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Abstract. We study generalized Killing spinors on compact Einstein manifolds with pos-
itive scalar curvature. This problem is related to the existence of compact Einstein hyper-
surfaces in manifolds with parallel spinors, or equivalently, in Riemannian products of flat
spaces, Calabi-Yau, hyperkähler, G2 and Spin(7) manifolds.
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1. Introduction

A generalized Killing spinor on a spin manifold (M, g) is a non-zero spinor Ψ ∈ Γ(ΣM)
satisfying for all vector fields X the equation

gksgks (1) ∇XΨ = A(X) ·Ψ,

where A ∈ Γ(End+(TM)) is some symmetric endomorphism field [4, 16, 17]. If A is a non-zero
multiple of the identity, Ψ is called a Killing spinor [3, 5].

The interest in generalized Killing spinors is due to the fact that they arise in a natural way
as restrictions of parallel spinors to hypersurfaces. More precisely, if (Mn, g) is a hypersurface
of (Zn+1, gZ) and Φ is parallel spinor on Z, then its restriction to M is a generalized Killing
spinor with respect to the symmetric tensor A equal to half the second fundamental form of
M , cf. [4, 15]. Conversely, if Ψ is a generalized Killing spinor on (M, g) with respect to A,
then there exists a metric on an open subset Z of M × R whose restriction to M × {0} is g
and a parallel spinor on Z whose restriction to M × {0} is Ψ in the following cases:

(1) If A is a constant multiple of the identity, i.e. Ψ is a Killing spinor [3];
(2) Slightly more generally, if A is parallel [24];
(3) Even more generally, if A is a Codazzi tensor [4];
(4) In the generic case, under the sole assumption that A and g are analytic [2].
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The common feature of the first three cases is that the ambient metric can be constructed
explicitly. In the last case, the existence of the ambient metric is given by the Cauchy-
Kovalevskaya theorem, and this explains the analyticity assumption. It is actually shown in
[2] that this assumption cannot be dropped.

Our main objective in this article is to study generalized Killing spinors on Einstein man-
ifolds. In some sense, this problem can be seen as an analogue of the Goldberg conjecture,
which states that an almost Kähler compact Einstein manifold with positive scalar curvature
is Kähler (this conjecture was proved by Sekigawa [27]).

In order to understand this analogy on needs to express both problems in terms of G-
structures. An almost Hermitian manifold is equivalent to a manifold with U(m)-structure.
The intrinsic torsion of such a structure has 4 irreducible components (for m ≥ 3) and
being almost Kähler is equivalent to the vanishing of 3 components out of 4. The Goldberg
conjecture simply says that if the manifold is compact and Einstein with positive scalar
curvature, then the fourth component has to vanish too.

On the other hand, in small dimensions n ≤ 8 every (half-) spinor is pure, in the sense
that the spin group acts transitively on the unit sphere of the spin representation Σn (or Σ±n
for n = 4 and n = 8). Correspondingly, a non-vanishing (half-) spinor induces a G-structure
on M where G (the stabilizer of a vector of the spin representation) equals Spin(7) ⊂ SO(8),
G2 ⊂ SO(7), SU(3) ⊂ SO(6), SU(2) ⊂ SO(5), SU(2) ⊂ SO(4) and {1} ⊂ SO(3) for 8 ≥ n ≥ 3
respectively. Being a generalized Killing spinor is equivalent to the vanishing of certain
components of the intrinsic torsion of this G-structure. More precisely, it is well known that
the structure reduction defined by a generalized Killing spinor is co-calibrated G2 (cf. [10, 12])
for n = 7, half-flat (cf. [8, 19]) for n = 6 and hypo (cf. [10]) for n = 5. Note that for n = 4
or n = 8 a generalized Killing spinor Ψ is never chiral (unless it is parallel), and each chiral
part Ψ+ and Ψ− defines a structure reduction along the open set where it is non-vanishing.
The analogue of the Golberg conjecture in this setting (which turns out to be false in general,
see below) would be that a generalized Killing spinor on a compact Einstein manifold with
positive scalar curvature is necessarily Killing.

Note also that in this context, the embedding result in [2] for manifolds with generalized
Killing spinors can be seen as a generalization to arbitrary dimensions of similar results by
Bryant, Conti, Hitchin and Salamon in small dimensions, cf. [6, 10, 11, 19].

