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ABSTRACT. It is well-known that a complex polynomial f € C[z] — an algebraic
object — is determined up to scalars in C* by its zero locus, the n zeroes
(counted with multiplicity) in C — a geometric object. This is the simplest
instance of an equivalence between an algebraic and a geometric category. To
make this statement rigourous will occupy us in the first half of this lecture.
In the second half we use algebraic methods to deduce elementary properties
of the geometric objects under investigation.
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0. BASIC COMMUTATIVE ALGEBRA

To keep the prerequesites to a minimum (as covered by the basic algebra courses
LAAGTI & IT and Algebra, see for instance also the books by S. Bosch, Linear algebra
and Algebra, Springer) we will develop the necessary background of commutative
algebra as we go along. This text is essentially taken from

(i) M. Atiyah and I. MacDonald, Introduction to Commutative Algebra, Addison-
Wesley;
(ii) D. Eisenbud, Commutative algebra, Springer;
(iii) A. Gathmann, Commutative Algebra, available at
mathematik.uni-kl.de/agag/mitglieder /professoren/gathmann/notes/;
(iv) M. Reid, Undergraduate Commutative Algebra, Cambridge University Press.

No claim of any originality in the presentation of this material is made. Commuta-
tive algebra is a theory interesting in its own right with various ramifications, see
for instance [Rel, Chapter 0.8] or [Ei, Chapter 1.1]. Here, of course, we are going to
stress the geometric side of the theory.

0.1. Rings and ideals.

Basic ring theory. Unless mentioned otherwise, rings will be commutative and
with unit 1. We denote rings generically by A. A (ring) momorphism ¢ : A — B
is assumed to satisfy ¢(14) = 1p. A subring of a ring shares the same identity
element. Note in passing that we usually only speak of a morphism and leave it to
the context whether it is a morphism of rings, modules, varieties etc. A field is ring
in which 1 4 0 and every nonzero element is a unit. If A and B are rings, the direct
product A x B is the set of pairs {(a,b) | a € A, b € B} with componentwise addition
and multiplication. In particular, if we consider A and B as subsets of A x B via
the embedding @ — (a,0) and b — (0,b), then A- B =0 on A x B. Note in passing
that A and B embedded this way are mot subrings for their respective identity
elements are e; = (1,0) and ez = (0,1) and thus different from (1, 1), the identity
element of A x B. Rather, they form a complete set of orthogonal idempotents, in
the sense that they satisfy e? = e; (idempotency), ejea = 0 (orthogonality) and
e1 + ea = 1 (completeness). In general, if e1,..., e, is a complete set of orthogonal
idempotents in a ring A, then A =~ Ae; x ... x Ae,. If A; is an infinite family of
rings we distinguish between the direct product X A; and the direct sum @ A;.
For the latter, there are only a finite number of nonzero components. For a finite
number of rings both notions coincide.

A zerodivisor x € A divides 0, i.e. there exists y € A\0 such that zy = 0. An
element x € A is nilpotent if " = 0 for some n. In particular, x is a zerodivisor if
A £ 0. A nontrivial ring A is integral if A has no zerodivisors, e.g. A = Z. Recall
in passing that an integral ring has a field of fractions k = Quot A, for instance
Q = QuotZ. An element x € A is invertible or a unit if it divides 1, i.e. there
exists y € A such that xy = 1. Units forms a multiplicative subgroup of A which
we denote by A*. For example, if x € A is nilpotent, then 1 — x is invertible in A,
for (1 —xz) 'Z:':()l x=1.

For an integral domain A we say that a nonzero nonunit element x € A is irreducible
if z = yz for y, z € A implies that either y or z is a unit. Further, a nonzero nonunit
x is called prime if z|yz (z divides yz) implies either z|y or z|z. Prime obviously
implies irreducible, but the converse is false in general. An integral domain A is
said to be a unique factorisation domain (UFD for short) if every a € A\(A* U {0})
admits a prime decomposition a = aq - ... - a, into primes which is unique up to
order and units. Note that if A is a UFD, then x € A is irreducible if and only
if it is prime [Bol, 2.4.10]. Examples are provided by Euclidean rings such as Z,
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k[z]. Further, by Gaufy’ Theorem, the polynomial ring A[z] is a UFD if A is a
UFD [Bd, 2.7.1]. In particular, the polynomial rings k[X1,...,X,] are UFDs. For
the following exercise, recall that a polynomial f € A[z] is monic if its leading
coefficient is 1, i.e. f =™ + Y7 aa’.

1. Exercise (roots of monic polynomials). Let A be a UFD and k = Quot A
its field of fractions. If f € Alx] is monic and has a root « € k = a € A.

Proof. Assume o ¢ A. Write a = p/q, where p and ¢ have no common factors in
A. This is possible since A is a UFD. If ¢ is a unit, then a € A so assume that ¢ is
not a unit. If f = 2™ + > a;2%, then by assumption, p" = —ZZL___Ol a;p'q™ %, hence
q | p*. Decompose q = []¢; into irreducible factors. Then ¢; | p™ = p"~!p. Since
¢1 is prime it divides either p or p"~'. In the second case we can continue until

also q1 | p. Contradiction, for ¢ and p have no common factors. O

If a number z divides a and b, then x also divides their sum. This leads to the
notion of an ideal a of A. By definition, this is an additive subgroup such that
xa € a whenever z € A and a € a. If ¥ © A is a subset, we write

(E)={Z xiai|xieA7aie§]}
finite
for the ideal generated by Y. Geometrically, ideals arise as follows. If X < k™,
and f and g are two polynomials in k[z1,...,2,] which considered as polynomial
functions vanish on X (i.e. f(x) = g(z) = 0 for all z € X), then so does their sum
f + g. Further, if h is any other polynomial, h - f also vanishes on X. In other
words,
I(X)={feklz,...,xn] | f(x) =0 for all x € X}

is an ideal. This notion gains its importance from the fact that if a is an ideal, then
the group quotient A/a inherits a natural ring structure and becomes the so-called
quotient Ting. In this sense, an ideal is the ring analogue of a normal subgroup
of a group. An important example of ideals are kernels ker ¢ of ring morphisms
¢ : A — B. Note in passing that the image im ¢ is merely a subring and not an
ideal in general; we have a natural ring isomorphism im ¢ =~ A/ ker ¢.

2. Proposition. For a ring A £ {0}, the following properties are equivalent.
(i) A is a field;

(i) the only ideals in A are {0} = (0) and A = (1);

(iii) every morphism of A into a nonzero ring is injective.

Proof. For (i)=>(ii) we note that any nonzero ideal in a field k contains a unit and
is thus equal to k. For (ii)=>(iii) we note that 1 & 0 (otherwise (0) = (1)) so that
any homomorphism A — B #+ {0} is nontrivial (it maps 14 to 1p). Hence its
kernel must be (0) whence injectivity. Finally, for (iii)=-(i) we assume that x € A
is nonunit. Then (x) < (1) = A so that B := A/(z) is a nontrivial ring. However,
the canonical projection A — B is injective, whence (z) = 0. O

In a field k, all ideals are of the form (z) = {X ;1. a;x' | a; € k}. More generally,
an integral domain for which this is true is called a principal ideal domain (PID).
This is slightly less general than the notion of a Euclidean ring where the Euclidean
algorithm can be used to perform divisions with remainder. We have the following
implications: A Euclidean = PID = UFD = integral domain. Prime examples of
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Euclidean rings are Z or the polynomial rings k[x] where k is a field (this essentially
accounts for their similarity). Note that for more than one variable, k[z1, ..., 2]
is factorial, but not principal.

Maximal and prime ideals. An ideal m of A is mazimalifm + Aandmcac A
implies either m = a or m = A. In particular, A is a field if and only if (0) is
maximal. An ideal p & A is prime if ab € p implies a € p or b € p. In particular, A
is integral if and only if the ideal (0) is prime.

3. Examples.

(i) Let k be a field and A := k[z1,...,z,]. If f € A is irreducible, then the ideal
generated by f, (f) ={gf | g € A}, is prime by unique factorisation.

(ii) The prime ideals of Z are precisely of the form (p) for p € Z prime. In fact,
this is true for a general ring: p € A is prime <> (p) is prime. The same is
true for (i) if n = 1; , but for n > 1, A is no longer principal as we are going
to see later.

(iii) In a PID, every nontrivial ideal is maximal. Indeed, let (a) + 0 be a prime
ideal and assume (b) o (a), that is a € (b), or equivalently, a = xzb. Then
either b € (a) and we have equality, or = € (a), that is * = ya. But then
a = yba, that is, yb is a unit, so that (b) = A.

Existence of maximal ideals is a standard application of Zorn’s lemma (see for
instance [Rel Chapter 1.7 and 1.8]). In fact, one can show that any proper ideal of
A is contained in some maximal ideal. It follows in particular that any nonunit of A
is contained in some maximal ideal so that for any ring A we have a decomposition
A = A* U |Jm, where the union is taken over all maximal ideals. More generally,
if S © A is a multiplicative subset, any ideal disjoint from S is contained in some
prime ideal in A\S [Rel, Section 1.9]. (Recall that a subset S < A is multiplicative
if 1e Sand f, g €S implies fg € S.) The following characterisation is classical
B, 2.3.8):

(i) p is prime if and only if A/p is an integral domain;

(ii) m is maximal if and only if A/m is a field.
In particular, a maximal ideal is prime, and every prime ideal is obtained as the
kernel of a homomorphism ¢ : A — k where k = Quot (4/p) is the so-called residue
field.

The set of prime ideals of a ring is obviously a partially ordered set with respect to
inclusion, i.e. p; < po < p1 D po. Minimal elements are called minimal primes.

4. Exercise (Minimal primes). Use Zorn’s lemma to show that any prime ideal
contains a minimal prime.

Proof. Let q be a prime ideal and let X be the set of prime ideals contained in p. If
C c ¥ is a chain {py}rea for some ordered index set A, i.e. py < p, if X > p, then
p =[\px is a prime ideal. Indeed, let ab € p so that ab e py for any Ae A. If a ¢ p,
then there exists Ao such that a ¢ py,, whence a ¢ py any A > Ag. In particular,
b € py for py is prime. Since py, < p, for all u < Ag, b € p so that p € X. By
design, p is a lower bound for C'. Therefore, Zorn’s lemma implies that there exists
a minimal element py € 3. O
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5. Example. Associate with a € k™ the evaluation morphism
evg i k[x1,. .., xn] >k, f— f(a).

Since A/kerev, =~ k is a field, m, = kerev, is a maximal ideal. We show that
m, = (1 — a1,...,%Tn — ay). The inclusion O is obvious. For the other inclusion,
let us first assume a; = 0 and write f = > ¢;y. 4, 27" ... Tlr € m, as

f(‘rlv" .,l’n) = xlgl(zla"'axn) + fg(l’g,...,xn),

where f5(0,...,0) = f(0,...,0) = 0. We can repeat this proces to obtain

fi(xi, Ce ,I’n) = x,gz(:cl, e 71'”) + fi+1(551'+1, e ,.’,En)

with f;411(0,...,0) = 0, whence f = 2191 + ... + Zngn € (€1,...,2,). The general
case now follows from the coordinate change y; = x; — a;.

In fact, any maximal ideal is precisely of this form if k is algebraically closed. This
will be an easy consequence of the

6. Theorem (weak Nullstellensatz). If m is a mazimal ideal in k[z1, ..., 2],
then k < k[z1,...,2,]/m is a finite field extension (see also Appendiz for a recap
on field extensions).

Proof. This is a standard fact from algebra which we will assume for the moment
as its proof (given in [229)) requires some additional machinery. O

7. Corollary (points and maximal ideals). Ifk is algebraically closed (as we al-
ways assume unless mentioned otherwise) every maximal ideal m < k[x1, ..., xpy] is
of the formm = (x1—aq,...,xn—ay) fora = (ay,...,a,) € k™. Geometrically, this
means that maximal ideals in k[z1,...,x,] correspond to points a = (ay,...,a,)
in k™.

Proof. Indeed, k ¢ K = k[x1,...,2,]/m is a finite, hence algebraic field extension
of k. Since k is algebraically closed, k = k[z1,...,2,]/m. Compose this isomor-
phism with the evaluation map k[z1,...,2,] = K, f(z1,...,2,) — f(a1,..., )
for o; = the image of z; in K. Since this restricts to the identity on k& we have
x; — a; € m, the kernel of this map. Hence (z1 — a1,...,2, — a,) € m. The
conclusion follows since (x1 — aq, ..., 2z, — a,) is maximal by Example O O

8. Remark. The weak Nullstellensatz has various generalisations (see for in-
stance [Ei, Theorem 4.19]). In particular, we can drop the requirement of alge-
braically closedness of k, where the weak Nullstellsatz reads as follows. The maxi-
mal ideals of k[xz1, ..., x,] are of the formm = (x1—aq,...,xn—ay) Nk[z1,. .., T,]
fora=(a,...,a,) € K™ where k c K is an algebraic field extension, cf. also Ex-
ercise 0@. The point a is in general not uniquely determined. Indeed, if the field
extension k < K is Galois with Galois group G, then two points a and b € K™ give
rise to the same maximal ideal if and only if there is an element o € G such that
o(a) = b (cf. [Re, Exercise 5.7]).

9. Exercise (Evaluation maps in nonalgebraically closed fields). Let k ¢ K
be an algebraic field extension. For a = (ay,...,a,) € K™, consider the evaluation
map evg : k[zy,...,z,] > K.

(i) Determine the image of ev,.

(ii) Show that kerev, is a mazimal ideal.
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(iii) Show that kerev, = (x1 — a1,...,Zn — an) N k[z1,...,2,] (the intersection
taking place in K[z1,...,x,], that is, we consider k[x1,...,2,] as a subring
in Kl[xy,...,x,] and (x1 —aq,..., 2, — ay) as an ideal in K[xzq,...,2,]).

Proof. (i) Imev, = kl[a1,...,a,] = {2?11,’.....',’517;0 Ciyin 0t - oat | ey € kY,

where afiﬂ = 0 (recall that k — K is algebraic).

(ii) As a subring of an integral domain, k[ai,...,a,] has a quotient field which
we denote by k(ai,...,a,) and which lies inside K. By induction on n we see
that k[a1,...,an] = k(a1,...,a,) (n = 1 was just discussed above). By (i),
kla1,...,an] = k[z1,...,z,]/ ker ev, which shows that kerev, is maximal.

(iii) The inclusion > is clear. For the converse, consider ev, as amap K[z1,...,Z,] —
K and let f € kerev, n k[z1,...,2,]. By Corollary O f regarded as an element
in K[z1,...,z,] liesin (z1 —a1,...,2, —ay,), whence f € (x1 —aq,..., 2, —ap) N

klzq,...,2,) O

Local rings. We now come to a key notion in commutative algebra and algebraic
geometry. Despite the definition which looks rather special local rings exist in
abundance, cf. Section [T[I-3]

10. Definition (local ring and residue field). A ring A is local if it has a
unique maximal ideal m. The field k = A/m is called the residue field of A.

Trivial examples of local rings are fields. To get more interesting ones we use the
following

11. Proposition. The following properties on a ring A are equivalent.

(i) A ring A is local with mazimal ideal m;

(ii) all the nonunits of A form an ideal m;

(iii) there exists an ideal m % (1) such that every x € A\m is a unit in A;

(iv) there exists a mazimal ideal m of A such that 1 + m = {1+ x| x € m} < A*.

Proof. (1)« (ii) If A is local with maximal ideal m, then we have a disjoint union
A = A* U m, that is, m is the set of nonunits which therefore form an ideal.
Conversely, any maximal ideal consists of nonunits and must be contained in m by
assumption. Therefore, m is maximal and is the unique ideal with this property.

(i)« (iii) This is a trivial reformulation.

(i)e(iv) If A = A* Um is local with maximal ideal m, then 1+m < A* for 1+mnm
is the empty set. Conversely, let x € A\m. By (iii) we must show that x is a unit.
Since m is maximal, the ideal generated by & and m must be A so that there exists
y € A and m € m with zy + m = 1. By assumption, zy = 1 — m € A* < A\m, thus
x e A*. O

12. Examples. The following examples of local rings are obtained by localisation
which we will explain in fuller detail in Section This is the typical way how
local rings arise in geometry.
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(i) Suppose that one is interested in divisibility in Z by a particular prime, say 5.
Then n is divisible by 5 in Z <> it is divisible by 5 in Z[1/2,1/3,1/7]. Actually,
there is no reason to stop here, so we put

Z<5>:{§e@|5+q}c@.

It follows that 5 {n in Z < n/m € Z) is a unit. The nonunits are thus given
by {p/q € Z¢sy | 5 | p} = 5Z5) which is an ideal. Therefore, Zy and more
generally, Z,) for any prime number p € Z, is a local ring.

(ii) Similarly, we can replace Z by k[z] to get a more geometrically flavoured
example. For instance,

K]y = {g e k() | X 1 g} < k(x)

- {g 1 9(0) 4 0)

which is a local ring with maximal ideal {5 | £(0) = 0}. This example explains
the word ‘localisation’. Indeed, thinking of k[z] as functions on the z-axis,
k[x](z) can be thought of as the ring of rational functions which are defined
near x = 0. The maximal ideal is then given by functions which vanish at
z=0.

(iii) More generally, let p in A a prime ideal of an integral domain, and let

Ayi= (L e Quota g ¢ )

One easily checks that this is a ring whose set of nonunits {f/g | f € p, g ¢ p}
is an ideal. In particular, Ay = Quot A.

Radical ideals. In k consider the zero locus Z(f) = {0} of f(z) = 2% Any
polynomial g € (f) also vanishes on Z(f). Further, so does p(z) = x, but p ¢
(f). Intuitively, the equation f = 0 which defines Z(f) is not of minimal degree.
However, p? € (f). This phenomen leads to a key notion in algebraic geometry:

13. Definition (radical ideal, nilradical, reduced ring). Let a € A be an
ideal. Its radical is

Va:={ae A|a" € a for some n}.
We obviously have a < 4/a. If equality holds we call a a radical ideal. Further,
we call
nil A := +/(0) = {x € A | 2" = 0 for some n € N}

the nilradical of A. By definition, this is the set of nilpotent elements of A. If
nil A = 0, then A is called reduced.

14. Remark. In general, consider an ideal a < k[z1,...,z,]. Subsets of the form
Z(a) ={ae€ k™| f(a) = 0 for all f € a} are called algebraic sets. As the example
before the definition shows, a € Zo Z(a), but the inclusion might be strict. In fact,
Hilbert’s Nullstellensatz states that Z o Z(a) = 4/a.

15. Lemma (quotient ring characterisation of radical ideals). The radical
of an ideal is itself an ideal. Furthermore, a is radical < A/a is reduced.
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Proof. To show that 4/a is an ideal we first note that it is closed under multiplica-
tion. if a € 4/a so that a™ € a, and z € A, then (xa)" = x"a™ € a for a is an ideal.
Further, 0 € v/a, and if a, b € a, then (a + b)?* = Zle c2Fa'b? =t € a for k such
that a* and b* € a. Here, c%k are the standard binomial coefficients. Again, since
a is an ideal, this sum is in a. Next, let T denote the equivalence class of z € A in
Ala.

=) If Z € A/a is nilpotent, then there exists n € N such that Z" = 0, i.e. 2™ € a.
Hence z € y/a which is a by assumption, so Z = 0.

<) If x € v/a, i.e. 2" € a, then also z* = 0 in A/a. Since the quotient ring is
assumed to be reduced, z = 0, whence z € a. O

16. Proposition (Nilradical and prime ideals).

nil A = ﬂ P

pcA prime

Put differently, f € A is not nilpotent < there is a prime ideal p = A such that
fép.

Proof. <) If f is nilpotent it belongs to every prime ideal for 0 = f* = f*~1fep
etc.

=) Let f € A be not nilpotent. Consider the multiplicative subset S = {1, f, f2,...}
of A generated by f. Since f is not nilpotent, 0 ¢ S so that S (0) = &. By 0
we know that there is a prime ideal which does not intersect S. O

17. Corollary (radical ideals and prime ideals). If a ¢ A is radical =

a= N »

acp prime

Proof. Just apply the previous proposition to A/a and recall that for any surjective
morphism p : A — B = p(A) (and in particular, for B = A/a), there isa 1 —1
order preserving correspondence between ideals a containing ker p, and ideals b in
p(A) provided by p~1(b). O

18. Corollary (rings with zerodivisors). If A is a ring with zerodivisors, then
either A is not reduced, or it has more than one minimal prime ideal.

Proof. Indeed, assume that nil A = [|p = (0), where the intersection is taken over
all prime ideals, cf. Proposition Now any prime ideal contains a minimal one
(a consequence of Zorn’s lemma, since the intersection of prime ideals in a prime
ideal is again prime), so we can restrict the intersection to minimal primes in A.
If there is only one minimal prime pg, then (0) = (p = po and A is an integral
domain, a contradiction. O

More generally, we can define v/E in the same way for any subset E — A. Of
course, v/ F is no longer an ideal in general. For later use we note the following

19. Proposition.

(i) v/U; Ei = U; VE; for any family of subsets E;.
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(ii) Let ann(z) = {a € A | a-x = 0} denote the annihilator of = in A. then

D = the set of zero-divisors of A = |J,,(+/ann (z).

Proof. (i) Straightforward.

(ii) We need to show D = v/D. Indeed, if ™ € D, then there exists 0 + 2 € A such
that - a" = 2 -a-a" "' = 0. Hence, either z-a =0 and thus a € D, or a" ! € D.
After a finite number of steps, a € D. O

In the same way, we can also consider the intersection of all maximal ideals.

20. Definition (Jacobson radical). The Jacobson radical J(A) of a ring A is
the intersection of all maximal ideals. of A.

By Remark 0[23] below this is indeed a radical ideal. It can be characterised as
follows:

21. Proposition. z € J(A) « 1 —ay is a unit in A for all y € A.

Proof. =) Suppose that 1 — zy is not a unit. Then it is contained in some maximal
ideal m. Since z € J(A) € m, zy € m and thus 1 € m, a contradiction.

<) By contraposition. Suppose = ¢ m for some maximal ideal. Then (m,z) = A by
maximality of m, hence m + yx = 1 for some m e m and y € A. Hence m =1 — zy
is not a unit. U

Operations on ideals. If a and b are two ideals of A, the following operations
give new ideals.

(i) The sum is the ideal defined by
a+b:={a+blacaand be b} = (aub)

(check the latter identity!). It is the smallest ideal containing a and b. Simi-
larly, >, a; consists of elements of the form };a; with a; € a; all of which are
zero but a finite number.
(ii) The intersection a n b is again an ideal, while the union is not, in general.
(iii) The product is the ideal defined by

a-b:={a-b|laca, beb}).

Similarly, we can define the product of a finite number of ideals. In particular,
we have the powers a™ of an ideal (with the convention a = (1). Thus a” is
the ideal generated by all products x1 - ... - x, with z; € a.

(iv) The quotient is the ideal defined by

b:a:={xeAl|zac b}
As usual, we often write simply « for the principal ideal (x) generated by x.
In particular, if a = (a) and b = (ab), then b :a =ab: b = (b) if a is not a
zerodivisor. In particular, 0: b = {x € A | b = 0} is called the annihilator

of b in A and is also written ann (b). Note that ann (z) = ann ((z)) so that
the notation is consistent with the one introduced in Proposition 0I9}

22. Examples.
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(i) f A =727Z,a = (m)and b = (n), then a + b = (g.c.d.(n,m)); anb =
(l.eem.(n,m)); and ab = (nm). Thus a-b = anb < m, n are coprime.
Similar statements are true in any principal ideal domain.

(i) Let a = (21,...,7,) € A = k[x1,...,2,]. Then a” is the set of polynomials
with no terms of degree < k.

23. Remark. We have the following properties which can be checked by direct
computation.

(i) Sum, intersection, and product are all commutative and associative.

(ii) a(b +¢) = ab + ac.

(iii) an(b+c)=anb+ancifadborasc.
(iv) ab c a n b with equality provided a + b = (1), that is, a and b are coprime.
(v) ac(a:b)

(vi) (a:b)bca

(vii) ((a:b):¢)=(a:bc)=((a:c):b)

(viii) (N, a 6) = (), (a5

(ix) (a:3;6:) =(;(a:by)
(x) 1/+v/a = /4, i.e. any radical is a radical ideal.
(xi) vab =+vanb=+/anb.

(xil) va=(1) < a=(1)

(xiii) vVa+b=4/+/a+b.

(xiv) If p is prime, 4/p™ = p for all n > 0.

24. Proposition (union of primes and primes as intersection).

(i) Letpy,...,p, be prime ideals and let a be an ideal contained in | Jp, = a < p;
for some 1.
(ii) Let ay,...,a, be ideals, and let p be a prime ideal containing (a; = a; < p

for some i. If p = (\a;, then a; = p.
Proof. (i) Proof by induction on 7 in the form

a¢pif0r1<i<nza¢Upi.

For n = 1 there is nothing to prove, so let n > 1. By induction, the result is true
for n — 1 so that for all i there is x; € a such that x; ¢ Uj#z‘ p;. Then, if for some

i=1,...,n, x; ¢ p;, we are done. Otherwise, x; € p; for all i = 1,...,n. Consider
the element
n
Y= lezﬁjxn,
j=1
where &; denotes ommission. Then y € a and y ¢ p;, ¢ = 1...,n, hence a ¢ |, ps.
Indeed, if y € p; for some 4, then z1-...-Z;-... -z, :y—zj#ixln..-ij-...-xnepi.

However, this implies that at least one z; € |, 4P, 2 contradiction to defining
property of x;.

(ii) Proof by contraposition. Suppose a; ¢ p for all i. Then there exists z; € a;
with z; ¢ p, and thus x1 - ... -z, €ay -...-a, <[ |a;. However, z1 - ...z, ¢ p for
p is prime so that (|a; ¢ p. Finally, if p = ()a;, then p < a;, whence p = a; for
some 1. U
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25. Exercise (Reduced rings with finitely many primes). Let A be a reduced
ring with finitely many distinct minimal primes p;, i =1,...,n =

A— @®;A/p;, a— (amodpy,...,amodp,)

is an injection. Furthermore, the image has nontrivial intersection with every sum-
mand.

Proof. Assume that (amodps,...,amodp,) = 0. Then a € ();p = ()p, where
the intersection is taken over all primes (here we use the minimality). Since (p =
nil A = {0} (here we use that A is reduced), a = 0. Hence the map is injective. Now
let i€ {1,...,n}. We must show that there exists a € A such that amod p; # 0, but
amodp; =0 for j + i. Assume that this is not the case. Then for all a € ﬂj#i b,
amodyp; = 0, i.e. a € p; so that ﬂ#i p;j < p;. By Proposition 0 there exists
j = 4 with p; < p;, and thus p; = p; by minimality. Contradiction! (]

Ideals under morphisms. Next we investigate the behaviour of ideals under
ring morphisms ¢ : A — B. Such a morphism can be factorised as

A5 f(A) S B,
so it is enough to understand what is happening for surjective and injective maps.

First we consider the surjective case, i.e. morphisms of the form 7 : A — 7(4) =
A/a for an ideal a ¢ A. We have already used in Corollary O the 1 — 1 order
preserving correspondence between ideals a containing ker p, and ideals b in 7(A)
provided by m~1(b). Moreover, if a is a radical /prime/maximal ideal, and if b < a is
an ideal, then a/b is radical /prime/maximal in A/b as follows from the isomorphism
(A/6)/(a/b) =~ A/a.

Now some general observations. The inverse image under ¢ of an ideal b in B is
always an ideal. However, the image under ¢ of an ideal a is usually no longer

an ideal as the example of the inclusion Z — Q shows (take any nonzero ideal
(m) c 7).

26. Definition (extension and contraction of an ideal). If a is an ideal in A,
then the ideal a® := (¢(a)) in B generated by the image of a is called the extension
of a (under ¢). Explicitly, a® = {3 ... bi(a;) | a; € a, b; € B}. Further, we call
the ideal b° = ¢ ~!(b) the contraction of b (under ().

27. Remark. The contraction of a maximal ideal need not be maximal again.
However, the contraction of a prime ideal is prime again, while the extension of a
prime ideal is not prime in general

28. Example. For an integral domain A, consider the inclusion A — k = Quot A.
As a field, k has only two ideals, (0) and k. Their respective contractions in A
are (0) and A respectively. Note that (0)¢ is no longer maximal, but still prime.
Conversely, let a © A be an ideal in Z. Then unless p = (0), p¢ = Quot A.

A more interesting case is the following classical

29. Example from algebraic number theory. Consider Z < Z[i], where
Z[i] = {a+1ib| a, b e Z} is the ring of Gaussian integers (this is a Euclidean ring).
The extension of a prime ideal (p) of Z may or may not stay prime. Indeed, there
are three cases to consider:

(i) (2)¢ = ((1 +)?), which is the square of the prime ideal (1 + ) in Z[i];
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(ii) if p = 1mod4, then (p)¢ is the product of two distinct prime ideals (for
example, (5)¢ = (2+14)(2 —1);
(iii) if p = 3mod4, then (p)® is prime in Z[i].
This yields all prime ideals of Z[i].

30. Exercice (Extensions and Contraction of ideals). Letp: A — B a
ring morphism. Then
(i) a < a®® and b > b
(ii) b° = b and a® = a**¢;
(iii) if C is the set of contracted ideals in A and if € is the set of extended ideals
in B, then C ={a|a®*=a}, £E={b]| b =b};
(iv) aw— a® is a bijective map of C onto £, whose inverse is b — b°.

Proof. Direct computation. O

Spectra.
31. Definition (spectrum of a ring). The (prime) spetrum of a ring A is
defined by

Spec A = {p c A | p is prime in A}.

One sometimes also considers the maximal spectrum mSpec A consisting of max-
imal ideals only.

32. Examples.

(i) A ring k is a field « (0) is maximal. Hence mSpeck = Speck = {0}. More
generally, mSpec k[z1, ..., z,] = k" for a field k by Corollary 0[7

(ii) SpecZ = {(0),(2),(3),(5),...} while SpecZ[i] consists of the following types
of prime ideals (cf. Example 029) (0), (1 +4) = (1 — ), p® if p = 3mod4
(the extension being taken with respect to the inclusion Z — Z[i]), and prime
ideals ¢ such that qq = (p)¢ for p = 1 mod 4.

(iii) If k is a (not necessarily algebraically closed) field, then k[x] is Euclidean. In
particular, a nontrivial ideal p = (f) in k[x] is prime < f is irreducible, that
is,

Speck[z] = {(0)} u {(f) | f irreducible}.

For instance, we find for £ = R that f is irreducible if and only if up to units,
f=xz—aor f=(x—-2)(x—2) = R[z] n(z—2) for z € C\R. Hence
SpecR[z] = {(0)} VR U {z € C |imz > 0}. If, in addition, k is algebraically
closed, then irreducible polynomials are up to units of the form x —a for a € k
so that in this case, Spec k[z] = {(0)} u k. Note that mSpec k[z] = k can be
thought of as the set of points of k. For the geometric interpretation of the
trivial ideal (0), see Exercise 0[38

(iv) Let a A be an ideal. By what we said before Definition 0[103] Spec A/a =
{p e Spec A | a c p}.

(v) Let k be a not necessarily algebraically closed field. We think of k[z,y] as
(k[z])[y]. Then the prime ideals of k[z, y] are as follows: (0), (f) for f € k[z, y]
irreducible, and maximals ideals of the form m = (p,g) where p € k[z] is an
irreducible polynomial, and g € k[z,y] a polynomial such g € (k[z]/(p))[y] is
irreducible. In particular, k[z,y]/m = (k[z]/(p))[y]/(g) is a finite extension
field of k (see Proposition 0[33] below).
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(vi) The prime ideals of Z[y] are as follows: (0), (f) for f € Z[z] irreducible,
and maximal ideals of the form m = (p,g) where p € Z is a prime number,
and g € Z[y] a polynomial such g € Fp[y] where F, = Z/(p) is irreducible.
In particular, Z[y]/m = (Z/(p))[y]/(g) = Fplyl/(g) is a finite extension field
of F,. Note the similarity between the previous example (think of k[z,y]
as (k[x])[y]) which highlights again the analogy between the Euclidean rings
k[z] and Z (see Proposition 0[33] below).

The cases (iv) and (v) follow from the following proposition if we put B = k[z]
with K = k(z) = Quot B, and B = Z with K = Q respectively.

33. Proposition. Let B be a principal ideal domain and K its field of fractions
= the prime ideals of the UFD A = B[y] are as follows:
(i) (0);
(ii) (p) for p e A with p prime;
(iii) mazimal ideals of the form m = (p,g) where p € B s irreducible, and g € A
such that g € B/(p)[y] is irreducible.

Proof. Recall that a polynomial f € K[y] for K = Quot B, B a UFD, has a reduced
expression f = afy where a € K and fy € B[y]| is primitive, that is, its coefficients
have no common factor in B other than units. Gauf’ lemma asserts that the
product of two primitive polynomials is again primitive.

If the prime ideal p in A is principal, then there is nothing to prove. Otherwise we
can assume that p contains two elements f; and fo € A = B[y] with no common
factor in A (since A is a UFD it is enough to pick an irreducible element f; # 0 in

p, and to take fa € p\(f1)).

Step 1. f; and fs have no common factors in K[y] > Bly] = A. Assume not.
Write f; = hg; with h, g1 and g» in K[y], and degh > 0. Consider their reduced
expressions h = ahg, g; = b;7y; with a, by and by € K and hg, v1 and 72 in B[y]
primitive. By Gau$’ lemma, ho7y; is again primitive, so that A = B[y] 3 f; = hg; =
(ab;)(hoy;) implies ab; € B, and similarly, abs € B. Hence hg divides f; and fy in
A, a contradiction.

Step 2. The ideal a generated by f1 and fa has nonzero intersection with B, that
s, (f1,f2) n B % 0. Indeed, K[y] is a PID, and ged(fi, fo) = 1 by the previous
step. Hence there exist g1, go € K[y] such that g;f1 + gofo = 1. ff be Bis a
common denominator of the coefficients of g; and go, then bgy and bgs € A = B[y],
whence a 3 bgy f1 + bgafo = b is also in B.

Step 3. Conclusion. If p is a prime of A = B[y], then B n p is a prime of B. By
the previous step, Bnp = (p) for p a prime in B (B is a PID!). Now any nontrivial
prime in a PID is maximal so that k, := B/(p) is in fact a field. Moreover, the
natural map A = Bly] — kp[y] obtained by reducing the coefficients mod p is
surjective with kernel given by (p)¢  p (the extension being taken with respect to
the inclusion B < A). Consequently, p corresponds to a prime (and thus maximal)
ideal in k,[y] which must be of the form (g) for a reduced element g € A. Hence
p = (p,g), and p is maximal.

O

34. Remark. Note that A/p = (4/(p)¢)/(p/(p)¢) = kp[y]/(g) is a finite field
extension of k, = B/(p). Hence, if B = k[x] where k is algebraically closed, any



14 UNIVERSITAT STUTTGART

finite extension of k is just k so that p and g are irreducible polynomials in k[z]
resp. k[y], and therefore linear. In particular, m = (z — a,y — b) for a, b € k.

35. Exercise (Zariski topology of Spec A). For each T < A, let Z(T) < Spec A
denote the set of all prime ideals of A which contain T. Show that

(i) if a is the ideal generated by T, then Z(T) = Z(a) = Z(y/a) and Z(a) =

Spec A/a;
(ii) Z(0) = Spec A and Z(1) = J;
(iii) if (T3)ier is any family of subsets of A, then
z(Jm) =N zm);
iel iel

(iv) Z(anb) = Z(ab) = Z(a) u Z(b) for any two ideals a, b of A.
1t follows that the sets Z(T) satisfy the axioms for closed sets in a topological space.
The resulting topology is called the Zariski topology of Spec A.

Proof. (1) The only nontrivial inclusion requires to show that for any prime ideal
p, a < p implies y/a < p. Now if a € 4/a, then a™ € a < p for some n. Hence either
a € pora™ ! ep. Continuing this way if necessary, we see that a € p after a finite
number of steps. Next we know that the prime ideals in A/a correspond precisely
to the prime ideals of A containing a.

(ii) Clear.

(iii) pe Z(JT:) < T; < p for all 4, whence the assertion.

(iv) Since vab = van b = vab by Remark 0 the only nontrivial inclusion is
Z(anb) c Z(a) u Z(b). Now by Proposition 0{24] (ii), a n b < p implies a < p or
b < p, whence p e Z(a) U Z(b). O

36. Exercise (Basic open sets for the Zariski topology). For each a € A
let D, denote the complement of Z(a) in Spec A. In particular, D, is open, the
so-called basic open set. Show that

(1) {Da}aca forms a basis of open sets for the Zariski topology (i.e. any open set
is a union of open sets of the form D, );
( ) Da M Db = Dab;
iii) D, = & < a is nilpotent;
iv) D, = Spec A < a is a unit;
() D = Dy = /(@) = )

) Spec A is quasi-compact (i.e. every open covering of Spec A has a finite sub-
covering).

Proof. (i) This follows from Z(T) = (),or Z(a) by taking complements.

(ii) (Dg N Dyp)® = Z(a) u Z(b) = Z(ab) by (iv) of the previous exercise.

(ili) Do = & < Z(a) = Spec A < a < (\,cgpec 4 P = nil A by Proposition O
(iv) D, = Spec A < Z(a) = J < a is a unit. (otherwise a would be contained in
some maximal ideal).

(v) Dy = Dy & Z(+y/(a)) = Z(a) = Z(b) = Z(+4/(b)). This implies that a prime
ideal p contains 4/(a) < p contains 4/ (b). By Corollary O v (a) = @epP =
ﬂ (b)cp p= (b)

(vi) By (i) of this exercise it is enough to consider coverings by basic open subsets,

i.e. Spec A = | JD,,. By (ii) of the previous exercise, Spec A = D1, so [ Z(a;) =
ZUa;)) = D1 = . Hence 1 € (a; | ¢ € I), the ideal generated by the a;.
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In particular, 1 = Zje] zja; for a finite subset J < I which implies Spec A =
UjeJ D a;:* ]

37. Remark. We can regard Z as a map which takes subsets of a ring A to subsets
of its spectrum Spec A. Conversely, we can assign to a given subset X < Spec A

the ideal
= ﬂ pc A
peX

These operations are inverse in the following sense, namely
ZoI(X)=X and ZoZ(a)=+a,

where X = ﬂXCZ(T) Z(T) = Z(Uxczr T) denotes the closure of X, the small-
est closed subset which contains X (cf. also Section in particular Proposi-
tion [I18). Indeed, let us show that Z o Z(X) = X. First, if p € X, then Z(X) c p
so that p € Z(Z(X)). Hence X < Z(Z(X)), and since X is closed, we have also
X < Z(Z(X)). Conversely, let Y = Spec A be any closed set containing X. Then
Y = Z(a) foranideala = A. If pe X < Y, then a = p so that a = (. x p = Z(X).
Then Z o Z(X) c Y; in particular, this is true for Y = X.

