement Deck(X/X) —
m1 (X, ) which maps f to the closed curve fowvy € 7 (X, z) is an isomorphism (see
[Fol, Theorem 5.6]). O

31. Remark. It follows that the universal covering of a manifold X is in fact a
71 (X)-prinicipal fibre bundle, cf. for instance [KoNo, Chapter 1.5].

More generally, we have the following relationship between subgroups of (X, x)
and covering maps.

32. Proposition [Ful Proposition 13.23]. Let Y be a connected topological space
with a basis of simply connected open sets =
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(i) for every subgroup H of w1 (Y,b) there exists a connected space Yy and a cover-
ing map pg : Yg — Y, and a base point a € Xy, such that pgem (Yy,a) = H.
Any other such covering is canonically isomorphic to Yy. In particular, the
functor w1 which associates with a connected space the isomorphy class of its
Jundamental group yields a bijection between subgroups of m1(Y) and (isomor-
phism classes of ) connected covering spaces of Y.

(ii) for every subgroup K containing H, there exists a unique covering map Yg —
Yx which is compatible with the projections. If H is a normal subgroup of K,
then Yy is a K/H -principal fibre bundle over Y, and Deck(Yy /Yk) = K/H.

33. Remark.

(i) In particular, the universal covering Y is just Yi). Note that if p: X -V
is a covering map between connected and locally path-connected topological
spaces, and p(a) = b, a € X, then p, : m(X,a) — m(Y,d) is an injection
so that we can always regard the fundamental group of X as a subgroup of
m1(Y,b) (cf. [Ful Proposition 13.1]). In this way, the theory of covering spaces
of Y matches the internal group structure of 71(Y).

(ii) It is easy to see that if 7 : X — Y is a covering and Y is Hausdorff, then so is
X. Hence if Y is a Riemann surface, then there exists a unique holomorphic
structure on X such that 7 becomes holomorphic (cf. Proposition [1]j40)).

We summarise the situation for a Riemann surface in Figure BJI0] The red colour
designates a normal subgroup.

T(X) X
2 \
K*m l l(""\ TC / /r KX
i ' > X, v K

IV ' T
Wean . for Kem
\! '

AR Rl

F1GURE 10. The correspondence between subgroups and covering spaces.

APPENDIX C. TOPOLOGY OF SURFACES

We recall some elements of the topology of (compact) surfaces and discuss in par-
ticular some topological invariants and their relationship. Since a lot of concepts
are visually clear but quite lengthy to formalise correctly we will mainly appeal to
pictures rather than strict definitions. A good reference is [Ful, Part IX] or [Ki|.
In this section ¥ will denote the toplogical space underlying a compact Riemann
surface.
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1. Theorem and Definition (genus) [Kil 4.14]. X is homeomorphic to a sphere
with g handles (see Figure C[11)). We call g = g(X) the genus of X. It determines
3 up to homeomorphism (and in fact up to diffeomorphism, that is, there is only
one uniquely determined differentiable structure on X).

FIGURE 11. The 2-sphere with two handles attached and curves

Q;, 51‘

The genus is thus the basic topological invariant which so strong that it classifies
surfaces. On the other hand, we have already encountered a basic topological
invariant of any topological space — its fundamental group. In the case of a surface
¥ we can compute m;(X) explicitely. Let Fy, be the free group in 2g generators
ai,...,aq, bi,...,bg, where g is the genus of ¥. Further, let N, be the smallest
normal subgroup of Fy, containing the element

A -1 —1 —1 -1
cgi=ai-by-a; -b] «...~ag~bg'ag 'bg,

ie. Ny ={u-c, -u™' | ue Fy}. Any surface has curves aq,...,a, and B, ..., B,
inducing distinct homotopy classes also denoted by «a; and j3; (see Figure C for
the case g = 2).

2. Theorem [Ful 17.6]. The map Fby — m(X) given by a; — «; and b; — B; for
i=1,...,9 induces an isomorphism

7T1(E) = Fgg/Ng.

Next consider cell decompositions of ¥, and in particular t¢riangulations. Fig-
ure CJI2) shows the standard 0, 1 and 2-simpleces o;, i =0, 1 a d 2.

We also call any continuous map o; — ¥ an i-simplex and denote it, by abuse of
notation, as ;. A triangulation 7 consists of a family of i-simpleces glued along
their edges, see Figures C[I3|and C[I4] Let V, E and F be the number of vertices,
edges and faces respectively.