Surprisingly, it turns out that the problem of finding all generalized Killing spinors on
a given spin manifold is out of reach at the present state of our knowledge. In dimension
2 already, the fact that every generalized Killing spinor on S2 is a Killing spinor, is non-
trivial and follows from Liebmann’s theorem [21] (see Section 4.1). Moreover, on the simplest
Riemannian manifold of dimension 3, the round 3-dimensional sphere, there is no classification
available. However, one can show that S3 carries generalized Killing spinors which are not
Killing spinors (Section 4.2 below).
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In dimension 4, the analogue of the Goldberg conjecture holds. In Theorem 4.8 below we
show that every generalized Killing spinor on a compact 4-dimensional Einstein manifold with
positive scalar curvature is Killing (and thus the manifold is isometric to S4, cf. [3, 5, 18]).

A similar result holds in dimension 5 for the round sphere (cf. Theorem 4.9). It is
presently unknown whether other 5-dimensional Einstein manifolds, e.g. the Riemannian
product S2( 1√

2
)× S3, carry generalized Killing spinors which are not Killing.

In dimensions 6 and 7 there are several examples of Einstein manifolds carrying generalized
Killing spinors which are not Killing. These examples correspond to half-flat structures on the
Riemannian product S3 × S3 constructed by Schulte-Hengesbach [26], who actually classified
all left-invariant half-flat structures on S3 × S3 (see also Madsen and Salamon [23]) and to
co-calibrated G2-structures on any 7-dimensional 3-Sasakian manifold, including the sphere
S7, constructed by Agricola and Friedrich [1] (see Section 4.5 below).

Finally, no examples of generalized Killing spinors on positive Einstein manifolds in dimen-
sion n ≥ 8 are known, other than Killing spinors on spheres, Einstein-Sasakian and 3-Sasakian
manifolds [3]. We believe however that it should be possible to construct examples, at least
in the 3-Sasakian case, using methods similar to those in [1].

2. Preliminaries

For basic definitions and results on spin manifolds we refer to [5] and [22]. Let (Mn, g) be
an n-dimensional Riemannian spin manifold with Levi-Civita connection ∇. The real spinor
bundle ΣM is endowed with a connection, also denoted by ∇, and a Euclidean product 〈., .〉
which is parallel with respect to ∇:

∂X〈Ψ,Φ〉 = 〈∇XΨ,Φ〉+ 〈Ψ,∇XΦ〉, ∀ X ∈ TM, Ψ,Φ ∈ Γ(ΣM).

The Clifford product with vectors is parallel with respect to ∇ and skew-symmetric with
respect to 〈., .〉, whence

xyxy (2) 〈X · Y ·Ψ,Ψ〉 = −g(X, Y )〈Ψ,Ψ〉, ∀ X, Y ∈ TM, Ψ ∈ ΣM.

The Riemannian curvature R and the curvature RΣM of the spinor bundle are related by

curv-0curv-0 (3) RΣM
X,Y Ψ = 1

2
R(X ∧ Y ) ·Ψ ∀ X, Y ∈ TM, Ψ ∈ ΣM,

where R : Λ2M → Λ2M denotes the curvature operator defined by

g(R(X ∧ Y ), U ∧ V ) = g(RX,YU, V ).

(In particular, the curvature operator on the standard sphere acts on 2-forms by minus the
identity). Recall that the Clifford multiplication with 2-forms is defined via the equation

2f2f (4) (X ∧ Y ) ·Ψ = X · Y ·Ψ + g(X, Y ) Ψ.

Throughout this article we will identify 1-forms and bilinear forms with vectors and endo-
morphisms respectively, by the help of the Riemannian metric. In particular it makes sense



4 ANDREI MOROIANU, UWE SEMMELMANN

to speak about (skew)-symmetric endomorphism fields. The corresponding spaces will be
denoted by

End±(TM)p := {A ∈ End(TM)p, | g(AX, Y ) = ±g(X,AY ) ∀ X, Y ∈ TpM}.
If A ∈ Γ(End+(TM)) and {ei} is a local orthonormal frame, then

tracetrace (5)
n∑
i=1

ei · A(ei) ·Ψ = −tr(A) Ψ.