For the second identity we note that
ToZ(a)=Z({peSpecA|acp)) = (|p=va
acp

by Corollary 0 and Exercise 0 (i) which implies that a = p implies v/a < p
(the converse being clear).

38. Exercise (Closure of a point). Show that the closure of the point p € Spec A,
{p} = Ny 2(T), is given by Z(p). Conclude that

(i) p is a closed point (i.e. {p} = {p}) < p is mazimal;

(i) ge {p} = pca.
For later use we say that q is a specialisation of p. An everywhere dense point
(e.g. (0)), i.e. {p} = Spec A is called generic.

Proof. (i) and (ii) are easy consequences of the equality {p} = Z(p). The latter
immediately follows from the preceeding remark. (]

39. Exercise (Morphisms of rings and spectra). Let ¢ : A — B be a ring
morphism.

(i) Show that the associated map ©* : Spec B — Spec A which sends p € Spec B
to p¢ = ¢~ 1(p) € Spec A is well-defined and continuous with respect to the
Zariski topology, i.e. the preimage of a closed set is again closed in Spec B.

(ii) Compute explicitely the map @® for the three types of prime ideals in Z[i] for
the inclusion ¢ : Z — Z[i].

Proof. (i) By Remark 0[27] the map ¢ is well-defined. We show that for T < A,
()Y Z(T)) = Z(o(T)). For the inclusion c, let p € (¢*)~1(Z(T)), ie. T <
©%(p) = ¢ (p), whence p(T) < ap(go*l(p)) c p. Therefore p € Z(p(T)). Con-
versely, for the inclusion Z(p(T)) < (¢*)~H(Z(T)), let p € Z(p(T)), i.e. p(T) < p.
Then T < ¢~ 1p(T) < o~} (p) = ¢°(p) so that % (p) € Z(T), L.e. p € (¢*) " (Z(T)).
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(if) Obviously, ¢*((0)) = (0) and ¢*((1 +4)) = (2). If p € SpecZ[i] is of type (p)©
for p = 3mod4, then %(p) = (p). Similarly, if we are given q and q induced by
p = 1mod4, then 1%(q) = :%(q) = (p), see also Figure 0[I] below. O

(/\"’A-) 3 (:\) (19) f}'?')
\ 0 e T
/\/\ — l\f‘

(342,)

’ ° .__..\,.._55#‘:1

() )Y () 3) () (3)

-_—e

FIGURE 1. The associated morphism ¢® : Spec Z[i] — SpecZ

0.2. Modules. Modules are a natural generalisation of ideals and will play an
important réle in the second half of the course.

Basic examples and properties.
40. Definition (module). An A-module is an Abelian group M with a
multiplication map
AxM— M, (a,m)—a-m

satisfying

(i)a-(m*tn)=a-mta-n;

(ii) (a+b)- m=a-m+g-m;

(iii) (ab) -m =a-(b-m);

(iv) la-m=m
for all a, b € A and m, n € M. If no confusion arises, we simply write am for
a-m. A subset N of M is called a submodule if am + bn € N for all a, b € A,
m, n € N. A morphism between A-modules or simply an A-linear map is a
map satisfying f(am + bn) = af(m) + bf(n) for all a, be A, m, n € N. We write
End(M) for the set of endomorphisms, i.e. morphisms M — M. More generally,
we can consider the set of linear morphisms Hom(M,N) = {¢ : M — N}.

41. Examples.

(i) Any k-vector space is a k-module.
(ii) Any ring A is an A-module over itself, and its submodules are precisely the
ideals of A.
(iii) Any Abelian group is a Z-module.
(iv) If A = k[z], then an A-module is a k-vector space V together with a linear
mapz:V — V.
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(v) Similar to vector spaces, Hom(M, N) is again an A-module if M and N are A-
modules. In particular, Hom(A, M) =~ M, for f € Hom(A, M) is determined
by f(1). Morphisms ¢ : M’ — M and ¢ : N — N’ induce morphisms
¥ : Hom(M,N) — Hom(M',N) and ® : Hom(M,N) — Hom(M,N’) by
U(f) = fou and B(f) = ¢ o f.

(vi) If A is a subring of B, then multiplication in B makes B into an A-module.
A B-module gives an A-module by restricting multiplication to A.

(vii) As for vector spaces there is a natural notion of sub- and quotient module,
direct sum of modules etc. For example, if f : M — N is a morphism, then
ker f and im f are submodules of M and N respectively, while the cokernel of
f, coker f = N/im f is a quotient module.

42. Proposition (isomorphism theorems). We have the following natural
isomorphisms.

(i) For any A-module morphism ¢ : M — N, im ¢ = M/ker ¢ as A-modules.
(ii) If L € N ¢ M are submodules, then
M/N =~ (M/L)/(N/L).
(iii) If M is a module, and L, N < M are submodules of M, then
(N+L)/L=N/(NnL).

Proof. As in the case of vector spaces, see for instance [AtMal, Proposition 2.1]. O

43. Remark. (ii) can be interpreted as saying that if L is not contained in N,
there are two ways of making sense of N/L. Either we increase N by L by taking
the sum, or we decrease L until it is contained in N. Both ways give the same
result.

Exact sequences. A sequence of modules L 5 M 2 N is called exact if

ima = ker 8. A sequence of the form 0 — L 5 M % N = 0is called a short
exact sequence (s.e.s. for short).

44. Proposition (split exact sequences). Let 0 — L 5 M LN S 0bea
s.e.s. Are equivalent

(i) There exists an isomorphism M = L @& N under which o(l) = (1,0) and

B(l,n) = n;
(ii) there exists a section of 3, that is, a map 0 : N — M such that foo =Idy;
(iii) there exists a retraction of «, that is, a map p : M — L such that poa = 1d,.

A sequence which admits a section is called a split sequence.

Proof. (i)=>(ii) or (iii) Obvious.
(ii)=>(i) o is injective, for if o(n1) = o(nsg), then ny = foo(ny) = Boo(ng) = na.
Claim: M = a(L) @ o(N). Indeed, let m € M and write

m = (m—o(B(m))) + o(B(m)).
The second term is in o(N) by design. Further, the first term is in ker § = im«
which shows that M = «(L) + s(N). To show that the sum is direct, assume that
o(n) € ima = ker 8. Then n = B(o(n)) = 0, whence a(L) n o(N) = {0}.
(iii)=>(i) Similar to the previous step. O
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45. Remark.

(i)

(i)

Still,

Note that for k-vector spaces, any s.e.s. is split. Put differently, knowing a
subspace L of M and the corresponding quotient M /L determines M com-
pletely. This is false for modules. In fact, the so-called extension problem for
modules asks precisely which A-modules M can occur in an exact sequence
0—-L—>M-— N —0given L and N. Of course, the direct sum L@ N is a

trivial extension, but is usually not unique.

A s.e.s. is in general not split. In fact, a module P is called projective if for
any exact sequence M — P — 0 there exists a section o : P — M.

given a submodule M; of M such that (L) n My = a(L) n M and g(M;) =

B(M) we can conclude M; = M. More generally, we have the

46. Lemma. If0 - L 5 M 5N 0 is a short exact sequence, and My < My

two submodules of M, then

Proof. Indeed, if m € Ma, then f(m) € f(Mz) = S(My). Hence there is n € M; <
Ms such that S(n) = 8(m), i.e. m —ne My nkerf = Mo na(L) = My na(L). It

a(L) n My = a(L) n My and B(M;) = B(Mz) = My = M.

follows that m € Mj.

S.e.s. often arise from long exact sequences:

47. Exercise (splitting and glueing of exact sequences).

(i)

(iii)

(Splitting) If

a1 a2 a3

M1 M2 M3 M4

is an exact sequence of A-modules, then the sequences

[e5% .
My —— My ——=imay = kerag —=0

and
. a3
0——=keraz = imag —— M3z —— M, ,
where ker o — Mg is the inclusion map, are also exact.
(Glueing) Conversely, if we have exact sequences

a1 a2

My M,y N 0
and

0 N My —=25 My |
where N — M3 is the inclusion map, then the induced sequence

My —2 My —225 My —2> M,
is also ezact.
Conclude that any exact sequence
a1 Qa2 Qp—1

0 M,y M,

can be split up into s.e.s.

0 ker a; M; & im q; 0.
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Proof. By direct verification, see also [Gal, Lemma 4.4 and Remark 4.5] for a proof.
O

There are several natural exact sequences which can be built from morphisms « :
M — N of A-modules. The subsequent lemma is immediate.

48. Corollary (exact sequence of a morphism). Leta: M — N be a
morphism of A-modules. Then there are s.e.s.

0 ——=kero M—2>ima 0

and
0 im o N cokerao ——=0 .

In particular, glueing yields

0 ker o M-—2>N cokerao ——=0 .

49. Lemma (snake lemma). Let

0 L—2s>M N 0
ool
0 L 0

be a commutative diagramm of A-modules. Then there exists a sequence

0 ker f —% > kerg—" > kerh -+~

coker f —% 5 coker g LN coker h —— 0,

where & and B are restrictions of o and B and & and ' are induced by o/ and (.
For instance, & ([I']) = [&/(I')] ete.

Proof. The proof is a routine exercise in diagram-chasing. We just give the defini-
tion of the boundary morphism d : ker h — coker f. For a complete proof as well
as an explanation of the name “snake lemma”, see [Gal, Lemma 4.7].

If n € ker h ¢ N, then for m € M with S(m) = n (8 is onto), 3 og(m) = hof(m) =
0, hence g(m) € ker ' = im /. Hence there exists I’ € L' with o/(I') = g(m), and
we let d(n) = [I'], where [-] denotes the equivalence class in coker f. O

Generating families. Given my,...,m, € M we can consider the submodule
generated by these elements, namely

(my,...,my) :ZAmi:{ZaimieM|aieA}cM

More generally, let {my} ca be any set of elements in M. We can define an A-
module morphism

p: DA M, @reran— Y. aymy.
AeA AEA

Note that the sum is finite since only a finite number of the ay # 0 by definition of
the direct sum of modules.
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50. Definition (family of generators and free modules). {m,} is a family
of generators if ¢ is surjective, i.e. we have @, A % M — 0. If the indexing
set A is finite, then M is finitely generated or simply finite. Finally, if ¢ is an
isomorphism, {m}ea is a basis and M is free.

51. Examples (free modules and their submodules and quotients).

(i) A[z] is a free A-module with infinite set of generators (z¥)z>0. As an A[z]-
module, it is of course free and finitely generated.

(ii) If a is a nontrivial ideal of A, then A/a is never a free A-module, for any map
¢ : @, A — A/a, (ax) — > aymy has nontrivial kernel since ¢(a,0,...) =0
if @ € a. However, A is obviously free as an A-module. It follows that in
general, the quotient of a free module is not free again.

(iii) If A is an integral domain, then a nontrivial ideal a is free <> a is principal. In
particular, the submodule of a free module is usually not free again. Indeed,
if a = (a), then ¢ : A — a, x — za is the desired isomorphism. Conversely,
assume that a is free so that we have an isomorphism ¢ : @, A — a defined
by a set of generators. If there were more than one generator, say m; and ms,
then @(—mg,m1,...) = —mamy + myms = 0. Hence there can be only one
generator, that is, the ideal is principal.

Summarising, if we have a s.e.s. 0 > L - @, A - N — 0, L nor N need to be
free in general.

52. Remark. In the case of a vector space, a basis always exists, either by taking
a generating set of linearly independent vectors or an irredundant generating set.
This, however, fails in the case of modules. Indeed, m = (z,y) in A = k[x,y] is
generated by two linearly independent = and y, but it is not free (cf. (iii) of the
previous example). On the other hand, for M = A = k[z], we have M = (z,1—z).
Here, the generators form an irredundant set of the free module M, but obviously
not a basis.

53. Examples (finitely generated modules and their submodules and
quotients).

(i) Almost by definition, a finitely generated A-module is of the form A™/ker ¢.

Every ideal of the form a = (mq,...,m,) in A is finitely generated as an
A-module.
(ii) If mq,...,m, is a generating set for M, then so is mq,...,m, for M/N,

where N is some submodule of M. In particular, quotients of finitely generated
modules are again finitely generated.

(iii) By definition, a ring A which is not Noetherian admits an ideal which is not
finitely generated as an A-module (see Section O. Since non-Noetherian
rings exist (for instance k[xz1,xa,...]), the submodule of a finitely generated
module is in general not finitely generated again.

Summarising, if we have a s.e.s. 0 > L — @, A/ker¢ - N — 0, N is finitely

generated, but not L in general.

54. Exercise (finitely generated submodules). Let M be a finitely generated
A-module and ¢ : M — A™ a surjective morphism of A-modules = ker ¢ is finitely
generated.

Hint: Let eq,...,e, be a basis of A™ and choose u; € M such that ¢(u;) = e; for
i=1,...,n. Show that M = ker ¢ ®{uy,...,u,y and conclude.

Proof. The map e; — u; defines a section s : A™ — M of the s.e.s. 0 — ker¢p —
M % Am 0. By Proposition 0 M = ker ¢ ® s(A™). Next let myq,...,m, be
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a generating system of M. Since the sum is direct, m; = k; @ u; with k; € ker ¢.
Now if k € ker ¢, then k = Y a;m; = > a;k; + >, a;u;. Again, by directness of the
sum, Y a;u; = 0 so that k;, i = 1,...,r, generate ker ¢. O

55. Exercise (Koszul complex of a pair). Let A be a UFD, and x, y € A be
two elements without common factor except for units. Write a = (x,y) < A for the
ideal generated by x and y.

(i) Show that the sequence

0 A—25 A2 a 0,

with a(a) = (—ay, azx) and B(a,b) = ax + by is exact.
(ii) Find an example where a £ A. Show that in this case, a needs at least two
generators, and is not a free module.

Proof. (i) Surjectivity of 8 is clear by definition of a = (z,y), and so is injectivity
of a. It remains to show that ima = ker 8. The inclusion < is obvious. For the
inclusion o, let (r,s) € ker 8, that is r& = —sy. Since x has no common factor
with y, | s. Similarly, y | r. It follows that r = ¢y, s = dz and ¢ = —d. hence
(r,5) = (cy, —cz) = a(—c).

(ii) An example is provided by A = k[z,y]. Now assume that a = (¢) for some
ce A. Then ¢| B(1,0) = z and 3(0,1) = y. Since x and y have no common factor
except units, ¢ must be a unit, whence a = A. If a were free, one could find two
linearly independent generators m; without common factors. However, the map
@(a,b) = amy + bmg necessarily has a kernel as (i) shows. O

Cayley-Hamilton theorem and corollaries. If M is an A-module we can
view a € A as a morphism M — M sending m to am. In this way we get a map
A — End(M), a representation of the ring A; if this map is injective, the module
M is said to be a faithful A-module. If ¢ € End(M) we write A[p] for the subring
of End(M) which is generated by ¢ and the image of A in End(M). In the sequel,
we let for an ideal a ¢ A

GM:{Z aimi|aiea,mieM}.

finite

56. Proposition (Cayley-Hamilton). Let M be a finite A-module, generated
by n elements, and ¢ : M — M a homomorphism. Suppose that a is an ideal of A
such that (M) < aM. Then ¢ satisfies a relation of the form

Ot ae" Mt tan_1pFa, =0
in End(M), where a; € a® fori=1,...,n.
Proof. Let mq,...,m, be a set of generators of M. Since p(m;) € aM we can write

@(mz) = Zaijmj with a5 € a.
J

In terms of the subring A[p] of End(M), we can rewrite this as follows. First,
2 (ijp — aij)m; =0

J



22 UNIVERSITAT STUTTGART

(with d;; the Kronecker symbol). Let A := (d;;0 — ai;);; and consider A as an
n x n-matrix with entries in A[g]. The above equation then reads >, Aj;m; = 0,
and multiplying by (adj A)x; and summing over ¢ (where adj denotes the adjugate
matrix) yields (det A)my = 0 for all k& (recall that det A € A[p]!). Hence det A =0
in A[p], and expanding out the determinant yields the result (see also [Rel Section
2.6] for an extended version of this proof). O

57. Corollary. If M is a finite module and M = alM, then there exists an element
x € A such that x = 1moda and xM = 0.

Proof. Apply the previous theorem to ¢ = Idys. Since Idfw = Idps the identity
reads (1 +b)Idy = 0 for b = > a; € a. Hence z = 1 + b is the desired element. O

58. Remark. The submodule
Mior = {m € M | there exists 0 £ a € A such that am = 0}

is called the torsion module of M. If M, = 0, then M is called torsionfree.
The previous corollary then asserts that if aM = M for some proper ideal a of A,
then M is pure torsion, i.e. M = M.

59. Corollary. If M is a finitely generated A-module, and ¢ : M — M is an
A-linear map which is onto, then @ is injective, i.e. ¢ is an automorphism of M.

Proof. Let m € M be such that p(m) = 0. We need to show that m = 0. Let
us view M as an A[z]-module via z - m = ¢(m) (cf. 0[] (iv)). By assumption,
aM = M for a = (z) < A[x]. Hence there exists a = 1 + bz € A[z] such that
aM = 0. In particular, 0 = am = m + bp(m) = m. O

60. Corollary (Nakayama’s lemma). Let (A, m) be a local ring, and M a finite
A-module. Then M = mM implies that M = 0. (For instance, if A is a field, then
m = (0) and the implication holds trivially.) In particular, if M £ 0, then M /mM
is a non-trivial vector space over k = A/m.

Proof. By the previous corollary there exists = 1 modm such that M = 0. By
0 2 must be a unit, whence 1z M = M = 0. O

This can be generalised as follows (N = 0 in the following lemma gives Nakayama’s
version).

61. Corollary. Let (A,m) be a local ring, M an A-module, and N < M a
submodule such that M /N is finite. If M = N +mM, then N = M. In particular,
if M is finite over A, and if mq, ..., my are elements whose images in M /mM span
the vector space, then mq, ..., m, generate M.

Proof. By assumption, m(M/N) = mM/(mM n N) = (mM + N)/N = M/N, so
that by Nakayama’s lemma, M /N = 0, hence M = N. For the second assertion,
let N = (mq,...,my). The composition N — M — M /mM maps N onto M /mM
by design, so that N + mM = M. Now apply the previous corollary. U
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62. Proposition and Definition (rank of a module). Let M be a finitely
generated A-module and let ¢ : M — M be a surjective morphism. Then ¢ is an
isomorphism. In partcular, if M is a free module with isomorphim M =~ A™, then
n does not depend on the isomorphism. It is called the rank of M.

Proof. By setting x - m := ¢(m) we can see the pair (M, ) in a natural way as an
A[z]-module, cf. also Example 0[1] (iv). Since ¢ is surjective, (x)M = M so that
by Corollary 0 there exists f = >, a;z° € (z) with f-m = Y, a;'(m) = m.
It follows that ¢(m) = 0 implies m = 0, whence injectivity. O

63. Remark. Unlike for vector space, injectivity is not enough to conclude
surjectivity as the map m € Z — 2m € Z shows.

Tensor products. As for vector spaces we can form the tensor product of two
A-modules. More precisely, we have the following.

64. Proposition and Definition (tensor product). Let N and M be A-
modules. Then there exists a pair (T,T) consisting of an A-module T and an A-
module T and an A-bilinear mapping 7 : M x N — T, with the following universal
property: Given any A-module L and any morphism o : M x N — L, there exists
a unique morphism & : T — L such that « = & o1. Moreover, if (T,7) and (T',7")
are two such pairs then there exists a unique isomorphism j : T — T’ such that
jor =171". T is called the tensor product and is denoted by M ®4 N or simply
M®N.

Proof.

Step 1. Uniqueness. Note that for (L,a) = (T,7), uniqueness of the induced
morphism 7' — L = T implies that 7 = Idy. Replacing (L, «) by (T7,7") we get a
unique map 7’ : T'— T". Interchanging the roles of (T, 7) and (7", 7’) gives a map
7: T — T inverse to 7.

Step 2. Euxistence. Let T denote the free A-module generated by M x N, ie. T
consists of formal linear combinations Y. ; a;(m;,n;). Let R be the submodule

generated by all elements of 7' of the form
(m +m',m) — (m,n) — (m',n)
(m,n+n') = (m,n) — (m,n')
(am,n) — a(m,n)
(m,an) —a(m,n).

Define T' := T/R Denote the equivalence class of (m,n) by m ® n. Then 7 :
M x N —T, (m,n) — m®mn yields the desired map.

O

65. Remark.

(i) M ® N is generated by {m®n | m € M, n € N}. In particular, any element
in M ® N is of the form Y, m; ® n;. If M and N are finitely generated by
{mi}icr and {n;} e respectively, then so is M @ N by {m; ® n;} jyerx.-
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(ii) Note that the expression m ® n is ambigous as long as we do not specify the
tensor product to which it belongs. For instance, let A = M =7, N = Z/27
and M’ = 27Z. If 1 denotes the nonzero element in N, 2® 1 =1®2 =0 in
M®N,but £0in M ®N .

(ili) We can form the tensor product of several factors, that is, we have a multi-
linear map My x ... x M, - M1 ®...® M, etc.

(iv) fa: M — N, 8: M’ — N’ are morphisms we can from the tensor product
of morphisms a® f: M ® M’ — N ® N’ by taking the induced map from
MxM — NQN', (m,m') — a(m)®B(m'). In particular, a® S(m®m') =
a(m) ® B(m’).

66. Lemma. Let x; € M, y; € N be such that >, z;®y; = 0 in M®N. Then there
exists finitely generated submodules My and No of M and N respectively such that
Ya;®y; =0 in My ® No. (For an application of this result, see Proposition 0
below.)

Proof. 1f we write M @ N = (M x N)/R as in Proposition 0J64] then > z; @ y; = 0
in M ® N implies > (z;,y;) € R. Let My resp. Ny be the submodule of M resp. N
generated by the x; resp. y; occuring in the sum. Then > (z;,y;) € R n (My x Np),
i.e.Zl‘i®inOinM0®No. O

67. Proposition. Let L, M and N be A-modules. Then there exists unique
isomorphisms such that

() MON > NQM, zQy — y®;

(i) MOIN)QL->MQRQ(NRL) > MRINRKL, (2®y)®z— z® (y® z) and

TQY®z) ~>rRY®z;

(ii)) (MON)®L— (MOL)®(N®L), (1,9) ® 2 (10 2,y ®2);

(iv) AQM - M, a®z — az.
Furthermore, let B be a ring, N a B-module, and L an (A, B)-bimodule, i.e. L
is a simultaneous A- and a B-module such that a(xb) = (az)b for allae A, be B
and x € L. Then M ®4 L and L ®pB N are natural ( -bimodules, and we have

(
A, B)
(M®4sL)®@p N =M®4s (L®s N)
as an (A, B)-bimodule.

Proof. This is a routine application of the universal property of tensor products.
For instance, consider the map a : M x N — N ® M defined by a(z,y) = y®x
which gives rise to a map & : M @ N — N ® M satisfying a(z ® y) = a(r(x,y)) =
a(z,y) = y®a. Similarly, the map 8: N x M - M®QN, B(y,x) = x®y gives rise
to a linear map B NQM — M@N. Clearly, Bod = Idyen and &OB = Idnenm-
As another example, consider the associative law (ii). Fix [ € L and consider the
map ¢ : M x N > M ®N ® L given by ¢(m,n) = m®n ®I. This is bilinear in
m and n and therefore factorise via ¢; : M @ N - M ® N ® L. Next we define
amap ®: (M N)x L > M®N ® L via ®(v,l) = ¢;(v). Here, M Q@ N ® L is
defined as in Remark 0[65] (iii). This is bilinear in v and ! and thus factorises via
d: (M®N)®L — M@N®L. This is the desired isomorphism for $(m@n@1) =
P(mn,l) = g(m®n) =m®n®I etc. For the (A, B)-bimodule isomorphism,
see http://math.stackexchange.com/questions/878660/atiyah-macdonald-exercise-
2-15. ]
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68. Remark. If we tried to define the map f: M @ N — N ® M directly via
fm®n) = n®m we would face the problem to show that this is well-defined —
{m®n|me M, ne N} is merely a generating system. This is the reason why we
invoke the universal property.

Another way of looking at the tensor product is to fix an A-module M and to
put T (L) = M ®4 L for any other A-module L. Further, if « : L — N is an
A-linear map we let Th(a) = a®Idy : L®a M = Ty (L) > N ®a M = Ty (N).
In particular, we have Ths(a o ) = Ta(a) o Tas(B). In the language of abstract
nonsense (that is, category theory), this means that Th; is a covariant functor (see
Appendix [A] for the basic notions of category theory). In algebraic geometry, and
more generally, in homological algebra, it is a natural question to ask whether such
a functor is ezact, i.e. whether or not it preserves exact sequences.

69. Proposition (T}, is right-exact). Let M be an A-module. If

N s NP 0.

is an exact sequence of A-modules, then so is

Thr () T (B)
—

g (V') 22 1y ()22 N .

One also says that Ty is right-exact.

Proof. This follows from a straightforward, if tedious computation, see [Ga, Propo-
sition 5.22]. O

Recall that aM denotes the submodule {>; ...a;m; | a; € a} of M (cf. also the
second assertion in Nakayama’s lemma O.

70. Exercise (quotient modules as tensor products). Let a ¢ A be an ideal,
and M an A-module =
(A/a) ®a M = M/aM.

Proof. The map A/ax M — M /a given by (@, m) — @m (where the bars denote the
respective equivalence classes in A/a and M /aM respectively) is bilinear, whence
induces a map ¢ : A/a®4 M — M /aM. On the other hand, the kernel of the A-
linear map M — A/a® M, m — 1®m clearly contains aM. Therefore it descends
to amap ¢ : M/aM — A/a®4 M sending m to 1 ® m. Since ¢ and ¢ are inverse
to each other, we have the desired isomorphism. O

71. Remark. If M is flat (see Definition 0[74 below), we can argue as follows.
By 0 we have an exact sequence a®q M — A®4 M — (A/a) ®4 M — 0. By
(iv) of 0 AR® s M = M, and under this isomorphism, a ® 4 M is identified with
aM, Indeed, since the inclusion a < A is injective, then so is the induced map
a®a M —> A®4s M. Hence M/aM = (A/a) ®a M.

72. Exercise (trivial tensor product). Let (A, m) be a local ring with residue
field k = A/m, and let M and N be finitely generated A-modules. Prove that
(i) My := M ®4 k has a natural k vector space structure which makes My, iso-
morphic with M /mM (cf. also Ezercise 0@);
(ii) (M ®a N)i = My, ® Ny as k-vector spaces;
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(iii) if M ®4 N =0, then M =0 or N = 0.
Hint for (ii): Apply Nakayama’s lemma.

Proof. (i) We only define the scalar multiplication: For z € k and m®y € M ®4 k,
define - m®y := m ® zy. To construct an isomorphism with M /m, consider the
A-bilinear map M x k — M /m defined by (m,a) — am, where a € k = A/m denotes
the eugivalence class in k and am the equivalence class in M/m. This induces a
map ¢ : M ®4 k — M/m which is in fact k-linear for the k-vector space structure
defined above. Indeed, p(b-m®a) = p(m @y -2) = bam = b-am. On the other
hand, we define a map 1 : M /m — M ®a k by ¥(m) = m® 1. This is well-defined
for if am e mM, then am® 1 = m®®al = m®a = 0, for a € m.

(ii) By Exercise 0[70|we have to show that M@ N/m(M®aN) = M/mM®;N /mN.
Asin (i) we can construct a k-linear map ¢ : M/ mM @, N/mN — M@ N/m(M®4
N) sending m®n to m ® n, as well as an A-linear map ¢ : M@ N/m(M®a N) —
M /mM ®;, N/mN sending m ® n to m@7. It remains to see that ¢ is k-linear. So
letaek. Thena- m®n=a-m@nissent toam@ n =m@an =a-mn.

(iii) By assumption, 0 = (M ®4 N)i = My ® N which implies either My = 0
or N = 0 for M and N are vector spaces, and the dimension of the product is
the product of the dimensions. Since My, =~ M /mM and N = N/mN, Nakayama’s
lemma implies M =0 or N = 0. U

73. Example. Take A = Z and consider the exact sequence 0 — Z % 7. If we
tensor with M = Z/27, then 0 > Z®z M — Z ®z, M is not exact, since for any
2@mMEZ®, M,2Q0Id(z®m) =2x®m =z ®2m = 0. Hence 2®1d is the zero
map, while Z ®y Z/27Z = Z/27 * 0.

74. Proposition and Definition (flat modules). Are equivalent for an A-
module M:

(i) M is flat, that is, Ths takes exact sequences to exact sequences: If

0 N s NP 0

is an exact sequence of A-modules, then so is

0 —— T (V) 2L o) 22 vy — 0

(i) If
N/ $ N L_ N//
is an exact sequence of A-modules, then so is

T (N) 22 7y () 22 ()

(iii) if N' > N — N" is exact, then so is Toy(N') — Tps(N) — Tpr (N”);
(iv) if @ : N' — N is injective, then so is Tyr(a) = a ®Id.
) if N and N’ are finitely generated, and o : N' — N is injective, then Ty (o) =
a®Id is injective.
Proof. (1)< (ii) This follows directly from splitting and glueing of the exact sequence

0——>kera —> N'—2 > N 2o N ™ coker f ——0

cf. Exercise 0470
(iii)«>(iv) Follows directly from Proposition 0[69]
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(iv)=>(iii) Obvious.

(iv)=>(ili) Let « : N’ — N be injective. Let u = > 2, ® y; € ker(a ® 1), that is,
Ya(z)®y; =0in N® M. Let N) be module generated by the (finitely many)
z;. By Lemma 066 there exists a finitely generated submodule Ny of N which
contains «(N)) and such that >, a(z;) ® y; = 0 in No ® M. It follows that Ths of
the restriction «g : N} — Ny maps > 2, @ y; € N ® M to 0 € Ng ® M. Since
T (ap) is injective by assumption, > z; ® y; = 0 in N} ® M, hence in N ® M.
Therefore, Ty« is injective. O

75. Examples. Vector spaces, or more generally, free modules are flat.

Algebras. Let f: A — B be aring morphism. The operation a-b:= f(a)b turns
B into an A-module. The module structure is compatible with the ring structure
in the obvious sense, i.e. (a1 +az) -b=a;-b+az-b, a-(by+b2) =a-by+a- by
and a - (blbg) = (Cl . bl)bg = b1(a . bg)

76. Definition (A-algebra). An A-algebra is by definition an A-module struc-
ture on a ring B provided by a morphism f : A — B as above. An A-algebra
morphism f: B — C is a ring morphism which is also an A-module morphism.

77. Example. The ring A[x1,...,2,] is an A-algebra with respect to the
natural inclusion A < A[xy,...,z,]. More generally, A[z1,...,z,]/a for any ideal
ac Alzy,...,z,] is an A-algebra.

78. Remarks.

(i) If A = k is a field, then any nontrivial morphism k& — B is injective (cf.
Proposition O. In particular, any k-algebra is a ring containing k.

(ii) Let A be any ring. Then there is a natural map Z — A, n— 1+ ...+ 1 (n
times 1). In particular, every ring is automatically a Z-algebra in the sense of
Definiton 0[76]

79. Definition. A ring morphism f : A — B is called finite, and B is a
finite A-algebra, if B is a finite A-module. Further, f is of finite type, and B is
a finitely generated A-algebra if there exists a surjective A-algebra morphism
F: Alxy,...,2,] — B with F(A) = f(A), i.e. B is isomorphic (as an A-algebral)
to Alzy,...,2,]/a for some ideal a ¢ A[x1,...,2,] and n € N. Equivalently, any
element in B can be written as a polynomial in F'(z;) with coefficients in f(A).

We usually drop the reference to the underyling morphism f : A — B and simply
speak of an A-algebra B.

80. Exercise (finitely generated algebra vs. finitely generated module).
Let A be an integral domain with field of fractions k, and let f € A\{0} be not a
unit. Then A[1/f], the algebra generated by A and 1/f inside k, is not a finite
A-module.

Proof. Indeed, assume the contrary. Then there exists k € N such that f~(*+1 =
Zf:o a;f~*. Hence 1 = Zf:o a; fEitt = fo:O a; f*=%. In particular, f is a unit.
Contradiction! O
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81. Proposition (tensor product of algebras). Let B and C be two A-
algebras. Then B®4 C is also an A-algebra.

Proof. Let T be the A-module B ®4 C. We define a ring structure via the mul-
tiplication p : T x T — T induced by pu(b® ¢,b® &) = bb® cé. Again, the point
to show is that p is well-defined. First, define a map B x C x B x C' — T by
(b, c, b, é) — bb® cé. Since this is linear in each factor, the universal property yields
an A-linear map BQC ® B® C=T ® T — T which corresponds to a bilinear
map p : T x T — T. It is straightforward to check that this turns 7" into an
A-module. O

82. Exercise (flat A-modules). Let A — B be a ring morphism, and M a flat
A-module = Mp := B®a M is a flat B-module.

Proof. Let ¢ : Ny — N3 be an injective B-linear map between two B-modules NV ».
We regard B as an (A, B)-bimodule so that by Proposition 0 we have

N; ®p Mp =N; ®p (B®4a M) = (N;®p B) @4 M = N; ®4 M. (1)

Under these isomorphisms ¢ ® 1 : N1 ® g Mg — N2 ®p Mp becomes an A-linear
morphism Ny ®4 M — No ®4 M which sends (bn) ®4 m to (bp(n)) ®4 m =
p(bn) ®4 m induces a B-linear map Ny ®4 M — Ny ®4 M. Since M is a flat
A-module, this map, and a fortiori ¢ ®1 is injective, whence Mp is a flat B-module
according to Proposition 0[74] O

0.3. Noetherian rings and modules. Next we discuss one of the most important
classes of rings, namely those rings whose ideals are finitely generated modules. In
particular, the rings of the form k[x1,...,x,]/a, which play a key role in algebraic
geometry, belong to this class.

83. Definition (ascending and descending chain condition). A partially
ordered set Xﬂhas the ascending chain condition (a.c.c. for short) if every chain
$1 < 59 < 83 < ...< 8, < ...becomes eventually stationary, that is, there exists
k € N such that sy = sgr1 = .... Similarly, one defines the descending chain
condition (d.c.c.) for chains s; = sy =83 = ... =8, = ....

84. Example. The set of vector subspaces of a finite dimensional vector space
ordered with respect to inclusion satisfies the a.c.c..

85. Remark. For every partially ordered set (X,<) a.c.c. is equivalent with
every nonempty subset S having a maximal element m (i.e. if s € S with s = m,
then s = m): Indeed, a stationary sequence has a maximal element. Conversely, if
we had no maximal element, we could inductively construct a sequence which does
not become stationary.

86. Proposition and Definition (Noetherian rings). For a ring A are equiv-
alent:

(i) The set of ideals of A has the a.c.c.;

1Recall that this means that there exists a binary relation “<” on X which is reflexive, anti-
symmetric, and transitive.
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(ii) every nonempty set of ideals has a maximal element with respect to inclusion;
(iii) every ideal is finitely generated.
If any of these conditions is satisfied we call A Noetherian.

Proof. (1)«(ii) This is just the previous remark.

(i)=(iii) Let a be an ideal of A and pick z; € a. Choose inductively a sequence
Xiy1 € a\(21,...,2;). Since the sequence (1) € (z1,22) € ... < (T1,...,%y) C ...
eventually becomes stationary, we must have (x1,...,x,,) = a for some m.
(ii)=(iii) Let a be an ideal and S be the set of finitely generated ideals in A which
are contained in a. Since (0) € S this is nonempty, hence has a maximal element
b by assumption. However, if there exists z € a\b then the ideal generated by
x and m would be finitely generated, be contained in a and strictly contain b, a
contradiction. Hence a = b.

(iii)=(@1) Let a1 c ap < ... < a,, < ... be a sequence of ideals. Since b = (Ja; is

again an ideal which by assumption is finitely generated, we have b = (z1,...,z,).
Since the are finitely many ideals a; which contain the generators, the sequence
eventually stops. U

87. Remark. Similarly, the d.c.c. is equivalent to the existence of minimal el-
ements. A ring satisfying the d.c.c. is called Artinian (cf. for instance [AtMal
Chapter 8]). An Artinian ring is always Noetherian, that is, d.c.c. on ideals implies
always a.c.c.. More precisely, a ring A is Artinian if and only if A is Noetherian and
every prime ideal is maximal (see for instance [Gal Proposition 7.17]). However, the
d.c.c. is not equivalent with ideals being finitely generated which is why Noetherian
rings are more important than Artinian ones.

88. Examples.

(i) Z satisfies a.c.c. but not d.c.c. Indeed, consider the infinite chain (a) > (a?) o
(@) > ... for a + 0.
(ii) Similarly, k[z] satisfies a.c.c., but not d.c.c. Indeed, consider (z1) > (23) >
.... In fact, Hilbert’s base theorem O asserts A Noetherian (for instance
A = k) = Alx] is Noetherian. The proof can be extended to show that A Noe-
therian = A[z] (ring of formal power series) is Noetherian, see Theorem 0[102]
and Exercise 0104l
(iii) k[z1,2,...] in an infinite number of indeterminates x; satiesfies neither chain
condition. Indeed, consider (z1) < (z1,22) < (z1,%2,23) < .. ..
(iv) Consider the germ of continuous functions at 0 € R, i.e. the set of equivalence
classes [U, f] where U < R is an open subset containing 0 and f : U —
R a continuous function. We have [U, f] = [V, g] < there exists an open
neighbourhood W of 0 in U nV with f|w = g|lw. Multiplication and addition
of germs turn this into a commutative ring A. Further, [U, f] is a unit in A <
f(0) # 0. Hence, the nonunits form an ideal m which by Proposition 0[11] is
maximal. In particular, (4, m) is a local ring. However, it is not Noetherian.
Namely, assume that m has a finite number of generators fy,..., f,. Then
for any g € m we have g = Y. a;f; for continuous functions a; defined near 0.
In particular, there exists a constant ¢ (depending on g of course) such that
lg(x)] < emax |f;(x)] as  — 0. In particular, |g(x)|/ max|f;(z)| is bounded
for any g as * — 0 which of course cannot be true for there exist functions
which vanish at 0 yet decrease much faster than max |f;(x)|. For instance,
put g(z) = y/max|z|,|fi(z)|, then g/max|fi(z)| = g/ max|z|,|fi(z)| — 0

as * — 0. Similarly, the ring of C® germs is not Noetherian, while the
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Noetherian property holds for holomorphic functions (this follows essentially
from the power series property of holomorphic functions and (ii) above).

