

Übungsblatt 11 – Lösungen

Aufgabe 1.

Ist $c(\xi) < 0$, so gilt $H^0(X, \mathcal{O}_{\xi}) = 0$. Also ist $\gamma(\xi) = 0$.

Ist $c(\xi) > 2g - 2$, so ist $c(\kappa \xi^{-1}) = c(\kappa) - c(\xi) < 0$, da $c(\kappa) = 2g - 2$ gilt. Also ist $\gamma(\kappa \xi^{-1}) = 0$. Nach dem Satz von Riemann–Roch ist daher $\gamma(\xi) = c(\xi) - (g - 1)$.

Sei nun $c(\xi) = 0$. Angenommen, es sei ferner $\gamma(\xi) > 0$. Dann existiert ein nicht-trivialer holomorpher Schnitt des Geradenbündels ξ . Ferner ist der Grad dieses Schnitts gleich 0, d. h. dieser Schnitt verschwindet nirgends. Folglich ist ξ trivial und es gilt $\gamma(\xi) = 1$.

Sei nun $c(\xi) = 2g - 2$. Dann ist $c(\kappa \xi^{-1}) = 0$. Ist $\xi = \kappa$, so ist $\kappa \xi^{-1} = 1$, also $\gamma(\kappa \xi^{-1}) = 1$ und somit $\gamma(\xi) = g$ nach dem Satz von Riemann–Roch. Andernfalls ist $\kappa \xi^{-1}$ nicht trivial, also $\gamma(\kappa \xi^{-1}) = 0$ und somit $\gamma(\xi) = g - 1$ nach dem Satz von Riemann–Roch.

Sei nun $0 < c(\xi) < 2g - 2$. Da $\gamma(\kappa \xi^{-1}) \ge 0$ gilt, ist $\gamma(\xi) \ge c(\xi) - (g - 1)$ nach dem Satz von Riemann–Roch. Sei ferner $p \in X$ beliebig und sei ζ das Geradenbündel zum Divisor $1 \cdot p$. Dann gelten $c(\zeta) = 1$ und $\gamma(\zeta) \ge 1$, da die Garbe $\mathcal{O}_{1 \cdot p}$ immer einen nicht-trivialen Schnitt s hat (nämlich konstante Funktionen). Durch Multiplizieren eines Schnittes von ξ mit dem Schnitt s von ζ erhalten wir einen Schnitt von $\xi\zeta$, sodass $\gamma(\xi\zeta) \ge \gamma(\xi)$ gilt. Folglich ist $\gamma(\xi\zeta^k) \ge \gamma(\xi)$ für alle $k \ge 0$. Für $k_0 := 2g - 1 - c(\xi)$ gilt insbesondere, dass $c(\xi\zeta^{k_0}) = c(\xi) + k_0 \cdot c(\zeta) = 2g - 1$. Folglich ist $\gamma(\xi\zeta^{k_0}) = g$ nach dem oben Bewiesenen und somit $\gamma(\xi) \le g$. Andererseits ist auch $0 < c(\kappa\xi^{-1}) < 2g - 2$, sodass auch $\gamma(\kappa\xi^{-1}) \le g$ gilt. Daraus erhalten wir $\gamma(\xi) \le c(\xi) + 1$ nach dem Satz von Riemann–Roch.