3. Theorem and Definition (Euler characteristic and triangulations) [Kil
Chapter 4.3], [Kil 5.9 and 5.15]. We can always find a triangulation on %. The
number

xX)=V-E+F
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NPEERVAN

() (L) (c)

FIGURE 12. The standard (a) 0- (b) 1- (c) 2-simplex

is called the Euler characteristic of X and does not depend on T . Moreover, we
have

X(2) =2g9(%) - 2.

4. Examples.

(i) The sphere S2: x(S?) = 2, see Figure CJL3|
(ii) The torus St x S': x(S1 x S') = 0, see Figure C

\\

i1

— 1+
Il
_gC\\J:\

FIGURE 13. A triangulation of the sphere

Finally, we discuss the (co-)homology of surfaces. An i-chain c is a formal finite
linear combination of i-simpleces, i.e.

n
— ]
c= Z a;o;
Jj=1

where a; € Z. We can formally add chains and multiply them by integers. Let C;(X)
the Z-module of i-chains. In order to define a Z-linear differential 0 : C;(X) —
Ciz1(X2), i = 0, 1, we need to introduce orientations. We can orient a 1-simplex
by choosing an initial and a final point. We can orient a 2-simplex by choosing
clockwise or counter-clockwise orientation, see Figure C[15] The boundary do; of
an oriented i-simplex is then the i + 1-chain defined as follows:

P terminal point — initial point, ¢ =1
i9i e(l)e; +€(2)ea + €(3)es 1=2

)
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— (=]

1 dunkdications

= F=U
E=-24
V=4

FIGURE 14. A triangulation of the torus

where ej 23 are the (oriented) edges of o2 and where €(i) is + or — according
to whether or not the direction of the edge e; is consistent with the direction
of o9. We extend 0 linearly to all of C;(X) so that ¢; becomes a Z-linear map
CH_l(E) - 01(2)

(@ vt
A Z
= -
T A
3
<
Do'= b o
b L *x DO’Z-'Yt/] 124—_63

F1GURE 15. The boundary of the standard 1- and 2-simplex

5. Theorem 6.10]. 0;4100; =0, i.e. the boundary of a boundary chain is 0.
We also say that Cy LA Cy LA Cy defines a complex.

For the next definition we extend the complex 0; : C; — C; 41 by 0, i.e. we consider
the complex

0%0220121)00—»0

By the previous theorem, im 0;;1 < ker d;. We can therefore define:
6. Definition. The Z-module

HZ(E, Z) = ker (91/ im 6i+1
is called the i-th homology group of X.
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This is again a topological invariant of ¥. It can be computed as follows.

7. Theorem [Kil 6.20, 6.24 and 9.17].
(i) Ho(%,2) = Z, Hy(X,Z) =~ Z;
(i) Hi(2,Z) = 7 (2)/[71(2), 71(X)] = 2293, where [m1(X), 71(X)] is the sub-
group of m1(X) generated by elements of the form [a,b] = aba=1b~!.
In particular, x(X) = dimg Ho(2,Z) — dimg Hy (X, Z) + dimg, Hy (%, Z).

8. Remark. Instead of Z we could take coefficients in any other (commutative)
ring. In particular, if we take any other field k, then the previous theorem holds with
Z being replaced by k (this is false if we consider homology on general topological
spaces).

We can also consider the dual complex

000 =S v —or T 2 mof .
Then d; 1 od; = 0 and we can define the cohomology module
H(%,7) = kerd;/imd;_;
(see also [MiStl Appendix A] for a short introduction).

9. Theorem |[MiStl, A.1]. We have
H(%,7Z) = Homg(H;(%,Z), 7).
In particular, H'(2,Z) = Homg(m1 (X)), Z).

10. Remark.

(i) In general, only the defining complex of cohomology is dual to the complex of
homology. The cohomology modules are not dual to the homology modules
for general topological spaces.

(ii) As for homology we can replace Z by the fields Q, R and C.

(iii) Homology and cohomology can be defined more generally for any topological
space (though it might be a difficult invariant to compute), in particular non-
compact surfaces. The only result we need in this course is that H?(%,Z) = 0
for any noncompact surface.

APPENDIX D. FIELD EXTENSIONS

A field extension is an embedding k£ < K of the ground field k into some bigger
field K (note in passing that any nontrivial k-linear map between fields is ncessarily
injective). In particular, we may view K as a k vector space; it is customary to
write K /k for the field extension and [K : k] for dimy K, the degree of the field
extension, but we will not do that. There are several types of field extensions which
are important for us. A good reference is [Bal.

1. Definition (finite and algebraic field extensions). A field extension
k < K is finite if the dimension dimy K < 4+00. Moreover, k ¢ K is algebraic if

for any o € K there exists f € k[z] such that f(a) = 0.