(v) In a similar vein, consider an infinite compact Hausdorff space X together
with the ring of continuous functions A = C(X). Take a strictly decreasing
sequence of closed sets F} D F, o ..., and let a; = {f € A | f(F;) = 0}.
Then a7 < ap < ... is a strictly increasing sequence of ideals, hence A is not
Noetherian.

Proposition 0[30] generalises easily to modules:

89. Definition (Noetherian module). A module M is called Noetherian if
its set of submodules satisfies the a.c.c. with respect to inclusion.

90. Remark.

(i) In particular, A is a Noetherian ring if and only if it is a Noetherian A-module.
(ii) In the same way, we can define Artinian modules which satisfy the d.c.c.

91. Proposition (Noetherian modules and finitely generated submod-
ules). M is a Noetherian A-module if and only if every submodule of M is finitely
generated. In particular, M is itself finite over A.

Proof. =) Let N be a submodule of M, and let ¥ be the set of all finitely generated
submodules of N. Since 0 € 3, ¥ is nonempty. By the a.c.c. it must have a maximal
element, say L. If N = L, then N is finitely generated. If not, there exists € N\L,
and L and = generate a submodule which both is finitely generated and properly
contains L, a contradiction to its maximality.

<) Let Ny € Ny ... be an ascending chain of submodules. Then the union | J V;

is also a submodule which by assumption is finitely generated, say by mq,...,m, €
M. But then there must be an n such that m; € N; for [ > r. It follows that
N; = N, for all [ = r so that the chain is stationary. O

92. Proposition (quotients and submodules of Noetherian and Artinian

modules). Let 0 — L % M L N = 0 be a short exact sequence of A-modules.
Then

Mis Noetherian (Artinian) < L and N are.

In particular, quotients and submodules of Noetherian (Artinian) modules are again
Noetherian (Artinian,).

Proof. We prove the statement for Noetherian modules, the Artinian case being
similar.

=) Any ascending chain in L or N corresponds to an ascending chain in M so that
L and N inherit the a.c.c. from M.

<) Suppose M7 © My < ... is an ascending chain of submodules. Thinking of L
as a submodule of M we have the chain L n My, ¢ L n My <, and applying 8 we
also get (M) < (Ms) < ... of submodules in N. Each of these chains eventually
stops by assumption and the result follows from Lemma 0/46] O
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93. Corollary (direct sum of Noetherian (Artinian) modules). If M;
are a finite number n of Noetherian (Artinian) modules = @,; M; is Noetherian
(Artinian).

Proof. 0 — My, — M1 ® My — My — 0 is a split exact sequence which implies the
assertion for n = 2. Then proceed by induction. O

94. Exercise (subrings of Noetherian rings). Are subrings of Noetherian
rings again Noetherian?

Proof. No. Take an integral ring which is not Noetherian, for instance A =
k[z1,22,...], and consider the inclusion A € k = Quot A. As a field, k is Noe-
therian. However, A is not. O

95. Corollary (modules over Noetherian rings). Let A be a Noetherian ring.

(1) If M a finite A-module <> M is Noetherian. In particular, any submodule of
a finite module over A is itself finite.
(ii) If a c A is an ideal = A/a is Noetherian ring.
(iii) If ¢ : A — B is a ring morphism such that B is a finite A-module = B is
Noetherian ring.

Proof. (i) If M is Noetherian it is finite as we have seen above. If M is finite over A,
then M =~ A™/N so that M is Noetherian A-module as the quotient of a Noetherian
A-module A™.

(ii) A/a is a Noetherian A-module. Since the scalar multiplication of A and A/a
coincide, it is also a Noetherian A-module, that is, A/a is a Noetherian ring.

(iii) B is obviously Noetherian as an A-module. Its ideals are A-submodules, hence
finite as A-modules and a fortori as B-modules. O

96. Exercise (finite presentation of finitely generated modules over Noe-
therian rings). If A is Noetherian and M finitely generated, then it is finitely
presented, that is, there exists an exact sequence

AT 53 AP 25 N 0.

Remark: Any finitely presented module (over an arbitrary ring) is obviously finitely
generated. The exercise shows that the converse holds if A is Noetherian.

Proof. Since M is finitely generated, by definition there is an epimorphism g :
AP — M, This gives the exact sequence 0 — keryp; — AP — M — 0. Since
A is Noetherian as a module over itself, so is AP by (i) of the previous corollary.
Hence ker ¢ is a finitely generated A-module so that there exists an epimorphism
pg : A1 — ker 1. O

97. Remark. If A is Artinian, and

(i) M a finite A-module = M is Artinian;
(ii) a < A an ideal = A/a is an Artinian ring.
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98. Exercise (Cohen’s theorem). If all prime ideals of A are finitely generated
= A is Noetherian.

Hint: Consider the set X of ideals which are not finitely generated.

Proof. Assume ¥ £ ¢§. By Zorn’s lemma, there exists a maximal element a which
by assumption is not prime ideal. Indeed, take a chain ag < a; < .... Then the
union | Ja; is again an ideal because the union is taken over a chain. If it was
finitely generated, then the generators must be contained in some ideal ay for N
large enough, so a € ¥ is an upper bound. It follows that there are a, b € A with
ab € a, but a, b ¢ a. Since a + (a) contains a it must be finitely generated, say
a+ (a) = (21,...,2,,a) with z; € a (otherwise, write z; = «; + ¢;a with a; € a
and ¢; € A and replace x; by a;. Moreover, a : (a) = {x € A | za € a} contains b.
Hence a is strictly contained in a : (a) which therefore has a finite set of generators
{y1,-.-,ys}. But then a = (z1,..., 2,010, ...,ysa) for if @ = > a;x; + ca € a, then
ca € a so that ¢ must be a linear combination of the y; € a: (a). Thus a is finitely
generated, a contradiction. Hence ¥ = ¢ so that A is Noetherian. O

99. Exercise (prime ideals in Artinian rings). Let A be an Artinian integral
domain. Prove that A is a field. Deduce that every prime ideal of a general Artinian
ring is maximal.

Hint: For a € A, the d.c.c. applied to (a) > (a?) o ... o (a*) gives a relation
af = zabtl z e A

Proof. Let 0 & a € A. By the d.c.c. there exsist k € Nund z € A so that a* = za**1.
If Kk = 0, then za = 1, so that a is a unit. Otherwise, a(xa* — a*~!) = 0. Since
A is integral, za® — a*~' = 0. Continuing in this way, we arrive again at za = 1,
whence A is a field.

If A is a general Artinian ring and p € A a prime ideal, then A/p is an integral
Artinian ring. Let m © p be an ideal of A containing p. Then there exists m in A/p
whose inverse image is m. However, m is either trivial or A/p by the previous step.
Hence either m = p or m = A so that p is maximal. O

100. Exercise. Let (A,m) be an Artinian local ring. Prove that m is nilpotent,
i.e. there exists k € N with mF = 0.

Hint: The d.c.c. yields k € N such that mF = m**1. Assume that m & 0, otherwise
there is nothing to prove. Let ap be minimal among the ideals of A with a-m* + 0
(why does it exist?). Prove that ap = (x) is prinicpal before applying Nakayama’s
lemma 0[6Q to it.

Proof. Since A is Artinian, ay exists by Zorn’s Lemma. By design, there exists
x € ag such that zm* + 0, whence (r) = ag by minimality. Further, since (z)m <
(z) and (z)m - m* = (z)m*+1 = (z)m* + 0 we conclude by minimality again that
(x)m = m. But M = () is a finite A-module, hence M = 0 = z by Nakayama’s
lemma. Contradiction! O

101. Remark. The structure theorem for Artinian rings asserts that an Artinian
ring is uniquely (up to isomorphism) a finite direct product of Artianian local rings,
see for instance [AtMal Theorem 8.7].
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102. Theorem (Hilbert basis theorem). If A is Noetherian, then so is the
polynomial ring Alx].

Proof. We prove that any ideal 2 — A[x] is finitely generated by “reducing” it to
A.

Step 1. Construction of the generators. For n = 0 we consider the sets
a, := {a € A | there exists f € 2 such that f = az™ + b, 12" ' + ... + b},

that is, a,, is the set of elements in A which arise as leading coefficient of a poly-
nomial of degree n in 2A. Since 2 is an ideal, so are the a,. Further, since f €
implies zf € %A, a, < a,41 is an increasing chain of ideals. By the Noether prop-
erty of A, (i) the sequence eventually becomes sationary for n = m; (ii) there exist
{ani,...,anr, } which generate a,. From the definition of these ideals, there exist
polynomials f,,; € 2 of degree n having a,; as the leading coefficient.

Step 2. We show that the set B generated by { fi; }i<m, i<r, contains 2. This follows
from an induction on the degree of polynomials in 2. If f € 2 is a polynomial of
degree 0, then f € 9B since ay < 8. For deg f = n > 0 with leading coefficient a we
consider two cases. If n = m, then a,, = a,, so that a = Zz’:"l b;a,,; with b; € A.
But then g = f — > b;z" ™ f,,,; € 2 has degree < n for we have killed the leading
coefficient of f. By induction, g € B, and therefore f € . On the other hand, if
n < m, then f — > b; fn; has degree < n if a = > b;an; (check the indeces in both
cases!). Again f € 8.

O

103. Corollary (Noetherness of polynomial rings). Let A be Noetherian

= Alx1,...,2,] is Noetherian. More generally, any finitely generated A-algebra is
Noetherian.
Proof. By induction on n using Hilbert’s basis theorem. O

104. Exercise (Noetherness of the ring of formal power series). Adapt the
proof of Hilbert’s basis theorem to show: If A is Noetherian = A[x] is Noetherian.

Proof. The proof is similar to Hilbert’s basis theorem, the essential difference being
the definition of the ideals a,,. If 2 is an ideal of A[z], let

a, := {a € A | there exists f € AN 2" Az] such that f = az"™ + by 2" +...}.

This yields an increasing chain of ideal ay < a; ... in A, and one can proceed as
in Theorem 0 see also [Ma), Theorem 3.3]. Namely, since A is Noetherian,
(i) the chain becomes stationary, i.e. there exists N € N such that ay = a1 =

.y

(ii) the ideals ag are generated by a finite number of elements ag;, ¢ = 1,...,7s.
We take anyj; =an; fori=1,...,7ny4; = TN.

For each a,; choose gy € A N xSA[[a:]] of the form gy; = asx® + Zj>n+1 bjzl. For

s = N + j we take gniji = 2/gn;. We wish to show that these gs; generate

A over k[z]. So, if f = Y, gaix’ € A = An a®Afz], ag = X2 afao; so that

f—g0€dn XA[x] for go = >, afgo;. Similarly, we can construct g1, go, .-, gn

such that fxi1:=f—go—g1—...—gn = axN+! + s Npa bjal € 2An XN A[Z].

In particular, a € ayi1 = ay so thap a = Z:]:Vl aﬁv+1aN1- so that fyi1 —gni1 €
A N XVNT2A[z] with gny1 = X Y oy, 19ni. In the same way we can construct
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gntj = 2N oy sgni for j = 2. Foreachd > 1weset hy = 3, oy, ;27 € Afz]
so that

f:90+-~-+gN+ZgN+j

j=1
=go+...+gN+Z (Zaﬁvﬂ-x])gm
i=1 j>1

TN
=go+...+gN+ZhigNi.
i=1
Then go,...,gn are in the finite A-module generated by gs;, s < N, while gy,
j =0 are in the finite AJz[-module also generated by gs;. O

105. Exercise (finite modules over Noetherian local rings). Let (A, m)
be a local Noetherian ring, and M be a finite A-module. If any exact sequence of
A-modules 0 > N — A™ — M — 0 is preserved under tensoring with k = A/m =
M is free.

Hint: Let myq,...,m, be a basis of the k vector space M/mM. By Nakayama’s
lemma, my,...,m, generate M. Let F' = A" be the free module of rank n and
define the map ¢(e;) = m;, where ey, ..., e, denotes the standard basis of F'.

Proof. From the exact sequence 0 — ker¢p — F — M — 0 we get the exact
sequence 0 > k®@a ker¢p > k®4 F > k®a M — 0. Since k ®4 F and k@ M
are vector spaces of the same dimension, the induced map 1® ¢ is an isomorphism,
hence k® aker ¢ =~ ker ¢/mker ¢ = 0 (the isomorphism is provided by Exercise 0.
In particular, ker ¢ = mker ¢. But ker ¢ is finite as the submodule of a Noetherian
module (F is finite over A), whence ker ¢ = 0 by Nakayama. Thus F =~ M, so M
is free. U

1. VARIETIES AND MORPHISMS

We saw already several examples of algebraic categories, for instance the category
of rings whose morphisms where ring morphisms, or the catgeory of A-modules
whose morphisms where A-linear maps. In this section we introduce the geometric
category we will mainly be concerned with in the first part of this course, namely
the category of varieties. We first define the objects, namely the wvarieties, and
second the morphisms. Finally, we will construct a contravariant functor to the
algebraic categories of finitely generated algebras and field extensions which will be
the bridge from geometry to algebra.

What is then a “geometric category” one may ask? Roughly speaking, this is a cat-
egory whose objects are topological spaces defined (at least locally) by functional
equations (piecewise linear, differentiable, polynomial etc.). These give rise to a
ring of functions which determines the morphisms and thus the geometric category
(piecewise linear, smooth, algebraic etc.). The link between geometry and algebra
will be thus given by polynomial rings k[x1,...,2,] (or rings derived from them
such as quotients). For instance, consider X = C. We declare a subset U of X to
be open if it is the complement in C of a finite set of points. As ring of functions we
take A = C[z] which are continuous with respect to this topology. More abstractly,
consider Spec A of a general ring A. We have already seen in the exercises at the
end of Section that X := Spec A is a topological space in a natural way. Now
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for any = p € X we have a natural map A — Quot (A/p) (since p is prime, A/p is
integral!). For f € A we define a “function” on X which associates with z € X the
image of a under the map A — Quot (A/p), which we denote by f(x). In partic-
ular, unlike ordinary functions, f(x) takes values in different fields. In this sense,
A becomes a “ring of functions” for the “geometric object” Spec A. For instance,
if A =7, we can view f(p), where p is a prime, as the mod p reduction of f in the
field F, = Z/pZ. If A = C[x], then for p = (z — z) we have f(p) € C[z]/p = C,
where the latter isomorphism is induced by evaluation at z. Hence, in this case, we
can identify f(p) with f(z) so that we recover C (actually as a topological space,
as we will see later) and its ring of functions C[z].

Literature. This course follows mostly the standard textbook in algebraic geom-
etry, namely

e R. Hartshorne, Algebraic Geometry, Springer, 1977.
For a more leisurely paced introduction we recommend

e K. Hulek, FElementare algebraische Geometrie, Springer, 2000.
Further references we occasionally use are

e A. Gathmann, Algebraic Geometry, lecture notes available at mathematik.uni-
kl.de/agag/mitglieder/professoren/gathmann/notes/.
e M. Reid, Undergraduate algebraic geometry, LMS, 1988.

General remark on fields. Unless mentioned otherwise, k will always denote an
algebraically closed field. This has two consequences: First, k has infinitely many
elements which allows us to identify the polynomial algebra k[x1,...,x,] with the
set of polynomial functions k™ — k obtained by evaluation. This is false for instance
over Zs, since z(x + 1) is identically zero as polynomial function, but nonzero as a
polynomial in Zs[z]. Secondly, we can directly apply Hilbert’s Nullstellensatz
instead of appealing to results from Galois theory (cf. [Rel Chapter 5.4]).

1.1. Affine and projective varieties.

Affine varieties. Let k be a(n algebraically closed) field. The most basic algebraic
geometric object associated with k is the affine space A}. If the underlying field
is clear from the context we simply write A". As a set, A} is just k" but we
reserve the latter notation for the n-dimensional vector space over k. In particular,
k™ has a distinguished element, namely the origin or zero element. If we forget
about the algebraic structure we obtain A™. An element a = (a1,...,a,) € A"
will be called a point, and the a; € k are its coordinates. Moreover, A™ comes
with a natural topology to be defined below. Affine spaces arise as solutions of
(inhomogeneous) linear systems Aa — b = 0 where A € k™™ and b € k™. More
generally, we can replace linear equations by polynomial equations. Consider a
subset T' < k[z1,...,2,]. Since k is algebraically closed, it is infinite, and we can
freely identify polynomials with polynomial functions on A™. Define

Z(T)={ae A" | f(a) =0 for all feT}.
If (T') is the ideal generated by T, then clearly Z(T) = Z((T)). If T = {f} for a
polynomial f € k[x1,...,x,] we simply write Z(f).

1. Definition (algebraic set). A subset Y of A™ is algebraic if there exists
T c k[x1,...,2z,] such that Y = Z(T).

2. Example. Consider A'. Since k[x] is principal (in fact Euclidean), we have
for any T < k[x] that Z(T) = Z(f) for some f € k[z]. Since k is algebraically
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closed, f = ¢(x —ay) ... - (x —ay) for a; € k unless f is a constant, whence
Z(T) = {ai,...,a,}. Since Z(0) = A! and Z(1) = J, the algebraic sets of A! are
as follows: ¢, finite subsets of k, and k.

We thus get a map
subsets in k[x1,...,2z,] — algebraic sets in A", T — Z(T).

In general, it is not obvious that Z(a) £ & for ideals strictly contained in k[x1, ..., z,].
As a consequence of the weak Nullstellensatz of Theorem [0]ff|and Corollary [0|[7] rules
out this gloomy possibility. That is also the reason why it is called “Nullstellensatz”

— it ensures the existence of a rich theory of algebraic sets:

3. Proposition (algebraic sets exist in abundance). Ifa < k[xy,...,2,] is
a proper ideal, then Z(a) + &.

Proof. Since a is a proper ideal it is contained in some maximal ideal which by
Corollary [0][7] is of the form (21 — ay,...,z, — a,). Hence (ai,...,a,) € Z(a). O

4. Examples.
(i) Conics are algebraic sets given by polynomial equations of order 2: f =
Saixizy + biz; + ¢ = 0. In A?, these comprise the circle z? + y? — 1 = 0,
the parabola y — 22 = 0 and the hyperbola zy — 1 = 0 (see Figure 1 for a
picture over k = R).
(ii) Cubics are given by polynomial equations of order 3. T'wo important examples
in A2 which we will use for illustration later are the nodal cubic y%> —z3—x2 = 0
and the cuspidal cubic y* — 2% = 0 (see Figure 1[3).
(iii) Interesting examples come often in families. For instance, elliptic curves are
given by the family y?> —z(z—1)(x—\) = 0, X € k (see Figure 1With k =R).
For finite fields these curves play an important role in cryptography (so-called
“eec” — elliptic curve cryptography).

o

( RJ (L.J [c)

FIGURE 2. The standard conics in AZ. the circle (a) the parabola
(b) the hyperbola (c).

We summarise the properties of the assignement T'— Z(T') in the following
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(o) (L)

FIGURE 3. The nodal (a) and cuspidal (b) cubic in AZ.

28T

FIGURE 4. Elliptic curves for various A € R.

5. Proposition.
(i) Ty c Ty c k[xy,...,2n] = Z(T1) 2 Z(T3).
(ii) Z(1) = & and Z(0) = A™. Hence the empty set and A™ are algebraic.
(iii) Z(Th) v Z2(Tz) = Z(ThT3), where TyTo = {f1 - fo | fi € T;}. Hence the finite
union of algebraic sets is again algebraic.
(iv) (", 2(T;) = 2(U,; T;). Hence the intersection of any family of algebraic sets
is again algebraic.

Proof. Ounly (iii) requires proof. Let a € Z(T1) u Z(T3). Then either a € Z(T})
so that fi(a) = 0 for fi € Ty, or a € Z(T3) so that fo(a) = 0 for fo € Ty. Hence
a € Z(T1Ty). Conversely, let a € Z(ThT). Assume that a ¢ Z(T1). Then there
exists f1 € T such that f1(a) & 0. By definition, f; - fa(a) = fi(a)f2(a) = 0 so
that fa(a) = 0 for all fo € T5. O

6. Remark. If a = (T) is the ideal generated by T' < k[x1, ..., ], then Z(a) =
Z(T). In particular, we have
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(i) Z2(I1Tz) = Z(a1a2) = Z(a1 nag), for ayas < a; nag by [0f23] More concretely,
ifa; = (f1,...,fs) and a = (¢1,...,9r), then

Z(ay-a2) = Z((figj |i=1,...,sand j=1,...,7r)) = Z(a1) U Z(az).
(ii) Similarly, we have
Z(ay+az2) = Z2((f1,-- -, fs, 915+, 9)) = Z(a1) 0 Z(az).

(iii) Z2(T) = g < (T) = k[r1,...,2,]. Indeed, if a were a proper ideal of
k[z1,...,2,], then it is contained in some maximal ideal m.

7. Definition (Zariski topology). We declare a set to be open if it is the
complement of an algebraic set. The topology thus defined is called the Zariski
topology of A™. We always think of A™ as being equipped with the Zariski topol-
ogy; the closed sets are then the algebraic sets of A™.

8. Example.

(i) In the example of A! considered above we see that a proper nonempty subset
of Al is Zariski open in A! if and only if it is the complement of a finite subset.
In particular, open sets are dense and the Zariski topology is not Hausdorff.

(ii) For any f € k[z1,...,2,] define the so-called basic open set by D; :=
A™MZ(f). Tt is easy to see that the basic open sets form a base for the Zariski
topology, i.e. every open set is a union of basic open sets.

9. Remark.

(i) To explain the link with the Zariski topology on spectra of rings, consider
mSpec k[x] endowed with the subspace topology coming from Spec k[z]. Its
closed subsets are of the form Z(a) = {m € mSpeck[z] | « < m} for any
ideal a < k[z]. Since k[z] is a principal ideal ring, a = (f). Moreover,
f=c®—a)- ... - (x — ay) so that the maximal ideals containing a are
precisely (x — a;), ¢ = 1,...,n. Under the map which sends the maximal
ideal (z — a) to the point a € k it represents (cf. Example [0f33), Z(a) gets
map to {ai,...,a,} = Z(f), the corresponding closed subset of k. Hence the
identification of Al with mSpec k[z] is actually a homeomorphism.

(ii) Under the natural identification R? =~ C we have A2 is A} as sets, but not as
topological spaces. For instance, #2 + y? — 1 € R[x, y] defines an algebraic set
(the unit circle) which is obviously not finite in C (note that the discussion of
the Zariski topology did not require k to be algebraically closed so that A2 is
actually defined).

10. Exercise (Products of Zariski topologies). Identify A® with A* x A! as
sets in the natural way. Show that the Zariski topology on A? is not the product of
the Zariski topologies on the two copies of Al.

Proof. Think of A% = {(x,y) | z,y € A'} = Al x Al. Open sets in A! are ¢,
complements of finite sets, or Al. It follows that a base of open sets in A' x Al is
given by ¢J, complements of finite families of lines parallel to the z- or y-axis, or A2
(i.e. any open sets with respect to the product topology can be written as a union
of these sets). But A? contains for instance the open subset D(,_,) (A? without
the diagonal) which is not of this type. O
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11. Definition (irreducible sets). A nonempty subset X of a topological space
is called irreducible if it cannot be written as the union X = X; u X5 of two
proper subsets, each of which is closed in X.

12. Example. The affine space A! is irreducible for its proper closed subsets are
finite, while A! ~ k is infinite, k& being algebraically closed.

The following remarks are general in nature and apply to any irreducible topological
space X.

13. Proposition (irreducible topological spaces). Let X be an irreducible
topological space. Then

() X + 2.

(ii) Any two nonempty open subsets Uy, Us of an irreducible space X must inter-
sect. In particular, X is not Hausdorff.

(iii) Any nonempty open subset U of an irreducible set X is irreducible and dense.

(iv) If X is irreducible, then so is its closure X.

Proof. (i) This is true by definition.

(ii) If Uy nUy = & for two open subsets, then Uf U US = X, where ¢ denotes taking
the complement in X.

(iii) Indeed, X = U u X\U, where X\U is closed. A decomposition of U into closed
subsets therefore yields a decomposition of X. Furthermore, X = U u X\U so that

U = X if X is irreducible.

(iv) Assume that X = Z; U Zy with Z; closed and properly contained in X. Since
X is closed, X n Z; is closed in X and thus gives a decomposition of X. O

14. Definition (affine and quasi-affine varieties). An affine (algebraic)
variety is an irreducible closed subset of A™ together with the subspace topology
induced from the Zariski topology. A quasi-affine variety is an open subset of an
affine variety.

15. Remark. It follows from Proposition 1[I3] that any two nonempty open
subsets of an affine variety intersect, and any nonempty open subset is dense.

To establish a dictionary between geometry and algebra we associate with a subset
X < A™ the ideal

I(X)={feklz,...,xn] | f(a) =0 for all a € X}.

The main theorem for the assignement Z is the

16. Theorem (Nullstellensatz). Let k be an algebraically closed field. Then
I(2(a)) = Va.
Put differently, f(z) =0 for all z € Z(a) = A™ if and only if f* € a for some k.
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Proof. Suppose f € A := k[x1,...,x,] is such that f(p) = 0 for all p € Z(a). We
introduce the auxiliary variable Y and consider the ideal

a=(a,fY —1)c A[Y].
Now p = (a1,...,an,b) of Z(a) satisfies (a1,...,a,) € Z(a) and f(a1,...,a,)b =1,

whence f(ay,...,a,) # 0, a contradiction. Thus Z(a) = & so that by (i), 1 € a.
Hence there exists g; € A[Y] and h; € a such that

Dgihi +go(fY —1) = 1.

By multiplying a polynomial g(z1,...,7,,y) by f* for a sufficiently big power k
we obtain a polynomial G(z1,...,2Z,, fY) (note that f is itself an expression in
Z1,...,Zy). Therefore we can write the identity between polynomials as

ZG1($1,,xn,fY)hz + GO(fY - 1) = fk(mla"'axn)‘
In particular, substituting fY = 1 gives

fk = ZGZ‘(Il,...,In,l)hi €a,

whence the assertion. O

17. Corollary. Letp c k[z1,...,2z,] be a prime ideal. Then Z(Z(p)) = p.
We summarise the properties of Z in the next

18. Proposition (£ 07). Let X and Y be two subsets in A™.
(i) fYc X c A", thenZ(Y) o Z(X). B
(ii) For any subset X < A™, Z(I(X)) = X, the closure of X. In particular,
Z(Z(X)) = X for any algebraic set.
(iii) For any ideal a < k[z1,...,z,], Z(Z(a)) = +/a.
(iv) We have Z(X 0Y) = Z(X) nZ(Y). Further, if Y is closed, then Z(X\Y) =
I(X) : Z(Y).
(v) Z(X) is a radical ideal.
Proof. (i) Clear from the definition.
(ii) Obviously, X is contained in the closed set Z(Z(X)), whence X < Z(Z(X)).
On the other hand, let Y be any closed set containing X, then Y = Z(a) for some
ideal a < k[zy,...,x,]. Consequently, a = Z(X) and thus Z(Z(X)) < Z(a) =Y.
This is in particular true for Y = X.
(iii) This is the Nullstellensatz 1[16]
(iv) We have
I(XvY)={feklz,...,zn] | fl) =0forallze X Y}
={feklxr,...,zn]| f(x)=0forallz e X} n{f €k[z1,...,2,] | f(x) =0forall z e Y}
=Z(X)nZ(Y)
and
Z(X\Y) ={f€kl[z1,...,zn] | f(x) =0for all z € X\Y}
={fek[z1,...,xn] | f(x) g(x) =0forall z€ X and g € Z(Y)}
={feklxr,...,zn] | [-Z(YV)c Z(X)}
=ZI(X):Z(Y).

For the second step we used (ii) and that Y is closed.
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(v) Let f € A(X) and suppose that f* = 0. Evaluating f at a € X gives f*(a) =
(f(a))* = 0, whence f(a) = 0 since k is a field. In particular, f =0 in A(X), that
is, A(X) has no nontrivial nilpotent elements and is thus reduced. O

Furthermore, with Z(X) we can associate a k-algebra giving the functions on an
affine variety.

19. Definition (Coordinate rings). If X < A" is an algebraic set, we define
its coordinate ring A(X) of X to be

A(X) = k[z1, ..., 2,]/T(X).

20. Remark. In particular, a coordinate ring is a finitely generated k-algebra.
Furthermore, Z(X) is radical by Proposition 1 (v), so that a coordinate ring
must be reduced. Conversely, any finitely generated reduced k-algebra A arises
as the coordinate ring of an affine variety. Indeed, Let A be a finitely gener-
ated algebra which is necessarily of the form A =~ k[z1,...,z,]/a. Put X =
Z(a) < A™. If A is reduced, then a is radical so that Z(X) = y/a = «. Hence
A(X) = E[z1,...,2,]/a = A. Note that two different affine varieties (e.g. Z(x)
and Z(y) in A?) can have isomorphic coordinate rings (e.g. k[t]). We will see later
(Proposition 1 that the coordinate ring determines the affine variety up to
isomorphism.

21. Examples.

(i) mg = (z1—aq,...,2n—ay,) is a maximal ideal of k[x1, ..., z,] corresponding
to the point {a} = Z(m,), then its coordinate ring is k[z1,...,z,]/m, = k
(cf. —any “function” on {a} must be a constant.

(ii) Since Z(A™) =0, A(A™) = k[z1,...,2,]. We define

Aln] == A(A") = k[z1,...,z,]

and often use A[n] as a shorthand notation for k[z1,...,z,].

22. Exercise.

(i) Let X = Z(2? —y) < AZ. Show that A(X) is isomorphic to a polynomial ring
in one variable of the form k[t].
(i) Let Y = Z(xy — 1) = A%, Show that A(Y) is not isomorphic to some kl[t].

Proof. (i) By definition, A(X) = k[z,y]/(z* —y). Since § = 22, A(X) = k[z,7?] =
k[z]. Formally, an isomorphism is provided by k[t] — A(X) is induced by the
assignement ¢ — .

(ii) Here, A(Y) = k[z,y]/(xy — 1) so that T = 1/§. Hence A(X) = k[Z, 1/Z] which
contains a unit which is not in k. Thus A(X) cannot be of the form k[¢]. O

23. Remark.
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(i) We can think of A(X) as the ring of polynomial functions on X viewing
an equivalence class f € A(X) as amap f : a € X — f(a) € k. Since f
is determined up to elements in Z(X) this is indeed well-defined. Further,
A[n] = k[1,...,2,] and A(X) are Noetherian rings by Section[0]0.3} Choos-
ing generators Z1,...,Z, of A(X) is the same thing as choosing coordinates
T1,...,T, on A" which give rise to “coordinates” T; on X. Of course, the Z;
are not, in general, linearly independent (they could be zero for instance).

(i) If for a € X, we let m, < A(X) be the ideal of functions vanishing at a, then
the assignement a — m, gives a 1 — 1 correspondence between the points
of X and the maximal ideals of A(X). Indeed, we have a correspondence
between points a € X and maximal ideals m, < A[n] which contain Z(X) by
Corollary[0l7] The latter correspond to maximal ideals in A(X) = A[n]/Z(X).

A necessary algebraic condition for irreducibility is this.

24. Proposition (irreducibility and prime ideals). Let X < A™ be algebraic.
If X is irreducible (and thus an affine variety) < Z(X) is a prime ideal in A[n],
that is, the coordinate ring of X is an integral domain.

Proof. =) Let f-g € Z(X). Hence (f-g) < Z(X) so that by Proposition 1]I8 we have
Z(fg) = Z2(f) v Z(9) o Z(Z(X)) = X. In particular, we have a decomposition
into closed subsets X = (X n Z(f)) u (X n Z(g)) so that either X < Z(f) or
X < Z(g), whence f e Z(X) or g € Z(X).

<) Let p = Z(X) be prime, and assume that X = X; U X3, where X; are two closed
subsets of X. Then p = Z(X) = Z(X;) nZ(X>) by Proposition 1[18] hence Z(X) =
Z(X1) or Z(X) = Z(Xs) by Proposition Applying Z and Proposition 1
again implies X = X; or X = X,. Hence X is irreducible. O

25. Example.

(i) Consider a point a = (aq,...,a,) € A™. Geometrically it is obvious that it is
irreducible. Hence Z({a}) is prime. Indeed, as we have seen in Example
its associated ideal (x1 — a1, ..., T, — ay,) is maximal in A[n].

(ii) A™ = Z(0). It follows immediately (!) that A™ is irreducible (try to prove it
starting from the definition).

26. Exercise. Let X = Z(z? —yz,z(z — 1)) < A}. Show that X is a union of
three irreducible components. Describe their prime ideals.

Proof. We have
X =Z(@* —yz,2(z — 1)) = Z(2* —yz) n Z(x(z — 1))
=Z(@? —y2)n (Z(x) U Z(2z—1))
(22— y2) n 2(@)) U (B - y2) r 2z — 1))
= Z(z,y) U Z(z,2) U Z(2® —y, 2 —1).

Hence X is the union of the irreducible components Z(x,y), Z(z,z) and Z(2? —
y,z — 1) whose coordinate rings are isomorphic to k[t]. U
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We have natural notions of subvarieties and product of varieties.

27. Definition (locally closed subspaces and affine subvarieties). A
subset of a topological space is called locally closed if it an open subset of its
closure, or equivalently, if it is the interseciton of an open set with a closed set.
If X < A' is a quasi-affine variety, and Y is an irreducible locally closed subset,
then Y is open in its closure Y, a closed irreducible subset of X. In particular,
Y = X n Z(a) = Z(Z(X) + a) © A" is again an affine variety, and Y inherits a
natural structure of a quasi-affine variety being an open subset of Y. We call Y a
subvariety of X.

28. Exercise (subvarieties of X and prime ideals of A(X). Let X < A" be an
affine variety. Show that there is a 1 —1 correspondence between closed subvarieties
of X and prime ideals in A(X).

Proof. If Y < X is a closed subvariety of X, then Y =Y = Z(Z(X) + a), where
p=ZI(X)+ac Aln] is a prime ideal (Y is irreducible!) containing Z(X). Hence
p corresponds to a prime ideal in the quotient A(X) = A[n]/Z(X). Conversely,
if ¢ ¢ A(X) is a prime ideal, then q is the image of a prime ideal p < A[n]
containing p. Then Y = Z(p)n X = Z(p+Z(X)) = Z(p) is closed in X (being the
intersection of X with an algebraic set of A™) and irreducible (being defined by a
prime ideal). O

29. Proposition (product of affine varieties). The product X xY of two
affine varieties X < A™ and Y < A™ with coordinate rings A(X) and A(Y') is also
an affine variety with coordinate ring A(X xY) = A(X) ®x A(Y).

Proof. Indeed, it is clear that if X = Z(a) and Y = Z(b) for a < k[z1,...,2,]
and b < k[x1,...,2m], then X x Y can be identified (as a set) with Z(a + b), the
zero locus of the ideal in k[, ..., Zp4m] generated by a + b. The only point to
check is irreducibility. So assume that we had a decomposition X x Y = Z; u Z,.
Projection on the first resp. second factor induces isomorphisms X x {b} = X for
allbeY and {a} x Y =Y for all a € X. In particular, the fibres of the projections
are irreducible. Further, we obtain a decomposition

X x {b} = (X x {b} n Z1) U (X x {b} N Z3).
Hence either X x {b} nZ7 = X x {b} or X x {b} " Zy = Z3. Let Y; :={be Y |
X x {b} < Z;}. But this yields a decomposition of Y into the closed sets Y7 U Y>
so that by irreducibility of Y we have either X xY = Z; or X x Y = Z; (note

that V; = (,cx{a € X | (a,b) € Z;} is indeed closed as an intersection of closed
sets). O

30. Remark. Note that the topology on X x Y induced from A"™™ is not
the product topology (which we can define independently from any affine struc-
ture). For instance, the construction above yields A’ x A! = A? but this is not
homoemorphic to A' x A! (cf. Exercise 1..

Let us summarise the correspondence between alegebra and geometry.
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algebraic sets in A" «—— radical ideals of A[n]

affine varieties in A™ «— prime ideals of A[n]

points in A" «—— maximal ideals of A[n]

A «—> (0) c A[n]

%} «— (1) c A[n]

product X x Y «— tensor product A(X) ®; A(Y)
closed subvarities of X «— prime ideals in A(X)

points of X «—— maximal ideals in A(X)

Next we investigate further topological consequences coming from the fact that the
coordinate rings are finitely generated.

31. Definition (Noetherian topological spaces). A topological space is
called Noetherian if it satisfies the d.c.c. for closed subsets.

32. Example.

(i) The affine space A™ is Noetherian for A[n] = k[z1,...,2,] is a Noetherian
ring. Indeed, a sequence of closed sets X; > X3 D ... corresponds to an
ascending sequence of ideals Z(X1) c Z(X3) < ... which eventually becomes
stationary. This also explains why we call this topology Noetherian instead
of Artinian.

(ii) If A is Noetherian, then so is Spec A as a topological space for its closed sets
are of the form Z(a) for ideals a of A (cf. Exercise [0}35]).

The following property holds in any Noetherian topological space.

33. Proposition and Definition (irreducible components). In a Noetherian
topological space, every nonempty closed subset X can be expressed as a finite union
X = Xi1u...u X, of irreducible closed subsets X;. If we require that X; & X;
for i £ j, then the set {X;} is uniquely determined. Its elements are called the
irreducible components of X.

Proof.

Step 1. Existence. Let X be the set of nonempty closed subsets with no decom-
position as required. In particular, no element of ¥ can be irreducible. We claim
that ¥ = ¢#. Assume to the contrary that > £ . Then by the d.c.c., ¥ has a
minimal element, say X. Since X is not irreducible, it must have a decomposition
X = X; u X, into closed proper subsets X; o2 & X. However, X; o must have a
decomposition into irreducible components by minimality of X which would give
one for X, contradiction. Hence ¥ = ¥.

Step 2. Uniqueness. This is easy, see also [Hal Proposition I.1.5].

34. Corollary (Noetherian rings have only finitely many minimal primes).
If a is an ideal of a Noetherian ring A, then there are only finitely many primes of
A containing a and which are minimal with this property. In particular, any Noe-
therian reduced ring admits an injection A — @@ A/p, where the sum is taken over
all minimal primes of A, and whose image intersects any summand nontrivially.
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Proof. We apply Proposition 1[33]to the topological space Spec A. We can then de-
compose Z(a) into a finite number of components which correspond to the minimal
primes containing a. Now apply Exercise O

35. Remark. In particular, we see that by Corollary any radical ideal a of
a Noetherian ring is the intersection of a finite number of minimal primes,

a= m P=ﬂpi,

acp minimal i=1

which in the case of A = k[z1,...,z,] gives precisely the decomposition into irre-
ducibles: Z(a) = Z(,p:) = U, Z(pi)-

36. Corollary (decomposition into irreducible subsets). Every algebraic set
X < A™ can be (up to ordering) uniquely expressed as a union of affine varieties, no
one containing another. These correspond to the minimal prime ideals containing

I(X).

