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Abstract. We study generalized Killing spinors on the standard sphere S3, which turn out
to be related to Lagrangian embeddings in the nearly Kähler manifold S3 × S3 and to great
circle flows on S3. Using our methods we generalize a well known result of Gluck and Gu [6]
concerning divergence-free geodesic vector fields on the sphere and we show that the space
of Lagrangian submanifolds of S3 × S3 has at least three connected components.
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1. Introduction

In this article we investigate generalized Killing spinors [4] (cf. also [5]) on the standard
sphere S3. Recall that generalized Killing spinors on some spin manifold (M, g) are spinors
on M verifying the equation

(1) ∇XΨ = A(X) ·Ψ ∀X ∈ TM

for some endomorphism A symmetric with respect to g. Real Killing spinors (for A = λid,
λ ∈ R) or parallel spinors (for A = 0) are particular examples of such objects. Generalized
Killing spinors arise as restrictions of parallel spinors to hypersurfaces, and the converse is
true under some analyticity assumption [2]. This initial problem can thus be understood as
an isometric embedding problem for S3 into some 4-dimensional hyperkähler ambient space.
Note that in [10] we gave examples of genuine (i.e. non-Killing) generalized Killing spinors
on S3, showing that the problem is non-trivial.

In our first result we show that generalized Killing spinors on any 3-dimensional spin
manifold (M, g) are in one-to-one correspondence with divergence-free orthonormal frames
on M . Our examples in [10] are equivalent in this setting with frames made by Hopf (left
or right-invariant) vector fields for the Killing spinors, and to reflexions of such Hopf left or
right-invariant frames with respect to some fixed right or left-invariant Hopf vector field, for
the genuine generalized Killing spinors.

We next interpret generalized Killing spinors on S3 as maps f : S3 → S3 whose differential
has the following symmetry property: for every g ∈ S3, the linear map Mg : TeS3 → TeS3
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defined by X 7→ dfg(gX)f(g)−1 is symmetric with respect to the standard scalar product
on TeS3 = R3. Here S3 is viewed as a Lie group with Lie algebra TeS3, f(g)−1 denotes
infinitesimal left translation with the inverse of f(g), and gX is the value at g of the left
invariant vector field generated by X.

This point of view is particularly interesting when considering the graph of f as a sub-
manifold of S3 × S3 endowed with its 3-symmetric nearly Kähler metric. It turns out that
the above symmetry property of f is equivalent to the fact that the graph Γf−1 of the map
g 7→ f(g)−1 is a Lagrangian submanifold of the nearly Kähler S3 × S3, endowed with its
fundamental two-form Ω. Note that the terminology is somewhat improper since Ω is not
closed. Nonetheless, Lagrangian submanifolds of 6-dimensional nearly Kähler manifolds were
intensively studied in the last decades, perhaps motivated by the fact that they are auto-
matically minimal (cf. Ejiri [3] in the case of S6 and Gutowski-Ivanov-Papadopoulos [8] in
general).

Until now, the only known examples (up to isometry) of Lagrangian submanifolds of the
nearly Kähler S3×S3 were the factors and the diagonal. Our examples of genuine generalized
Killing spinors on S3 yield in this way new examples of Lagrangian graphs of S3×S3, but we
have also found an interesting family of Lagrangian submanifolds of S3 × S3 which project
onto a strict submanifold on each factor. We computed the metric structure for each of the
examples, which, for the usual normalization of the metric on S3 × S3, turn out to be round
spheres of radius 2

3
and 4

3
, as well as Berger spheres of some different volume. This last

observation shows that the space of Lagrangian submanifolds of S3 × S3 has at least three
connected components.