Applying the first Bianchi identity the curvature relation (3) yields the well-known formula
(see also [5]):

ricciricci (6) Ric(X) ·Ψ = −2
n∑
i=1

ei · RΣM
X,ei

Ψ

which together with (5) yields:

scalscal (7) scal Ψ = −
n∑
i=1

ei · Ric(ei) ·Ψ.

3. Generalized Killing spinors

Consider now a generalized Killing spinor Ψ on (M, g), i.e. a spinor satisfying the equation
∇XΨ = A(X) ·Ψ for some symmetric endomorphism field A. Taking the scalar product with
Ψ in this equation shows that the norm of Ψ is constant. By rescaling, we may assume that
|Ψ|2 = 1. Using (1) together with (5) shows that

DΨ = −tr(A)Ψ,

where D denotes the Dirac operator. We thus get

D2Ψ = tr2(A)Ψ− dtr(A) ·Ψ.
Moreover, taking a further covariant derivative in (1) yields

∇∗∇Ψ = −
n∑
i=1

(∇eiA)ei ·Ψ− A(ei) · A(ei) ·Ψ = −
n∑
i=1

(∇eiA)ei ·Ψ + tr(A2)Ψ,

so the Lichnerowicz formula implies

scsc (8) 1
4
scalΨ = D2Ψ−∇∗∇Ψ = tr2(A)Ψ− dtr(A) ·Ψ +

n∑
i=1

(∇eiA)ei ·Ψ− tr(A2)Ψ.

Let us extend the action of A to 2-forms by A(X ∧ Y ) = A(X) ∧ A(Y ). Using (4), the
generalized Killing equation (1), and the curvature relation (3), it follows that

curvcurv (9) 1
2
R(X ∧ Y ) ·Ψ = RΣM

X,Y Ψ = [(∇XA)Y − (∇YA)X] ·Ψ − 2A(X ∧ Y ) ·Ψ.
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Lemma 3.1. If a denotes the trace of A and δA := −
∑n

i=1(∇eiA)ei denotes the divergence
of A, then the following relations hold.

twotwo (10)
n∑
i=1

ei ∧ (∇eiA)X ·Ψ = [1
2
Ric(X) + 2A2(X)− 2aA(X)] ·Ψ,

three1three1 (11) 0 = δA + da,

three2three2 (12) scal = 4a2 − 4trA2.

Proof. From (4), (5), (6) and (9) we get for every tangent vector X:

−1
2
Ric(X) ·Ψ =

n∑
i=1

ei · RΣM
X,ei

Ψ =
n∑
i=1

ei · [(∇XA)ei − (∇eiA)X] ·Ψ

− 2
n∑
i=1

ei · [A(X) · A(ei) + g(A(X), A(ei))] ·Ψ

= −tr(∇XA)Ψ−
n∑
i=1

ei · (∇eiA)X ·Ψ

+ 4A2(X) ·Ψ− 2A(X) · aΨ− 2A2(X) ·Ψ

= [−da(X)− δA(X)]Ψ−
n∑
i=1

ei ∧ (∇eiA)X ·Ψ + [2A2(X)− 2aA(X)] ·Ψ.

Taking the scalar product with Ψ in this equation and using the fact that the Clifford product
with 1- and 2-forms is skew-symmetric yields (11), and reinjecting in the same equation gives
(10). Finally, (12) follows from (8) and (11). �

In order to rewrite the right hand side of (10) we introduce the symmetric endomorphism

B := A2 − aA + 1
4
Ric.

Note that B is traceless because of (12) and B vanishes if A is a multiple of the identity. We
introduce the notation

TZ =
n∑
i=1

ei ∧ (∇eiA)Z and T =
n∑
i=1

T ei ⊗ ei.

Then TZ is a 2-form on M and, considering A as a 1-form on M with values in TM , we have

da1da1 (13) TZ(X, Y ) = g((∇XA)Y − (∇YA)X,Z) = g((d∇A)(X, Y ), Z).