Proof. Instead of appealing to the general topological theory we can give a direct
algebraic argument here. Namely, let ¥ be the set of ideals Z(X) < k[x1,...,x,]
of algebraic sets X which do not have a composition as in Proposition 1[33] The
assertion is that ¥ = ¢, so oppose to the contrary that ¥ + ¢7J. By the Noetherian
property of A[n] there is a minimal element of ¥, say Z(Y). Now Y is itself not
irreducible (for then it cannot be an element of ). Hence Y = Y; U Y3 for two
strictly contained closed subsets of Y. In particular, ¥; ¢ ¥ so they do have a
decomposition as in Proposition 1[33] O

37. The role of zerodivisors. Let X < A” be an algebraic set whose coordinate
ring A(X) is not an integral domain. In particular, (0) is not a prime ideal. Then we
have zerodivisors f, g # 0 in A(X) such that fg = 0. Recall that by Corollary
A(X) is either reduced, or has more than one minimal prime. To see what these
two cases mean geometrically, consider the coordinate rings

(i) A(Z(21)) = klz1, 22]/(21), where f = g = a1;

(ii) A(Z(z122)) = k[z1,22]/(2122), where f = x1 and g = xs.
The first case is the coordinate ring of Z(z?) = the xp-axis in k2. We can
think of k[z1,22]/(2?) as the set of polynomials {f(x2) + z1f(x2) | f € k[x]}.
Put differently, A(Z(2?)) remembers the zi-derivative 0f/0x1(0,z2) of a general
f(z1,x2) € k[x1, z2] at each point (0,22). This is sometimes pictured as a thickened
z1 = 0 line (see Figure 1. Although this seems to rely on a rather unalgebraic
intuition it is really at the heart of scheme theory as we will see below. In the second
case, T1 and Ty generate two prime ideals in A = A(Z(z122)) = k[z1, 22]/(z122)
for (k[axl,xg]/(xlxg))/((xl)/(J;lxg)) ~ k[z1,22]/(x1) = k[x2] which is integral
etc. Since Z(z;) are just the irreducible components of Z(zjx2) these prime
ideals are minimal. In this way, we can see k[x1,x2]/(z122) as a subring of
A/(Z1) ® A/(ZT2) = k[z1] ® k[z2] with Z; and Ty mapping to different factors so
that their product is zero, cf. Corollary 1[34]

Projective varieties. There a various reasons to study not only affine, but also
projective varieties. Historically, projective spaces were introduced in order to have
a properly working intersection theory. For instance, two lines in a plane intersect
precisely in one point if they are not parallel. To get a uniform theory where any
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two lines intersect one adds to every line the point at infinity (identifying the two
ends of the line), then two parallel lines also intersect, namely at “infinity” (think
of two rails!) (for a very good explanation of this viewpoint, see also [CLS, Chapter
8.1]).

To define the projective space, consider the natural action of the multiplicative
group k* on AZH\{O} by scalar multiplication. As a set, the n-dimensional
projective space is

Pr .= A"\ {0} /k*.
Equivalently, we can think of P™ as the set of lines in k"*! passing through the
origin.

38. Examples. It is easy to see that
(i) Pk = S* (see Figure 1]));
(ii) P2 = R? U P} (see Figure) 1@.
More generally, P} = k™ U Pz_l for any field, see Example 1 below.

FIGURE 5. The bijection P} =~ S*

FIGURE 6. The bijection P ~ R?* U P%
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For concrete computations it is useful to have a coordinate description. Fix coordi-
nates g, ..., %, on A" A line through the origin is then specified by any point
a = (ag,...,a,) € A""1\{0}. We denote its equivalence class by 7 (ag,...,an) =
[ap : ... : ayn], that is, [ag : ... : an] = [Aag : ... : Aa,] for A € k*, and we think
of m : A"*1\{0} — P" as a projection map. In particular, P* = {[ag : ... : ay] |
(ag,...,an) € A"™N\{0}}. Ifa = [ag : ... : a,] € P", then the n + 1 numbers a; are
called the homogeneous coordinates of a.

The geometric objects we consider in P™ are given by homogeneous equations. A

polynomial function f(zo,...,2n) = X Ci...i, xf)” oo oo-xin s called homoge-
neous of degree d if all the monomials have the same degree d =ig+ ...+ i,. In
particular, f(Azo,..., A1) = Af(zg,...,7,) so that the zero locus

Z,(f) ={lao:...:an] €P"| f(ao,...,as) =0}

is well-defined.

39. Example. We call the set H; = Z,(x;) = {[ao : ... : an] € P" | a; = 0} the
i-th hyperplane at infinity. As a set, it is bijective with P*~!'. Note that its
complement U; := H; can be identified with £ via the map

wi U= k" @i(lao: ... an]) = (ao/ai, ..., an/a;)
where we omit a;/a; = 1 (see also Exercise 1[9).

It is ultimately the action of k* on k[xo, ..., z,] which singles out the homogeneous
elements in k[zg,...,z,], or more invariantly, gives rise to a grading.

40. Graded rings and modules. A graded ring is a ring S together with a
direct sum decomposition S = D -, Sa as Abelian groups such that

SgSe € Sqye ford, e=0.
The prime example is the polynomial ring

S[n] = k[zo,...,zn] = (—B klzo, ..., Zn]d,
d=0
where k[zg,...,z,]q is the vector space of homogeneous polynomials of degree d.
Of course, S[n] = A[n + 1] as a polynomial ring. We write S[n] if we want to
emphasise this precise grading into homogeneous polynomials.

41. Remark. If we extend the k*-action on A"*! to A[n + 1] by regarding
f € A[n+ 1] as a polynomial function, and set A(f(zo,...,2n)) = f(Azg, ..., Azy),
then Sy = vector subspace of S on which k* acts with weight d, i.e. f € Sy <

A(f) = X f.

In general, a homogeneous element of S is simply an element of one of the groups
Sq. We refer to d as the degree of the element. In the decomposition f = fo +
fi+..., fae Saq, fqis refered to as a homogeneous component of f. For future
reference, we let

Sp = {f € S| f homogeneous},

i.e. Sy, is the set of homogeneous elements of S. An ideal a is homogeneous if and
only if it is generated by homogeneous elements. Equivalently, a is homogeneous if
and only if the homogeneous of any f € a are again in a, i.e.

a=P(anSy).

d=0
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Note that any homogeneous element f of a homogeneous ideal a can be uniquely
written as >, g;f; where f; are the homogeneous generators of a and g; are homo-
geneous elements of S. Further, the sum, the product, the intersection and the
radical of homogeneous ideals are again homogeneous. Finally, to test whether a
homogeneous ideal is prime it is sufficient to show that for any homogeneous ele-
ments f and g € a with fg € a we have f e aor g € a. If S is a graded ring, we

let
S+ = @ Sd
d>0
be the (maximal) ideal consisting of all homogeneous elements of degree greater
than zero. For instance if S = S[n], then Sy = (xq,...,2p).

If S is a graded ring, then a graded S-module is an S-module M together with
a family (My)4=o of subgroups of M such that

M = @Md and SeMd C Md+e

for all d, e = 0. In particular, and My is an Sp-module. An element x € My is
called homogeneous of degree d; any element x € M has a decomposition into
a finite sum of its homogeneous components Y z,. If M and N are graded
S-modules, then a morphism of graded A-modules ¢ : M — N is a degree
preserving module morphism, i.e. ¢(My) < Ny for all d > 0.

42. Exercise (Noetherian graded rings). Let S be a graded ring. Are equiva-
lent:

(i) S is a Noetherian ring.
(ii) Sg is Noetherian and S is finitely generated as an Sp-algebra.

Proof. (ii)=>(i) Since S = Sy[z1,...,z,]/a this follows from Hilbert’s basis theo-
rem and

(i)=(ii) Since Sy =~ S/S,, Sp is Noetherian. Further, S, is an ideal of S, hence
finitely generated as an S-module, say by the (homogeneous) elements 1, . . ., x, of
S. Let d; denote their respective degree > 0. Let S’ be the subring of S generated
by x1,...,x, over Sy (this is the smallest subring containing Sy and the z;). In
particular, S’ is a finitely generated Sy algebra. We need to show that S; < S’
for all d. By induction on d. By design this is true for d = 0. Next let d > 0
and z € Sq < S;. Then z = Y a;z; with a; € S. Since d; > 0, the degree of the
homogenous components of the a; must be smaller than d = deg(a;) + d; > 0, thus

a; € S’. Therefore, the a; = Y, x;b; with b; € Sy so that finally = € S’. O
As noted above, a homogeneous polynomial f € k[zo,...,z,]q yields a well-defined
function P™ — {0, 1} also denoted by f and which is given by f([ag:...:a,]) =0

if f(ag,...,a,) =0 and 1 if not. For any T' < S[n],, we set
Z,(T):={aeP"| f(a) =0 for all feT}.

Of course, T defines also an affine algebraic set Z(T) = A"*! which is why we write
Z,(T). The relation between Z,(T) and Z(T') will be discussed in Proposition 1
If the context makes it clear that we are working in projective space we sometimes
simply write Z(7T). If a is a homogeneous ideal, then we set
Zy(a):=Z,({feank[zo,...,zn]qa | d=0})

= Z,({homogeneous polynomials of a}).
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On the other hand, if X < P™ we define the homogeneous ideal generated by
X to be

I(X) = ({f € klzo,...,xn]a | d =0, f(a) =0 for all a € P"})
= {ideal generated by homogeneous polynomials f with f|x = 0}.

43. Definition (algebraic sets of P" and their coordinate ring). A subset
X of P is algebraic if there exists a set T < S[n]; of homogeneous polynomials
such that X = Z,(T"). The homogeneous coordinate ring of X is

S(X) = S[n]/Z(X).

44. Remark.

(i) The coordinate ring of P is S[n], that is, k[zo,...,x,] together with the
grading defined by homogneous polynomials. If we forget the grading, then

k[xo,...,2,] is just the coordinate ring of A"*! which we continue to write
Aln +1].
(ii) Any projective algebraic set can be written as the zero locus of finitely many
homogeneous polynomials of same degree since Z(f) = Z(xdf,...,xdf).
45. Example.

(i) Let L = A" be a linear subspace of dimension k + 1 which is given by the
linear equations, say, Txi2 = ... = 41 = 0. Since these are homogeneous
they define a projective variety in P™, which is the image of L under the
projection A"T1\{0} — P". This is a so-called linear subspace of P". Once
we have a notion of morphisms (which we do not have yet for varieties!) it
easily follows that L is isomorphic as a projective variety to P*.

(ii) Consider

apgp ai; az
. . <
X—{[ao.....a3]|rank<a1 s a3)\1}'

This is an example of a so-called determinantal variety. Namely, X = Z,(zoza—
23, ToT3 — T1T2, T173 — x3) is given by the common zero locus of the three
2 x 2-minors of the matrix given in the definition of X.

46. Proposition.
(1) If {a;} is a family of homogeneous ideals, then

m Zp(a;) = ZP(U a;.)

(ii) If ay 2 are two homogeneous ideals, then
Zp(a1) v Zp(az) = Zp(araz).
(iii) The empty space and P™ are algebraic sets.

Proof. Similar to Proposition 1[5 O

47. Definition (Zariski topology on P"). The open sets of the Zariski
topology are the complements of algebraic sets.

48. Remark. As for affine varieties, we have
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(1) T1 c Tg = S[’n]h = ZP(T]_) oD ZP(TQ),

(iii) for any two subsets X1, Xo < P* Z(X; u Xo) = Z(X1) n Z(X>);

(iv) for any subset X < P", Z,(Z(X)) = X.

The statement corresponding to the Nullstellensatz (i.e. Z o Z(a) = 1/a) will be
discussed in Exercise 158

49. Proposition (standard open cover of P"). Fiz homogeneous coordinates
Z0y---,Tn on P, For i = 0,...,n we consider the sets U; = {x; £ 0} from
Ezample 1[39 Show that

(i) the U; provide an open cover for P™.
(i) @; :U; > A", oi([xo: ... xpn]) = (®o/Tiy .., Ty .., Tn/x;) (where * denotes
omission) defines a homeomorphism between U; and A™.
For T < S[n]y try to write p(Z,(T) n Up) as Z(T"), T' < A[n].

Proof. (i) Since U; = Z,(z;)°, the sets U, are open. Further, if a =[ap:...:a,] €
P", then there exists at least one a; + 0. Hence a € U; so that the open sets U;
cover P,

(ii) Without loss of generality we assume ¢ = 0 and consider the maps a : S[n], —
Aln] = kly1,...,yn] defined by a(f) = f(1,y1,...,yn) and B : A[n] — S[n],
defined on polynomials g of degree d by 8(g) = zdg(z1/x0,...,Tn/70). The map
@ = g is clearly bijective. We show that it identifies the closed subsets of X <
U = Uy with those of A”. Let X be the closure of X in P". Let T < S[n]; be such
that X = Z,(T) and put 7" = «(T). We claim that p(X) = ¢o(Z,(T) nU) =

Z(T") < A™. Indeed, if [ag : ... : an] € X and f € T of degree d, then

alf)(e(lag : ... :an))) = f(1,a1/aq, ..., an/a0) = adf(ag, a1, ..., a,) =0,
hence ¢([ag : ... : ay]) € Z(T"). On the other hand, if y = (y1,...,yn) € Z(T"),
put a = [1:y1 : ... : yp]. Then a € U and if f € T, then f(1,y1,...,yn) =

a(f)(y1,...,yn) = 0 so that also a € X, ie. a € U n X = X. Hence ¢ maps
closed sets in U to closed sets to A™. Conversely, let Y < A™ be closed. Then Y =
Z(T") for some subset T of k[y1,...,yn]. We claim that ¢=1(Y) = Z,(B(T")) n
U which is closed in Uy. Indeed, let a = [ag : ... : an] € @ 1 (Y). Then
a € U and f(ai/ag,...,anf/ag) = 0 for all f € T'. Hence B(f)(ag,...,an) =
adf(ai/ag, ... ,an/ap) = 0, that is, ¢(a) € Z(T"). On the other hand, let b =
[1:01:...:b,] € Z,(8(T") nUp. Then ¢(b) is defined, and if f € T, then
(b)) = B(f)(1,b1,...,b,) =0, whence be p~1(Y). O

50. Remark. In fact, the maps ¢; from Exercise 1[9 actually identify U; with
A" as varieties, see Lemma 1

51. Definition (projective variety). An irreducible algebraic set in P" to-
gether with the induced subset topology is called a projective variety. A quasi-
projective variety is an open subset of a projective variety.

The following exercise gives an easy way to construct projective varieties from affine
ones.

52. Exercise (projective closure of an affine variety). If X < A" is an affine
variety, and we identify A™ with Uy via the map o of Ezercise 1[{9, then we call
X < P the projective closure of X. Using the notation of the previous exercise,
show that Z(X) is the ideal generated by B(Z(X)).
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Proof. If g € Z(X), then B(g) = zlg(z1/z0,...,Tn/T0) is homogeneous of de-
gree d = degree of g and vanishes on X, hence the closure of X in P?, i.e. X,
is contained in the closed set Z(B(g)). It follows that B(g) € Z(X) n S[n]p.
Conversely, any homogeneous f € Z(X) is in the image of # (indeed, taking

glat,...,an) = f(L,a1,...,a,) gives B(g) = f), whence the result. O

53. Example. Consider the conics X1 = Z(zy — %) and Xy = Z(z172 — 1) in A2
of which we think as subsets of Uy in P2. Under this identification the projective
closures of X7 and Xz are X1 = Z,(zor2—2%) and Xo = Z,(v122—13) respectively.
Geometrically, we obtain X; and X, by adding the points “at infinity” [0: 0 : 1]
respectively {[0:1:0],[0:0:1]}. Note that the lines defined by (0,1) and (1,0)
and (0,1) in A? are just the asysmptotics of the curves X; and X, in A2. In this
way, we can think of X; < P? as the projective complexification of X; — A?; the
projective closure of a parabola or a hyperbola in A? gives rise to the same conic
(i.e. hypersurface defined by a homogeneous polynomial of degree 2) in P2.

54. Proposition (irreducible projective algebraic sets). For X < P"
algebraic are equivalent:

(i) X is irreducible;

(ii) Z(X) is prime;

(iii) S(X) is an integral domain.
Proof. This follows as in the affine case: If X = X7 u X5, then Z(X) = Z(X;) n
Z(X5). Hence, if Z(X) is prime, then either Z(X) = Z(X;) or Z(Xs), whence X =
X1 or X5. Conversely, if Z(X) is not prime, then there exists a product f-g € Z(X)
with f, g ¢ Z(X). Then X = (X n Z,(f)) u (X n Z,(g)) gives a decomposition so
that X is reducible. O

Another way to make contact with affine varieties is the cone construction.

55. Definition.
(i) A nonempty set X = A"l is called a cone if it is invariant under the k*-
action on A”*!, that is,
(agy...,an) € X = (Aag,...,\ap) € X
for all A € k*.
(ii) For a nonempty set X < P™ the cone
C(X) :={(20,--,xn)|[ro: ... 2n] € X} U {0} = A"T!
is called the cone over X (see Figure 1@.

56. Proposition (ideals of projective algebraic sets and their cones).
(i) X = A" is a cone < I(X) < A[n + 1] = k[xo, ..., 2] is homogeneous.
(ii) Let a < S[n] be a homogeneous ideal. If X = Z,(a) < P", then its cone is
given by C(X) = Z(a) < AL, In particular, C(X) is indeed a cone in the
sense of Definition 1[55 (i).
(iii) Let X < P™ be a projective algebraic set with homogeneous ideal Z(X) < S[n],
then Z(C(X)) = Z(X) as an ideal of A[n+ 1]. In particular, X is irreducible
< C(X) is irreducible.
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GO

FIGURE 7. The cone over Y

Hence, there is a 1 — 1 correspondence between projective algebraic sets in P and
affine cones in A"t

Proof. (i) If X is a cone, f € Z(X), and a € X, then f(Aa) = > fi(Aa) =
S A4f(a) = 0. Hence fy(a) = 0 since k is infinite, so f4 € Z(X). The converse
is obvious.

(ii) The inclusion Z(a) < C(X) is clear. So let a = (ag,...,a,) € C(X). Then
m(a) = [ag : ... : ap] € X so that f(ag,...,a,) = 0 for all f € a. Hence C(X) c
Z(a). In particular, Z(X) = 4/a is homogeneous since a is homegenous. Hence
C(X) is a cone by (i).

(iil) Since C'(X) is a cone, Z(C'(X)) is homogeneous, and a homogeneous polynomial
feZ(C(X)) if and only if f € Z(X). O

57. Example. We have C(P") = A"*L. In particular, Z(P") = Z(A"!) = (0)
so that P™ is irreducible.

58. Exercise (projective Nullstellensatz). For any homogeneous ideal a <
S[n] such that Z,(a) £ & we have Z(Z(a)) = /a. In particular, there is a 1 —1
inclusion reversing correspondence between algebraic sets in P and homogeneous
radical ideals of S not equal to S, .

Proof. Let X = Z,(a) c P". By Proposition 1 and the usual Nullstellensatz,
Va =I(Z(a) = Z(C(X)) = Z(X) = Z(Z,(a)).

59. Exercise. For a homogeneous ideal a < S[n] are equivalent:
(ii) va = either S[n] or Sy = @, - Sa;

(iii) Sq < a for some d > 0.

Hint: For (i)=(ii): Consider the cone of Z,(a).
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Proof. (i)=(ii) If Z,(a) = & in P, then its cone in A"*! is either Z(a) = &, i.e.
a= (1), or Z(a) = {0}, i.e. a = (x0,...,%,). Otherwise, there would be a point
0 + a € Z(a) and by homogeneity, Z(a) would contain the entire line {a) spanned by

a. In the first case, Z(Z(a)) = /(1) = S[n] while Z(Z(a)) = 1/(z0,...,2n) = S

in the second.

(ii)=>(iii) In both cases /a contains the monomials x; so that z?* € a for some m.
In particular, Sy, (,+1) © @ as any monomial of degree m(n + 1) must have at least
one factor of the form .

(iif)=(i) Since z¢ € Sq < a, Z,(a) = (/L Zp(2d) = &. O

60. Remark. Because of (ii) in the previous exercises, the maximal ideal S
corresponds to the empty set and is therefore sometimes called the irrelevant
ideal.

61. Definition (variety). A variety (over k) is any affine, quasi-affine,
projective or quasi-projective variety. A subvariety of a variety X is an irreducible
locally closed subset which inherits from X the structure of a quasi-affine or -
projective variety.

Varieties will be the objects of our category. Next we need the morphisms; before
we can define these, we need to discuss functions on varieties.

62. Remark. Some authors consider a more general notion of variety obtained by
glueing affine varieties (cf. for instance [Gal]) via isomorphisms, similar to the notion
of a differentiable manifold obtained by glueing open sets of R™ via diffeomorphisms
(the isomorphisms in the catgeory of differentiable manifolds). We call this more
general object an abstract variety which will arise as the special case of a still more
general object, namely a scheme, to be discussed in Section [5]

63. Exercise (varieties covered by Noetherian spaces). If X is a variety
which is covered by finitely many Noetherian subsets, then X is itself Noetherian.
Conclude that P™ is a Noetherian topological space, and that any algebraic subset of
P™ can be written uniquely as a finite union of irreducible components, i.e. closed
irreducible sets, no one containing another.

Proof. Assume that X; D X5 O ... is an infinite chain of closed subsets of X. Since
the U; are Noetherian, the sequence X; n U; must become stationary for all ¢, that
is, there exists an integer N such that X; nU; = X; nU; for all j, I > N and all 1.
Hence X; = | J,(X;nU;) = X; forall j, 1 > N, i.e. the sequence becomes stationary.
For instance, the open cover of P" provided by Proposition 1[9]immediately implies
that P™ is Noetherian (of course, we could also argue by the associated chain of
ideals Z(X;) in the Noetherian ring S[n]). The decomposability of algebraic sets
follows from Proposition 1[33} O
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1.2. Regular functions and sheaves. A function f on X is a map X — Al.
We usually abuse notation and simply write X — k though we will think of £ as
affine space endowed with its Zariski topology (in the case of £ = R or C, another
natural choice would be the Euclidean topology, for instance if we considered C'®
or holomorphic functions) We recall that k is algebraically closed, hence infinite, so
we can freely identify polynomials in n variables with polynomial functions A” — k
and thus with functions on X by restriction.

64. Definition (regular functions).

(i) Let X be a quasi-affine variety. A function f : X — k is regular at a € X
if there is an open neighbourhood V of a in X, and polynomials g, h €
k[x1,...,x,] such that h is nowhere zero on V, and f = g/h on V. If f is
regular at any point a € U of an open set of X, then we call f regular on U.

(ii) Let X be a quasi-projective variety. A function f : X — k is regular at
p € X if there is an open neighbourhood V of a in X, and polynomials g,
h e S(n) = k[zg,...,x,] of the same degree, such that h is nowhere zero on
V,and f = g/hon V. If f is regular at any point a € U of an open set of X,
then we call f regular on U.

(iii) If X is a variety, we denote by Ox (U) or simply O(U) the regular functions
on the open subset U of X. Note that because regularity of a function was
defined for quasi-affine resp. quasi-projective varieties, O x (U) makes actually
sense.

65. Remark.

(i) The degree assumption in the quasi-projective case ensures that the quotient
f/g is indeed a well-defined function (while f and g are not unless they vanish).
(ii) From the definition it follows that Ox (U) forms a ring.
(iii) We actually have Ox (X) = A(X) as we will prove in Proposition 1[93] below.
Of course, the inclusion > is obvious.

66. Proposition (continuity of regular functions). A regular function is
continuous.

Proof. We consider the case of a quasi-affine variety; the projective case works
similarly. We show that the preimage of a closed set under a regular function f is
again closed. Since closed sets in A! are finite collections of points it is enough to
show that f~*(a) is closed for any a € Al. Note that a subset Z of a topological
space X is closed < Z can be covered by open sets U such that Z n U is closed in
U for each U. By definition of regularity, we can cover X by open sets U such that
f = g/h with h nowhere vanishing on U. Then f~'(a) nU = {pe U | g(p)/h(p) =
a}. Since g(p)/h(p) = a < (g — ah)(p) = 0 we have f~(a) nU = Z(9 —ap) n U
which is closed with respect to the subspace topology of U. Hence f~!(a) is closed
in X. O

Since nonempty open subsets of irreducible spaces are dense, cf. Proposition
we immediately obtain the following

67. Corollary. A regular function on a variety is determined by its restriction to
any nonempty open subset.



ALGEBRAIC GEOMETRY I 55

Proof. Tt is enough to show that f|y = 0 on a nonempty open subset U of X implies
f=0o0n X. Indeed, U = f~1(0). Since f is regular, thus continuous, the latter set

is closed and thus contains the closure U of U. But since U is dense, U = X. O

68. Definition (ring of regular functions at a point and function fields).
Let X be a variety.

(i) For a € X we define the local ring of a on X, Ox , or simply O,, to be the
ring of germs of regular functions on X near a. Put differently, elements of
Ox,, are equivalence classes [U, ¢] where ¥ &+ U < X is open and contains
a, and f e Ox(U). We have [U,¢] = [V,¢] f o= on U V.

(ii) The function field K(X) consists of elements [U, ] of & + U < X open
and ¢ € Ox (U), where we identify [U, ¢] with [V,¢] if p =1 on U n V. Tts
elements are called rational functions.

69. Remark.

(i) Since X is irreducible, any two nonempty open sets have a nonempty inter-
section, so that we can define addition and multiplication in a natural way:
(U, f1+[V,g9] = [UnYV, f+g] etc., so that Ox , is indeed a ring. By Proposi-
tion [011] O, is a local ring, for the set of non-units m, = {[U, f] | f(a) = 0}
is an ideal (note that f-g(a) = 1 entails that both f and ¢g do not vanish in a
and thus not in a neighbourhood of @). The residue field is O,/m, = k, where
the isomorphism is given by evaluation of an equivalence class [U, f] at a.

(ii) K(X) is indeed a field. If [U, f] + [X,0], then we can restrict f to the
nonempty open set U* = U\(f~1(0))¢ where it never vanishes, and [U, f] =
[U*, f] is invertible with inverse [U*,1/f].

(iii) For a € U we have a natural sequence of injective maps

Ox(U) — OX,a — K(X)

The first inclusion assigns to f the equivalence class [U, f]. In fact, we can
think of a regular function f : U — k as a function whose germ at any point
x € X can be represented by a rational function, i.e. as a fraction pf polynomial
functions. The second inclusion assigns to a germ [U, f] the corresponding
equivalence class in K (X). We therefore usually think of Ox (U) and Ox , as
subrings of K(X).

70. Exercise (local ring only depends on a neighbourhood). Let X be
a variety and V. < X be an open subset. Show that Oy (U) (considering V as a
quasi-affine or -projective variety) equals Ox (U). Conclude that Ox o = Oy, for
any open subset V< X containing a.

Proof. We assume that X < A" is affine, the projective case being following along
the same lines. Since V < A" is a quasi-affine variety, f € Oy (U) if and only if f
is locally of the form hq/he with h; € A[n]. Since U is open in V' if and only if U is
open in X, we clearly have Oy (U) = Ox (U). Next consider the map Ox , — Ou,q
given by [U, f] — [UNV, flu~v]- This map is clearly injective and well-defined, for
the restriction of F' to any open set is again regular. Furthermore, it is surjective
for any [W, f] € Oy, is clearly also in Ox 4, W being open in X as well. O
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Sheaves. To understand the topological nature of regular functions we give a basic
introduction to sheaf theory which we will develop more completely in subsequent
chapters.

71. Definition (presheaves). Let X be a topological space. A presheaf F of
Abelian groups on X consists of the following data:

(i) For every open subset U X, an Abelian group F(U);
(ii) for every inclusion V' < U of open subsets of X, a morphism of Abelian groups
puv : F(U) = F(V) subject to the conditions
o F() = the trivial group {0};
e pyy : F(U) — F(U) is the identity map, and
e if W c V < U are three open subsets, then pyw = pvw © puv.

72. Remark. More generally, we can consider sheaves of rings, modules or
any other object in some fixed category C. In fact, if we let TOP x be the cate-
gory consisting of open subsets of X as objects and inclusions as morphisms (cf.
Example then a presheaf defines a contravariant functor TOPy — C. For
instance, we can consider a differentiable manifold/complex manifold/variety X
together with the sheaf Ox of rings which assigns to an open U < X the ring of
C* /holomorphic/regular functions on U. In this way, (X, Ox) becomes a ringed
space, i.e. a topological space X together with a sheaf of rings Ox of (continu-
ous) functions which is the starting point for any geometric theory in contrast to
topology.

73. Examples.

(i) Let X be a variety. For each open set U X, let O(U) be the ring of regular
functions U — k, and pyy restriction of V' in the usual sense.
(ii) Similarly, we can define the presheaf of continuous/differentiable /holomorphic
functions on any topological/differentiable/complex manifold.
(iii) Let M be a topological/differentiable/complex manifold and E — M a topolog-
cial/differentiable/holomorphic vector bundle. Then £(U) := I'(U, E) is the
associated presheaf of sections.

In order to stress the analogy with functions and sections of vector bundles, the
group F(U) is also refered to as the sections over U. Consequently, we sometimes
use the notation I'(U, F) nadwrite s|y instead of pyy (s).

Next we define sheaves which are roughly speaking presheaves determined by local
data.

74. Definition (sheaves). A presheaf F on X is called a sheaf if for any open
covering {V;} of an open subset U of X, the following conditions hold:
(i) If s € F(U) is such that s|y, = 0 € F(V;) for all 4, then s = 0 in F(U) (“s is
determined by restriction to open subsets”, “local injectivity”).
(ii) If there exists s; € F(V;) for each i such that s;|v,~v; = s;j|v,~v;, then there
exists s € F(U) such that sy, = s; (“local compatible sections can be glued
together”, “local surjectivity”).

75. Examples.
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(i) All the presheaves considered in the previous example are in fact sheaves. For
instance, consider O the sheaf of regular functions on a variety X. A
regular function on U which is locally 0 must be 0 on all of U. Further, a
function U — k which is locally regular is by definition regular. The same
applies to the the presheaf of continuous/differentiable /holomorphic functions.

(ii) Let X be a topological space and G an Abelian group. We define the constant
sheaf G on X as follows. Endow G with the discrete topology, and let G(U)
be the continuous functions U — G. Then for any connected set, G(U) = G,
whence the name. If U is an open set whose connected components are open,
then G(U) is a direct product of copies of G. Note that if we defined a
presheaf by G(U) = G for any nonempty open subset of X, then G is not a
sheaf. Indeed, take two disjoint nonempty open subsets U and V. Then if
s€ G(U) = Gandt e G(V) = G are not equal, they do not glue to an element
in G(U u V), yet they are compatible for the condition on the intersection is
vacuous.

(iii) If ¢ : F — G is a morphism of sheaves, then the presheaf given by the Abelian
groups ker ¢(U) = ker oy < F(U) with restriction maps induced by restricting
the restriction maps from F to ker ¢, is actually a sheaf, the so-called kernel
sheaf of ¢. If ker p = 0, we say that ¢ is injective.

76. Remark. The naive definition im ¢(U) := im ¢y of the “image sheaf” of ¢
only yields a presheaf. We will give a proper definition of the image sheaf further
below when we consider the “sheafification” of presheaves. For the definition of a
surjective morphism, see Exercise 185 below.

77. Definition (morphism of sheaves). If 7 and G are (pre)sheaves on X, then
a morphism ¢ : F — G of (pre)sheaves is a group morphism oy : F(U) — G(U)
which commutes with the restriction maps of F and G, i.e. oy o pfyy, = ng o Qy.
An isomorphism is a morphism with two-sided inverse.

78. Example. Let O denote the sheaf of holomorphic functions on C with
the usual group structure by addition of functions, and O the sheaf of invertible
holomorphic functions with its multiplicative group structure. Then f € O(U) —
ef 1= exp(2mif) € O*(U) is a sheaf morphism, for e(/+9) = e/ . 9,

79. Definition (stalk of a sheaf). If F is a presheaf on X, and z € X, we
define the stalk F, of F at x to be the direct limit

ling F(U) = || F(U)/ ~

Uszx Usx
where s € F(U) and t € F(V) are equivalent if there exists an open subset W <
U nV such that pyw(s) = pvw(t). Put differently, an element in F, is given by
an equivalence [U, s] where s € F(U) and where [U, s] = [V,t] if there exists an
open set W of U NV containing z such that s|y = t|y. In this way we may think
of the stalk as the group of germs of sections at x. If ¢ : F — G is a morphism
of sheaves, then for x € X we obtain the induced group morphism ¢, : F, — G,

defined by .U, f] = [U,ou(f)]-

80. Example. The local ring O, is just the stalk of the sheaf of regular functions.

81. Exercise. Let ¢ : F — G a morphism between sheaves on X. Show that
(i) for each x € X, (ker ), = ker(p,);
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(ii) ker ¢ is indeed a sheaf.

Proof. (1) We have (kery), = {[U, f] | x € U, f € ker oy} and ker(¢,) = {[U, f] |
x e U, . [U, f] :=[U,ou(f)] =0€ G,}. The map which assigns [U, f] € (ker ), to
[U, f] € ker(¢,) is therefore a well-defined injection. Conversely, if [U, f] € ker(¢ ),
then there exists an open neighbourhood W of z in U such that oy (f)lw =
ew (flw) = 0, that is, [W, flw] € (ker ¢),. Since [W, flw] = [U, f] this assigne-
ment is surjective.

(ii) Since ker py < F(U), and F is a sheaf by assumption, the injectivity property
of sheaves holds trivially. For surjectivity, let s; € kery, such that s;|y,~u, =
sjlu,~u,, where U; is an open covering of some open set U. Since F is a sheaf,
there exists s € F(U) such that s|y, = s;. Since ¢ is a morphism it commutes
with restriction, whence ¢y (s)|lu, = u,(sly;) = 0. By the injectivity property,
wu(s) =0in G(U), whence s € ker . O

82. Proposition. Let ¢ : F — G be a morphism of sheaves. Then ¢ is an
isomorphism < @, is an isomorphism for every xr € X.

Proof. =) Clear.

<) We show that ¢y : F(U) — G(U) is a (group) isomorphism for any open subset
U of X. Then ¢ : G — F defined by ¢y = @51 is an inverse to .

Step 1. oy is injective. Let s € F(U) and assume that ¢y (s) = 0. This means that
0z [U, s] = [U,(s)] =0 for all x € U. But ¢, is injective, whence 0 = [U, s] € F,
for all z € U. By definition, this means that for any x € U there exists an open
neighbourhood of x such that s|; = 0, whence s = 0 by the injectivity property.

Step 2. ¢y is surjective. Suppose we have a section t € G(U). For each z € U,
surjectivity at stalk level implies that there exists s, € F, such that ¢(s;) = t,. Let
sz be represented by a local section s(z) defined near x, say on V(z). Restricting
V(z) if necessary we may assume that o(s(z)) = t[y (). If y € V(2) n V(Z) then
@(s(x)) = ¢(s(¥)) near y. By injectivity proved in the first step, s(z)|v (2)~v () =
5(Z)|v(z)~v(z)- The glueing property of sheaves entails the existence of s € F(U)
such that sy ;) = s(x), whence ©(s)|v(s) = tly(z). The injectivity property of
sheaves finally implies ¢(s) = t.

O

83. Remark. We say that a morphism of sheaves ¢ : F — G is injective if
ker o = 0. Then the previous proof shows the equivalence between

(i) @ is injective, i.e. ker p = 0;

(ii) v : F(U) — G(U) is injective for all open subsets U of X.

(iii) @y : Fz — Gg is injective for all x € X.
The case of surjectivity is more subtle (we use injectivity in Step 2, see also Ex-
ercise 1. This is at the origin of the cohomology of sheaves which we consider
later.

The previous proposition is false for presheaves and highlights the local nature of
sheaves in contrast to presheaves.

84. Example. For U < C open let O(U) resp. O*(U) denote the sheaf of
holomorphic resp. invertible holomorphic functions on U. Further, let Z(U) = Z
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denote the constant presheaf (U is an abritrary open set, cf. Example (iii) in 1.
Define the presheaf F(U) := O(U)/Z(U) and consider the morphism ¢ : F — O*
induced by the exponential map exp(27i). For U non simply connected oy is
not necessarily surjective. However, at the level of stalks, ¢, : F, — O will
be an isomorphism for we can always choose a representative defined on a simply
connected open neighbourhood.

85. Exercise (Surjective sheaf morphisms). Let ¢ : F — G be a morphism
of sheaves. We say that ¢ is surjective if and only if for every open set U ¢ X
and t € G(U) there exists a covering {U;} of U and elements s; € F(U;) such that
v, (8i) = tly, for alli. (You might want to think of this as a “local” surjectivity.)
Show that

(i) ¢ is surjective < @, is surjective for all x € X.
(ii) @ is an isomorphism < ¢ is injective and surjective.
(iii) Give an example of a surjective morphism and an open set U such that ¢y :

F(U) — G(U) is not surjective.

Proof. (i) Consider the map ¢, : F,, > G, and [U,t] € G,. Then ¢, is a surjective
group morphism < there exists an open neighbourhood W of x in U such that
(W, tlw] = [W, pw(s)] for some s € F(W).

=) If [U,t] € G, is given, choose a covering of U as in the definition of surjectivity.
Let W = U, with z € U;. By assumption, there exists s = s; such that [W, ow (s)] =
[W,tlw]. Hence, ¢, is surjective.

<) Given t € G(U) we can find for any x € U open neighbourhoods U, of z in U,
as well as sections s, € F(U,) such that [Ug,tlv,] = [Us, pu, (8z)]-

(ii) By Proposition 1 it follows that ¢ is an isomorphism if and only if ¢, is an
isomorphism, i.e. injective and surjective, for all z € X. But by the Remark 1[83]
and (i) this is equivalent to ¢ being injective and surjective.