We have also investigated generalized Killing spinors on S3 by comparing them to some
fixed Killing spinor. In this way, every generalized Killing spinor on S3 is characterized by
a function α and a vector field ξ satisfying some coupled non-linear differential system. In
the particular case where the function α vanishes, the system reduces to the condition that
ξ is a geodesic divergence-free vector field. Such objects were studied by Gluck and Gu [6],
who showed (using a nice interpretation as holomorphic graphs in the oriented Grassmannian
G̃r2(R4)) that they are necessarily Hopf vector fields. Translating back into our setting, we
obtain as a corollary that every generalized Killing spinor on S3 whose scalar product with
some Killing spinor vanishes is necessarily in the list of our known examples. We finally
generalize this result to the case when this scalar product is constant but not necessarily
zero, by solving an ODE along the orbits of ξ.

2. Spinors on 3-manifolds and divergence-free frames

Let (M3, g) be a 3-dimensional spin manifold. We denote by Σ3 the irreducible Cl3 module
on which the volume element acts by −id. This sign choice (opposite to the one in [11]) is
motivated by the identification with quaternions in the next section (see the discussion after
Equation (8)).

Since the spin representation Spin(3) → Aut(Σ3) is isomorphic to the left multiplication
of unit quaternions on Σ3 ' H, the spinor bundle ΣM has a quaternionic structure, acting
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from the right. This structure is compatible with the natural scalar product 〈·, ·〉 on the spin
bundle, in the sense that 〈Ψa,Φa〉 = |a|2〈Ψ,Φ〉 for every a ∈ H and Ψ,Φ ∈ ΣM .

In particular, if a ∈ ImH is an imaginary quaternion, then a2 = −|a|2, so for every spinor
Ψ we have

|a|2〈Ψa,Ψ〉 = 〈Ψa2,Ψa〉 = −|a|2〈Ψ,Ψa〉,
showing that Ψa is orthogonal to Ψ. On the other hand, for every x ∈ M and non-zero
Ψ ∈ ΣxM , the map TxM → Ψ⊥ ⊂ ΣxM , mapping X to X · Ψ is an isomorphism (for
dimensional reasons). For every imaginary quaternion a and nowhere vanishing spinor field
Ψ ∈ C∞(ΣM) we can thus define a vector field ξa on M by

(2) ξa ·Ψ = Ψa.

By the above choice of the spin module, the volume form of M acts by −id on the spin
bundle, hence

(3) ω ·Ψ = ∗ω ·Ψ ∀ ω ∈ C∞(Λ2M), Ψ ∈ C∞(ΣM).

We now give a characterization of generalized Killing spinors in terms of the associated unit
vector fields ξa. Recall that every generalized Killing spinor Ψ has constant length. Indeed,
from (1) we get X(|Ψ|2) = 2〈∇XΨ,Ψ〉 = 2〈A(X) ·Ψ,Ψ〉 = 0 for every vector field X.

Lemma 2.1. A spinor Ψ ∈ C∞(ΣM) of constant length is a generalized Killing spinor if and
only if the vector fields ξa are divergence-free for all a ∈ ImH.

Proof. Since Ψ has constant length, ∇XΨ is orthogonal to Ψ at every point, so by the linearity
of the covariant derivative, there exists some endomorphism A of TM such that

(4) ∇XΨ = A(X) ·Ψ
for any vector field X. Taking the covariant derivative in the defining equation (2) yields

∇Xξa ·Ψ + ξa · A(X) ·Ψ = ∇X(Ψa) = (∇XΨ)a = A(X) ·Ψa = A(X) · ξa ·Ψ .

Hence by (3)

∇Xξa ·Ψ = 2A(X) ∧ ξa ·Ψ = 2 ∗ (A(X) ∧ ξa) ·Ψ ,

and it follows

(5) ∇Xξa = 2 ∗ (A(X) ∧ ξa) = −2A(X)y ∗ ξa .
Assume now that Ψ is a generalized Killing spinor, i.e. that the endomorphism A defined in
Equation (4) is symmetric. We obtain

δξa = −eiy∇eiξa = 2eiyA(ei)y ∗ ξa = 0 .

(Here and in the following we use Einstein’s summation convention over repeated subscripts).