The tensor T = d∇A can also be considered as a map T : Λ2M → TM by defining

g(T (X ∧ Y ), Z) = TZ(X, Y ).
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Let σ be an arbitrary 2-form and Z any vector field on M . Then (9) and (10) can be rewritten
as

T (σ) ·Ψ = [ 1
2
R(σ) + 2A(σ) ] ·Ψ, ∀ σ ∈ Λ2Mcurv-2curv-2 (14)

TZ ·Ψ = 2B(Z) ·Ψ ∀ Z ∈ TM.two-2two-2 (15)

As a corollary of the above formulas we will now generalize a classical rigidity result by
Fialkow [13] which states that every Einstein hypersurface with positive scalar curvature in
Rn+1 for n ≥ 3 is umbilic and locally isometric to the sphere Sn.

Theorem 3.2. Let (M, g) be an Einstein hypersurface with positive scalar curvature in a
spin manifold Z with parallel spinors. Assume moreover that the Weigarten tensor W of
the embedding is a Codazzi tensor, i.e. d∇W = 0 on M (this condition is automatically
satisfied for Z = Rn+1 because of the Codazzi equation). Then Z is locally isometric to the
Riemannian cone over (M, g) and M is umbilic in Z.

Proof. As explained in the introduction, M carries a generalized Killing spinor Ψ with as-
sociated tensor A := 1

2
W . Since A is Codazzi, (15) implies that the tensor B vanishes, so

A2 − aA + λ
4

= 0, where λ denotes the Einstein constant. We claim that A is a multiple of
the identity. If this were not the case, then on some open subset of M the symmetric tensor
A would have exactly two distinct eigenvalues α and β with constant multiplicities p ≥ 1
and q ≥ 1. Of course, α and β are the roots of the polynomial X2 − aX + λ

4
. We thus have

α + β = a. On the other hand, a = trA = pα + qβ so subtracting these last two equations
yields (p− 1)α+ (q− 1)β = 0, which is impossible since p+ q = n ≥ 3 and αβ = λ

4
> 0. This

proves the claim, so A = a
n
id and Ψ satisfies the equation ∇Xψ = a

n
X · Ψ. It is well known

that a has then to be constant, so Ψ is a real Killing spinor.

From Bär’s classification of manifolds with Killing spinors [3] and from the uniqueness part
of the embedding theorem in [2], it follows that Z is locally isometric to the Riemannian cone
over M . �

4. Generalized Killing spinors on low-dimensional Einstein manifolds
dim2

4.1. The case of dimension 2. Any 2-dimensional Einstein spin manifold of positive scalar
curvature is homothetic to the round sphere S2. Using classical rigidity results it it easy to
show that every generalized Killing spinor on S2 is a Killing spinor.

Indeed, if Ψ is a spinor satisfying (1) then every point of S2 has a neighborhood which
embeds isometrically in R3 with second fundamental form 2A. In particular, the determinant
of A is constant equal to 1

4
by Gauss’ Theorema Egregium. If A is not equal to − id

2
, then

there exists a point in S2 where one of its eigenvalues attains its maximum which is strictly



GENERALIZED KILLING SPINORS 7

larger than 1
2

and where the other eigenvalue attains its minimum, which is strictly smaller

than 1
2
.

On the other hand, Liebmann’s Theorem [21] states that if at a non-umbilic point of a
surface S in R3 one of the principal curvatures has a local maximum and the other one
has a local minimum, then the Gaussian curvature of S is non-positive at that point. This
contradiction shows that A has to be scalar.

4.1

4.2. The case of dimension 3. Any 3-dimensional Einstein manifold of positive scalar cur-
vature is locally homothetic to the round sphere S3. We will show that S3 carries generalized
Killing spinors which are not Killing.

Recall that in dimension 3 the Clifford action of the volume form on the spin bundle is the
identity [22]. This readily implies

v3v3 (16) ω ·Ψ = − ∗ ω ·Ψ, ∀ ω ∈ Λ2S3, Ψ ∈ ΣS3.

It is well-known that S3 carries an orthonormal frame of left-invariant Killing vector fields
{ξ1, ξ2, ξ3} satisfying

kvf1kvf1 (17) ∇ξ1ξ2 = −∇ξ2ξ1 = ξ3, ∇ξ2ξ3 = −∇ξ3ξ2 = ξ1, ∇ξ3ξ1 = −∇ξ1ξ3 = ξ2.

One can express this in a more concise way by saying that any left-invariant vector field ξ on
the Lie group S3 satisfies

kvfkvf (18) ∇Xξ = ∗(X ∧ ξ), ∀ X ∈ TS3.