(iii) As discussed in the previous example, the map exp : O — O* for O = the
sheaf of holomorphic functions on C, is stalkwise surjective, for exp : O(U) —
O*(U) is surjective if U is simply-connected, and every z € C admits a basis of
simply-connected neighbourhoods, i.e. any open neighbourhood of  admits an open
simply-connected subset containing xz. However, exp is not surjective for general
U. O

1.3. Localisation. We now come to an important technique in commutative al-
gebra, namely localisation. Algebraically, this reduces many problems to the case
of local rings. Geometrically, it corresponds to considering functions on an open
subset or close to a given point. In a way this is an algebraic counterpart to the
topological side of regular functions via sheaves. As a motivating example we prove
that the local ring at a € X, the germ Ox ,, can be realised geometrically as follows.

86. Proposition (algebraic description of Ox ;). Let X be an affine variety.
Then

Oxa = A(X)m, i= {g | f. g€ ACX) and g ¢ ma),

where m, denotes the mazimal ideal of A(X) given by {g € A(X) | g(a) = 0}.
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Proof. If f/g such that g(a) & 0 we can associate the germ [X\g~1(0), f/g] € Ox.,
as f/g € Ox(X\g71(0)). Since X is a variety, a regular function is determined by
any of its germes. Therefore, this map is injective. On the other hand, this map is
surjective by the definition of a regular function. O

The ring A(X ), is called the localisation of A(X) at m,. We now study this
concept in detail.

87. Definition (ring of fractions). Let A be aring and S < A be a multiplicative
subset (recall that this means that 1 € S and a, b € S implies ab € S). On A x S
we say that two elements are equivalent,

(a,s) ~ (b,t) < there exists u € S such that u(at — bs) = 0. (2)

The ring of fractions is
STTA=(AxS)/~.
If a/s denotes the equivalence class of (a, s), then the ring operations are given by

_|_
ib (at + bs) andg~g=ab
s

t st

st

w |

88. Example. Let A = k[x,y]/(y?) together with the multiplicative set
S = {a(z) + b(Z)y | a(z) + 0}. We claim that S™'A = k(Z)[y]/(y*). Indeed,
k@)[yl/(y?) = {r(@) +s(@)y | r,s € k(Z)}. Now if r/(a + by) € S~1A, then
r/(a + by) = r(a — by)/a®. Since a % 0 this is indeed an element in k(x)[y]/(y?).
Conversely, any element in k(z)[y]/(y?) can be written as an element in S~ A.

89. Exercise (ring structure on localisations).

(i) The equivalence relation of Definition 1 1s well-defined;

(ii) the operations of Definition 1 are well-defined and turn S™'A into a ring;

iii) ST1A=0< 0e S < S contains a nilpotent element;

iv) the natural map ¢ : A — S=YA which maps a to a/1 is a ring morphism. If
©o(a) =0, then as = 0 for some s € S. Moreover, any element in S~*A is of

the form ¢(a)p(s)~t.

(
(

Proof. (i) and (ii) are easy, if tedious, verifications, see for instance [Re, Proposition
in 6.1]. The additive neutral element is represented by 0/s for any s € S (we may
take s = 1), and the multiplicative neutral element is 1/1.

(iii) ST'A = 0= 0€ S: If 1/1 = 0/1, then there exists u € S such that u(1-:1—0-1) =
u =0, hence 0 € S. Conversely, if 0 € S, then a/s = 0/1 for all a € A, s € S (take
u = 0 in the equivalence relation (2).

0 € S < S contains a nilpotent element: 0 € S is obviously nilpotent. Conversely,
if s € S is nilpotent, then s™ = 0 € S, for S is multiplicative.

(iv) It is clear that ¢ is a ring morphism with ker¢ = {a € A | there exists u €
S such that ua = 0}. Finally, for s € S, ¢(s) is invertible with inverse 1/s so that

a/s = (a/1) - (1/s) = p(a) - p(s)~". .

90. Remark.
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(i) From the view point of solving equations we can divide any equation a = b
with a, b € A by an element in s, hence a/s = b/s. Conversely, when we lift
the identity a/s = b/t in S™1A to A we can merely say that there exists u € S
such that u(at — bs) = 0.

(i) In general, ¢ : A — S~!A is not injective unless S has no zerodivisors. In
this case,

STtA=A[STY = {g | s €S} < Quot A
s

and the map ¢ : A — S7'A is injective. The condition on the right hand
side of is designed to define an equivalence relation even if zerodivisors are
present. Furthermore, if A is integral, then so is S™!A.

(iii) Geometrically, the idea of localising consists in identifying functions which
coincide near a point or a subvariety. We come back to this point later on.
For the moment, we motivate this idea by the following example. Consider the
variety X = Z(zy) in A%; we want to localise around the point a = (1,0). We
put S ={f € A(X) | f(a) £ 0}. On X, the functions 0 and y agree near the
point (1,0), and y/1 and 0/1 get indeed identified in S~ A, for x(1-y—0-1) = 0
and z € S. Of course, this would be wrong without the Definition from .

There two popular choices for S.

91. Localising with respect to f € A. Here, we consider for f € A the
multiplicative set Sy = {1, f, f...}. We write

Aj = SJ?lA
for the localised ring. We claim that

Ap = Alz]/(zf — 1).

In particular, Ay = A[f~'] if f is not nilpotent (otherwise 0 € S). Indeed, let
a : Alz] — Ay the (surjective) ring morphism determined by a(a) = a/1 for
a € A and a(x) = 1/f. We need to show that keraw = (zf — 1), the reverse
inclusion being obvious. Let h(z) € kera so that h(1/f) = 0 € Ay. We first
prove that f"h € (zf — 1) for some n. Clearly, 0 = f"h(1/f) € A for n > deg f.
Hence f"h(x) = G(fz) where G = G(y) € Aly] satisfies G(1) = 0. But then
G = (y — 1)G1(y) which implies f"h(z) = (fx —1)G1(fz). Now 1 =zf — (zf — 1)
so that by the binomial theorem we get

1=1"= (xf— (xf — 1))” =z"f" +plxf—1)
for p € A[z]. Hence h(z) = 2" f"h(z) + p(zf — 1)h(z) = (2"G1(fz) + ph(z))(zf —
1) e(zf —1).
92. Example. Consider X = Z(ay) with A(X) = k[z,y]/(zy). Then A(X)z =
k[z,z1]. This follows from the discussion above and the relation zy = 0 in A(X),
so that § = 0 if Z is invertible. Geometrically, this corresponds to considering the

functions of Z(xy) on the complement of the closed set z = 0 which makes the
polynomial function z invertible.

93. Proposition. Let X < A" be an affine variety, and let f € A(X). Recall that
Dy={zreX | f(z)$0}. Then

O(Dy) = A(X)y-.
In particular, taking f =1, we get Ox(X) = A(X).
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Proof. The inclusion A(X); < O(Dy) is clear, so let g € O(Dy) ¢ K(X). We
define an ideal a = {h € A(X) | gh € A(X)} in A(X) and want to show that f" € a
for some r = 0. Now for a € Dy we have g € Ox 4, 50 g = hi1/hs with h; € A(X) and
ha(a) £ 0. It follows that hs € a, that is, there exists an element in a which does
not vanish in a. In particular, if a denotes the contraction of a with respect to the
projection A[n] — A(X), then Z(a) c Z(F'), where F € A[n] is a representative
of f e A(X). Indeed, a € Dy, i.e. f(a) # 0 implies F(a) & 0. Since there is H € a
such that h = H(a) # 0, H(x) = 0 for all H € a implies F(x) = 0. It follows that
F e /(F)cZ(Z(a)) = v/a by the Nullstellensatz. Hence, there exists r > 0 such
that F'" € a so that passing to A(X) we get f" € a. O

94. Proposition. Let X be an affine variety. Then

(i) Ox(U) = Noev Ox a3
(il) K(X) = Quot A(X).

Proof. (i) Indeed, by Proposition 193] we have A(X) = O(X) < (yex Oa =
ﬂma A(X)m,. Now in general, if A is an integral domain, then in its quotient
field, A = (),, Am, whence the assertion. (To see this, let z € (), Am. Then
x = f/g and we need to show that ¢ is a unit. If not, then g lies in at least one
maximal ideal mg. In particular, f/g ¢ Am,, contradiction. The inclusion > is
trivial.)

(ii) We have Quot Ox , = Quot A(X)m, = Quot A(X) for all a € X. Since every
rational function lies in at least one Ox 4, K(X) < | Quot Ox , = Quot A(X). As

the quotient field of a finitely generated k-algebra, K(X) is a finite field extension
of k. 0

95. Example. Consider X = Z(z124—2273) < A* andlet U = (D,, uD,,)nX.
The function z1/x5 is defined on D,, while the function z3/x, is defined on D,,.
We have Z1 /Tq, Z3/T4 € Quot A(X) = K(X), and by definition of X, Z1/Zs = T3/T4
whenever defined. In particular, this induces a regular function on U by the sheaf
property.

The second natural choice is this.

96. Localisation of A at p. Let S = A\p, where p — A is a prime ideal. Here,
the resulting ring of fractions will be written as Ay; in particular, A(g) = Quot A if
A is integral. A, is called the localisation of A at p (cf. also Example 1.

97. Examples.
(i) The localisation of Z at p = (p) is

Zip = {a/oe Q| p 1}
(ii) The localisation of k[z] at p = (z — a) is
klz]@—a) = {f/g € k(z) | (x —a) { g} = Opr 0,

the local ring of a € A}C. As we have seen above, these are precisely the regular
functions defined near a € A': The zeroes of g are isolated so if (z — a) { g,
then g(a) # 0, and this remains true sufficiently close to a.
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(iii) If p € Spec A[n] with corresponding affine variety X = Z(p) < A", the locali-
sation of A[n] at p consists of rational functions f/g where g # 0 on X. Since
for generic a € X, g(a) + 0, the localisation A[n], can be interpreted as the
ring of rational functions defined locally near a generic point of X. We will
elaborate further on this idea in Section [{

(iv) If ¢ < p, then q n (A\p) = &, so that q° = qAyp is a prime ideal of A,
by Proposition 1 Then Aq = (Ap)qe by 1 To see what this means
geometrically, consider the maximal ideal m := (x,y) in A2, Then A, consists
of all rational functions f/g with g(0,0) £ 0. Now let p € Spec Ay,. Then Z(p)
is an irreducible curve C through the origin, and since p < m, the localisation
of Ay at p®is Ay, = {f/g | g ¢ p} < k(x,y) — these are the rational functions
which are defined on sufficiently general points of C'.

98. Remark. In our notation, Z, = {a/p" | a € Z, n € N}. Be careful to
distinguish it from the quotient ring Z/pZ which is sometimes also denoted by Z,,.

99. Proposition (4, is local). Let p be a prime ideal of A. Then a/s € A,
is a unit of Ay & a ¢ p < a € S,. Thus the nonunits of A, form the ideal
m=p®= pS'le, the extension of p with respect to ¢ : A — STYA. In particular,
(Ap,m) is a local ring.

Proof. If (a/s)(b/t) = 1 there exists u € S such that u(st — ab) = 0. Since ust € S
it follows that abu = stu ¢ p, hence a ¢ p for p is an ideal. The converse is obvious
for a ¢ p implies a € S. O

100. Universal property of the ring of fractions. If S™1A % 0 then p(S)
consists of units, and ¢ : A — ST1A is the universal ring with this property. More
precisely, if ¥ : A — B is a ring morphism such that ¥(S) consists of units then
there is a unique Ting morphism 1]) :S7'A — B such that ¢ = 1[1 o .

Proof.

Step 1. Uniqueness. If 1 : S~'A — B satisfies the condition, then ¢)(a/1) =
o pla) = 9Y(a). For a = s € S it follows in particular that ¥ (1/s) = (s)~L.
Therefore, 1)(a/s) = ¥(a)(1/s) = (a)p(s)~! is uniquely determined by ).

Step 2. Eristence. Define ¢)(a/s) := )(a) - {)(s) L. This is indeed well-defined. If
a/s = b/t, then u(at — bs) = 0 for u € S. Hence ¢(u(at — bs) = ¥(u)(at —bs) = 0.
Since 1 (u) is invertible, v (at — bs) = (a)i(t) — ¥ (b)ih(s) = 0. But then ¢)(a/s) =
P(a)ip(s)™ = p(0)(t) ™ = p(b/D).

O

101. Corollary (localising again). If T < S are two multiplicative sets, let
or : A — T YA and St = o1(S). Then SEIT_lA = S7LA. In particular, the
localisation of a localisation is again a localisation.

Proof. Since T < S there is a well-defined morphism ¢ : T='A4 — S=YA (a/t) =
a/t. Here, the fractions are taken in the respective rings, that is, ¢ o o1 = ps. By
the universal property of g, : T7'A — S, IT=1A, there is a uniquely determined
Yo S;IT'A — ST'A with ¢ o g, = 1. On the other hand, the morphism
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N = s, opr : A — S:FlT_lA gives rise to a uniquely determined morphism
H:S1A - STTlT_lA. Now 9 on: A — S~'A satisfies

PYon=1ops, opr =1opr=gps.

By the universal property, this implies 1[) of = Idg-14. Conversely, we have

. a A~ @ “ n N — a a

UE ?ﬁ(?) = 77(;) =ij(a) - 7(t)"" = i @ST(?)
(check that multiplication/fractions are taking place in the right rings!), whence
no = Ids; g-14 by the universal property. O

102. Example (localising again). Let A(A?) = k[z,y] the coordinate ring
of A? of which we think as its ring of polynomial functions. Let m = (z,y), the
maximal ideal which corresponds to the origin. The localisation A, is the stalk
of regular functions at the origin; it has one maximal ideal, namely m®. On the
other hand, every irreducible curve in A2 going through the origin with prime ideal
p gives a prime ideal p¢ in A,. Indeed, p € m so that p n Sy = . Hence
(Am)pe = {f/g | g ¢ p} < k(x,y) consists of functions which are well-defined in a
neighbourhood of the origin and generically defined on the curve Z(p).

Next we investigate ideals in S~'A. Intuitively, this should be simpler than in A,
for taking fractions creates more units.

103. Proposition (Extension and contraction of ideals for ¢ : A — S~14).

(i) For any ideal b of S™1A we have b = b.
(ii) For any ideal a of A we have

a°® ={a € Alase€ afor some s € S}.
(iii) For any prime ideal p contained in A\S, p¢ is a prime ideal of STLA.

Proof. (i) If b/s € b then b € b, and so b/s € b®. The other inclusion is trivial.

(i) If a € a®¢, then a/1 = b/t € ST A for some b € a, t € S (note that a ¢ a!). Hence
there exists u € S such that u(at — b) = 0, whence uta = ub € a, and so as € a for
s = ut € S. The other inclusion is again trivial.

(iii) Let (a/s) - (b/t) € p®, that is, a-b/s -t = p/q with p € p and g € S. Then there
exists u € S such that u(abg — pst) = 0. Hence ab(ug) = stup € p so that ab € p,
for ug € S which has empty intersection with p by assumption. Since p is prime,
we have either a € p, and then a/s € p©, or b € p which implies b/t € p°. (]

104. Example. For instance, consider the inclusion ¢ : Z — Q = (Z\{0})"'Z.
The only ideals in Q are (0) and Q. Obviously, Q° = Q and (0)°® = (0). On the
other hand, if a = (m) is a nontrivial ideal in Z, then a®® = Z and (0)*© as asserted
in (ii). Finally, if p = (p) is prime such that p n Z\{0} = &, then p = 0 so that
p¢ = (0) is indeed prime in Q.

105. Corollary.

(i) For an ideal a in A we have a°° = a <

asea=acaforalsels. (%)
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(ii) Contraction and extension define a 1 — 1-correpondence
{ideals of A satsifying ()} < {ideals in S~'A}.

(iii) e =A s a*=S1Asan S+ J.

(iv) If A is Noetherian, then so is S™*A. In particular, any localisation A, of a
Noetherian Ting A is again Noetherian.

(v) The map ¢® : Spec S~tA < Spec A coming from the natural map ¢ : A —
S~ A identifies Spec ST A with {p € Spec A | p n S = J}.

Proof. This follows directly from the previous proposition. For instance (iv): Take
an ideal b = S~'A. Then b¢ c A is finitely generated by {a,...,a,} say. It follows
that {©(a1),...,p(a,)} generates the extension b° in S~1A. Since the latter ideal
is b, any ideal in S~'A is finitely generated. O

106. Exercise (Spectrum of Ap). Show that Spec A, is homeomorphic to U, =
{q € Spec A | q < p}. Give a geometric interpretation for A = A[n].

Proof. By Corollary 1 U, is the image of the associated map ¢ : Spec A, —
Spec A so that Spec A, = U, as a set. Now U, has the subspace topology, that is,
F c Uy is closed < F = U, n V(a) for some ideal a = A. We know already by
Exercisethat ¢® : Spec A, — Spec A is continuous. Further, ¢ has an inverse
¢ : U, — Spec 4, given by ¢(q) = q° = qAp. Then = 1(Z(a) n Uy) = Z(aA,y)
which is closed. Hence 1 is also continuous so that ¢ defines a homeomorphism
onto its image U,,.

If A = A[n], then Spec A is the set of irreducible subvarieties of A”. Hence Spec A4,
is the set of irreducible subvarieties which contain Z(p). For instance, if p = m =
(r1 —a1,...,T, — ay), then Spec Ay, is the set of all irreducible subvarieties of A™
passing through (a1, ..., an). O

Modules of fractions. Localisation can be generalised to modules.

107. Definition (modules of fractions and localisation). Let M be an
A-module and S < A a multiplicative subset. Then S~'M is the S~!A-module
defined as follows. Let

(m, s) ~ (n,t) < there exists u € S such that u(tm — sn) = 0.

Then we call
STIM = (M x 8)/ ~
the module of fractions. The operations
(a/s)(m/t) = am/st, m/s+nft = (mt+ns)/st

turn S~!'M into an S~!A-module. The localisation of M at p € Spec A is M, :=
(A\p)~'M. We also let M; = S;lM where S = {1, f, f2,...}. Finally, if ¢ : M —
N is an A-morphism, we define an S~! A-morphism by

S™lp:STIM — STIN,  STlp(m/s) = p(m)/s.

This turns S~! into a covariant functor.

In fact, the functor S~! is exact:
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108. Proposition (Exactness of S™'). IfL % M 2 N is an ezact sequence,
1 -1

then so is S~'L S5 =10 *5P S-IN. In particular, localisation of modules is

an ezxact functor.

Proof. Let m/s € ST*M. Then
S™1B(m/s) = B(m)/s = 0 = there exists u € S such that uB(m) = B(um) = 0.

However, ker 3 = im a by exactness of the original sequence, hence S~!3(m/s) = 0
if and only there exists u € S and [ € L such that um = «(l). Dividing by us yields
m/s = S ta(l/us). O

In particular, considering the exact sequences 0 - L — M — M/L — 0 and
0—>LnL —L— M/L for submodules L, L' ¢ M immediately implies (i) and
(ii) of the

109. Proposition. If L, L' € M are submodules, then

i) STILc S'M and S~'(M/L)=~S~'M/S'L.
ii) SSULAL)=SLnS™IL S~ M.
i) STH L+ L) =S"'L+S71L.

) Let T be the image of S in A/a. Then T~1(A/a) = (S~tA)/a. In particular,
Ay /pe = ((A\p)/p)_lA/p = Quot (A/p). In other words, the residue field of
the local ring A, equals the quotient field of A/p.

(

v

(
(

Proof. (iii) Follows directly from the definition of +.

(iv) Viewing A and a as A-modules, the ring of fractions T-1(A/a) is isomorphic

with S71(A/a) as modules, hence with S™'A/S~1a by (i). This is in fact a ring

morphism. Further, S™1a = aS~1A4 = a®. Note also that (A\p)/p is just (4/p)\{0}.
]

110. Proposition. Let M be an A-module =
STIM =~ ST"A®a M

as S~YA-modules. In fact, there is a unige isomorphism ¢ : STTAQs M — S™'M
for which ¢(a/s @ m) = am/s for allae A, s€ S and me M.

Proof. We define a map S~'Ax M — S~'M by sending (a/s,m) — am/s. Clearly,
this is bilinear and induces a uniquely determined surjective map ¢ as stated. It
remains to show injectivity. So let (> a;/s; ® m;) = >, a;m;/s; = 0. By passing
to a common denominator s we may write >, a;/s; ®m; = 1/s® >, bym; = 1/s®@m
with s € § and m € M. Hence we only need to show that if m/s = 0, then
1/s®m = 0. But m/s = 0 < there exists u € S such that um = 0, hence
1/s®@m =u/us®@m = 1/us @ um = 0. O

111. Corollary. If M and N are A-modules, there exists a unique S~'A-module
morphism f : STIM ®g-14 STIN — S7YM ®4 N) such that f(m/s @ n/t) =
(m®mn)/st. In particular, we have

Mp ®Ap Np = (M@A N)p

as Ap-modules.
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Proof. This follows directly from the previous proposition and the standard tensor
product isomorphisms. O

Local properties. A property P of an A-module M is called local if
M has P < M, has P for all prime ideals p in A.

Here, we will consider two examples.

112. Proposition (triviality is local). Let M be an A-module. Are equivalent:
(i) M = 0;

(ii) M, =0 for all prime ideals p in A;

(iii) My = 0 for all maximal ideals m in A;

In particular, triviality of an A-module is a local property.

Proof. We only need to prove (iii)=>(i). Assume M # 0 and let 0 &+ = € M,
a = ann(z) = {a € A | ax = 0}. Then a is an ideal strictly contained in A

(otherwise 1 -2z = x = 0), and therefore contained in some maximal ideal m.
However, /1 € My, = 0 by assumption, that is, there exists u € A\m such that
uz = 0. But this implies u € ann(z) < m, a contradiction. O

113. Proposition (injectivity and surjectivity are local). Let ¢ : M — N
be a morphism. Are equivalent:

(i) ¢ is injective;
(ii) ¢p : My — N, is injective for all prime ideals p in A;
(iii) dm : My — Ny is injective for all prime ideals m in A;
The same holds true for “surjective” instead of “injective”. Hence injectivity (sur-
jectivity) of a linear map is a local property.
Proof. (i)=(ii) 0 - M — N is exact, hence 0 — M, — N, is exact, i.e. ¢, is
injective.
(ii)=(iii) Obvious.
(iii)=(i) Let L = ker¢ so that 0 - L — M % N is exact, whence 0 — Ly —

My i Ny, is exact. But ¢y, is injective, hence L, = 0 for all m. Consequently,
L = 0 from the previous proposition, and ¢ is injective. O

Flatness is also a local property (cf. the notion of flatness in differential geometry!).

114. Exercise (flatness is local). Let M be an A-module. Are equivalent:
(i) M is a flat A-module;

(i) My is a flat Ay-module for all prime ideals p in A;

(ill) Muy is a flat Aw-module for all mazimal ideals m in A;

In particular, flatness of an A-module is a local property.
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Proof. (1)=>(ii): If M is a flat A-module and A — B a ring morphism turning
B into an A-module, then Mg = M ®4 B is a flat B-module, see Exercise
Taking B = Ay, we have M ®4 A, = M, by Proposition 1[T10} whence M, is flat.
(ii)=>(iii): Trivial.

(iii)=(i): Let ¢ : N — N’ be an injective A-linear map. We have to show that
Tar(@) : TyN — TN’ is injective, cf. Proposition Since injectivity is a
local property, ¢m : Nm — N/ is injective. By assumption, My, is flat, hence
Trr, m s Na®a, My — N ,®a,, My, is injective. But (Npy®a, M) = (N®AM )n
by Corollary 1[T11} Consequently, for every maximal ideal m of A the localisation
of Tppo: N®a M — N'®4 M is injective, hence Thyep is itself injective. O

1.4. Primary decomposition®*. We have now introduced the basic players of
commutative algebra. Next we want to discuss further aspects in connection with
geometry in the spirit of the first section. The first topic we address is the so-called
primary decomposition which generalises the decomposition into primes in a UFD.
Polynomial rings such as k[x1,...,2,] are UFD (Gauf} theorem), but already sim-
ple rings such as Z[v/5] are not UFD. Indeed, 2-3 = 6 = (1 ++/5)(1 — v/5) so that
there is no unique decomposition. However, there is a generalised version involving
ideals rather than elements of the ring, and which holds for a large class of rings.
A we will see that corresponds to decomposing an affine variety into irreducible
components together with further geometric information such as multiplicities or
tangency conditions (i.e. conditions on the formal derivatives of the defining poly-
nomials).

We first need some definitions. A prime ideal can be thought of as a generalisation
of a prime number p (think of Z for instance). A primary ideal is the analogue of
the power p”.

115. Definition (primary ideal). An ideal q is primary if © -y = x € q or
y™ € q for some n > 0, that is, either x € q or y € /4.

116. Remark. In terms of quotient rings this can be expressed as follows. q is
primary < if every zero-divisor in A/q is nilpotent.

117. Examples.
(i) Any prime ideal is primary.
(ii) If a is primary and b < a is a further ideal, then a/b is primary in A/b as
follows from the isomorphism (A/b)/(a/b) = A/a.
(iii) The contraction of a primary ideal is primary, for if f : A — B is a ring
morphism and q ¢ B is primary, then A/q° can be identified with a subring
of B/q, hence any zero-divisor is nilpotent.

118. Proposition and Definition (p-primary).
(i) Let q be primary. Then p = \/q is the smallest prime ideal containing q. We
say that q is p-primary.
(ii) (Partial converse) If \/q = m is mazimal, then q is (m-)primary. In particular,
all the powers of a mazimal ideal m are m-primary.

119. Examples.
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(i) The primary ideals in Z are (0) and (p™) where p € Z is prime. It is clear that
they are primary. Further, /a = (p) prime implies a = (p™) for some n € N.
More generally, this is true in any principal ideal ring using also the fact that
it is UFD.

(i) Let A = k[x,9y], ¢ = (x,%%). Then A/q = k[y]/(y?), hence the zerodivisors
such as the equivalence class of y, are nilpotent. In particular, it follows that
a primary ideal is not necessarily a prime power p'.

(iii) Conversely, a prime power is not necessarily primary, although its radical is
prime 1. (xiv). For instance, let A = k[x,y,2]/(zy — 2?) and let 7, § and
z denote the images of x, y and z of k[z,y, 2] in A. Then p = (Z, z) is prime
for A/p = k[y] which is integral. Further, zy = z? € p?, but ¢ p2. Also,
yeEp= \/p;2 so that y™ ¢ p? for any n € N. Hence p? is not primary.

(iv) If g, is a finite number of p-primary ideals, then so is the intersection q = () ;.
Indeed, \/q =+/(); 9 = d@ = p.

(v) If q is p-primary with p = (f1,..., fn) finitely generated, then p < q < p
for some m € N. Indeed, f"* € q for suitable n; € N since p = ,/q. Let
m > 2max n;, then every monomial of degree m in f1,..., fx is a multiple of
fi'* for some i, hence in Q. (Our choice of m is of course not optimal.) This
condition is not sufficient. Consider the ideal a = (22, zy) < k[x,y]. Then
va = (z). (A geometric way of seeing this is to apply the Nullstellensatz:
va=7ToZ(a)=ZIZ(Z(?) n Z(zy)) = Lo Z(x).) In particular, (z?) c a =
v/a = (z). However, a is not primary, for the zero divisor ¥ is not nilpotent.
However, if p is maximal, then p™ < q < p is sufficient, for taking radicals
gives 1/p™ < /q < y/m = m, whence equality by the previous proposition.

120. Lemma. Let q be p-primary, and x € A. Then

(i) ifx ¢q, q:x is p-primary;
(i) if v ¢p, g: 2 =q.

Proof. (1) q : « is primary: Let yz € q : « with y ¢ 4/(q : ). Then xyz € q, hence
xz € ¢, and finally z € q : z. Next we compute the radical: If y € q : x, then
yx € q C \/q = p, hence (as = ¢ q) we have y € p. Therefore q < q : < p; taking

radicals we obtain p < 4/(q: z) < p.
(ii) follows directly from the definition. d

121. Definition (primary decomposition). Let A be a ring, and a € A be an
ideal. An ideal a is decomposable if it admits a primary decomposition, i.e.
an expression

=q1N...Nqk

with each q; primary. This decomposition is called minimal if no term is redun-

dant (ie. a & ﬂi*j Qi) and if i + j = /q; ¥ /q;. Note that by ignoring the
redundant terms and replacing two p-primary ideals by their intersection we may
always assume that the primary decomposition of a decomposable ideal is minimal.

122. Geometric examples.
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(i) Assume that a © A[n] is radical, i.e. a = y/a. Then by Hilbert’s Nullstellen-
satz, Corollary 1 (decomposition into irreducibles), and Remark 1

k k k
a=17(Z2(a) = I(U Z(p;) = mI(Z(pi) = ﬂpi

the primary decomposition is just the decomposition into irreducible subvari-
eties.

(ii) To get a feeling for the general case, consider an ideal a which is primary
to the maximal ideal m = (x,y) in k[z,y]. In particular, Z(a) = Z(+/a) =
Z(m) = (0,0) € k. What kind of geometric object X is encapsulated in a?
The idea is that X should contain Z(m) and characterise the coordinate ring
k[2]/a. If, for instance, a = (x2,y), then the residue class of a polynomial
[ =Y a;xtyl € k[x,y] is [ago + aroz]. Hence, if we “restrict” f to X we see
ago = £(0,0) and a19 = 0, f(0,0) the first derivative. So we think of X as the
point (0, 0) plus the horizontal tangent vector at the origin which encodes an
infinitesimal first order neighbourhood of the origin in the z-direction. If we
add an actual neighbourhood of the origin in the z-direction, for instance by
adding the horizontal line y = 0, that is, we consider a n (y) the first-order
information becomes redundant which is reflected in the idnetity an (y) = (y).
Similarly, if we let a = (22, zy,y?), then we get in addition ag; = d,f(0,0),
that is, X is the origin plus its whole first-order neighbourhood. If we replace
m by m"*! we see the origin plus the derivative up to order n, that is, X is
the origin plus the whole infinitesimal nth-order neighbourhood. On the other
hand, if we take p = () < k[z,y] which describes the y-axis {z = 0}, then
a = (2?) describes the first-order neighbourhood in the z-direction of the y-
axis, that is, we get the first-order neighbourhood of the y-axis, see Figure 1[3]
(a)-(c).

More complicated ideals can be treated similarly. For instance, let a =
(x) -m = (22,2y). Every f € a gives a polynomial function that vanishes
along {z = 0} and has multiplicity (i.e. order of vanishing) > 2 at the origin.
Conversely, any polynomial with these properties must be of the form xg
where g € m. Hence we have a primary decomposition a = (z) n (z,y)? whose
components belong to the ideals (z) and m, and the resulting geometric object
is the vertical line plus the thickened origin which indicates its first-order
neighbourhood, see Figure 1 (d). Note that we could decompose a equally
well as (z) n (2%, y). This corresponds to the fact that the only information
about a function which is avalaible on the first-order neighbourhood of the
origin, but not on the vertical line, is the first-order information in the z-
direction.

We first address uniqueness of the decomposition which holds for a general ring.

123. Theorem (first uniqueness theorem). Let a be a decomposable ideal with
a = (\q; a minimal primary decomposition into p;-primaries. Then the p; which
occur are precisely the prime ideals of the set {+/(q:z) | x € A}. In particular,
they are independent of the underlying minimal primary decomposition.

Proof. For any z € A we have a:z =()q; : © = [\(q; : ), hence \/(a:x) = [\p;

by Lemma 1 If o/(a: x) is prime, then by @ 4/ (a:z) = p; for some 7., so
every prime ideal associated with the primary decomposition of a is of this form.
Conversely, by minimality there exists for each ¢ an element x; ¢ q; and such that

x; ﬂj#i qj (1e mj:l:i qj ¢ qs- But then m = P;. O
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FIGURE 8. The varieties X (a)-(d)

124. Remark. Viewing A/a as an A-module, the theorem is equivalent to saying
that the p; are precisely the prime ideals which occur as radicals of annihilators of
elements of A/a.

The prime ideals p; are said to be associated with a. In particular, a is primary <
a has only one associated prime ideal. The minimal elements of the set {p1,...,pn}
are called the isolated primes while the remaining ones are called embedded.

125. Example. If a ¢ A[n], then the minimal primes correspond to the irre-
ducible components of Z(a). The embedded primes are subvarities of these com-
ponents. For instance, in the decomposition (z%,2y) = (x) n (z,9)?, p = (x) is
minimal, while m = (z,y) is embedded.

126. Proposition (isolated primes of a decomposable a). Let a be decom-
posable. Then any prime p D a contains a mintmal prime belonging to a. Hence,
the isolated prime ideals of a are precisely the minimal elements of the set of all
primes containing a.

Proof. If p > a = () q;, then p = /p D (/% = [ )p;. Therefore p > p; for some i
by Proposition Now either p; is minimal or contains a minimal prime. U

Note that it is not true that the primary components are independent of the de-
composition as we have seen above in Example 1 Still, we have some kind of
uniqueness, namely the decomposition into irreducible components.

127. Theorem (second uniqueness theorem). Let a be a decomposable ideal
with minimal primary decomposition ﬂ?zl q; and let {p;,,...,pi,} be a set of iso-
lated primes. Then q;; N...Nq,,, s independent of the decomposition. In particular,
the primary ideals corresponding to isolated primes are uniquely determined by a.

128. Proposition (union of the associated ideals). Let a be decomposable,
and let a = () q; be a minimal primary decomposition with \/q; = p;. Then

Upi:{xeA|a:x+a}.
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In particular, if the zero ideal is decomposable, the sets D of zerodivisors is the
union of all prime ideals belonging to (0).

Proof. 1f a is decomposable, then 0 = (] §;, where §; are the (primary) images of
q; in A/a. Hence we only need to prove the last statement. By Proposition |Of19| we
have D = |J,.0+/(0 : ); on the other hand, from the proof of the First Uniqueness

Theorem 1 we have 4/(0: x) = ﬂxeﬁqi p; < p; for some 4, hence D < | Jp;. But
each p; is of the form 4/(0 : z) for some x € A, hence | Jp; = D. O

129. Remark. If (0) is decomposable, the set of nilpotent elements is the
intersection of all minimal primes belonging to (0).

We now turn to the existence of primary decompositions in Noetherian rings which
was the initial motivation for their study.

130. Theorem (existence of primary decompositions in Noetherian rings).
In a Noetherian ring A, every ideal a has a primary decomposition.

Proof. Say that an ideal a is irreducible if
a=bnc=a=bora=c.

For example, any prime ideal is indecomposable by The result follows from
the next two statements.

Step 1. In a Noetherian ring A every ideal is a finite intersection of irreducible
ideals. Suppose not. Then the set of ideals ¥ < A for which the assertion is false is
not empty. In particular, there exists a maximal element a with respect to inclusion.
By definition, we can write this ideal a = b n ¢ for two ideals strictly containing a.
These are therefore irreducible so that a ¢ X, a contradiction.

Step 2. In a Noetherian ring every irreducible ideal is primary. Let a be irre-
ducible. By passing to the quotient ring we only need to show that (0) is primary in
AJa. So let zy = 0 in A/a with y # 0. The chain of ideals ann (z) < ann (22) < . ..
becomes eventually stationary at some n, i.e. ann (") = ann (z"*!) = .... Then
(™) n (y) = (0). For if a € (y), then ax = 0, and if a € (2™), then a = bx™, hence
bx"*1 = 0. Thus b € ann (z"*!) = ann (") and therefore bx™ = 0, that is, a = 0.

Since (0) is irreducible by assumption and (y) # (0) we must have (z™) = (0), i.e.
x € 4/(0).

O

1.5. Regular and rational maps. We now come to the definition of maps between
varieties — the morphisms of our category.

Regular maps. The first notion of morphism is this.

131. Definition (morphism between varieties). A morphism or regular
map ¢ : X — Y between varieties X and Y is a continuous map such that for
every open set V Y, and every regular function f : V — k € Oy (V), the function

*(f)=Ffopre (V) —k
is regular, i.e. in Ox(p~1(V)). Put differently, ¢ : X — Y is a morphism of
varieties < p* : Oy (V) — Ox (9~ 1(V)) is a k-algebra morphism (and in particular
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a morphism of sheaves of k-algebras). It is easy to see that the composition of two
morphisms f : X — Y and g : Y — Z is again a morphism go f : X — Z so
that we get the category VAR (or VAR if we want to emphasise the field), the
category of varieties (over k).

132. Remark.

(i) Regularity is a local property, i.e. ¢ : X — Y is regular if and only if ¢|y is
regular for any open set. In particular, it is enough to verify regularity for an
open cover | J, U; of X.

(ii) Anisomorphism ¢ : X — Y is a morphism such that there exists a morphism
¥ :Y — X with poty = Idy and ¢ oy = Idx. If such an isomorphism exists,
then we say that X and Y are isomorphic. In particular, any isomorphism
is a homeomorphism (i.e. bijective and bicontinuous). Note in passing that
there are homeomorphisms which are not isomorphisms between varieties,
see Examples 1][T34] and 1[137 This allows us to consider abstract varieties
obtained by glueing together affine varieties. These abstract varieties are the
algebraic counterpart to smooth or complex manifolds. We pursue this aspect
further in Section [5] when we will glue affine schemes.

The following lemma is useful to get explicit examples of regular maps.

133. Lemma (morphisms and coordinate functions). Let X be any variety,
Y < A™ an affine variety, and chose coordinate functions x1,...,x, on A™ which
generate A[n]. A map of sets ¢ : X — Y is morphism < p*x; = x; 01 is a regular
function on X for each 1.

Proof. If v is a morphism, then x; o ¢ is a regular function by definition, so only
the converse needs proof. Suppose that z; o ¢ is regular. Then for any polyno-
mial f € A[n] =~ k[z1,...,2,], f o1 is also a regular function. Since the closed
sets of Y are defined by polynomials f;, their preimages under ¢ are given by
Vv*fi(z;) = f(y*x;) = 0. By assumption, these functions are regular and in partic-
ular continuous. Hence the preimage is also closed and v is therefore continuous.
Finally, since regular functions are locally quotients of polynomials, 1*g = go ) is
regular for any regular function g € Oy (U). Hence ¢ is a morphism. O

134. Example (the cuspidal curve). Consider the map ¢ : Al — A2 o(t) =
(t2,¢%) onto the cuspidal curve Y = Z(z® — y?) < A%, By Lemma 1[133] ¢ is
regular. We can check this directly, since o* f(t) = f(t2,¢®) is a polynomial if f is a
polynomial. More precisely, let f € Oy (V). Locally, f(z,9) = g(z,y)/h(Z,y) for g,
h € A[2], where Z and j are the “coordinate functions” in A(Y) = k[z,y]/(y* —2?).
Therefore, p* f(t) = g(t?,t3)/h(t?,t3) for t € U open with ¢(U) = V. Further, ¢ is
bijective and bicontinuous. Indeed, its inverse is given by v : Y — Al ¢(z,y) = y/z
if x 4 0, and 1(0,0) = 0. Since ¢ takes finite sets of Al (these are the closed sets
of A! modulo A! and &) to finite sets of Y, whence 1 is continuous. However, we
will see in Example 1 that its inverse cannot be regular, so that A' and Y are
homeomorphic, but not isomorphic as varieties.