2. Proposition. A finite field extension is algebraic.
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Proof. Indeed, if a € K, then there must be an n so that {1, a, a?,...,a"} becomes
linearly dependent over k, that is a™ = Z?;Ol a;a'. We let k[a] denote the subring
of K generated by k and a, that is, k[a] = {ZZ:OI a;x' | a; € k}. Since this
is an integral domain and k[z] Euclidean, so in particular a PID, the kernel of
k[z] — k[a], X — «, must be a principal ideal, so ker = (f) for an irreducible
element f. In particular, (f) is maximal so that k[a] = k(a) := Quot k[«] is
actually a field. Moreover, dimy k(a) = deg f. Indeed, k[z] is Euclidean so that
g = qf + r with uniquely determined polynomials degr < deg f. It follows that
equivalence classes 1,Z,%2,...,2" ! form a k-basis of k[x]/(f) = k(«). O

3. Remark. If in the proof of the previous proposition we normalise the polyno-
mial f so that it is monic, i.e. f = 2™ + ap_12" 1 + ... + ag, then f is called the
minimal polynomial of & and is uniquely determined. In general, if f € k[x] is
irreducible, then k& < k[z]/(f) is a finite extension in which f has a root.

4. Examples.

(i) Let k =R and f = 2% + 1, then C = R[z]/(z? + 1).

(ii) @ = {a € C | « algebraic over C} be the algebraic closure of Q. Then
Q(3/3) = Q has minimal polynomial X™ — 3 since it is irreducible by Eisen-
stein’s criterion. It follows that dimg Q(%/3) = n. In particular, dimg Q = oo
which shows that algebraic extensions need not be finite in general.

As the first example shows, a field k need not be algebraically closed, i.e. there
are polynomials f € k[z] which do not admit a root in k. However, we have the
following

5. Theorem (existence of the algebraic closure). For any field k there exists
an algebraic field extension k < K such that K is algebraically closed field.

Proof. See [Bol, Theorem 3.4.4]. O

Item (ii) in the previous example can be generalised as follows:

6. Definition. If k is a field and K an algebraically closed field so that k < K is
algebraic, we call

k ={ae K | a is algebraic over k}
the algebraic closure of k. The field k is determined up to isomorphism which
restricts to the identity on k (cf. [Bol Corollaries 3.4.7 and 10]).

7. Definition (Galois extensions). A field extension k¥ ¢ K is normal if any
irreducible polynomial f € k[z] which has a root in K splits into linear factors in
K|[z]. Further, k ¢ K is called separable if it is algebraic and every a € K is the
root of a separable polynomial in k[z], i.e. a polynomial whose roots are simple.
A field extension is Galois if it is normal and separable. In this case, the group
of automorphisms of K which leave k fixed is called the Galois groupof the field
extension k£ < K and written Gal(K/k).

The central theorem of Galois theory is this:

8. Theorem (Galois). Let k ¢ K be a finite Galois extension = there is
a correspondence between subgroups of Gal(K/k) < fields k ¢ L < K. More
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precisely, given H c Gal(K /k), L is the field fived by the endomorphism o : K — K
in H  Gal(K/k) while given a field k ¢ L ¢ K we get the subgroup Gal(K/L).

Proof. See [Bol Theorem 4.1.6]. O

Next we consider separable field extensions.

9. Definition. A field k is called perfect if any algebraic field extension of k is
separable.

In characteristic 0 every algebraic field extension is separable [Bol Remark 3.6.4],
since any irreducible polynomial over a field of characteristic 0 is separable [Bol,
Proposition 3.6.2]. Hence any such field is perfect. Further examples are finite
fields or algebraically closed fields are also perfect. One of the main features of
finite separable extensions is the

10. Theorem of the Primitive element. If k ¢ K is a finite separable field
extension, then there exists a so-called primitive element o € K such that K =
k(o).

Proof. See [Bol, Proposition 3.6.12] O

Next we consider non-algebraic field extensions.

11. Definition (transcendence base). Consider a field extension k < K.
Elements aq,...a, € K are algebraically independent if the natural surjection

klz1,...,2n] = klag,...,an] € K >0

sending x; to a; is actually an isomorphism of k-algebras, that is, we have an injec-
tion k[x1,...,z,] — K sending z; to a;. Put differently, if there is a polynomial
relation of the form f(ai,...,a,) =0 for f € k[z1,...,z,], then f = 0. A family
B = {a}ier is algebraically independent if the previous definition applies for any
finite subset of %B. If in this case the field extension k(B) < K is algebraic, then
A is called a transcendence base. If K = k(%) for some transcendence base, we
call the field extension k ¢ K purely transcendental. A finite field extension of
a purely transcendental one defines a so-called function field.