Conversely, if ξa are divergence-free, (5) shows that eiyA(ei)y ∗ ξa = 0 for every a ∈ ImH,
i.e. the 2-form ei ∧ A(ei) vanishes. Since this two-form represents the skew-symmetric part
of A, the lemma follows. �

Since every oriented orthonormal frame labeled (ξi, ξj, ξk) defines (up to sign) a unique
spinor of unit length satisfying (2) for a = i, j, k, the previous lemma gives at once:
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Corollary 2.2. Generalized Killing spinors on M are (up to sign) in 1-1 correspondence with
oriented orthonormal frames of divergence-free vector fields on M .

3. Spinors on S3

In this section we describe spinors on the round sphere S3 and translate the generalized
Killing equation into conditions on the defining function in a left-invariant frame.

We consider S3 as the unit sphere in H, with the induced Lie group structure. In this way
S3 is identified to SU(2) and the Lie algebra of S3 is identified with ImH ' su(2). More
generally, the tangent space TgS3 is identified to gImH and the infinitesimal left and right
translations on S3 are given by left or right quaternionic products. Let (e1, e2, e3) = (i, j, k)
be a fixed basis in TeS3 = ImH (positively oriented by convention). Then left translation
defines an orthonormal frame on S3: u(g) := (ge1, ge2, ge3). We will take u as a reference
frame and we endow S3 with the orientation induced by u. The Levi-Civita connection on
left-invariant vector fields Xg = gx and Yg = gy is given by the well known formula

(6) (∇XY )g = 1
2
g[x, y],

for any g ∈ SU(2) and x, y ∈ su(2). More generally, if Y is any vector field on S3, we can
write Yg = gy(g) for every g ∈ S3 where y : S3 → TeS3 is some smooth function, and we have

(7) (∇XY )g = g
(
1
2
[x, y(g)] + y∗(X)

)
.

With respect to the fixed frame u the connection 1-form ω of the Levi-Civita connection is

ω(X) = 1
2
adx = ∗x ∈ so(3) ∼= R3 ,

for every tangent vector X ∈ TgS3 written as X = gx, x ∈ TeS3 ∼= R3. Here and henceforth
we identify vectors and 1-forms using the Riemannian metric. We denote by ũ a lift of the
frame u to a section of the spin principal bundle. Any spinor Ψ can then be written as

(8) Ψ = [ũ, f ],

for some function f defined on S3 with values in the spin module, which in our case can be
identified with H. Since ijk = −1 it follows that X · Y · Z · Ψ = −Ψ for every positive
orthonormal base X, Y, Z. This shows that the Clifford action of X and ∗X are related by

(9) ∗X ·Ψ = X ·Ψ

for every tangent vector X and for every spinor Ψ (see also (3) and recall that in [11] the
opposite sign convention was used).

The covariant derivative of Ψ with respect to some tangent vector X = gx = [u(g), x] is
given by

(10) ∇XΨ = [ũ, X(f) + ω̃(X) · f ] .

Here A 7→ Ã denotes the inverse of the differential of the spin covering, which via the isomor-
phism so(3) ∼= spin(3) corresponds to the multiplication by 1

2
. We infer

(11) [ũ, ω̃(X) · f ] = [ũ, ∗̃x · f ] = 1
2
∗X ·Ψ = 1

2
X ·Ψ .
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In the particular case of a constant function f we thus obtain from (10) and (11):

(12) ∇XΨ = [ũ, ω̃(X) · f ] = 1
2
X ·Ψ .

Hence any spinor given by a constant function with respect to a left-invariant frame is a Killing
spinor for the Killing constant 1

2
. Similarly, constant spinors with respect to a right-invariant

frame are Killing spinors with Killing constant −1
2
.

Consider the unit vectors ξa defined by Ψ via (2). Our next goal is to interpret the condition
δξa = 0 from Lemma 2.1 in terms of the function f defining the spinor Ψ in the left-invariant
frame ũ (cf. Equation (8)).