The next proposition characterises morphisms of affine varieties.
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y \/1 YZ

FIGURE 9. The curve 3% = 2°

135. Proposition. Let X be any variety and Y < A™ be an affine variety. Then
there is a natural bijective mapping of sets

Mor(X,Y) = Mor(A(Y), O(X)),

where the right hand side means morphism of k-algebras. In particular, if X < A™
is also affine, then O(X) =~ A(X) and any k-algebra homomorphism ® : A(Y) —
A(X) is of the form ©* = ® for a uniquely determined regular map ¢ : X — Y.
Hence in this case, the bijection is provided by

Proof. Given a morphism ¢ : X — Y we get by definition a map ¢* : O(Y) —
O(X). Since Y is affine, O(Y) = A(Y) by Proposition 1[93| we get the desired
k-algebra morphism A(Y) — O(X).

Conversely, let ® : A(Y) — O(X) be a k-algebra morphism. Choose coordinate
functions y1,...,ym on A™ so that A(Y) = k[y1,...,ym]/Z(Y). We define ¢, =
®(g;) € A(X) and ¢ : X — A™ by ¢(a) = (p1(a),...,pm(a)). This is a regular
map by Lemma 1[I33] We show that its image is contained in Y. Indeed, let
g € Z(Y), that is, g(g1,...,9m) = 0 in A(Y). Here, we look at g as a relation
between the coordinate functions g; of Y. Since ® is a k-algebra morphism, we
have

(p(g(gh s ,ym)) = g(q)(yl)a cee (I)(gm)) = g(<p1, R QOm) = 05
hence g(¢1(a),...,om(a)) = 0 for all @ € X, ie. p(X) < Y. In order to show

that p* = ® it is enough to see that they agree on the generators g; of A(Y). But
©*(g;) = pi = ®(y;). Moreover, ¢ is uniquely determined by this condition. O

In terms of category theory, the previous proposition just says that in the case
of affine varieties X and Y, the assignement X — A(X) is full and faithful (cf.
Definition [All6)), whence the

136. Corollary. Two affine varieties X and Y are isomorphic if and only if A(X)
and A(Y) are isomorphic as k-algebras. Put differently, X and Y are isomorphic
if and only if X and Y carry the “same” global functions. In particular, this
establishes an equivalence between the category of affine varieties and the category
of finitely generated k-algebras which are integral domains.
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137. Example (the cuspidal curve again). Consider again Example 1[134]
where ¢ : X = A’ > Y < A% ¢(t) = (t%,t3). Then A(A!) = A[1] = k[t], while
A(Y) = k[z,y]/(x*> —y3). Then ¢*(Z) = t* and ¢*(j) = 3 so that the image of p*
is the k-subalgebra of k[t] generated by #? and #3 which is proper (it does not contain
t for instance). Intuitively, the reason is that X = A! has a polynomial function
with non-zero derivative, while Y has a “singularity” at (0, 0) (see Figure 1[9)) which
squahes up the derivative of any polynomial function at 0. In this sense, Y has
fewer regular functions than X. We will discuss the issues further in Chapter [3]

138. Proposition. Let f € A[n]. Then the basic open set Dy = A™\Z(f) is
isomorphic to the hypersurface H < A" given by w1 f = 1 (see Figure 1 and

cf. also 1,
o v ﬂ

DI SRy

FIGURE 10. The coordinate ring of D¢, f = 2% — 1

Proof. Ifa = (ay,...,an+1) € H, then f(a1,...,a,) £ 0and ap41 = 1/f(a1,...,a,).
Let ¢ : H — Dy be defined by ¢(a) = (a1,...,a,). As a set-theoretic map, this
has an inverse ¢ : Dy — H defined by ¥(a1,...,a,) = (a1,...,an,1/f(a1,...,ay)).
By Lemma 1[133] ¢ and ¢ are morphisms. (]

139. Remark. By Proposition 1[135 we see that
A(H) = O(Dy) = klz1,...,zn)f = {g/f" | g € k[z1,...,2,], n e N}

140. Exercise (Quasi-affine varieties which are not affine). Show that the
quasi-affine variety X = A%\{(0,0)} is not affine.
Hint: Consider the inclusion i : X <> A? and use Proposition 1

Proof. The k-algebra morphism * : A[2] = k[z,y] — O(X) induced by the inclu-
sion is just restriction of polynomial functions. Since by Corollary 1[67} polynomial
functions are determined by their restriction to any open set, and thus in particular
to X < A% i* is injective, and we can regard k[x,y] as a subring of O(X). Now
take a € X < A2. By Exercise 1 Ox,q = Op2 4 = k[, y|m, < k(z,y), where m,
is the maximal ideal corresponding to a € X. It follows that O(X) < (,cx Ox,a ©
k(z,y). If f/g € O(X) with f, g € k[z,y], then for any a € X, g(a) % 0 for
f/9 € k[z,ylm, = {h1/ha | hi € k[x,y], ha(a) # 0}. Hence Z(g) = A? is either
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empty (in which case g is a unit) or contains only the origin (0,0). But then the
ideal (g) must be maximal in k[z,y] which is absurd. Hence g is a unit so that
f/g € k[z,y]. Hence ¢* provides an isomorphism k[z,y] = O(X), which implies
that ¢ is a biregular map by Proposition 1[I35] This is absurd, for ¢ is not even
surjective. O

Next we dicuss regular maps for (quasi-)projective varieties. First we note that the
standard cover U; = Z,(z;) of P™ is not only open, but also affine.

141. Lemma (the open cover of P" by affine varieties). Let U; < P" be the
open subset defined by the equation x; + 0. Then the mapping ¢; : U; — A™ is an
isomorphism of varieties (cf. Exercise 1@/.

Proof. Without loss of generality we assume that ¢ = 0 and put ¢ = g and U = Uj.
We need to show that ¢ and ¢ = ¢~ ! are regular. Now locally, a regular function
fonV < A™ is the quotient of two polynomials g and h in y1, ..., ¥y, which under
©* gets mapped to

o f = 0*9/f) = g(@r/zo,. .., xafo) [h(x1 /30, . 20 T0) = 25" T 5(g)/B(h)

which is the quotient of two homogeneous polynomials of degree deg h. Conversely,
the action of ¥* corresponds to the action of « on the denominator and numerator.
O

142. Example. For P! we have the two maps ¢ : Uy — Al, p[zo : 21] = z1/70
and ¢ : Uy — A, p[zg : 21] = mo/z1. Note that if we define a biregular map
f:k* > k* by f(z) = 1/z, then f oyy = ¢1. Put differently, we have glued the
two affine open sets Uy and Uy by the biregular map f.

Lemma 1 is a special case of the following general fact.

143. Corollary (base for the Zariski topology). On any variety there exists
a base for the topology consisting of open affine subsets. In particular, any point
admits an affine neighbourhood.

Proof. We must show that for any a € X, and any open set U containing a, there
exsists an affine set V in U which contains a. Since U is a variety, we may as well
assume that X = U. Further, any variety is covered by quasi-affine varieties, we
may assume that X < A" is quasi-affine. Consider then Y = X\ X which is closed in
A", and let a = Z(Y). Then Z(a) =Y by Proposition 1[I8so that we can find f € a
with f(a) 0. Let H = Z(f) c A™. Sincea¢ H,aeV:i=X\(XnH) =X n HC,
which is an open subset of X. On the other hand, X\(X n H) = X n Dy is a closed
subset of Dy = A™\H, hence equal to it. By the previous proposition, Dy is affine,
hence V is the desired open affine subset. O

As an application, we prove the following

144. Lemma. If X < P" is a quasi-projective variety, and fo,..., fm € S[n]
are homogeneous polynomials of same degree in the homogeneous coordinates on P™
without any common zero, then

f:X-oP" peXw—|[fop):...: fm(p)]
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defines a morphism.

Proof. The assumptions on the f; imply that f is well-defined set-theoretically as
well as continuous. To verify that f defines a morphism we can work locally on the
open set V; = f~1(U;) = {pe X | fi(p) # 0}, where U, is the standard affine cover
of P. In the coordinates provided by U;, flv, = (fj/fi)j+i, so f is a morphism
since its components are regular being locally quotients of polynomials. O

145. Corollary (Segre embedding). Let PN = Pr+D0m+D=1 pe projective
space with homogeneous coordinates z;;, 0 < i < n, 0 < j < m. if xo,...,%n,
Yos - - -, Ym are homogeneous coordinates on P™ resp. P™, consider the map ¢ :
P x P™ — PV given by ¢([z;], [y;]) = [2i;] = [ziy;]. Then ¢ defines a bijection
onto the image %y, m = (P x P™) which is a projective variety in PN with ideal
generated by zijzi — zuzk; for all0 < i, k <n and 0 < 5,1 < m. The map ¢ is
called the Segre embedding. It gives P* x P™ the structure of a projective variety
by identifying the product with ¥, ,, < PV,

Proof. The inclusion ¢(P™ x P™) c X, ,, is obvious. Conversely, let a = [a;;] €
Yom C PV so that aijar, — aiga;; = 0. At least one a;; # 0; without loss of
generality, agg & 0 so that a € Uy. We pass to affine coordinates by setting agg = 1,
hence a corresponds to the point (ai;) i, jy+(0,0) € AN, But a;; = aija00 = aioao;
for a € X, hence a;; = z;y; and a = ¢([zo : ... : xn],[yo : ... ¢ ym]). To
show injectivity let a = f(x,y) € X be a point with agp = 1. Hence z, yo + 0.
We can scale the homogeneous coordinates of z and y such that g = yo = 1.
Then x; = z; and y; = zy;, hence ¢ is injective. It is clear that ¢ is regular
by Lemma 1 Computing the inverse in affine coordinates shows that ¢~ is
locally a polynomial map, hence also regular. To show that X is irreducible, let
On : Xnm — P and g, : Xy, — P be defined on Uj;, the set of points where
zij D, by gn([2i5]) = [2i5]7=0 and g ([2ij]7—o- We obtain a commutative diagramm

pr 3)

]P)m
where 7; denotes the natural projection. Restricting the Segre embedding to P™ x
{ly]} and {[x]} x P™ induces isomorphisms between P" and P™ and subspaces of

PN whose fibres are irreducible. We can now imitate the proof of irreducibility for
the product of two affine varieties from Example 129 O

146. Remark. As for affine varieties, the topology on P™ x P™ is not the product
topology. In fact, the closed sets of P x P™ with its induced structure as projec-
tive variety via the Segre embedding are given by the zero loci of bihomogeneous
polynomials in k[z1,...,%n, Y1,--.,Ym], that is, polynomials which are separately
homogeneous in the x; and y;. Indeed, the zero locus of bihomogenous polynomials
can be written as the zero locus of bihomogeneous polynomials of the same degree
in the #; and y; (cf. Remark 1[44] (ii)) and are thus polynomials in the z;;, that is,
the zero locus defines a closed subset for the topology induced by P¥. Conversely,
if a subset of X, ,, = P™ x P™ is given as the zero locus of polynomials in the z;;,
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substituting z;; = x;3; yields a bihomogeneous polynomial. In particular, if X and
Y are projective varieties sitting inside P and P respectively then X xY < ¥, ,
is again projective for it is closed while irreducibility follows as in the affine case,
cf. Proposition 129

147. Example. Consider the case n = m = 1. Then £ = (P! x P!) < P3 is
the quadric surface given by Z(zgp2z11 —210201). Explicitly, we have the isomorphism
P'xP' — S11,  ([wo: 21, [y : 91]) = [zowo : moyr : w10 : w131] € X.

In particular, the families of projective lines P! x {a} and {b} x P! get mapped to
the families of lines L, and M, in P2, see Figure 1 below.

QcP

\)J

:\:\.:1‘*::

| A
= o

FIGURE 11. The Segre embedding of P! x P! and the two families of lines

148. Exercise (products of quasi-projective varieties). We consider P x P™
as a projective variety via the Segre embedding. If X < P™ and Y < P™ are two
quasi-projective varieties, consider the (set theoretic) product X x Y < P" x P™.
Show that X XY is a quasi-projective variety.

Proof. If X and Y are quasi-projective, then X = U "W and Y =V n Z for U
and V open and W and Z closed in P™ and P™ respectively. But o(X xY) =
4, (X) 0 g (Y) (cf.(B)) so that the image is an open set of a closed subset. That
the image is irreducible follows as in the affine case, cf. Proposition 129} O

Lemma 1 can be also used to describe the stalk of regular functions of P™. As
in the case of affine varieties, the stalk can be described in terms of localisation.
First, however, we need to discuss how to put a grading on these localised rings.

149. Localisation of graded rings. Let S = P . 54 be a graded ring, and
let T = S be a multiplicatively closed system of homogeneous elements. To give
the ring of fractions 715 the structure, we say that f/g is homogeneous if f € S
is homogeneous and put deg(f/g) := deg f — degg. If this is well-defined, then
we have a decomposition T7'S = @ . (T~'S)q which gives indeed a grading.
Now if f/g = f'/¢’, then there exists h € T such that h(fg' — f'g) = 0, hence
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degh + deg f + deg g’ = deg h + deg f’ — deg g so that deg is well-defined on T~18S.
We then put

Sy :=1{f/g¢€ TS | f/g is homogeneous of degree 0}.

The notation is slightly ambigous but standard in the literature. The most impor-
tant examples are these:

(i) If p = S is a homogeneous prime ideal we let T}, = |J=0{f € Sa | f ¢ p} and
write S(p) for Siz,). This is a local ring with maximal ideal (pr_lS) NSy
In particular, if S is an integral domain, then for p = (0) we obtain the field
S((0))-

(ii) If f € Sy, then Ty = {f* | k > 0} is a multiplicative subset of homogeneous
elements. We let Sy) := S(r,) be the subring of elements of degree 0 in the
localised ring Sy.

150. Proposition (regular functions on P"). Let X < P" be a projective
variety with homogeneous coordinate ring S(X). Then

(i) foranyae X, let m, < S(X) be the ideal generated by the set of homogeneous
f € S(X) such that f(a) = 0. Then Ox o = S(X)(m,);
(i) K(X) = S(X)(0;

Proof. We start with the following general remark. If X < P” is a projective vari-
ety, and ¢ : U; — A" a standard chart, then A(X;) = S(X)(,,) where X; = X nU;
(in particular, X; = X so that by Exercise Z(X) is the ideal generated by
B(Z(X;))). Put differently, the regular functions on the (affine) variety X; are the
degree 0 functions in the localised ring S(X),,. Indeed, let i =0, p; = p and U; = U
for convenience. Then ¢*f = f(x1/x0,...,7n/%0) € k[20,...,2n](z,). Clearly, o*
is an isomorphism between A[n] and k[xo,...,%n](,). A polynomial f € A[n] of
degree d gets mapped to 8(f)/zg. It follows that under this isomorphism, Z(X)
is mapped to the ideal generated by F /xgegF for F € Z(X) homogeneous. Hence
AX)/I(X) = k[zo, ..., @] (z0)/{F /2§ | F € I(X)a}). It is easy to see that the lat-
ter ring is isomorphic to S(X)z,) by sending [f/z3%8 7] € k[xo, . .. s ] (z0) /{F /2 |
FeZ(X)a}) to f/z5%7 where ~ denotes the equivalence class in S(X).

(i) If @ € X choose i such that ¢ € X;. In particular, ;(a) + 0. Without loss
of generality we assume again ¢ = 0. The associated maximal ideal m/, < A(Xj)
consists of functions f € A(Xp) such that f(a) = 0. Under the isomorphism
A(Xo) = S(X)(z,) this gets mapped to the maximal ideal m,. Therefore, Ox , =
A(Xo)m, = (S(X)(z4))m,- Since x¢ is a unit, Corollary gives the result.

(ii) K(X) is isomorphic to K(X;) = Quot A(X;). Via ¥, the latter is isomorphic
t0 S(X) o)) -

Rational maps and blow-ups. As we have seen in Section (1.3} A[n], has the
interpretation of functions which are generically defined on X = Z(p). We also
introduced the function field K (X) of rational functions in Section Next we
generalise this notion to rational maps and define a further category of varieties.

151. Lemma (Identity property of morphisms). Let ¢ and ¢ be two mor-
phisms between varieties X — Y, and suppose there is a nonempty open subset
U c X such that ¢|y = Y|y. Then ¢ = 1.
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Proof. We may assume that Y < P” for some n. By composing with this inclusion
we may assume that ¥ = P”. The morphisms ¢ and 9 : X — P" determine
a morphism ¢ x ¢ : X — P"™ x P™ with projective target by 1[145] Let A =
{(p,p) | p € P*} < P™ x P" be the diagonal of P* x P™. If [z¢ : ... : x,] and
[yo : ... : yn] denote the homogeneous coordinates on the left resp. right hand
side factor, A = Z({z;y; — zjy; | 4,7 = 0,1,...,n}), so A is a closed subset. By
assumption, ¢ x ¥(U) < A. But U is dense in X, i.e. U = X, and A is closed in
P™ x P, whence ¢ x ¥(X) < ¢ x (U) < A. Hence ¢ = 1. O

We are now prepared for the

152. Definition (rational map). Let X, Y be varieties. A rational map
® : X --» Y is an equivalence class of pairs [U, ¢], where U is a nonempty open
subset of X and ¢ : U — Y a morphism, and where [U,¢] = [V, ¢] if ¢ and ¢
agree on U n V. By Corollary 1[I51] this actually defines an equivalence relation.
The rational map @ is called dominant, if for some, hence for every pair [U, ¢]
representing ®, the image ¢(U) is dense in Y (use again that f(U) c f(U) for f
continuous).

153. Remark. Despite appearance, a rational map is not a map from X — Y
which is what we indicate by an dotted arrow; it is only densely defined on X.
The identity property 1[I51] shows that the underlying equivalence relation is well-
defined. Indeeda if [Ua ¢] = I:Vva ﬂ}] so that ¢|Ur\V = 1/}|Ur\V7 and [‘/7 T/’] = [Wa 77],
whence |w~v = nlwav, it follows that ¢lu~v~w = N|v~v~w, hence |y w =
Nuaw for UnV A W is dense in U n W. However, we cannot compose rational
maps in general which is why we also consider dominant maps: The composition
of two dominant maps is indeed well-defined and again dominant: If & : X --» YV
and ¥ : Y --» Z are rational maps represented by [U, ¢] and [V, 1] respectively,
we define Wo @ : X ——» Z by [U n ¢~ 1(V),9 o ¢] provided ¢—*(V) is not empty.
If it were empty, then ¢(X) < Y\V, hence ¢(X) = V¢ =Y, whence V = ¢, a
contradiction. To understand this condition from a more algebraic point of view,
we note that a rational map ® : X --» Y = [U, ¢] induces a map

D*A(YY) » K(X), fe—®*f=][U fogl.

Then we have ®*(f) = 0 < ¢(U) < Z(f), whence * is injective < @ is dominant.
We can then extend ®* to a morphism

O K(Y) - K(X), @*[V.f]=[Un¢ (V) fod]

which is well-defined in view of the dominance of ®. In particular, if U :Y --» Z,
then (0o ®): A(Z) — K(X) can be computed via

(Cod)*f=[U,fopd]=[Un¢ ' (V),fovog]=e*[V,foy] =e*T*[V, f]
which shows that ¥ o ® is dominant if ¥ and ® are dominant and that (¥ o ®)* =

O*oU* : K(Z) — K(X). We therefore can define the category of varieties and
dominant rational maps RAT.

In analogy with Proposition 1 which asserted that k-algebra morphism A(Y) —
A(X) are of the form ¢* for a regular map ¢ : X — Y we can prove the

154. Proposition. If X and Y are affine varieties, any k-algebra morphism
f: K(Y) > K(X) is of the form f = ®* for a unique dominant rational map
P: X --»Y.
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Proof. Construction and uniqueness are precisely as in 1 Furthermore, ®* is
necessarily injective since it it nontrivial, hence ® is injective by Remark 1[153]
Hence @ is dominant. (|

Recall that a field extension k = K is finitely generated if K is a finite extension of
k(z1,...,z,) for algebraically independent elements o; € K (cf. also Appendix [B).
Equivalently, K = k(ay,...,as) for a; = K, that is, K coincides with the smallest
subfield of K which contains k and the «;.

155. Corollary (equivalence of RAT with the category of finitely gen-
erated field extensions). For any two varieties X and Y we have a bijection
between

(i) the set of dominant rational maps X --+Y;

(ii) the set of k-algebra homomorphisms K(Y) — K(X).
This correspondence gives a contravariant equivalence of the categories RAT and
finitely generated field extensions k < K.

Proof.

Step 1. Construction of the bijection. Let [U,¢] = ¢ : X --» Y be a dominant
rational map, and let [V, f] € K(Y) be a rational function. Since p(U) is dense
in Y, ¢~%(V) is a nonempty open subset of X, whence p*f := f o ¢ is a regular
function on =1 (U), and thus defines a rational function [¢~1(U), f] € K(X). One
easily checks that ¢* : K(Y) — K(X) is a k-algebra homomorphism.

Step 2. Construction of the inverse. Let 6 : K(Y) — K(X) be a homomorphism of
k-algebras. We define a rational map ¢ : X --» Y as follows. By Proposition 1[143]
Y is covered by affine varieties. Since rational maps are only densely defined anyway,
we may assume that Y is affine. Let y1,...,y, be generators of the k-algebra A(Y").
Then 0(y1),...,0(y,) are rational functions on X. Taking the intersection of the
domains of the representatives we can find an open set U in X such that 6(y;)
are regular on U. In particular, we get an injective morphism A(Y) — Ox(U).
By Proposition this corresponds to a morphism U — Y giving a dominant
rational map X --» Y which is an inverse to the map constructed in the first step.

Step 3. Finally, we need to show that for any variety X, K(X) is finitely gener-
ated over k, and conversely, if £ < K is a finitely generated field extension, then
K = K(X) for some variety X. Since K(U) = K(X) for any open subset U
of X, we may assume that X is affine. But then Proposition 1[94] implies that
K(X) = Quot A(X). Since A(X) = k[ay,...,a,] we have K(X) = k(aq,...,a.),
that is, K(X) is finitely generated. On the other hand, if ¥ ¢ K is any finitely
generated field extension, let K = k(ay,...,a.). Then A = Ek[ag,...,q,] is a
finitely generated k-algebra without any zerodivisors, hence A = A(X) for some
affine variety X. It follows that K = K(X).

O

156. Corollary and Definition (birational maps). An isomorphism in this
category is called a birational map. This is a rational map ® : X --» Y which
admits an inverse ¥ : Y --» X such that Vo ® = Idx and ® o ¥ = Idy as rational
maps. If there is a birational map between X and Y we call X and Y birationally
equivalent or simply birational.
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157. Corollary. For any two varieties X and Y, the following are equivalent:
(i) X andY are birationally equivalent;

(ii) there are open subsets U c X and U 'Y with U isomorphic to V;
(iii) K(X) =~ K(Y) as k-algebras.

Proof. (i) = (ii) Let ® : X --» Y and ¥ : Y --» X be rational maps which are
inverse to each other and which are represented by [U, ] and [V, ] respectively.
Then ¥ o & is represented by [¢~1(V), 1 o ¢] and since ¥ o ® = Idx as rational
maps, 1 o ¢ is the identity on ¢~1(V). Similarly, ¢ o+ is the identity on ¢~1(U)
so that =1 (¢ ~1(U)) and ¢~*(¢~1(V)) are isomorphic open sets of X and Y.

(if) = (iii) follows from the definition of function fields.

(iii) = (i) follows from the previous theorem. O

158. Exercise. Let X and Y be two varieties. Suppose there are points p € X
and q € Y such that the local rings Ox , and Oy, are isomorphic as k-algebras.
Then there exist open neighbourhoods U and V' of p and q respectively as well as a
bireqular map which identifies U and V' and takes p to q.

Proof. Since any point of a variety admits an affine neighbourhood, and the stalks of
regular functions are determined by restriction to any open neighbourhood, we may
assume that X and Y are affine. Furthermore, by embedding A™ — A™ we may
assume that X, Y < A™ are affine. Let x1,...,x, be coordinate functions on A™
which define regular functions on X by restriction and thus elements in Ox ;, which
we still denote by x;. If we have a k-algebra isomorphism 6 : Ox , = Oy, then
0(z;) define rational functions on Y which are regular on V; ¢ Y. Let U = (\V;n X.
This is an open subset of X on which we can define the map

o:U->Y, @a):=0(z1)(a),...,0x,)(a)).
By Lemma... this is a regular map. Similarly, we can define a regular map

bV > X, dla) = (07" (z1),....07  (zn)),
where 07! (x;) is regular on U; and V = (\U; n'Y. Whenever defined, ¢ and ¢
are inverse to each other. Finally, let U = U n ¢~ (V) and V = V n ¢~ (U) and
v =¢lvand ¢ = 7,[3|V Then @o) and 1o are clearly defined and give the identity
on U and Y. For instance, let a € U. Then y = p(a) = ¢(a) € VA @(U). It remains
to show that y € ¢~ (U) which entails p(a) = y € V. But ¢(y) = ¥(p(a)) € U by
design. Note that ¥ (3(a)) is defined since @(a) € V. Finally, if 7 : A" — A" is the
translation 7(a) = a — ¢(p) + ¢, the maps ¢ := 709 : U :=U n ¢~ (U) - V :=
VA=Y (V) and ¢ :=po7! : V — U are inverse to each other with ¢(p) = ¢. O

Therefore, despite being “local rings”, the stalk of regular functions determines the
birational type of the variety. From this point of view, a local ring still contains
a lot of global information though birationality is a much weaker concept than
biregularity, as the following result shows.

159. Proposition. Any variety X is birational to a hypersurface Y < P™.

Proof. (The proof requires some material from Appendix .) The function field
K (X) is a finitely generated extension field of k. By Proposition K is separa-
bly generated over k, that is, there exists a transcendence base 1, ..., z, such that
k(xz1,...,2,) € K is a finite separable extension of k. Hence, by the Theorem of the
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Primitive Element K =k(z1,...,2,,a). Since « is algebraic over k(x1, ..., 2z,)
it satisfies a polynomial relation with coefficents given by rational functions in the

x;. Clearing denominators gives an irreducible polynomial f(xi,...,2,,a) = 0
which defines a hypersurface in A"*!. Its coordinate ring is A[n + 1]/(f) so that
its quotient ring is K (X). The result follows from Corollary 1 O

160. Remark. Once we have a properly defined notion of dimension, we will see
that the proof implies that n — 1 equals the dimension of X.

As a concrete example of a birational map we discuss the notion of blow up of
a variety at a point. This is a fundamental construction and a main tool in the
resolution of singularities of an algebraic variety (cf. Hironaka’s theorem which
unfortunately — despite its importance — is far beyond the scope of this course).

First we construct the blow up of A™ at the origin 0. Consider the product A™ x
P"~1 which is a quasi-projective variety (thinking of A" as being embedded into
P™), cf. Exercise 1 If 1,...,x, are affine coordinates on A™ and yi,...,¥n
homogeneous coordinates of P"~1 (observe the index shift: we start with 1 instead
of 0), then the closed sets of A" x P"~! are given by polynomials in the x;, y; which
are homogeneous in the y;.

161. Definition. We define the blow up of A" at the origin 0 to be the closed
subset X of A" x P"~! defined by the equations {z;y; = zjy; | i, j =1,...,n}.

We have a natural morphism ¢ : X — A™ by restriction of the projection onto
the first factor. Regularity follows directly from Lemma 1[I33] Here are some
properties of this map.

162. Proposition (fibres of ¢ : X — A™).

(i) Ifa e A", a % 0, then p~(a) consists of a single point. In fact, ¢ induces
an isomorphism of X\¢~1(0) and A™\{0}. In particular, we get a birational
isomorphism X --+ A" (p is of course defined on X, but its inverse is only
densely defined and therefore gives only rise to an inverse in the category
RAT).

(ii) E := ¢p71(0) = P"1, the so-called exceptional divisor. In fact, we can
think of the points of p~1(0) as the set of lines through 0 in A™.

Proof. (i) Let a = (a1, ...,a,) € A™ with some a; £ 0. Now if (a,[y1 : ... : yn]) €
¢~ (a)), then for each j, y; = (aj/ai)yi, so [y1 @ ...t yu] = [a1 : ...t ap] is
uniquely determined as a point in P*~!. Moreover, the map ¢ : A"\{0} — X,
Y(a) = ((a1,...,an), (a1,...,a,)) defines the inverse morphism.

(i) Clearly, (0,[y1 : ... :yn]) € X for any [y : ... : yn] € P"71. Geometrically, we
can identify the points in ¢ ~1(0) with lines [ in A" through the origin as follows. If
a=(ay,...,a,) € 1\{0} (whose choice obviously determines [), a parametrisation of
l is given by z;(t) = a;t, t € Al. Its preimage [ under  has then the parametrisation
x; = ait, y; = a;t, t € AN\{0}. Since [a1t : ... : ant] = [a1 : ... : a,] wWe can
parametrise ! by x; = a;t and y; = a; which also makes sense in t = 0 and gives
the closure of [ in X. But [ meets P?"~' =~ ¢~ 1(0) precisely in [a; : ... : ay].
Hence sending the point [a; : ... : a,] € ¢71(0) to the line determined by 0 and
a = (ay,...,a,) sets up a 1 — 1-correspondence. O

163. Corollary (irreducibility of the blow up). X is irreducible.
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Proof. Indeed, X is the union of X\¢~1(0) and ¢=1(0). The first set is isomor-
phic to A"~1\{0} which is irreducible as an open subset of an affine variety. On
the other hand, we have seen that every point ¢~1(0) is in the closure of some
line in X\p~1(0). Hence X\¢~1(0) is dense in X so that X is irreducible itself
(alternatively, argue by Exercise 1. O

164. Definition (blow up a subvariety). If Y is a closed subvariety of A"
passing through the origin, we define the blow up of Y at 0 to be

Y = o L(Y\{0}),
where ¢ : X — A" is the blow up of A™ at the point 0 described above. We keep

on denoting by ¢ the restriction of this map to Y. To blow up at any other point
a € Y we make a linear change of coordinates sending a to 0.

165. Remark.

(i) ¢ induces a birational morphism of ¥ to Y.

(ii) Although the definition seems to depend on the embedding of Y into A™ (that
is, two isomorphic subvarieties might not have the same blow up), we will see
below that the blow up is actually intrinsic and therefore independent of the
actual representative of the isomorphism class of subvarieties.

166. Example.

(i) Consider the line L = Z(Az — uy) in A2, We assume that \, u # 0 so
that A\/u is the slope of L. What is the blow up of L at the origin? If
we choose the parametrisation (ut, At), then for ¢~ 1(L\{0}) = {(ut, \t), [p :
Al | t # 0}. Therefore, the total inverse image of L under ¢ consists of two
irreducible curves: The exceptional divisor (here: the “exceptional curve”)
E = {(0,0),[u : v]} and the irreducible curve L = {(ut, A\t), [ : A] | t € k},
the blow up of L, which meets the exceptional curve in [p : A], the point
corresponding to the line L itself.

(ii) Let Y be the plane cubic curve given by the equation y? = z2(x + 1) in A2
We compute the blow up of Y at 0. The blow up X = A2 of A2 at the origin
is defined by the equation zu = yt in A2 x P! where [t : u] are homogeneous
coordinates on P!. The inverse image of Y under ¢ is given by the equations
y? = 2%(z + 1) and zu = ty in A% x PL. Now P! is covered by the two open
setst +£ 0 and s + 0. If t + 0 we can set t = 1 and get the equations

v =2z +1), y=zu

in A3 with coordinates z, y and u. Substituting yields z?u? — z?(x + 1) = 0.
Hence we get two irreducible components given by x = y = 0, u arbitrary,
which belongs to the exceptional divisor E, and v? = = + 1, y = zu, which
belongs to Y. Further, Y intersects E in [1 : +1], see Figure 112, The
solutions u = +1 correspond to the different slopes of the two branches of Y
in A? at the origin; the blow up has thus the property of pulling apart lines

of different slope.

167. Exercise. Let Y be the cuspidal curve Z(y? — 2%) < A? which we blow up

at the origin. Show that the exceptional curve E and the blow up Y meet in one
point, and that Y ~ A'.
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F1GURE 12. The blow up of the plane and the strict transform of a curve.

Remark: In particular, the morphism ¢ : Y > Yisa homeomorphism, but not
biregular.

Proof. We parametrise the cuspidal curve by (£2, %) so that the equation for Y are
t2v = t3u. Tt follows that @~ (Y\{0}) = {(t2,#3),[1 : t]} so that Y intersects E in
the point [1 : 0]. The rational function {(x,y), [u : v]} — v/u yields a well-defined
regular function when restricted to ¥ which gives the desired isomorphism. O

2. INTEGRAL RING EXTENSIONS AND THE NULLSTELLENSATZ

We now come to the proof of the Nullstellensatz. In its so-called weak form it
asserts that

if k € K is a field extension such that K is of finite type, i.e. finitely generated as
a k-algebra, then k < K is a finite field extension.

2.1. Integral ring extensions.

If we have a field extension k¥ < K, and a € K is algebraic over k, then the
extension field k(a) is a finite dimensional vector space over k. Indeed, there exists
a polynomial f € k[z] such that f(a) = . c;a’ = 0 since a is algebraic. By dividing
by the leading coefficient of f we get the relation a™ = 22:01 ciat/c,. Similarly, if
A c B are rings we call B an extension ring of A and say that A — B is a ring
extension. However, if f(b) = 0 for b € B and f € A[z], Ala] is in general not a
finite-dimensional module as the easy example Z[1/2] shows. Still, for rings there
is a useful analogue of algebraic field extensions which will occupy us next.

1. Definition (integral and finite ring extensions). Let A — B be a ring
extension.

(i) We call b € B integral over A if there is a monic polynomial f € A[x] such
that f(b) = 0. If every b € B is integral over A, then A c B is an integral
extension.

(ii) The ring extension is finite if this turns B into a finitely generated A-module.
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2. Remark. If A and B are fields, then integral and finite ring extensions coincide
with algebraic and finite field extensions.

3. Algebraic examples.

(i) If A is an integral domain we have the natural ring extension A ¢ k = Quot A.
In particular, if A is a UFD, then = € k is integral over A < = € A (see
Exercise .

(ii) Z < Z[1/2], the subring of Q generated by Z and 1/2, is not integral. Indeed,
assume that © = p/q € Z[1/2] with p € Z and 0 £ g € 2Z coprime. If we had
a polynomial relation

(g)" + c,H(g)"—l +o 4o =0,

then multiplying with ¢ shows that p® = —q(c,_1p" ' +...+coq" 1), hence
q divides p, a contradiction.

(iii) 7 = (1 ++/5)/2 (the “golden ratio”) is integral for Z < Z[r], where Z[7] is
the subring in Q generated by Z and 7. Indeed, 72 — 7 — 1 = 0. On the other
hand, o = (1 ++/3)/2 is not integral for Z < Z[o] for Z[1/2] < Z[c]. Indeed,
2(02 — 1) = v/3 € Z[o] so that (62 —1)4/3 —1=1/2 € Z[1/2]. But 1/2 is not
integral over Z.

4. Geometric examples. As we will see at the end of this Section [2] a ring
extension between finitely generated, reduced k-algebras can be thought of as a
morphism of varieties. To get a geometrical feeling, let A = k[z] and B = A[y]/(f),
where f € A[y] is a nonconstant polynomial which we think of as a nontrivial
relation on y. Geometrically, A corresponds to X = Al while B is the coordinate
ring of Y = Z(f) = A? the curve defined by f. We assume that we get an injection
t: A — B, z+— I giving a ring extension. This corresponds to a morphism
m:Y — X given by (x,y) — x.

(i) Consider first the case f(y) = y*> — 22 so that y € B (strictly speaking ¢ € B)
is integral over A. We will see in the next proposition that this implies that
A < B isintegral. Since any nonzero value for z yields a quadratic relation on
y, the fibre =1 () consists of two points unless z = 0 where the fibre consists
of one point.

(ii) Next consider f(y) = xy — 1. Lifting the monic relation to k[2] we see that
there exists a monic polynomial g € A/(f)[z], the image of g € k[x][z] such
that g(g) = 0 if and only if there exists h € k[z][z] such that g(y) = h(y)(zy—
1). Considering the leading term in y shows that this cannot happen, hence
y is not integral. Here, the fibre over x consists of one point if z + 0 and is
empty, if z = 0.

(iii) Finally, consider f(y) = zy. The same argument as in (ii) shows that y is not
integral. The fibre over x 4 0 consists again of one element, while in = = 0 it
is infinite.

Therefore, as a first approximation, we think an integral ring extension as a surjec-
tive variety morphism with finite fibres (“ramified coverings”), see also Figure 2

5. Proposition (finite versus integral extensions). Let A < B be a ring
extension, and let b€ B. Then are equivalent:

(i) b is integral over A;
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FIGURE 13. The covering maps from ring extensions.

(i) the subring A[b] generated by A and b is finite over A;
(iii) there exists a subring C < B such that A[b] € C and C is finite over A.

In particular, a finite ring extension is integral. In fact, any finite ring extension
A c B is of the form B = A[by,...,b,]| with b; integral over A, i.e.

finite type + integral < finite

Proof. (i) = (ii) If b satisfies a monic relation of the form ™ = —>""/ ' a;bt with
a; € A, then A[b] is generated by 1,b,...,b" 1.
(ii) = (iii) Take C' = A.

