

Blatt 4

Aufgabe 1: Quasikompaktheit von Spektren

Wir betrachten das Komplement D_a der abgeschlosenen Menge $\mathcal{Z}(a)$ in $X := \operatorname{Spec} A$. Bekanntlich bilden die D_a mit $a \in A$ eine Basis der Topologie von X. Zeigen Sie:

- (i) X ist quasi-kompakt, d.h. jede offene Überdeckung von X besitzt eine endliche Teilüberdeckung;
- (ii) D_a quasi-kompakt;
- (iii) eine offene Teilmenge $U \subset X$ ist quasi-kompakt $\Leftrightarrow U$ ist eine endliche Vereinigung von Mengen der Form D_a .

Aufgabe 2: Tangentialraum einer Hyperfläche

Sei f ein irreduzibles Polynom und $X := Z(f) \subset \mathbb{A}^n_k$ die zugehörige affine Hyperfläche. Sei weiter $a \in X$ und L eine affine Gerade des k^n durch a. Zeigen Sie, dass L genau dann im Tangentialraum T_aX verläuft, wenn a eine mehrfache Nullstelle von $f|_L$ ist.

Hinweis: Beachten Sie dass T_aX als affiner Unterraum von k^n definiert ist.

Aufgabe 3: Aufblasung eines Kegels

Sei $X \subset \mathbb{P}^2_k$ eine glatte projektive Kurve vom Grad mindestens zwei, und sei $C(X) \subset \mathbb{A}^3_k$ der Kegel mit $Spitze\ a := (0,0,0)$ und Aufblasung $\varphi: Y \to C(X)$ in a. Zeigen Sie:

- (i) Der Kegel C(X) besitzt genau einen singulären Punkt, die Spitze;
- (ii) seine Aufblasung Y ist glatt;
- (iii) das Urbild $\varphi^{-1}(a) \subset \mathbb{P}^2_k$ stimmt mit der projektiven Kurve X überein.