Writing ξa(g) = [u, va] = gva(g) for some function va : S3 → ImH ∼= R3, Equation (2)
translates into

(13) va(g) = f(g)af(g)−1 or, equivalently, ξa(g) = gf(g)af(g)−1 .

Lemma 3.1. Let Ψ = [ũ, f ] be a spinor on S3 with associated vector fields ξa defined by (2).
Then the vector fields ξa are divergence-free for all a ∈ ImH if and only if for every g ∈ S3,
the endomorphism Mg of ImH defined by Mg(x) := dfg(gx)f−1(g) is symmetric.

Proof. We compute the covariant derivative of ξa in the direction of some vector Xg = gx
(with x ∈ ImH) and obtain from (7) and (13)

(∇Xξa)g =
1

2
g
(
[x, f(g)af−1(g)] + dfg(gX)af−1(g)− f(g)af−1(g)dfg(gX)f−1(g)

)
.

Using this formula we may calculate the divergence of the vector field ξa, where we set
b := f(g)af−1(g):

−(δξa)g = 1
2
〈[ei, f(g)af−1(g)], ei〉+ 〈dfg(gei)f−1(g)b, ei〉 − 〈bdfg(gei)f−1(g), ei〉

= 〈Mg(ei),−eib+ bei〉 = 〈Mg(ei), [b, ei]〉 = 〈[ei,Mg(ei)], b〉

= 2〈vol, ei ∧Mg(ei) ∧ b〉 .

For any fixed g, when a runs through ImH, b takes any value in ImH. It follows that δξa = 0
for all a if and only if ei ∧Mg(ei)∧ b = 0 for all b, which is equivalent to ei ∧Mg(ei) = 0 and
finally to Mg being symmetric. �

Example 3.2. In [11] we have constructed the following examples of generalized Killing
spinors on S3:

(1) Killing spinors with constant 1
2
.

(2) Killing spinors with constant −1
2
.

(3) Products ξ · Φ where ξ is right-invariant and Φ is a Killing spinor with constant 1
2
.

(4) Products ξ · Φ where ξ is left-invariant and Φ is a Killing spinor with constant −1
2
.
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Lemma 3.3. Up to right multiplication of f with some constant quaternion, the above ex-
amples of generalized Killing spinors correspond to the following functions and vector fields.

(1) f(g) = 1 ξa(g) = ga
(2) f(g) = g−1 ξa(g) = ag
(3) f(g) = g−1bg ξa(g) = bgag−1b−1g
(4) f(g) = bg−1 ξa(g) = gbg−1agb−1

Proof. Consider a left-invariant frame u and its spin lift ũ as before. We have already seen
in Equation (12) that Killing spinors with constant 1

2
correspond to constant functions f in

the frame ũ. Consider the spinor Ψ := [ũ, f ] with f(g) = g−1. For every vector X ∈ TgS3,
written as X = gx = [u, x], the derivative of the H-valued function f with respect to X reads
X(f) = −xg−1 = −x · f . Using Equation (10) we can thus compute the covariant derivative
of Ψ:

∇XΨ = [ũ, X(f) + ω̃(X) · f ] = [ũ, X(f)] + 1
2
X ·Ψ = −[u, x] · [ũ, f ] + 1

2
X ·Ψ = −1

2
X ·Ψ.

This proves case (2).

If ξ is right-invariant and Φ is a Killing spinor with constant 1
2

we can write ξg = bg =
[u, g−1bg] for some b ∈ ImH and (up to right multiplication with a constant) Φ = [ũ, 1],
whence ξ · Φ = [ũ, g−1bg]. Similarly, if ξ is left-invariant and Φ is a Killing spinor with
constant −1

2
we can write ξg = gb = [u, b] for some b ∈ ImH and (up to right multiplication

with a constant) Ψ = [ũ, g−1], whence ξ · Φ = [ũ, bg−1]. The corresponding formulas for ξa
follow from Equation (13). �

4. Lagrangian graphs

The graph Γf of a smooth map f : S3 → S3 defines a submanifold in S3 × S3. In this
section we want to show that the symmetry condition in Lemma 3.1 above translates into the
the fact that the graph Γf−1 of the map g 7→ f(g)−1 is Lagrangian with respect to a certain
non-degenerate 2-form on S3 × S3.