Any field extension k < K can be factorised into a purely transcendental field
extension k < k(B) < K, where the latter field extension is algebraic:

12. Proposition and Definition (transcendence degree). Any field extension
k c K admits a transcendence base. Any two transcendence bases have the same
cardinality which we call the transcendence degree and write trdeg; K.

Proof. See [Bol Proposition 7.1.3 and Theorem 7.1.5]. O

13. Proposition (Zariski’s lemma). Let k < K be a field extension, where K
is a finitely generated k-algebra. Then k < K is a finite field extension.
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Proof. Let K = k[aq,...,a,]. If K is algebraic over k, we are done. So assume
otherwise and relabel the «; in such a way that z1,...,z, are algebraically inde-
pendent over k, and z; are algebraic over the field L = k(a,...,q;,). Hence K is

a finite algebraic extension of L and therefore a finite L-module. By Noether nor-
malisation, L is a finitely generated k-algebra, that is, L = k[f1, ..., 8s]. But this
can only happen if L = k. To see this rigourosly, we note that each 3; € L so that
Bi = fi/g; for polynomials f; and g; in 21,...,z,. Now there are infinitely many
irreducibles in the factoriel ring k[x1,. .., x| (there are infinitely many primes just
by the same argument as for Z). Hence there is an irreducible polynomials which
is prime to any of the finitely many g; (for instance, take h = g1 - ... gs + 1
would do). Therefore, h~! € L cannot be a polynomial in the y; (clear the common
denominator and multiply by k). Contradiction. O

Do not confuse the notion of a finitely generated k-algebra K with a finitely gen-
erated field extension k < K. If K is a finitely generated k-algebra, then there
exist o; € K such that K = k[, ..., a,]. The previous proposition then says that
no subset of these generators is algebraically independent. If kK < K is a finitely
generated field extension, then K = k(a,...,a,) where we can label the «; in
such a way that «q,...,a, form a transcendence base so that k(ay,...,a,) ¢ K
is an algebraic, in fact finite extension of the purely transcendental field extension
kck(ar,...,am).

14. Proposition and definition (separably generated field extensions).
A field extension k — K is separably generated if there is a transcendence base
B such that k(B) c K is a separable algebraic extension. In this case, B is called
a separating transcendence base. For a finitely and separably generated field
extension k < K = k(ay,...,a,) the set of generators {a;} contains a separating
transcendence base.

Proof. See [Bal, Proposition 7.3.7] O

15. Proposition (perfect fields and separably generated field extensions).
If k is a perfect field, any finitely generated field extension k < K is separably
generated.

Proof. See [Bol, Corollary 3.7.8]. O

APPENDIX E. CATEGORY THEORY

We discuss the basic notions of category theory. For a further development see for
instance [GeMa).

1. Definition (category). A category C consists of the following data:

(i) A class of objects ObC;
(ii) for any two objects A, B € ObC a set Mor¢ (A, B) of morphisms. We denote
an element of Mor¢ (A, B) usually by A — B.

Furthermore, for any three objects A, B and C € C there exists a map
o: Mor¢(A, B) x Mor¢(B,C) — More(A,C), (f,g) —gof
such that Mor¢(A, B) is a monoid, i.e.
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(i) o is associative, i.e. (go f)oh =go (foh);

(ii) for all A € ObC there exists a morphism Idy € Morc(A, A), the so-called
identity of A such that for all B € ObC and for all f € Mor¢(A; B) and
g € Mor¢(B, A) we have

folda=f and Idgog =g.

To simplify the notation we often write Mor instead of Morc. A category C is small
if ObC is a set.

2. Definition (isomorphism). Let C be a category. A morphism f €
Mor¢ (A, B) is called a (categorical) isomorphism if there exists g € Mor¢ (B, A)
such that gof =1d4 and fog = Idg, that is, f has a two sided inverse. In this case
we also write g = f~!. If C is small, then being isomorphic defines an equivalence
relation on ObC and we denote by Iso(C) the set of equivalence classes.

3. Examples. (see also [GeMal, Section I1.§1.5] for examples.)

(i) The basic example is the category SET of sets with maps as morphisms. Note
that there is no set of sets (cf. Russell’s paradoxon) which is why the objects
form a class, not a set. On the other hand, Morggr(A4,B) < A x B is of
course a set. Isomorphisms are just bijective maps. Further examples in this
vein are given by algebraic categories such as the category of abelian groups
ABG or A-modules MOD 4 with the corresponding notion of (iso)morphisms
(group morphisms, A-linear (bijective) maps, etc.) or geometric categories
(e.g. category of varieties with (bi)regular maps as (iso)morphisms). This
also explains the general notation A — B for morphisms.