(iii) = (i) Consider b as a map pup : C — C, ¢ — b-c. Since C is a finite A-
module the Cayley-Hamilton theorem [0]56] applies, and p;, satisfies a monic relation
U+ an—1p '+ ...+ ag = 0 in End(M) with a; € A. Evaluating at 1 gives (i). O

6. Corollary. Let X c P} be a projective variety. Then O(X) = k.

Proof. Let f € Ox(X) be a global regular function. Restriction induces an injection
Ox(X) — A(X;) = S(X)(s,). In particular, f = gi/xd for g; € S(X) homogeneous
of degree d;. We have the inclusions O(X) ¢ O, € K(X) < | cx Oa so that by
(i), O(X), K(X) and S(X) can be considered as subrings of L = Quot S(X). In
particular, % f € S(X)g4,, the degree d; polynomials of S(X). Next choose d >
> d;. As a k-vector space, S(X)4 is spanned by monomials of degree d in Ty, . . . , T,.
In any such monomial, at least one x; occurs to a power > d; by the choice of d.
Since for such an i, z5°... 2% ... x f = & ... a% % xtrg € S(X)4 we have

S(X)a-f < S(X)q. Iterating we get S(X)q4- f9 < S(X)q for all ¢ > 0. In particular,
rdf% e S(X) for all ¢ > 0 which shows that the subring S(X)[f] of L is contained
in 2545(X), a finitely generated S(X)-module. Since S(X) is Noetherian, S(X)[f]
is also a finitely generated S(X)-module by Corollary Therefore, f must be
integral over S(X), i.e. satisfy a relation of the form f+ . ¢;f* = 0 for ¢; € S(X).
But f is of degree 0, so the equation f™ + >.(c;)of* = 0, where (¢;)o € S(X)o = k
denotes the degree 0 part of ¢;, is also valid. In particular, f € L is algebraic over
k, so that f € k for k is algebraically closed. O
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7. Remark. The last property is familiar from complex geometry: As a trivial
consequence of the maximal modulus theorem, any holomorphic function globally
defined on a complex compact manifold must be constant.

8. Proposition (tower laws).

(i) If Ac B < C are extension rings such that C is a finite B-algebra, and B is
a finite A-algebra, then C is a finite A-algebra.

(ii) If A € B < C with C is integral over B and B is integral over A, then C is
integral over A.

Proof. (i) By Proposition 2 A[by] is finite over A. Then proceed by induction
using (i).
(i) Let c € C satisfy the relation ¢” +b,_1¢" 1 +...+by = 0, with by, ...,b,_1 € B.

Since each b; is integral over A, each extension A c A[by,...,b,—1] < Albg, ..., bp—1,c]
is finite by (i). Hence ¢ belongs to an intermediate algebra A < A[bg,...,by—1,¢]
C which is finite over A. By 2[f| (iii), c is integral over A. O

9. Proposition and definition (integral closure). The set
A ={be B |b integral over A} c B

is a subring of B. In particular, the sum and the product of two integral Tings is
again integral. Moreover, if b € B is integral over A, then b e A, so that A = A.
We call A the integral closure of A in B. If A= A, then A is called integrally
closed in B.

Proof. If x, y € A, then A[z,y] is finite over A, whence z +y and x - y are integral
over A and thus in A. A = A follows from Proposition 2 O

10. Exercise. Let A — B be a ring extension of integral rings, and let A be
the integral closure of A in B = for any two monic polynomials f, g € Blz] with
fg e Alz] we have f, g € Alx].

Hint: Consider a field extension B ¢ Quot B ¢ K where f = II(z — &;) and
g = II(z — n;) split.

Proof. Using the hint and the fact that fg = II(z — &) (2 — ;) € A[z] is monic, the
roots £ and 7; in K are integral over A. This does not immediately imply that they
are in A, for A is the integral closure in B, not in K. However, it implies that the
coefficients of f and g which are sums and products of the &; and 7; respectively, are
integral over A by Proposition 2@ But f and g € B[x], that is, the coefficients of f
and g are in B. Since they are integral, they are in A, whence f and g € A[z]. O

11. Definition (normal ring). An integral domain A is called normal or
integrally closed if A is integrally closed in its quotient field.

12. Algebraic examples of normal rings.

(i) As we have seen in Example 2 (i), any UFD is normal.
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(ii) A number field is a finite field extension Q c K. By definition, its ring of
integers Oy is the integral closure of Z in K. In particular, Og = Z by (i).
It is an example of a Dedekind ring (see below) and as such it is normal. For
instance, consider the quadratic number field Q(1/n), where n is a squarefree
integer. Then Og( my = Z[a] with a = (1+4/n)/2if n = 1mod4 and a = /n
if n = 2 or mod4. For instance, consider the second case. Z < Z[+/n] is an
integral extension for #2 —n € Z[z] is monic. Moreover, it is well-known that
Z[+/n] is a UFD (see for instance [Bol Section 2.4]). This is integrally closed
in its quotient field which is obviously Q(4/n).

13. Geometric examples of normal rings. Let A = A(X) be the coordi-
nate ring of an affine variety X so that Quot A is the ring of rational functions on
X. Hence if A is normal, then any rational function ¢ satisfying a monic relation
O+ Cp10" ...+ o =0 for ¢; € Ais in fact already contained in A. In partic-
ular, it has a well-defined value at any point, that is, an integral rational function
has an extension to all of X. Such extension theorems are familiar in complex
analysis, where under certain conditions, meromorphic functions (corresponding to
rational functions) can be extended to holomorphic functions (corresponding to
regular functions), cf. Riemann’s extension theorem (in complex dimension ome)
or Hartog’s theorem (in higher dimensions).

(i) Let A = C[z] so that X = A’ and K = C(z). Then A is normal as a UFD.
Geometrically, if ¢ is a rational function which is ill-defined at a point p, it
must be of the form f(z)/(z —p)*g(x) for f(p), g(p) # 0, that is, ¢ has a pole
of order k. In particular, it cannot satisfy a monic equation, for ¢™ has a pole
of order kn which cannot be cancelled by poles of lower order.

(ii) Consider the ring A = k[z,y]/(y* — 23), the coordinate ring of the cusp curve
Y = Z(y? — 23) < A% It is integral with ring of fractions isomorphic to k(t).
Indeed, the map k(t) — Quot A sending f/g(t) to f/g(5/Z) is an isomorphism
(check!). In particular, 7 = ¢/ is integral over A (for instance, 72 — 7 = 0),
but 7 ¢ A: We cannot extend the rational function 7 over (0,0) € Y. On the
other hand, k[¢] is normal in k(t) for it is a UFD. This shows that normality
can detect singularities such as the cusp. Indeed, we will see in Section |3| that
a “smooth” curve (more generally, a smooth variety) has always a normal
coordinate ring.

(iii) Conmsider X = Z(y* —2? —23) < A% with A = A(X) = R[xz,y]/(y* — 2% — 23)
(the real numbers are chosen for sake of the geometric argument). In this case,
A is not normal. Indeed, consider the rational function ¢ = 3/Z € Quot (A)
for which ¢? — % — 1 = 0. Hence ¢ is integral. However, it is ill-defined in the
origin. For  and y small we can neglect the 2% term so that the curve near
the origin is approximatively given by y2 — 22 = 0. Hence it has two branches
near the origin given by y = +z. It follows that ¢ approaches two different
values at the origin depending on the branch which one goes along in order
to reach the origin. This makes ¢? well-defined and thus a regular function,
but ¢ ¢ A, that is, we cannot extend ¢ over the origin into a regular function.
To see this, assume that F' is a regular function which extends 7 over (0,0) to
all of X. Since 72 = Z we necessarily have F(0,0) = 0. Further, F € A(X)n,
where m is the maximal ideal corresponding to (0,0). Hence, there exists a
(dense) open neighbourhood U of (0,0) and f, g € A(X) with f/g = F and
3(0,0) % 0, where f, g € k[x,y] are representatives of f and g. If U* is the
open set U\{(0,0}, then we get the identity Zf — g = 0 on U*. Since the left
and the right hand side are well-defined on all of X, the identity property of
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Corollary 2 gives Tf — g = 0 in A(X). Lifting this to k[z,y], it follows
that of — yg = h(z,y)(y?> — 23) for a polynomial (function) h € k[z,y]. In
particular, we obtaian for x = y = t the identity f —g = h(t,t)(t —t?) in k[t].
Setting ¢ = 0 implies ¢(0,0) = 0, a contradiction.

14. Exercise (normal rings in number theory). Let N c B be an integral
extension of integral rings, and assume that N is normal = For any b € B its
minimal polynomial f over k = Quot N has actually coefficients in N.

Let d & 0, 1 be a squarefree integer, that is, no square divides d in Z. Use the first
part of the exercise to show that the integral closure of Z in Q(v/d) = {a + b\/d |
a, be Q} < C is given by

Z={a+bVd|a, beQ, —2a€Z, a>—db? € Z}.
These rings play an important réle in number theory.

Proof. Since b € B is integral over N, g(b) = 0 for some monic polynomial g € N[z].
Hence, f|g in k[z] by the properties of the minimal polynomial, that is, g = f-h €
N[z] for some monic polynomial h € k[z]. Applying Exercise 2.7? with A = N
and B = k shows that f (and h) in N[z].

We apply this for the computation of N the integral closure of A = Z (which
is normal as a UFD) in B = Q(+v/d). The ring Z is certainly normal for it is
integrally closed in Q = QuotZ. The minimal polynomial of a + by/d over Q is
f(x) = (x —a — bVd)(x — a + bv/d), and this is integral over Z if and only if
f(z) = 2% — 2az + b*d — a? has integer coefficients. This gives {a + bv/d | a, b €
Q, —2a € Z, a®> — db* € Z} < 7. The converse inclusion is obvious. O

Next we want to show that normality is a local property in accordance with our
idea that normality links into the geometric idea of regularity. First we prove:

15. Lemma (Integrality is preserved under taking quotients and localis-
ing). Let A c B be an integral ring extension.

(i) If b is an ideal of B and a = b® = A n b, then B/b is integral over A/a.

(ii) If S is a multiplicative set of A, then S™'B is integral over ST1A.

Proof. If b e B we have b" + a1b" ' 4+ ... + a,, = 0 with a; € A.

(i) Reducing this equation modulo b gives the desired polynomial relation.
(ii) Let b/s € ST'B. Then (b/s)™ + (a1/s)(b/s)" ' + ...+ a,/s" = 0. O

16. Lemma (integral closure and localisation). Let A < B be a ring exten-
sion, and let S be a multiplicative subset of A. Then S™'A is the integral closure
of ST'A in ST'B.

Proof. By Lemma 2 S~1A is integral over S*}A. It remains to show that if
b/s € STIB is integral over ST A, then b/s € ST1A. First, we have
(b/8)™ + (a1/s1)(b/s)" " 4+ ...+ an/s, =0,

where a; € A, s; € S. Let t = s1 ... s, and multiply the latter equation with
(st)™. Then it becomes a monic relation on bt with coefficients in A, that is bt € A.
Hence b/s = bt/st e STLA. O
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17. Proposition (normality is a local property). Let A be an integral
domain. Are equivalent:

(i) A is normal;

(ii) Ay is normal, for each prime ideal p;

(iii) Aw is normal, for each mazimal ideal m.

Proof. Let k = Quot A and f: A < k — A c k be the restriction of the identity
mapping Id;. Then A is normal < f is surjective. By Lemma 2 Ap and An
are normal if and only if S;° Lf and S 'f are surjective, whence the assertion by

Proposition U

As we have seen we can think geometrically of an integral ring extension A(X) —
A(Y) as a finite (ramified) cover Y — X. In particular, one should be able to lift
subvarieties of X to subvarieties Y, or more algebraically, prime ideals to prime
ideals. This “lying over” property will occupy us next.

18. Lemma (Integral ring extensions and fields). Let A — B be an integral
ring extension of integral domains. Then A is a field < B is a field.

Proof. =) Let 0 + be B. Since A c B is an integral ring extension, b +a,, _1b" 1+
...+ ap = 0 for some a; € A and minimal n € N. In particular, ag & 0 (otherwise,
n would not be minimal). Since A is a field, ag is invertible whence b is invertible
with inverse

bt = faal(b”*1 4+ ap_1b"? 4 ... asb+a1) € B.

1

<) Conversely, assume that 0 & a € A. Then a™" exists as an element of B whence

(" +ap_1(@)" P+ +ap=0

with coefficients a; € A and ag + 0. Multiplying by a”~! shows that a=! =
—Qp_1 — Gp_o0 — ... —a" gy € A. O

19. Corollary. Let A c B be an integral ring extension.

i) Let q be a prime ideal of B. Then q° = a n A is mazimal < q is mazimal.
) Letq b ime ideal of B. Then q° A is mazimal < q is mazimal
(ii) Let q < q' be prime ideals of B such thatp = q° = q'°. Thenq=¢'.

Proof. (i) B/q is integral over A/q¢ by Lemma 2 Now apply Lemma 2[18]

(ii) By Lemma 2 A,  (A\p)~'B =: B(p) is integral. Let m be the extension
of pin A,, and let n  n’ be the extensions in B(p) of q < q’ respectively. Then m
is the maximal ideal of A, (cf. , and n¢ = n’® = m (indeed, if a = b= Anb
for an ideal b — B in a ring extension A < B, then S~'la = S™'An S~1b =
(S716)¢, where the contraction is now being taken with respect to the ring extension
S1—1A = S7!B, cf. Proposition (ii)). So n and n’ are maximal by (i), and
n c v/, whence n = n’. But then q = ¢q’ by Corollary (v), since q and ¢’ do
not intersect A\p. O

20. Theorem (“lying over”). Let A c B be an integral ring extension, and let
p < A be prime = there exists a prime ideal @ < B such that ¢ = Anq=p.
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Proof. Let again B(p) denote the localisation (A\p)~!B. The natural diagramm

A——B

b
Ay — B(p)

in which the horizontal arrows are inclusions, is commutative. Let n be a maximal
ideal of B(p). Then n® < A, is maximal by the previous corollary, and thus n® = p°,
the unique maximal ideal of the local ring A,. If ¢ = 7 (n), then q is prime and
g“=qnA=p. O

The previous theorem can be refined to the following relative versions:

21. Theorem (“going-up”). Let A c B be an integral ring extension. More-
over, let p, p’ be prime ideals of A with p < p’, and let q be a prime ideal of B such
that q¢ = p. Then there exists a prime ideal ¢ © q of B such that q'° = p’.

Proof. Let A = A/p and B = B/q. Then Ac Bisan integral ring extension.
Hence, there exists a prime ideal q in B such that § n A = the image of p’ in A/p.
Contracting q via the projection map B — B yields the desired prime ideal. O

22. Exercise. Let ¢ : A — B be an integral ring extension (considering v as
an inclusion). Show that the associated map 1* : Spec (B) — Spec (A) defined by
1*(q) = qn A is a closed mapping, that is, it maps closed sets to closed sets.

Proof. The closed sets of Spec (B) are V(b) = {q € Spec(B) | b < q} for b < B
an ideal of B. We show that (*(V (b)) = V(b°). The inclusion < is trivial, so let
p be a prime ideal of A containing a := b°. We need to find q € Spec (B) with
q¢ = p. Lemma 2 (i), A := A/a c B := B/b is an integral extension. Now p,
the image of p in A is prime, so that by the lying-over property of integral ring
extensions, there exists a prime ideal q of B whose contraction gives p. Contracting
with respect to the projection map B — B yields the desired q € Spec (B). O

In a similar vein, one can prove the

23. Theorem (“going-down”). Let A < B be an integral ring extension.
Assume that A is normal and B an integral domain. Assume that p C p’ are prime
ideals of A, and that there exists a prime ideal ¢ = B such that ¢° = q n A =p’
= There exists a prime ideal q = ' < B such that q¢ = p.

Proof. The proof is slightly more technical, see for instance [AtMal Theorem 5.16].
The normality is used to apply Exercises 2[T4] O

We summarise our discussion in Figure 2]14]

24. Geometric interpretation. To get some geometric feeling for integral
ring extensions we interpret the previous theorems in terms of ramified covering
maps. In general, a continuous surjective map m : X — Y between connected
topological spaces which restricted to X minus a finite set of points is a local
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FIGURE 14. Extension and contraction for integral extensions: (a)
lying-over (b) going-up (c¢) going-down. The red colour indicates
existence.

homemomorphism and such that the fibres are finite is called a (ramified) covering
map. The cardinality of the fibre is the degree of the map. Generically, where
7 is a local homeomorphism, the fibre has precisely degn points; multiple points
(where the covering map “branches” or “ramifies”) occur where 7 fails to be a local
homeomorphism.

In our geometric situation, connected topological spaces correspond to varieties,
say affine ones. The surjective map 7 : X — Y can be thought of as an injective
k-algebra morphism 7* : A(Y) — A(X). If this ring extension is integral, then
any maximal ideal of A(Y) (corresponding to a point of Y) is the contraction of
a maximal ideal of A(X) (corresponding to a point of X). This is essentially the
surjectivity property of the covering map m. The finiteness of the fibre was partially
discussed in 2[4] cf. also Example 225 Finally, the previous Exercise shows that
m* is a closed map which corresponds to the local homeomorphism property of .
In this way we should think of an integral extension of coordinate rings in terms of

ramified coverings of the corresponding affine varieties.

2.2. Noether normalisation and Hilbert’s Nullstellensatz. Hilbert’s Null-
stellensatz is an easy consequence of Noether normalisation. To motivate the latter
we consider the following

25. Example (geometric motivation of Noether normalisation). Consider
the ring extension A = k[z1] € B = k[z1,22]/(z122 — 1) (where we identify f € A
with the residue class f € B so that A becomes a subring of B). Of course, B
is not integral over A for the “lying-over” property fails for the origin, i.e. the
prime (in fact maximal) ideal my < A (cf. Example 2. However, performing
the coordinate change x1 = y1 + y2, 2 = —y1 + Y2 gives a finite ring extension
kly1] < k[y1,y2]/(y3 —y3 — 1) = B for 5 — 42 + 1 = 0 is a monic relation on ys,
cf. Proposition 2[5 and Figure 2[26]

Let B be a k-algebra. Recall that B is finitely generated if B = k[ay,...,a,]
for some aj, ..., an,, or equivalently, if we have a surjection k[z1,...,2,] > B — 0
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X [ AKX ) = klx) A(X)=hIx)

FIGURE 15. A geometric example of Noether normalisation.

so that B = k[z1,...,2z,]/a. Recall that elements a1, ...a, € A are algebraically
independent if the natural surjection

kElz1,...,2n] = kl[a1,...,a,] = 0

sending x; to a; is actually an isomorphism of k-algebras, that is, we have an
injection k[x1,...,2,] — A by sending x; to a;. Put differently, there is no nonzero
polynomial relation of the form f(ay,...,a,) = 0 for f € A[n], and A is just
a polynomial algebra in the unknowns a;. In the previous Example 2[25] where
B =~ k[x1,x2]/(x129 — 1) is a finitely generated k-algebra, we saw that we could
find an injection k[y1] — B such that B became a finite ring extension of k[y].
More generally we have the

26. Theorem (Noether normalisation lemma). Let B be a finitely generated
k-algebra. Then there exists algebraically independent elements y1, ...,y € B such
that B is finite over A = Ek[y1,...,yx]. In other words, a ring extension k < B
given by a finitely generated k-algebra B can be written as a composite

kCA:k[ylv"'7yl]CB7

where A is a polynomial algebra over k and B a finite module over A.

27. Remark. Though we have not a rigorous definition of dimension yet we can
interpret the number [ as the dimension of the variety with coordinate ring B, cf.
also Figure 2[20] where this variety is clearly one dimensional. The induced map
Spec B — Spec A = AF can be regarded as a ramified covering.

28. Proof of Theorem 226, We will proceed in three steps, assuming that &
is infinite (though the theorem holds for general k).

Step 1. Let 0 + f € k[z1,...,2,] be a homogeneous polynomial of degree d. Then
there exist ai,...,an—1 € k such that f(ai,...,an,—1,1) #+ 0. By induction on n.
The case n = 1 is trivial for f = z%. So assume n > 1 and write f = Z?:o fizt,
where f; is a homogeneous polynomial of degree d — i in x3,...,x,. Since f +
0 we have f; + 0 for at least one i. The induction hypothesis applies so that
filaa,...,an—1,1) £ 0 for certain as, ..., an—1. In particular, f(-,as,...,an-1,1) €
k[z1] is a non-zero polynomial which has only finitely many roots. It follows that
f(a1,...,an,,1) % 0 for almost any choices of a; € k (here we use that & is infinite!).
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Step 2. Let B = k[by,...,b,] be a finitely generated k-algebra and suppose that
thereis 0 £ f € k[z1,...,x,] a polynomial of degree d. Then there existay, ... ,an_1 €
k such that f(by + a1bp, ..., bp—1 + an—1by,by) = 0 is monic in b, over the ring
k[b1,...,bp—1]. Indeed, write f = ] Cmy..mn @1 - ooz, Then the
leading term of

MM,y My

f(bl + albn, R bp—1 + an,lbn, bn)
- > Cony oy, (01 4 @1b)™ - by + ap, by) ™ B

M1y, My, 2, my=d

in b, is equal to

m Mp—13d d
Z Crmgomn Q1 a1 b = falar, ... an—1,1)by,

where fq(x1,...,2,) = Zm1+...+mn,:d Cmy..m, 1" - ... -z denotes the (homoge-
neous) degree d part of f which is not zero for f has degree d. By the first step we
can choose ay,...,a,—1 € k such that fg(a1,...,an—1,1) # 0 which is therefore a

unit in k[by,...,bn_1].

Step 3. We now prove the theorem by an induction on the number n of generators
b; of B. For n = 0 there is nothing to prove since B = A = k. If n > 0 and
the generators by,...,b, € B are algebraically independent over k, then again
we can take B = A = kfy1,...,yn] with y; = b;. So assume that we are given
n generators by,...,b, € B such that B = k[by,...,b,] and that there exists
0+ fek[z,...,x,] such that f(by,...,b,) =0. Fora; e k,i=1,...,n—1 we put
b, =b; —ab,,i=1,...,n—1,b =b, sothat k[b},..., 0], _1,b0] = k[b1,...,b,] =
B. Hence f(b1,...,by) = f(b) + a1bl,,..., 0] + a1b),,b),) = 0 so that if we choose
the a; as in the previous step, b], = b, is integral over A’ := k[b},...,b,_;] < B. In
particular, B = A’[b,] is finite over A’. By induction hypothesis, A’ is finite over
A =k[y1,...,y] for y; € A" algebraically independent, so that B is finite over A.l

29. Theorem (weak Nullstellensatz). Let k be a field, and k K be a field
extension such that K is finitely generated as a k-algebra. Then K is a finite field
extension over k, i.e. [K : k] < co.

Proof. By Noether normalisation 2[26] K is finite, hence integral extension of some
polynomial ring A = k[y1,...,y,]. Since K is a field, so is A by Lemma 2[T8 But
the polynomial ring A can be a field only if n = 0, i.e. A = k. Hence [K : k] <
0. (I

3. LOCAL PROPERTIES

Next we want to study geometric properties of varieties which are local, that is, they
can by studied by restricting attention to an affine neighbourhood. The example
of the cuspidal curve showed that geometric properties (the existence of a cusp)
is reflected in the algebraic properties of the coordinate ring (its nonnormality).
Our line of attack is therefore to reformulate these properties in terms of algebraic
properties of the underlying function rings.
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3.1. Completions. One way of studying local properties is localisation of rings.
The local rings we obtain this way still carry a lot of information. We saw in Exer-
cise PJT5§] that the local ring Ox , of a point a € X determines X up to birational
isomorphism. Another idea to study local properties is the completion of rings. To
get an intuitive idea, we consider a polynomial ring k[z1, ..., z,] whose completion
is the ring of formal power series k[z1,...,z,]. In a way, this imitates transcen-
dental techniques from complex algebraic geometry where we can use holomorphic
functions — power series converging uniformly near a point. Geometrically, this
means to focus on “small” neighbourhoods unlike big open dense sets. Still, com-
pletion keeps two essential properties of localisation: it is an exact operation and
preserves the Noether property. To give a concrete idea, consider the integral ring
extension k[z] < k[z,y]/(y* — x — 1). This corresponds to a ramified finite cover
which generically is 2 — —1. In the neighbourhood with no branching points one
should be able to invert this map and to find local sections of this covering — this
is certainly true if £ = R or C when we have the inverse function at our disposal.
However, the map  — +/z + 1 is not polynomial so that if we are working with
polynomial rather than smooth or holomorphic functions, local section do not exist.
However, /= + 1 possesses a formal development so that at the level of power series
there is indeed an inverse k[x,y]/(y?—x—1) — k[z], 2 — =, y — 1+2/2—2%/8+. ...
In general we will consider a ring A with ideal a whose powers induce a topology on
A, the so-called a-adic topology. Completing this topology gives the completion A.
Similarly, one can complete A-modules. The most important instance of this are
completions of local Noetherian rings (A, m) (such as the stalks Ox ,) with respect
to m. In particular, we want to prove the

1. Theorem. Let (A, m) be a Noetherian local ring with completion A.

(i) (A,mA) is a Noetherian local ring with natural injective homomorphism A —
A

(ii) if M is a finitely generated A-module, its completion M with respect to m is
isomorphic as A-module to M ®a A.

A second important statement which we will state more precisely below, is Cohen’s
structure theorem. In a simplified version it reads as follows.

2. Theorem (Cohen, special case). The completion of the localisation k[xz1, ..., Zp]m,
the stalk of reqular functions at a € A™ corresponding to the mazimal ideal m, is
isomorphic to k[xy,...,z,].

In a way, we can think of the completion of the stalk of regular functions of a
(smooth) variety (yet to be defined) as ring of power series in the coordinates.

3. Definition. We say that two points a € X and b € Y of two varieties X and
Y are analytically isomorphic if Ox , = Oy.

In particular, any two points of A™ (or more generally, of a smooth variety) are
analytically isomorphic in accordance with the intution coming from classical man-
ifolds. A less trivial example is this.

4. Example. Let X be the plane nodal curve given by 3> — 2% — 22 = 0 in
A? and Y the reducible algebraic set zy = 0. Let us show that X and Y are
analytically isomorphic at the point (0,0). By Corollary proven below we have
Ox.o = k[z,y]/(y? — 2% — %) (where we view the ideal (y? — 2 — 23) as an ideal

in k[z,y]). Similarly, Oy = k[z,y]/(xy). The key point is that we can factor
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y?—x?—23 into formal power series g = y+x+ga+g3+...and h = y—x+ho+hz+...
in k[x,y] with g; and h; homogeneous of degree i, that is, y*> — 22 — 2® = gh.
We can construct g and h step by step. Namely, (y — x)g2 + (y + h)hy = —23
since 2% lies in the ideal generated by y — z and y + z, and so on. Therefore,
@X,o = k[z,y]/(gh). Since g and h begin with linearly independent terms, we can
define an automorphism of k[z,y] which sends g and h to x and y, respectively.
Hence Ox o = k[z,y]/(zy) = Oy,o. Geometrically, this corresponds to the fact
that near the origin (in a Euclidean sense!), X looks like Y, see Figure 3

M~-x) .
ﬁ(3-n(|

FIGURE 16. The local equivalence between Z(y? — z2 — 23) and Z(zy)..

Topology. Let G be a topological Abelian group, not necessarily Hausdorff.
This implies in particular that the translations T, : G — G, T,(g9) = a + g are
continuous maps and in fact homeomorphisms (with inverse T_,). The topology of
G is therefore determined by the neighbourhoods of 0 € G.

5. Exercise. Let H be the intersection of all neighbourhoods of 0 in G. Then
(i) H is a subgroup;

(ii) H is the closure of {0};

(ili) G/H is Hausdorft;

(iv) G is Hausdorff & H = 0.

Proof. (i) Let x; € H, and let V be a neighbourhood of 0. We have to show that
x1 + o € V. By continuity of + there exist U; neighbourhood of 0 such that
Uy +Us; c V. Since x; € H, x; € U;, hence 1 + x5 € V.

(i) xre H 9 seHeoe T, (U) for any neighbourhood U of 0 <> 0 € V for any
neighbourhood V of x < 0 € {0}.

(iii) By (ii), cosets a + H are closed. Hence the points of G/H are closed which
means that G/H is Hausdorff.

(iv) Trivial. O

Next assume that 0 € G has a countable fundamental system of neighbourhoods
(this avoids using nets instead of sequences). Then we can define the completion
of G to be the space G of all Cauchy sequences (z,,) modulo the equivalence relation
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(2n) = (yn) < &n —yn — 0. Addition of Cauchy sequences gives G a natural group
structure. To define a topology on G we specify the open neighbourhoods of 0 = (0)
of G: For any open neighbourhood U of 0 in G, we let U be the set of equivalence
classes of sequences which eventually ly in U. This turns G into a topological
group. For instance, if G = Q then G = R. Note that we have a natural map
¢ : G — G, $(x) = () the constant Cauchy sequence x, = x for all n. Then
ker¢) = (YU = H where U is an open neighbourhood of 0. In particular, ¢ is
injective < (G is Hausdorff. If ¢ is an isomorphism, we say that G is complete. In
particular, G must be Hausdorff. Next, if f : G — H is a group morphism between
Abelian topological groups with countable fundamental systems of neighbourhoods
for 0, then f maps Cauchy sequences to Cauchy sequences (Check') and induces
thus a (continuous) group morphism f G — H. Since go f =go f we obtain a
covariant functor.

In the following we restrict to the situation where we have a fundamental system
of neighbourhoods of 0 of subgroups G,, of G

G=GypoG1o2Gy>...oG,D....

The most important class of examples arises as follows.

6. Definition (a-adic topology). Take G = A a ring, and let G,, = a™ for an
ideal a € G. The topology induced on A is called the a-adic topology. For this
topology, a sequence (g;) < G is Cauchy if and only if for all n there exists N(n)
such that g; — g; € a™ for all 4, j = N(n).

Since a is an ideal, the resulting completion A is in fact a topological ring, and
p:A—Aisa ring morphism with kernel (a™. More gencrally, we can consider
A-modules M, i.e. G = M and G,, = a"M. Its completion M is a (topologlcal)
A-module, and any A-module morphlsm f: M — N determines an A-linear map
f: M — N between the respective completions.

7. Example. Let A = k[z] and a = (). Then A = k[z], the ring of formal power
series. Indeed, let (a,) be a Cauchy sequence in A. Then a,, = fﬁo ci(n)z®. Since
Un — Ay € (xM) for n, m > N, the first M terms must be fixed for any a,, with
r = n. Hence the “Taylor development” of the a,, stabilises for N — oo, and the
higher gets M, the closer Y, ¢z’ gets to 0, i.e. Yo, ¢z’ — 0 as M — 0.

Of course, different filtrations, i.e. infinite chains of the form M = My > M; o ...
of submodules of M can give rise to the same topology as a™ M.

8. Definition (stable a-filtrations). A filtration (M,,) is called an a-filtration
if aM,, € M, for all n. If we have equality for all sufficiently large n, then the
filtration is called a-stable.

Of course, the prototype of a stable a-filtration is M,, = a™ M.

9. Lemma (stable o-filtrations induce the same topology). If (M,) and
(M) are stable a-filtrations, then there exists an integer k such that My, < M, <
M,y for alln = k, i.e. both filtrations have bounded difference. In particular,
all stable a-filtrations induce the same topology.

Proof. Without loss of generality, M/ = a"M. Since aM, < M, we have
M, . < M), = a"M c M, for all k and n. The last inclusion becomes equal-
ity if n = k for k sufficiently big, whence M, = a" M} < a" My = M},. O
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To understand the previous examples from an algebraic point of view, the following
alternative contruction of completions is useful. Open sets always contain open sets
of the form = + G, which defines an element in G/G,,. On the other hand, if (z,)
is a Cauchy sequence, then for any m € N there exists mg with z; — z; € G,, for
all ¢, j = mg. Hence, the image Z; = x; + G, in G/G,, of the Cauchy sequence
is ultimately constant, equal say to &,,. Under the projection w41 : G/Gps1 —
G/Gp, & maps to &,11 (if all but a finite number of the x; are contained in
Gpt1 then they are also contained in G, D G,,+1). We also say that (&,) is
a coherent sequence in the sense that m;,11(&m11) = &n for all m. Further,
equivalent sequences obviously define the same sequence (&,). Therefore, we can
view (3 as the set of coherent sequences with its obvious group structure. Now in
general, a sequence of groups {H,,} with morphisms 6,,.1 : H,+1 — H, is called an
inverse system, and the group of coherent sequences is called the inverse limit
for which one writes lim H,,: Coming back to our case we can identify lim G/G,

with G as defined in the sense above.

10. Example.
(i) Let A = Z, a = (p) for p prime. Then A = limZ/pnZ is the ring of p-
adic integers given by infinite series (a,)i_, with 0 < a, < p® — 1 and
Gpn = Gpy1 mod p”.
(ii) Let A = Ek[z1,...,2,], m = (x1,...,2,) the maximal ideal corresponding to
the origin. Then kf[z1,...,z,] = A.

The main advantage of this algebraic description comes when dealing with exact
sequences. An exact sequence of inverse systems 0 — {A,} — {B,} —
{Cp} — 0 consists of a commutative diagramm

0 Api1 Bpy1 ——=Chyr ——0
0 A, B, Cn 0

of exact sequences.
11. Proposition. If 0 —» {A,} — {B,} — {C,} — 0 is an exact sequence of
inverse systems, then

0—limA, - limB, — limC,

is exact. Furthermore, if {A,} is surjective, that is, the projections maps m, of
the inverse systems are always surjective, then

0—limA, - limB, > limC, -0

s exact.
Proof. This is essentially an application of the Snake lemma|0}{49] see [AtMal, Propo-
sition 10.2]. O

Note that inverse systems of the form {G/G,} are always surjective.

12. Corollary (completion is an exact functor). Let 0 - G - G — G" 5 0
be an exact sequence of groups. Let G have the topology defined by a sequence {G,}
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of subgroups, and endow G' and G” with the induced topologies defined by G' n G,
and p(Gy). Then
0-G —-G—-G" -0

is an exact sequence of groups.

Proof. Apply Proposition 3[11] to the exact sequence
0-G/)(G nG,) -GG, — G"/p(G,) — 0.

13. Corollary. Gn is a subgroup ofé and
GG, =~ G/G,,. (4)
In particular, G~ é, that is, the completion is actually complete.

Proof. Apply the previous corollary with G’ = G,, and G” = G/G,, yields Gn ~
G/G, = G". Since the induced topology on G” is discrete, G" = G” = G/G,,.
Finally, taking the inverse limit of shows that G = limG/G,, = limG/G, =

G. O

If (M,) is a filtration for an A-module My = M, a submodule N < M inherits a
natural subfiltration N n M,,. Our next goal is to establish the following

14. Theorem. Let A be a Noetherian ring, a an ideal of A, M a finitely generated
A-module, and N a submodule of M. Then the filtrations a® N and (a® M)~ N have
bounded difference. In particular, the a-topology of N coincides with the topology
induced by the a-topology of M.

Proof. The proof will be based on a series of lemmatas. We introduce some notation
first. Let A be a ring and a be an ideal of A. Then we define the graded ring
A* = @,,5( 0" More generally, if M is an A-module with a-filtration (M,,), then we
put M* = @,,., M,. Thisis agraded A*-module, since A,,,M,, = a™M,, © My 1.

15. Lemma. Let A be a Noetherian ring, M a finitely generated A-module, and
(M,,) an a-filtration of M. Are equivalent:

(i) M* is a finitely generated A*-module;

(ii) The filtration is stable.

In particular, any a-filtration of a finitely generated A*-module M for A Noetherian
induces the same topology on M.

Proof. Since M must be Noetherian by Corollary 0§95, each M,, must be finitely
generated, and hence so is Q,, = @;_, M; € M* ={m4,...,m,). To turn Q,, into
an A*-submodule, we put

M} i=Q,®@a'M,.

=1
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This is generated by my,...,m, over A*. Now {M*} forms an anascending chain
whose union is all of M*. Now
M* is finitely generated as an A — module <

the chain stops <
M* = M for some ng <

Myyir =0a"M,, foralr>0<
the filtration is stable,

whence the result. O

16. Proposition (Artin-Rees). Let A be a Noetherian ring, a an ideal in A, M
a finitely generated A-module, (M,,) a stable a-filtration of M. If M' is a submodule
of M = (M’ nM,,) is a stable a-filtration of M'. In particular, taking M,, = a" M,
then there exists an integer k such that

(a"M) n M =a"F((a"M) n M)
foralln = k.

Proof. We have a(M’' n M,,) < aM' naM,, ¢ M' n M1, hence (M' n M,,) is
an a-filtration. This defines a graded A*-module which is a submodule of M* and
thus finitely generated (for M* is by the previous lemma, and A is Noetherian).

Again, Lemma 3[T5| implies that (M’ n M,) is stable. O
Lemma 3[9 immediately implies Theorem 3[14] (]

In particular, exactness of the completion (Corollary 3[12)) gives
17. Proposition (completion is exact on finitely-generated modules over
Noetherian rings. Let

0-M —>M-—->M' -0

be an exact sequence of finitely generated modules over a Noetherian ring A. Let a
be an ideal of A = The sequence of a-adic completions

0—>M —M-—M -0

s exact.

The completion A is a natural A-module via the completion map A — A. In
particular, given an A-module M we can form the A-module A®4 M. Moreover,
there is the completion map M — M which is also an A-module morphism. Hence
we get an induced sequence of A-module morphisms

AQsM - A®s M — A®; M = M.
This induced map behaves particularly well for A Noetherian and finitely generated

M.

18. Proposition. If M is finitely generated = A@s M — M is surjective. If,
moreover, A is Noetherian = A®4 M — M is an isomorphism.
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Proof. If M is finitely generated, we get an exact sequence 0 - N — F — M for
a free A-module F' =~ A". Tt follows from Corollary 3[I2] that a-adic completion
commutes with taking direct sums so that for F' =~ A", ARQqF ~ (A@A A~ A,
This gives rise to a diagramm

A@ANHAG@AFHA@AMHO

A

0 N a 0 M 0

in which the top line is exact since (/1@ A is right exact). Moreover (again by
Corollary 3 ¢ is exact which implies that « is surjective for [ is an isomorphism.
Moreover, if A is Noetherian then N is finitely generated as an A-submodule of a
finitely generated A-module which implies that 7 is surjective, and thus that the
bottom line is exact. This in turn implies that « is injective, hence an isomorphism.

O

19. Corollary. If A is Noetherian = The functor T is exact on the category
of finitely generated A-modules. In particular, it follows from Proposition[0[74 that
the a-adic completion A of A is a flat A-algebra.

For the next proposition, recall that the Jacobson radical J(A) of a ring A is the
intersection of all maximal ideals (see Section [0}j0.1)).

20. Proposition (further properties of /1) Let A be Noetherian with a-adic
completion A =
(1) a~A®Aa— Aa = a°;
(i) a = (a)™;
(111) n/anJrl ~ an/anJrl
)

(iv) a is contained in the Jacobson radical of A.

Pmof (i) Since A is Noetherian, a is finitely generated. In particular, the map
A®qa — dis an isomorphism. Since A is flat, the injection 0 — a — A induces an
isomorphism a®4 A - A®4 A =~ M, which sends z ® a to z - a. Hence the i image
of this isomorphism is just Aa = a®, where the extension is taken with respect to
the natural completion map A — A.