We identify S3 × S3 with the homogeneous space S3 × S3 × S3/∆(S3) via the action

(g1, g2, g3) · (a1, a2) := (g1a1g
−1
3 , g2a2g

−1
3 ).

The stabilizer of (e, e) is then the diagonal of S3×S3×S3 and the projection π : S3×S3×S3 →
S3 × S3 is given by π(g1, g2, g3) = (g1g

−1
3 , g2g

−1
3 ).

The tangent space at (e, e) is identified with

m := {(X1, X2, X3)|Xi ∈ su(2), X1 +X2 +X3 = 0}.

In this identification, a tangent vector (Y1, Y2) corresponds to

(14) πm(Y1, Y2, 0)− 1
3
(Y1 + Y2, Y1 + Y2, Y1 + Y2) = 1

3
(2Y1 − Y2, 2Y2 − Y1,−Y1 − Y2) .

Let B be the Killing form of su2, and denote by B0 := 1
12
B its rescaling. Then

g((X1, X2, X3), (Y1, Y2, Y3)) := −(B0(X1, Y1) +B0(X2, Y2) +B0(X3, Y3))
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defines a homogeneous nearly Kähler metric of scalar curvature scal = 30 on S3×S3 (cf. [9],
Lemma 5.4). Denoting −B0 simply by 〈·, ·〉, and using the identification (14), the induced
metric on S3 × S3 reads

(15) g((X1, X2), (Y1, Y2)) = 1
3
(2〈X1, Y1〉+ 2〈X2, Y2〉 − 〈X1, Y2〉 − 〈X2, Y1〉) .

The manifold S3×S3 has the structure of a 3-symmetric space. The corresponding almost
complex structure is defined as

J(X1, X2, X3) = 2√
3
(X3, X1, X2) + 1√

3
(X1, X2, X3) ,

which by (14) can be rewritten as

J(X1, X2) = 1√
3
(X1 − 2X2, 2X1 −X2) .

Let Ω be the fundamental 2-form Ω(A,B) = g(JA,B), then

Ω((X1, X2), (Y1, Y2)) = 1√
3
(〈X1, Y2〉 − 〈X2, Y1〉) .

At an arbitrary point (g1, g2) ∈ S3 × S3, the 2-form Ω is defined by

(16) Ω((X1, X2), (Y1, Y2)) := 1√
3
(〈g−11 X1, g

−1
2 Y2〉 − 〈g−12 X2, g

−1
1 Y1〉) .

A 3-dimensional submanifold L of the nearly Kähler manifold S3×S3 is called Lagrangian
if Ω(A,B) = 0 for all tangent vectors A,B ∈ TL. Notice that this is a generalization of the
usual concept of the a Lagrangian submanifold since the fundamental 2-form Ω is not closed.

Lemma 4.1. Let f : S3 → S3 be a smooth map. Then the endomorphism Mg defined
in Lemma 3.1 is symmetric for all g if and only if the graph Γf−1 of f−1 is a Lagrangian
submanifold of S3 × S3 with respect to the 2-form Ω.

Proof. The tangent space to the graph Γf−1 at (g, f(g)−1) is the set of vectors of the form
(gx,−f(g)−1dfg(gx)f(g)−1) for x ∈ su(2).