(ii) More exotic examples include the catgeory C(I) of a partially ordered set
I, where ObC(I) = I, and Morc(;)(4,7) consists of one element if i < j
and is empty otherwise. In particular, More(s)(4,4) = {Id;} and an element
f € More(i,7) is an isomorphism if and only if ¢ = j and f = Id;. If X is
a topological space we can consider the category TOP x. Here, the objects
are the open subsets of X (a subset of the power set of X), and Mor(U, V) is
the inclusion if U < V and the empty set otherwise. Again, Mor(U,U) = Idy
and f € Mor(U,V) is an isomorphism if and only if U = V and f = Idy.
Finally, we can consider the category SHEAF x whose objetcs are sheaves on
X, and Mor(F,G) are sheaf morphisms. Here, the notion of isomorphism is
the catgeorical one, i.e. ¢ : F — G is an isomorphism of sheaves if and only if
it has a two sided inverse (cf. Definition ?77.77). The definition of injective and
surjective sheaf morphism was designed in such a way that an isomorphism is
precisely a morphism which is injective and surjective, cf. Exercise 77.77.

4. Definition. An object U of a category is called universally repelling (at-
tractive) if for any other object A there exists exactly one morphism U — A
(A — U). For sake of brievety we also call U simply universal.

5. Remark. It follows immediately from the definition that if U is universal, then
Mor(U,U) = {Idy}, and U is unique up to unique isomorphism.

6. Example.

(i) Let My,..., M, be a finite number of A-modules. We construct a categaory
C as follows. Take r-multilinear maps from f : My x ... x M, — N, where N
is some further A-module, as the objects of our category C. For two objects
f:My x...xM.—> N,g: M x...x M, —> L, let amorphism f — g €
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Mor(f, g) be an A-linear map h : N — L such that g =l o f. Then the tensor
product is a universally repelling object for C.

(ii) Let X be a topological space which admits a universal covering space p : X -
X. This is a universally repelling object in the category of covering maps of X
whose objects are covering maps p : Y — X, and whose morphisms between
two covering maps p: Y — X and g : Z — X are continuous maps f:Y — Z
such that go f = p.

We can also consider “maps” between categories.

7. Definition (functor). For two categories C and D we call F : C — D a
functor an assignement which associates with any object A in C an object F(A) in
D, and for any two objects A and B a map Morc(A, B) — Morp(F(A), F(B)) (F
is covariant) or Mor¢ (A4, B) — Morp(F(B), F(A)) (F is contravariant) taking
f to F(f), and having the following properties:

(i) F(Ida) = Idpay;

(ii) F(fog) = F(f)oF(g) (F covariant) or F(fog) = F(g)o F(f) (F contravari-

ant);
(iii) A presheaf onb X can be regarded as a contravariant functor Topy — AbG.

8. Remark. If F is a covariant (contravariant) functor, we often write fy (f*)
for F'(f).

9. Examples.

(i) The basic example of a covariant functor is the so-called forgetful functor
from a category C to Set which associates with say an A-module its underlying
set,and with an A-linear map its underlying set theoretic map.

(ii) The assignement which takes an A-module M to its dual module MY, and
an A-linear map f : M — N to the dual map f¥Y : NY — MV defined by
FN)(m) = A(f(m)) for all m € M is a contravariant functor.

(iii) Consider the category TOP, of pointed topological spaces (X, a) as objects
together with continuous maps between them as morphisms, i.e. f: (X, a) —
(Y,b) satisfies f(a) = b. The assignement (X, a) — (X, a) = the fundamen-
tal group of X, f : (X,a) — (Y;b) — fx : m(X,a) — m(Y,b) is a functor
between TOP, and GRP, the category of groups.

A useful notion of “isomorphic” catgeories is this.

10. Definition (equivalence of categories). Two small categories C and D are
(covariantly) equivalent if there exists a covariant functor F : C — D such that
F
(i) induces a surjective map on isomorphism classes Iso(C) — Iso(D). Put dif-
ferently, for any object y in D there exists an object x in C with F(zx) is
isomorphic with y.
(ii) full and faithful, that is, for any two objects x1, o in C the induced map
F(x1,22) : Mor(z1,x2) — Mor(F(x1), F(x2)) is surjective and injective.
An analogous definition applies for contravariant equivalent categories.

11. Example. The category of affine varieties over k is equivalent with the
category of finitely generated k-algebras without zero divisors.
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