(ii) Applying (i) to a™ we see that a” = Aa™ = (Aa)™ since extension commutes
with taking powers (see for instance [AtMal Exercise 1.18]). But the latter is equal
to (a)™.

(iii) From () we immediately deduce that A/a™ =~ A/a™ from which (iii) follows by
taking quotients.

(iv) For any x € 4, the sequence a,, = >, x* is Cauchy in A for its a-adic topology.
Further, as a completion, A is itself complete. Therefore, a,, converges to >, x! =
(1—x)~!, that is, 1—x is a unit. From Proposition [0}21]it follows that a = J(A4). O

21. Corollary (A is local if A is local). Let (A, m) be a Noetherian local ring
= the m-adic completion A of A is a local ring with maximal ideal M.
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Proof. By the previous proposition we have A/t ~ A/m, hence A/ is a field, so
m is a maximal ideal. Further, m is contained in J(A), hence is equal to it by
maximality. Hence m is the unique maximal ideal, and (A, @) is a local ring. O

22. Corollary.

(i) Let A be a Noetherian ring, and a be an ideal. Then the a-adic completion is

A= Alzy, ... z.]]/(x1 —ay,. .., T0 — an)

for elements a; € A.
(ii) The completion of the coordinate ring A = k[x1,...,x,]/a with respect to the
mazimal ideal m = (ZT1,...,Ty,) is

A= E[xy,... x.]/ak[z, ... 20].

Proof. (i) Since A is Noetherian, a is finitely generated, say by ai,...,a,. We
consider the exact sequence of finitely generated A[zy,...,x,]-modules

0——(z1—a1,...,&n —an) —> Alz1,...,2y] —>= A——>0

induced by the evaluation morphism A[z1,...,z,] — A sending z; to a;. Com-
pletion by the ideal b = (z1,...,,) of A[z1,...,,] is exact by Proposition 3[17
Further, the completion of A with respect to b coincides with the completion by a.

(ii) Consider the exact sequence of finitely generated k[z1,...,z,]-modules 0 —
a— k[z1,...,2,] = A — 0 and apply Proposition 3 as well as (i) from Propo-
sition 3200 O

23. Example. Let us compute the completion of the ring k[z,y]/(y? — 22 — 23)
localised at the maximal ideal (z,y), i.e. the ring Oy, cf. Example 3 By the ex-
actness of localisation, (k[x,y]/(y* —2* —2?)) (s, is isomorphic to k[z, y](x,y)/(y* —
2% — ) (considering (y* — z* — z%) as an ideal in k[z,y](,,)). By the previous
corollary as well as Cohen’s structure theorem 3 the completion of k[x,y] (s, is
k[z,y] whence Oy o = k[x,y]/(y*> — 22 — %) (considering now the extended ideal
(y? — 22 — 23) as an ideal in k[x,y]).

24. Theorem (Krull). Let A be a Noetherian ring, a an ideal of A, M a finitely
generated A-module and M the a-completion of M = The kernel N = ﬂnZO a™M

of the completion M — M consists of those x € M annihilated by some element of
14 a.

Proof. If (1 — a)z = 0 for some a € a, then = ax = a’xr = ... € ()._, a"M = N.
Conversely, we note that the induced topology on N is trivial, i.e. N is the only
neighbourhood of 0 € N since N is the intersection of all neighbourhoods of 0 € M.
But it follows from Artin-Rees that this trivial topology coincides with the a-adic
topology of N. In particular, since alN is an open neighbourhood of 0, aN = N.
Since A is Noetherian and M is finitely generated, so is N. By Cayley-Hamilton
(cf. Corollary [0]57), there exists a € a such that (1 —a)N = 0. O

25. Remark.
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(i) If S is the multiplicatively closed set 1+a, then the kernel of A — Ais precisely
the kernel of the natural map S™'A — A, cf. Exercise Furthermore, for
any a € a, the Cauchy sequence .. ,a’ converges, namely to (1 —a)™?!, so
that every element of S in becomes a unit in A. By the universal property
of localisations there exists a natural morphism S~'A — A which is
injective, and S™'A can be identified with a subring of A.

(ii) Krull’s theorem may fail whenever A is not Noetherian. Consider, for instance,
C*(R) (cf. Example[0]88] (iv)). Let m be the maximal ideal of functions which
vanish at the origin. By Taylor’s theorem, m = (x) and N = [\m* consists
of functions whose derivative up to any order vanishes at the origin. Further,
f € C*(R) is annihilated by some element in 1 + a if and only if f vanishes
identically near 0. However, the well-known function e~1/7* lies in N , but
does not vanish for x > 0.

There are two immediate corollaries.

26. Corollary. Let A be a Noetherian integral domain, and a % (1) an ideal of
A = (Na™ = 0. In particular, the a-adic topology on A is Hausdorff.

Proof. Otherwise, there would be zerodivisors. O

27. Corollary. Let A be a Noetherian ring, a an ideal of A contained in J(A),
and M be a finitely generated A-module. Then the a-topology of M is Hausdorff,
i.e. (Ya™M = 0. This applies in particular to the situation of a Noetherian local
ring (A, m) and the m-adic topology on M.

Proof. By Proposition [0}21] we know that any 1+ a, a € a, must be a unit. Therefore
x — (1 + a) - = has trivial kernel. O

The associated graded ring. Our final goal is to show that the a-adic comple-
tion of a Noetherian ring is again Noetherian.

Let A be a ring and a an ideal of A. We define the associated graded ring by

GT‘a(A) _ (_D a"/a”+1
n=0

(with the convention a = A). If the underlying ideal a is clear from the context we
also write simply Gr(A). This is indeed a graded ring with multiplication defined
as follows. If ,, € a” whose induced equivalence class in a”/a"*! is denoted by Z,,
then Z,,T, := T;,Z,. For example, if A is Noetherian, we have a = (z1,...,2,).
Let Z; be the image of z; in a/a?, then Gr(A) = (A/a)[Z1,...,Z,]. Similarly, if M
is an A-module with a-filtration (M,,), then we define

Gr(M):= @ M, /Myi1.

n=0

This is a graded Grq(A)-module. We let Grp, (M) = My,/Mp41.

28. Proposition. Let A be a Noetherian ring, and let a be an ideal of A =
(i) Grq(A) is Noetherian;
(ii) Grq(A) and Grz(A) are isomorphic as graded rings;
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(iii) of M is a finitely generated A-module and (M,) is a stable a-filtration of M,
then Gr(M) is a finitely generated graded Grq(A)-module.

Proof. (i) We have Gr(A) = (4/a)[Z1,...,%,]| for A is Noetherian. Since A/a is
Noetherian, Gr(A) is Noetherian by the Hilbert basis theorem.

(i) a”/a"*! = " /a"*! by Proposition 3[20]

(iii) There exists ng such that M, ., = a‘M,,, for all i > 0, so that as an Gr(A)-
module, Gr(M) is generated by P, ,,, Grn(M). Furthermore, each Gr, (M) is
Noetherian and annihilated by a, therefore it is a finitely generated A/a-module.
Consequently, P, <,,, Grn(M) is a finitely generated A/a-module. These generators
generate Gr(M) as a Gr(A)-module. O

29. Lemma. Let ¢ : M — M be a module morphism between filtered modules
with ¢(M]) < M, and let G(¢) : Gr(M') — Gr(M) and ¢ : M’ — M be the
induced morphisms of the associated graded and completed groups =

(i) G(@) is injective = ¢ is injective;

(il) G(¢) is surjective = ¢ is surjective.

Proof. This is again a consequence of the Snake Lemma [0]l49] and Proposition 3[11]
see [AtMal Lemma 10.23]. O

This enables us to prove a kind of converse to item (iii) of the previous Proposition.

30. Proposition. Let A be a ring, a an ideal of A, M an A-module, and (M)
an a-filtration of M. Suppose that A is complete in the a-topology and that M is
Hausdor{f in its filtration topology (i.e. (M, = 0). Suppose also that G(M) is a
finitely generated G(A)-module = M is a finitely generated A-module.

Proof. Let z;, 0 < ¢ < v, x; € M, be the homogeneous components of degree n;
of the finite set of generators of G(M). Let F' = A be the module with stable
a-filtration given by F! = a" ™ and put F = @;_, F* =~ A”. Mapping the
generator 1 € F* to x; defines a morphism ¢ : F' — M of filtered groups (with F),, =
@Y_pa" "), for ¢p(a™ ™) < a® "™ M,, < M,. By design, the induced morphism
of G(A)-modules G(¢) : G(F) — G(M) is surjective. Hence ¢ is surjective by the
lemma. Consider now the diagramm:

»

Since F =~ A" is free and A = A for A is complete it follows that a is an isomor-
phism. Further, § is injective for M is Hausdorff. Now the surjectivity of ¢ implies
the surjectivity of ¢, and in particular that M is finitely generated. O

31. Corollary. Under the assumptions of the previous proposition, if G(M) is a
Noetherian G(A)-module = M is a Noetherian A-module.
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Proof. We show that every submodule M’ of M is finitely generated. Indeed, let
M) = M’ n M,. Then (M]) is an a-filtration of M’, and the inclusion M} — M,
induces an injection M), /M), — M, /M, and thus an embedding G(M’) —
G(M). Since G(M) is Noetherian by assumption, G(M’) is finitely generated.
Further, (M, = (\ M,, = 0 so that M’ is Hausdorff. It follows from the previous
proposition that M’ is finitely generated. U

This finally induces the desired result:

32. Theorem (the a-adic completion of a Noetherian ring is again Noe-
therian). Let A be a Noetherian ring, a an ideal, and A the a-adic completion =
A is Noetherian.

Proof. In general, a ring is Noetherian if and only if it is Noetherian regarded as
a module over itself. We have already seen that Grq(A) = Gra(A) is Noetherian,
that is, setting M = A and M,, = a”, Gr(M) is a Noetherian Gr4(A)-module. Now
A is Hausdorff being a complete space so that (|a™ = (M, = {0}. Applying the
previous corollary gives the result. U

From this and Example 3[7] we get another proof for Exercise [0}

33. Corollary. If A is Noetherian, then so is the ring of formal power series
Alz1, ... x,].

3.2. Dimension. We are now prepared to investigate two local notions: dimension
and non-singularity.

Dimension of varieties. Geometrically, we think of the dimension of a variety
as the number of “coordinates” or degrees of freedom. However, one can define
dimension in a purely topological context.

34. Definition. If X is a topological space, then we define its dimension dim X
to be the supremum of all integers n such that there exists a chain Zy < 27 < ... Z,
of distinct irreducible closed subsets of X. We define the dimension of a variety
to be its dimension as a topological space.

Note that the dimension is finite for a Noetherian topological space. Of course,
this notion of dimension is not very interesting on general topological spaces. For
instance, C with its standard Euclidean topology has dimension 0 (the only irre-
ducible sets are points) while seen as affine space Al it has dimension 1 (take the
chain {0} = Al). This notion is therefore well adapted to our algebraic context and
as such, one expects this notion to have a ring theoretic description.

35. Definition (height of a prime ideal and dimension of a ring). The
codimension or height of a prime ideal p in A is the supremum of lengths of
strict chains of prime ideals pg < p; < ... < p,, = p which end at p. The (Krull)
dimension dim A of A is the supremum of heights of all prime ideals, i.e. lengths
of strict chains of prime ideals po S p1 S ... S Pn-

36. Example.
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(i) dimk[z] = 1. Indeed, (0) is a prime ideal, and since k[z] is a principal ideal
domain, any non-trivial prime ideal is maximal.
(i) The dimension of a point a € Al is obviously 0 so that its codimension is 1.
On the other hand, the height of its associated maximal ideal (z — a) in k[x]
also equals 1.
(iii) By Exercise height p = dim A,. Geometrically, this corresponds to the
codimension of the affine variety Z(p) < Spec A as we will see below.

The first item of the previous example shows that the Krull dimension of the coor-
dinate ring of A} equals its topological dimension. This holds in general.

37. Proposition. If X < A™ is an affine algebraic set, then the (topological)
dimension of X equals the (Krull) dimension of its affine coordinate ring A(X).

Proof. The prime ideals in A(X) = A[n]/Z(X) correspond to prime ideals in A[n]
which contain Z(X), that is, to closed irreducible subsets of X. Hence the longest
strict chain of closed irreducible subsets of X corresponds to the longest strict chain
of prime ideals in A(X). O

While this definition of the dimension of a ring easily relates to its toplogical coun-
terpart t makes the actual computation of dimension difficult. One goal of this
section is to show the following

38. Theorem. Let k be a field, and B a finitely generated k-algebra which is an
integral domain. Then

(i) the dimension of B is equal to the transcendence degree of the field extension
k < Quot B;
(ii) for any prime ideal p € B, we have

height p + dim B/p = dim B.

39. Corollary. The dimension of A™ is n. Further, if X < A" is any affine
variety defined by the prime ideal p, then codim X := n — dim X = height p.

Proof. The transcendence degree of Quot A(A™) = k(x1,...,2,) is just n which by
the previous theorem equals the dimension of A(A™) = k[x1,...,2,]. By Propo-
sition 3[37] this is the dimension of A™. Moreover, heightp = dim A" — dim X =
codim X. ]

40. Proposition. If X is a quasiaffine variety, then dim X = dim X.

Proof. If Zy ¢ Z1 ... c Z, is a sequence of distinct closed irreducible subsets of
Y,then Zpc Zic...c Z, is asequence of distinct closed irreducible subsets of
Y. Hence dimY < dimY and dimY is finite. So choose a maximal sequence Zy
ZyC...C Zp,ie.n =dimY. Then Zy = {a} must be a point, and we have an
induced sequence Zy c Z; ... < Z, in Y. But a corresponds to a maximal ideal
m of A(Y), the coordinate ring of A(Y). Then the Z; correspond to prime ideals
in m so that n = height m. Now A(Y)/m = k whence n = dim A(Y) — 0 = dim Y.
Hence dimY = dimY. O
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Composition series and length. In linear algebra, the dimension of a vector
space is just the cardinality of a minimal generating set. To define an analogue
notion for modules is rather subtle. Of course, for free modules we could use just
the rank. However, we saw that submodules of free modules need not be free again.
On the other hand, geometric intuition makes desirable a notion of dimension for
which the implication N ¢ M = “dimension” of IV is smaller than “dimension” of
M. The notion of length provides a substitute. As one might suspect, the theory is
particularly pleasent for Noetherian rings and modules. Further, dimension is also
one of the most basic geometric notions and we will briefly explore the link between
geometric dimension and algebraic length.

41. Definition (Composition series and their length). Consider a strict
chain of submodules M = My > M; o ... > M, = 0 where the inclusions are strict.
The number n is called the length of the chain. A composition series of M is a
maximal strict chain, that is, no extra submodules can be inserted. Equivalently,
each quotient M;/M, 1 is simple, i.e. it has no subquotient except 0 and itself.

42. Proposition and Definition (Length of a module). Suppose that M has
a composition series of length n. Then every composition series of M has length n,
and every strict chain can be extended to a composition series. The common length
will be denoted by I(M) and called the length of M. We put I((M) = w0 if M has
no composition series.

Proof. For the moment, let {(M) be the least length of a composition series of M.

Step 1. We first show N ¢ M = I(N) < (M) with equality < N = M. Let
M; be a composition series of length I(M). By definition, this exists. Consider
then the strict series N; = N n M; of N. Since N;_1/N; injects into the simple
module M;_1/M; we have either N;_1/N; = M;_1/M; or N;,_1/N; = 0, that is
N;_1 = N,. By removing the repeated terms we thus obtain a composition series
of N; obviously, I(N) < I(M). Equality can only occur if N;_y/N; = M;_1/M; for
all ¢ which implies N,,_1 = M;_; and by induction N; = M;, whence N = M.

Step 2. Any strict chain M;, i = 0,...,k of M has length < I(M). Indeed, we
have [(M) = I(My) > (M) > ... > (M) = 0, whence I(My) = k.

Step 3. If M;, i = 0,...,k is a composition series of M, then k > (M) by
the provisional definition of I(M), and k < I(M) by the second step. Hence any
composition series must have length n = [(M). It follows that if M; is a strict
chain which is not a composition series then we can insert further modules until

the length is n in which case it is a composition series.
O

Note that it is a nontrivial fact for a module to have a composition series. In fact,
we have the

43. Proposition (Existence of composition series). A module M has a
composition series < M is satisfies both the a.c.c. and d.c.c..
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Proof. =) All chains are of bounded length by the previous proposition, hence both
the a.c.c. and the d.c.c. hold.

<) Construct a composition series of M as follows. Since M satisfies the a.c.c.
the set of strictly contained submodules has a maximal element M; by Proposition
3.77. M, satisfies again the a.c.c. so that we can continue with this proces. We
eventually get a sequence M = My o My o ... which stops after a finite number
of submodules by the d.c.c. O

44. Definition (modules of finite length). A module M which satisfies both
the a.c.c. and the d.c.c. is called a module of finite length. The common length
of any composition series is denoted I(M) and called the length of M.

45. Remark.

(i) It follows from the first step in Proposition 3 that if N is a submodule of
a finite module M, then N is itself finite and [(N) < [(M).

(ii) Call two composition series M; and N; equivalent if they have the same
length and if up to a permutation M;_1/M; =~ N;_1/N;. Then one can prove a
Jordan-Hélder type theorem for modules: Any two composition are equivalent.
In the case of Z-modules (i.e. Abelian groups) this is just the classical Jordan-
Holder theorem.

The first remark is reminiscent of the dimension of a vector space. A further
common property is this. Recall first that a function A defined on the class of
modules is called additive, if for every s.e.s. 0 > L — M — N — 0, the identity
A(M) = ML) + A(N) holds.

46. Proposition (I(M) is additive). On the class of all A-modules of finite
length, I(M) is an additive function.

Proof. Let 0 - L 5 M 5N 0 be an exact sequence. For a composition series
in M’ take its image in M under a. In particular, the resulting composition series in
M is in the kernel of 5. For a composition series in N take the inverse image under
[, and this fits together to a composition series in M, whence the assertion. O

Finally, we see that the length coincides with the dimension if M is in fact a finite
vector space. More precisely, we have

47. Proposition. For a k-vector space, the following conditions are equivalent:
(i) finite dimension;

(ii) finite length;

(iii) a.c.c.;

(iv) d.c.c.

Moreover, if any of these conditions is satisfied, then length = dimension.

Proof. The implications (i) = (ii) is easy, (ii) = (iii) and (ii) = (iv) follow directly
from Proposition 3[43] It remains to show (iii) = (i) and (iv) = (i). Suppose (i) is
false so that there exists an infinite sequence (z,,) of linearly independent elements
in the vector space V. Let U, resp. V,, be the vector space spanned by z1,...,x,
resp. by Zni1, Tnao,.... Then the chain U, resp. V,, are infinite ascending resp.
descending. O
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Hilbert functions. Let S = @ S, be a Noetherian graded ring. By Exercise
So is Noetherian, and S is a finitely generated Sy-algebra with generators x1, ..., x,
which we take to be homogeneous of degrees d; > 0. More generally, we can
consider a finitely generated graded S-module with generators y1, ..., y,, of degrees
e;. Every element in y € M, can be written as y = > a;y; with aj € Sc_.,. Since
Sy is a finite Sp-module, it follows that My is a finite Sp-module.

Let A be an additive Z-valued function on the class of finitely generated Sp-modules.
The Poincaré series of a graded S-module M is the power series

P(M,t) = > MM)t* € Z[t].

48. Theorem (Hilbert-Serre). P(M,t) is a rational function in t of the form
F@)/TT, (1 —t4) where f(t) € Z[t].

Proof. By induction on n the number of generators of S over Sy. If n = 0 then
Sq = 0 for d > 0, that is Sy = S. Hence M is a finite Sp-module which means
that M, = 0 for e large enough. Hence P(M,t) € Z[t]. For n > 0 consider x,, as a
module morphism S, — S.1,. Consider the exact sequence

0->K,—>M 3 M., — Ler, = cokerz,, — 0. (5)

Let K = @K; and L = @ L;. As a quotient module of a finitely S-generated
module, L is finitely generated (cf. Example ; as a submodule of a finitely
generated module over a Noetherian ring, K is finite over S, cf. Proposition
Further, both are annihilated by the induced action of x,,. Hence K and L are
(finite) Sp[x1,...,2n—1]-modules. Applying the additive function to the exact se-
quence, we get A(K.) — A(Me) + M(Mpte) — AM(Lpte) = 0. Multiplying with ¢¢+™
and summing with respect to e yields

(L—=t")P(M,t) = P(L,t) —t"P(L,t) + g(t) (6)
where ¢(t) € Z[t] (the polynomial g comes from the index shift +n). By the
induction hypothesis the result follows. O

Next we define the number
d(M) := order of the pole of P(M,t) at 1.
Then we have the

49. Corollary. If in the notation of the previous theorem, each k; = 1, then for
all sufficiently lagre n, A(M,,) is a polynomial in n with rational coefficents and of
degree d — 1 (with the convention that the degree of the zero polynomial is —1).

Proof. O

50. Remark.

(i) Note that a polynomial f(z) such that f(n) is an integer for all n sufficiently
high does not imply that f has itself integer coefficents; consider, for instance,
z(zx+1)/2.

(ii) The polynomial in the proof of the previous corollary is usually called the
Hilbert function or polynomial of M with respect to A.
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In the exact sequence 3[5|replace x5 by any element x € Aj which is not a zerodivisor
in M, i.e. zm = 0 implies m = 0. Then K = 0 and Equation 3[f] shows that
d(L) = d(M) — 1, whence the

51. Proposition. Ifxz € Ay, is not a zerodivisor in M, then d(M /xM) = d(M)—1.

We shall mostly use Theorem 3[8 when A(M) is the length I(M) of a finitely-
generated A-module.

52. Example. Let M = k[z1,...,2,] be the polynomial ring in n variables over
the field k. Then M, = the My = k-module (in fact, vector space) of homogeneous

n+d—1 _
d—1 ), hence P(M,t) = (1 —t)~%

polynomials has dimension (
Next we consider the Hilbert functions obtained from a local ring by passing to its
associated graded ring as in the previous section on completions. This will be also
important when dealing with projective varieties later on.

53. Proposition. Let (A,m) be a Noetherian local ring, and q an m-primary
ideal, i.e. \/q = m. Further, let M be a finitely generated A-module, and (M,) a
stable q-filtration. Then
(i) M/M,, is of finite length, for each n = 0;
(ii) for all sufficiently large n this length is a polynomial g(n) of degree < s in n,
where s is the least number of generators of q;
(iii) the degree and leading coefficient of g(n) depend only on M and q, not on the
filtration chosen.

The polynomial g(n) corresponding to the filtration (q"M) is denoted by Xé”(n),
i.e.

xé‘/[(n) =I(M/q"M) for all large n.
If M = A we simply write x4 and call it the characteristic polynomial of the
m-primary ideal q.

54. Corollary. For all large n, the length I(A/q") is a polynomial xq(n) of degree
< s, where s is the least number of generators of q.

55. Proposition. If A, m and q are as above, then

deg xq(n) = deg xm(n).
In particular, the common degree equals d(A) = d(Gm(A)) as defined above.

Dimension theory of Noetherian local rings. 56. Definition (Dimen-
sion). The (Krull) dimension dim A of A is the supremum of lengths of strict
chains of prime ideals pg S p1 S ... 2 Po.

57. Examples.
(i) A field has dimension 0, p = (0) being the only prime ideal.
(ii) By Remark A is Artinian < A is Noetherian and dim A = 0. Geomet-
rically this corresponds to the fact that A is the coordinate ring of a finite
union of points — a zero-dimensional variety.
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(iii) Z has dimension 1, any chain being of the form (0) < (p). More generally,
this is true for any principal ideal domain which is not a field, for any prime
ideal is maximal. In particular, k[z] has dimension 1 in accordance with
the geometric dimension of A'. More generally, we will see below REF that
dimk[zy,...,z,] =n

58. Remark. Note that in general, strict chains of prime ideals do not
have the same length. Geometrically, this can be roughly interpreted in terms
of different dimensional components of an algebraic set. For instance, consider
X = Z(x123,7223) in A% the union of the z;xo-plane (of dimension 2) and the x3-
axis (of dimension 1). Then we have the maximal chains (z1, o, x3—1) D% (z1, z2)
coming from the inclusions of (0,0, 1) € z3-axis, and (z1, 22, x3) D# (22, 23) 2 (z3)
corresponding to the inclusions of (0,0,0) ¢ zj-axis © 1, xo-plane.

From now on, let (A, m) be a local Noetherian ring. Let 6(A) be the least number
of generators of an m-primary ideal. Our goal is to prove

§(A) = d(A) = dim A.

We will establish this by showing 6(A) > d(A) = dim(A) > 6(A). The first inequal-
ity is a direct consequence of Corollary 3[54] and Proposition 3[55

59. Proposition. §(A4) = d(A).

60. Proposition. Let A, m and q as before. Let M be a finitely generated
A-module, x € A a non zerodivisor in M and M' = M /xM. Then

degxéwl < degxéw -1

61. Corollary. If (A,m) is a Noetherian local ring, x a nonzero divisor in A,
then d(A/(x)) < d(A) — 1.

We are now in a position to prove the crucial inequality:

62. Proposition. d(A) > dim A.

63. Corollary. If A is a Noetherian local ring, dim A is finite.

64. Definition (height of a prime ideal). The codimension or height of
a prime ideal p in A is the supremum of lengths of strict chains of prime ideals

Po € p1 < ... p,. = p which end at p.

65. Example. By Exercise [IJT06} heightp = dim A,. Geometrically, this
corresponds to the codimension of the affine variety Z(p) < Spec A.

66. Corollary. In a Noetherian ring every prime ideal has a finite height, and
therefore the set of prime ideals in a Noetherian ring satisfies the descending chain
condition.



ALGEBRAIC GEOMETRY I 113

3.3. Smoothness. The notion of smoothness which is modelled on the correspond-
ing notion of differentiable manifolds.

67. Definition (nonsingular affine varieties). Let X < A" be an affine
variety, and let Z(X) = {f1,..., fry. We say that X is smooth or nonsingular
at a € X if the rank of the matric (0;f;(a)) isn—1r

68. Definition (local regular ring).
69. Theorem (algebraic characterisation of nonsingularity).

70. Definition (nonsingular varieties).

4. FIRST APPLICATIONS TO GEOMETRY

4.1. Smooth curves.

4.2. Intersection theory.

5. SCHEMES
6. COHOMOLOGY
7. CURVES
APPENDIX A. RUDIMENTS OF CATEGORY THEORY

We discuss the basic notions of category theory. For a further development see for
instance [GeMa).

1. Definition (category). A category C consists of the following data:
(i) A class of objects Ob(;
(ii) for any two objects A, B € ObC a set Mor¢(A, B) of morphisms. We denote
an element of Mor¢ (A, B) usually by A — B.

Furthermore, for any three objects A, B and C € C there exists a map
o: Mor¢(A, B) x Mor¢(B,C) — More(A,C), (f,g) —gof
such that Mor¢(A, B) is a monoid, i.e.
(i) o is associative, i.e. (go f)oh =go (foh);
(ii) for all A € ObC there exists a morphism Idy € More(A, A), the so-called
identity of A such that for all B € ObC and for all f € Mor¢(A4; B) and
g € Mor¢(B, A) we have

foldg=f and Idgog =g.

To simplify the notation we often write Mor instead of Morc. A category C is small
if ObC is a set.

2. Definition (isomorphism). Let C be a category. A morphism f €
Mor¢ (A, B) is called a (categorical) isomorphism if there exists g € Morc (B, A)
such that gof =1d4 and fog = Idg, that is, f has a two sided inverse. In this case
we also write g = f~!. If C is small, then being isomorphic defines an equivalence
relation on ObC and we denote by Iso(C) the set of equivalence classes.

3. Examples. (see also [GeMa), Section II.§1.5] for examples.)
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(i) The basic example is the category SET of sets with maps as morphisms. Note
that there is no set of sets (cf. Russell’s paradoxon) which is why the objects
form a class, not a set. On the other hand, Morggr(A4,B) < A x B is of
course a set. Isomorphisms are just bijective maps. Further examples in this
vein are given by algebraic categories such as the category of abelian groups
ABG or A-modules MOD 4 with the corresponding notion of (iso)morphisms
(group morphisms, A-linear (bijective) maps, etc.) or geometric categories
(e.g. category of varieties with (bi)regular maps as (iso)morphisms). This
also explains the general notation A — B for morphisms.

(ii) More exotic examples include the catgeory C(I) of a partially ordered set
I, where ObC(I) = I, and Morc(s)(4,7) consists of one element if i < j
and is empty otherwise. In particular, More(r)(4,4) = {Id;} and an element
f € More(i,7) is an isomorphism if and only if ¢ = j and f = Id;. If X is
a topological space we can consider the category TOP x. Here, the objects
are the open subsets of X (a subset of the power set of X), and Mor(U, V) is
the inclusion if U < V and the empty set otherwise. Again, Mor(U,U) = Idy
and f € Mor(U,V) is an isomorphism if and only if U = V and f = Idy.
Finally, we can consider the category SHEAF x whose objetcs are sheaves on
X, and Mor(F,G) are sheaf morphisms. Here, the notion of isomorphism is
the catgeorical one, i.e. ¢ : F — G is an isomorphism of sheaves if and only if
it has a two sided inverse (cf. Definition [1[77). The definition of injective and
surjective sheaf morphism was designed in such a way that an isomorphism is
precisely a morphism which is injective and surjective, cf. Exercise

We can also consider “maps” between categories.

4. Definition (functor). For two categories C and D we call F : C — D a
functor an assignement which associates with any object A in C an object F'(A) in
D, and for any two objects A and B a map Mor¢ (A4, B) — Morp(F(A), F(B)) (F
is covariant) or Mor¢(A, B) — Morp(F(B), F(A)) (F is contravariant) taking
f to F(f), and having the following properties:

(i) F(Ida) = Idpay;

(ii) F(fog) = F(f)oF(g) (F covariant) or F'(fog) = F(g)o F(f) (F contravari-

ant);
(iii) A presheaf onb X can be regarded as a contravariant functor Topy — AbG.

5. Examples.

(i) The basic example of a covariant functor is the so-called forgetful functor
from a category C to Set which associates with say an A-module its underlying
set,and with an A-linear map its underlying set theoretic map.

(ii) The assignement which takes an A-module M to its dual module MY, and
an A-linear map f : M — N to the dual map f¥Y : NY — MV defined by
FN)(m) = A(f(m)) for all m € M is a contravariant functor.

(iii)

A useful notion of “isomorphic” catgeories is this.

6. Definition (equivalence of categories). Two small categories C and D are
(covariantly) equivalent if there exists a covariant functor F : C — D such that
F



ALGEBRAIC GEOMETRY I 115

(i) induces a surjective map on isomorphism classes Iso(C) — Iso(D). Put dif-
ferently, for any object y in D there exists an object x in C with F(z) is
isomorphic with y.

(ii) full and faithful, that is, for any two objects x1, o in C the induced map
F(z1,z2) : Mor(z1,z2) — Mor(F(x1), F(x2)) is surjective and injective.

An analogous definition applies for contravariant equivalent categories.

7. Example. The category of affine varieties over k is equivalent with the
category of finitely generated k-algebras without zero divisors (cf. Corollary [L{136]).

APPENDIX B. RECAP ON FIELD EXTENSIONS

A field extension is an embedding k£ <— K of the ground field k into some bigger
field K (note in passing that any nontrivial k-linear map between fields is ncessarily
injective). In particular, we may view K as a k vector space; it is customary to
write K/k for the field extension and [K : k] for dimy K, the degree of the field
extension, but we will not do that. There are several types of field extensions which
are important for us. A good reference is [Bo].

1. Definition (finite and algebraic field extensions). A field extension
k < K is finite if the dimension dimy K < +00. Moreover, k < K is algebraic if
for any o € K there exists f € k[z] such that f(a) = 0.

2. Proposition. A finite field extension is algebraic.

Proof. Indeed, if o € K, then there must be an n so that {1, a,a?,...,a"} becomes
linearly dependent over k, that is a™ = Z;:Ol a;a’. We let k[a] denote the subring
of K generated by k and «, that is, k[a] = {Z::Ol a;x' | a; € k}. Since this
is an integral domain and k[z] Euclidean, so in particular a PID, the kernel of
k[z] — k[a], X — «, must be a principal ideal, so ker = (f) for an irreducible
element f. In particular, (f) is maximal so that k[a] = k(a) := Quotk[«] is
actually a field. Moreover, dimy k(a) = deg f. Indeed, k[z] is Euclidean so that
g = qf + r with uniquely determined polynomials degr < deg f. It follows that
equivalence classes 1,Z,%2,...,2" ! form a k-basis of k[x]/(f) = k(«). O

3. Remark. If in the proof of the previous proposition we normalise the polyno-
mial f so that it is monic, i.e. f = 2™ + ap_12" 1 + ... + ag, then f is called the
minimal polynomial of « and is uniquely determined. In general, if f € k[x] is
irreducible, then k c k[z]/(f) is a finite extension in which f has a root.

4. Examples.

(i) Let k =R and f = 22 + 1, then C = R[z]/(z? + 1).

(i) Q = {a € C | « algebraic over C} be the algebraic closure of Q. Then
Q(3/3) = Q has minimal polynomial X™ — 3 since it is irreducible by Eisen-
stein’s criterion. It follows that dimg Q(%/3) = n. In particular, dimg Q = oo
which shows that algebraic extensions need not be finite in general.

As the first example shows, a field k need not be algebraically closed, i.e. there
are polynomials f € k[z] which do not admit a root in k. However, we have the
following
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5. Theorem (existence of the algebraic closure). For any field k there exists
an algebraic field extension k < K such that K is algebraically closed field.

Proof. See [Bol, Theorem 3.4.4]. O

Item (ii) in the previous example can be generalised as follows:

6. Definition. If k is a field and K an algebraically closed field so that k ¢ K is
algebraic, we call
k = {a € K | a is algebraic over k}

the algebraic closure of k. The field k is determined up to isomorphism which
restricts to the identity on & (cf. [Bol Corollaries 3.4.7 and 10]).

7. Definition (Galois extensions). A field extension k¥ ¢ K is normal if any
irreducible polynomial f € k[z] which has a root in K splits into linear factors in
K|[z]. Further, k ¢ K is called separable if it is algebraic and every a € K is the
root of a separable polynomial in k[x], i.e. a polynomial whose roots are simple.
A field extension is Galois if it is normal and separable. In this case, the group
of automorphisms of K which leave k fixed is called the Galois groupof the field
extension k c K.

In characterstic 0 every algebraic field extension is separable [Bo, Remark 3.6.4].
We will not make much use of Galois extensions; its main importance for us stems
from Remark [0J§] For a field extension k — K with K algebraically complete and
Galois, the Galois group allows in principle to identify those points in K™ which
correspond to maximal ideals in k[x1,...,x,], see Remark

8. Definition. A field k is called perfect if any algebraic field extension of k is
separable.

Since any irreducible polynomial over a field of characteristic 0 is separable [Bo,
Proposition 3.6.2], any such field is perfect. Further examples are finite fields or al-
gebraically closed fields are also perfect. One of the main features of finite separable
extensions is the

9. Theorem of the Primitive element. If £k ¢ K is a finite separable field
extension, then there exists a so-called primitive element a € K such that K =
k().

Proof. See [Bd, Proposition 3.6.12] O

Next we consider non-algebraic field extensions.

10. Definition (transcendence base). Consider a field extension k < K.
Elements ag, ... a, € K are algebraically independent if the natural surjection

klz1,...,z,] — klaq,...,an] c K — 0

sending x; to a; is actually an isomorphism of k-algebras, that is, we have an injec-
tion k[z1,...,2,] — K sending z; to ;. Put differently, if there is a polynomial
relation of the form f(ay,...,a,) =0 for f € k[x1,...,2,], then f = 0. A family
B = {«;}ier is algebraically independent if the previous definition applies for any
finite subset of B. If in this case the field extension k(B) c K is algebraic, then
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A is called a transcendence base. If K = k(*B8) for some transcendence base, we
call the field extension k — K purely transcendental.

Any field extension kK < K can be factorised into a purely transcendental field
extension k < k(B) < K, where the latter field extension is algebraic:

11. Proposition and Definition (transcendence degree). Any field exten-
sion k € K admits a transcendence base. Any two transcendence bases have the
same cardinality which we call the transcendence degree.

Proof. See [Bol Proposition 7.1.3 and Theorem 7.1.5]. O

12. Proposition (Zariski’s lemma). Let k ¢ K be a field extension, where K
is a finitely generated k-algebra. Then k < K is a finite field extension.

Proof. Let K = k[ay,...,a,]. If K is algebraic over k, we are done. So assume oth-
erwise and relabel the o; in such a way that x1, ..., x, are algebraically independent
over k, and x; are algebraic over the field L = k(a,...,a.). Hence K is a finite

algebraic extension of L and therefore a finite L-module. From Proposition |2|i§| (i)
applied to k ¢ L < K, we infer that L = k[f1,...,3s] is a finitely generated k-
algebra (we can, of course, also directly appeal to Noether normalisation). But this
can only happen if L = k. To see this rigourosly, we note that each 3; € L so that
Bi = fi/g; for polynomials f; and g; in z1,...,2,. Now there are infinitely many
irreducibles in the factoriel ring k[x1, ..., z,]| (there are infinitely many primes just
by the same argument as for Z). Hence there is an irreducible polynomials which
is prime to any of the finitely many g; (for instance, take h = g1 - ... gs + 1
would do). Therefore, h~! € L cannot be a polynomial in the y; (clear the common
denominator and multiply by k). Contradiction. 0

Do not confuse the notion of a finitely generated k-algebra K with a finitely gen-
erated field extension k < K. If K is a finitely generated k-algebra, then there
exist o; € K such that K = k[, ..., a,]. The previous proposition then says that
no subset of these generators is algebraically independent. If k¥ < K is a finitely
generated field extension, then K = k(aq,...,«,) where we can label the «; in
such a way that «q,...,a, form a transcendence base so that k(ay,...,a,) ¢ K
is an algebraic, in fact finite extension of the purely transcendental field extension
kck(ar,...,am).

13. Proposition and definition (separably generated field extensions).
A field extension k < K is separably generated if there is a transcendence base
B such that k(B) < K is a separable algebraic extension. In this case, B is called
a separating transcendence base. For a finitely and separably generated field

extension k < K = k(ay,...,q,) the set of generators {a;} contains a separating
transcendence base.
Proof. See [Bol, Proposition 7.3.7] O

14. Proposition (perfect fields and separably generated field extensions).
If k is a perfect field, any finitely generated field extension k < K is separably
generated.

Proof. See [Bol, Corollary 3.7.8]. O
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