By (16), the value of Ω at the point (g, f(g)) on two such tangent vectors is

− 1√
3
(〈x, dfg(gy)f(g)−1〉 − 〈dfg(gx)f(g)−1, y〉) = − 1√

3
(〈x,Mg(y)〉 − 〈Mg(x), y〉) ,

which shows that Γf−1 is Lagrangian with respect to Ω if and only if Mg is symmetric for all
g ∈ S3. �

Proposition 4.2. (1) The submanifolds Γ1 := {(g, 1)|g ∈ S3} and Γ2 := {(g, g)|g ∈ S3}
are Lagrangian submanifolds of S3×S3 isometric to the round sphere S3(2

3
), of volume

8
27

vol(S3).
(2) For every b ∈ S2 ⊂ S3, the submanifolds and Γ3(b) := {(g, g−1bg)|g ∈ S3} and Γ4(b) :=
{(g, gb)|g ∈ S3} are Lagrangian submanifolds of S3×S3 isometric to the Berger sphere
obtained from S3( 2√

3
) by rescaling the metric on the fibres of the Hopf fibration by a

factor 1√
3
. Their volume is equal to 24

27
vol(S3).

(3) For every a, b ∈ S2 ⊂ S3, a ⊥ b, the submanifolds L(a, b) := {gag−1, gbg−1)|g ∈ S3}
are are Lagrangian submanifolds of S3 × S3 isometric to the round sphere S3(4

3
), of

volume 64
27

vol(S3).
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Proof. The metric structure of the above submanifolds is an immediate consequence of (15).
The Lagrangian property follows from Lemmas 3.3 and 4.1 in the first two cases, as Γ1,
Γ2, Γ3(b) and Γ4(−b) are the graphs Γf−1 for f in one of the cases (1)–(4) of Lemma 3.3
respectively. The verification of the fact that L(a, b) are Lagrangian is straightforward using
(16). �

Since the volume is constant on connected components of the space of Lagrangian subman-
ifolds, we obtain directly the following:

Corollary 4.3. The space of Lagrangian submanifolds of S3 × S3 has at least 3 connected
components.

We end up this section with a remark concerning the possible radii of round Lagrangian
spheres in S3 × S3.

Proposition 4.4. The radius of a round Lagrangian sphere in S3 × S3 is necessarily of the
form k

3
for some integer k ≥ 2. The values k = 2 and k = 4 are realized by the examples (1)

and (3) in Proposition 4.2.

Proof. Let L ⊂ S3 × S3 be a 3-dimensional Lagrangian submanifold. Then the isometries of
S3×S3 define deformations of L. Indeed the isometry group of the 3-symmetric space S3×S3

is 9-dimensional, whereas the isometry group of L is at most 6-dimensional, obtained in the
case of the round 3-sphere. Hence there remains an at least 3-dimensional space of normal
deformations.

In [12] (see also [8]) it was shown that for every infinitesimal deformation transversal to the
diffeomorphisms of L, the so-called variation 1-form is a co-closed eigenform of the Hodge-
Laplace operator of L for the eigenvalue 9, when the scalar curvature of the nearly Kähler
manifold S3 × S3 is normalized to 30.

It is well known that the Laplace spectrum on co-closed 1-forms on the round sphere S3(r)

is given by {k2
r2
|k = 2, 3, . . .}. Note that the first eigenspace, corresponding to the eigenvalue

4
r2

, is exactly the space of (1-forms dual to) Killing vector fields.

Assume now that L is isometric to a round sphere S3(r). Since 9 is eigenvalue of the Hodge-

Laplace operator of L, there exists some integer k ≥ 2 such that 9 = k2

r2
, thus r = k

3
. �

5. Geodesic vector fields

Let us fix throughout this section the unit length spinor Φ := [ũ, 1]. By (12), Φ is a Killing
spinor with Killing constant 1

2
. Compared to Φ, any spinor Ψ on S3 is determined by a vector

field V and a function α. Indeed the map TgS3 ×R→ ΣgS3 defined by (V, α) 7→ V ·Φ + αΦ
is bijective at every point g, so the spinor Ψ can be uniquely written as

(17) Ψ = V · Φ + αΦ .

The generalized Killing equation for Ψ translates into a system of equations for V and α:
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Proposition 5.1. The spinor Ψ := V · Φ + αΦ is a generalized Killing spinor of unit length
if and only if the following system holds:

(i) α2 + |V |2 = 1
(ii) − V y ∗ ∇V V − V (α)V + α∇V V + dα = 0
(iii) α ∗ (V ∧ dV ) + (2α− δV )(1− α2) + αV (α) = 0

Proof. We assume that Ψ has unit length, which is equivalent to (i). It remains to show
that the generalized Killing condition is equivalent to (ii)-(iii). We compute the covariant
derivative of Ψ using Equation (9):

∇XΨ = ∇XV · Φ +X(α)Φ + 1
2
V ·X · Φ + 1

2
αX · Φ

=
(
∇XV + 1

2
∗ (V ∧X) + 1

2
αX
)
· Φ +

(
X(α)− 1

2
〈V,X〉

)
Φ.

On the other hand, for every vector field Y we have

Y ·Ψ = Y · V · Φ + αY · Φ = (∗(Y ∧ V ) + αY ) · Φ− 〈Y, V 〉Φ.
Consequently, the tensor A defined in Equation (4) satisfies

〈A(X), Y 〉 = 〈∇XΨ, Y ·Ψ〉
= 〈∇XV + 1

2
∗ (V ∧X) + 1

2
αX, ∗(Y ∧ V ) + αY 〉 − 〈Y, V 〉

(
X(α)− 1

2
〈V,X〉

)
Using the standard properties of the Hodge adjoint ∗ we readily obtain

A(X) = −V y ∗ ∇XV + α∇XV − 1
2
|V |2X + 1

2
〈X, V 〉V + 1

2
α ∗ (V ∧X)

−1
2
αV y ∗X + 1

2
α2X − V X(α) + 1

2
〈X, V 〉V

= −V y ∗ ∇XV + α∇XV − 1
2
|V |2X + 〈X, V 〉V − αV y ∗X + 1

2
α2X − V X(α).

It was already noticed that A is symmetric if and only if ei ∧ A(ei) = 0 for some local
orthonormal basis ei. From the previous formula we get:

ei ∧ A(ei) = −ei ∧ (V y ∗ ∇eiV ) + αdV − αei ∧ (V y ∗ ei) + V ∧ dα
= V y(ei ∧ ∗∇eiV )− ∗∇V V + αdV + 2α ∗ V + V ∧ dα
= −δV ∗ V − ∗∇V V + αdV + 2α ∗ V + V ∧ dα =: ω.

The 2-form ω vanishes identically if and only if its wedge and interior product with V vanish.
This is clear on the support of V , and ω is zero anyway outside the support of V . We now
compute:

V ∧ ω = (2α− δV ) ∗ |V |2 − V ∧ ∗∇V V + αV ∧ dV
= (2α− δV ) ∗ |V |2 − ∗〈V,∇V V 〉+ αV ∧ dV
= ∗

(
(2α− δV )(1− α2) + αV (α)

)
+ αV ∧ dV,

and

V yω = −V y ∗ ∇V V + αV ydV + |V |2dα− V (α)V

= −V y ∗ ∇V V + α∇V V − 1
2
αd(|V |2) + (1− α2)dα− V (α)V

= −V y ∗ ∇V V + α∇V V + α2dα + (1− α2)dα− V (α)V

= −V y ∗ ∇V V + α∇V V + dα− V (α)V.

This proves that the symmetry of A is equivalent to (ii)-(iii). �
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The main result in this section is the following

Theorem 5.2. If the function α associated via (17) to a generalized Killing spinor Ψ on S3

is constant, then Ψ is one of the spinors described in cases (1) and (3) in Example 3.2 above.

Proof. Assume first that the function α is identically zero. Then Lemma 5.1 implies that V
is a unit length divergence-free vector field satisfying V y ∗ ∇V V = 0. As 〈V,∇V V 〉 = 0, it
follows that ∇V V = 0. Using a result of Gluck and Gu ([6], Theorem A) we conclude that
V has to be a Hopf vector field, i.e. a left or right-invariant unit vector field on S3. If V is
left-invariant then the function representing Ψ = V · Φ in the frame ũ is constant, so Ψ is
a Killing spinor with Killing constant 1

2
. If V is right-invariant, then we are in case (3) of

Example 3.2.

If α is identically 1, then V = 0 so Ψ = Φ and we are in case (1) of Example 3.2.

Finally, in the case where α is a constant different from 0 and 1, Lemma 5.1 (ii) reads
V y ∗ ∇V V = α∇V V and since these two vectors are orthogonal, they both vanish, showing
that V is a geodesic vector field. Using Lemma 5.1 (iii) we obtain that the normalized vector
field ξ := V

|V | satisfies the equation

(18) ∗(ξ ∧ dξ) + 2− δξ
√
1−α2

α
= 0 .

Let us write ∇ξ = φ+ ψ with φ symmetric and ψ skew-symmetric. As ∇ξξ = 0, both φ and
ψ vanish on ξ. In dimension 2 every trace-free symmetric endomorphism anti-commutes with
every skew-symmetric endomorphism, consequently the trace-free part φ0 of φ anti-commutes
with ψ. Writing φ = φ0+ 1

2
(trφ)id we infer (φ+ψ)2 = φ2+ψ2+(trφ)ψ, so the skew-symmetric

part of (φ+ ψ)2 equals (trφ)ψ = −(δξ)ψ. This can be written as follows:

(19) ei ∧∇∇eiξ
ξ = ei ∧ (φ+ ψ)2(ei) = −2(δξ)ψ = −(δξ)dξ,

where ei is any local orthonormal frame. Using (19) and the fact that the sectional curvature
of S3 is 1, we compute in a local orthonormal frame ei parallel at some point:

∇ξdξ = ∇ξ (ei ∧∇eiξ) = ei ∧
(
Rξ,eiξ +∇ei∇ξξ +∇[ξ,ei]ξ

)
= ei ∧

(
〈ei, ξ〉ξ − ei −∇∇eiξ

ξ
)

= −ei ∧∇∇eiξ
ξ = (δξ)dξ,

thus ∇ξ(ξ ∧ dξ) = (ξ ∧ dξ)δξ and from (18) we get

∇ξδξ = (δξ)2 − 2α√
1−α2 δξ.

Every orbit of the flow of ξ is a great circle, so is closed. The restriction of δξ to such an orbit
is thus a periodic solution of the equation y′ = y2 − 2α√

1−α2y. The only periodic solution of

this equation being the constants y = 0 and y = 2α√
1−α2 , we obtain that either δξ vanishes on

S3 or δξ = 2α√
1−α2 . This last case cannot occur since by the Stokes’ Theorem the integral over

S3 of ∗δξ vanishes. By Theorem A in [6] again, ξ is a Hopf vector field on S3. Moreover, (18)
gives ∗(ξ ∧ dξ) = −2. It is easy to check from (6) that dξ = −2 ∗ ξ when ξ is left-invariant
and dξ = 2 ∗ ξ when ξ is right-invariant. Consequently ξ is a left-invariant vector field and
finally Ψ = αΦ +

√
1− α2 ξ · Φ is a Killing spinor with Killing constant 1

2
. �

Coming back to our description of generalized Killing spinors on S3 in terms of Lagrangian
embeddings, we obtain the following:
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Corollary 5.3. Let f : S3 → S2 ⊂ S3 be a map whose graph Γf is a Lagrangian submanifold
of the nearly Kähler manifold S3 × S3. Then the map f is either constant, or satisfies
f(g) = g−1bg for some fixed b ∈ S2 ⊂ S3.

Proof. The map g 7→ f(g)−1 takes values in S2 ⊂ R3. Consider the unit vector field on
S3 defined by V := [u, f−1] and the Killing spinor Φ := [ũ, 1]. Theorem 5.2 applied to the
generalized Killing spinor Ψ := [ũ, f−1] = V ·Φ shows that V is a Hopf vector field. If V is left-
invariant then f is constant. If V is right-invariant, Vg = ag for some fixed a ∈ S2 = S3 ∩R3,
which yields gf(g)−1 = ag and finally f(g) = g−1a−1g. �
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