Let Φ be a Killing vector field on S3 with Killing constant 1
2
:

phiphi (19) ∇XΦ = 1
2
X · Φ, ∀ X ∈ TS3,

and let ξ be a unit left-invariant Killing vector field. Using (4), (16) and (18) we compute
the covariant derivative of the spinor Ψ := ξ · Φ:

∇XΨ = (∇Xξ) · Φ + 1
2
ξ ·X · Φ

= −(X ∧ ξ) · Φ− 1
2
X · ξ · Φ− g(X, ξ)Φ

= −X · ξ · Φ− g(X, ξ)Φ− 1
2
X · ξ · Φ− g(X, ξ)Φ

= −3
2
X ·Ψ + 2g(X, ξ)ξ ·Ψ.

This shows that Ψ is a generalized Killing spinor corresponding to the symmetric endomor-
phism field

X 7→ A(X) := −3
2
X + 2g(X, ξ)ξ.

As a matter of fact, note that A is not a Codazzi tensor.
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4.3. The case of dimension 4. We assume that Ψ is a generalized Killing spinor on a
compact oriented 4-dimensional Einstein manifold (M, g) of positive scalar curvature. We
thus have Ric = λg, with λ = scal

4
> 0, and like before we may assume that Ψ is scaled to

have unit length. Then (12) reads a2 − trA2 = λ.

In dimension 4 the spin representation splits as Σ = Σ+ ⊕ Σ−, where Σ± are the ±1-
eigenspaces of the multiplication with the volume element and are interchanged by Clifford
multiplication with vectors. Correspondingly, Ψ splits as Ψ = Ψ+ + Ψ− with

pmpm (20) ∇XΨ± = A(X) ·Ψ∓.

Let M0 denote the open set p ∈M with Ψ−p 6= 0. We claim that M0 is dense. Indeed, if U
were a non-empty open subset of M \M0, then (20) yields A(X) ·Ψ+ = 0 for all X ∈ TU , so
A|U = 0. By (20) again, Ψ+ is parallel on U , so the Ricci tensor vanishes on U , contradicting
the fact that scal > 0.

Let h := |Ψ−|2 be the length function of Ψ− and let η be the vector field on M given by

etaeta (21) g(η,X) = 〈X ·Ψ+,Ψ−〉, ∀ X ∈ TM.

For every p ∈M0 the injective map X ∈ TpM 7→ X ·Ψ− ∈ Σ+
pM is bijective since dim TpM =

dim Σ+
pM . Let ξ denote the vector field on M0 defined by Ψ+ = ξ · Ψ−. Using (2) we get

η(X) = −h g(X, ξ). Moreover, since 1 = |Ψ|2 = |Ψ+|2 + |Ψ−|2 = |Ψ−|2(1 + |ξ|2) we infer
|ξ|2 = 1

h
− 1 and thus

etet (22) |η|2 = h− h2.

dh Lemma 4.1. (i) dh = 2A(η)
(ii) ∇Xη = (1− 2h)A(X)

(iii) dη = 0, δη = − (1− 2h) a

Proof. (i) Using (20) we compute for every X ∈ TM :

d|Ψ−|2(X) = 2〈∇XΨ−,Ψ−〉 = 2〈A(X) ·Ψ+,Ψ−〉 = 2η(A(X)) = 2g(A(η), X).

(ii) Taking the covariant derivative in the direction of Y in (21), assuming that X is parallel
at some point and using (2) and (20) yields

g(∇Y η,X) = 〈X · A(Y ) ·Ψ−,Ψ−〉 + 〈X ·Ψ+, A(Y ) ·Ψ+〉
= −g(X,A(Y )) |Ψ−|2 + g(X,A(Y )) |Ψ+|2

= (1− 2h)g(A(Y ), X).

(iii) Follows immediately from (ii). �

Delta Corollary 4.2. ∆h = − 2 da(η) − 2 (a2 − λ) (1− 2h)
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Proof. Straightforward calculation using (11):

∆h = δdh = 2 δ(A(η)) = −2
n∑
i=1

g(ei, (∇eiA)η + A(∇eiη))

= 2g(δA, η) − 2
n∑
i=1

g(∇eiη, A(ei))

= −2da(η) − 2(1− 2h)tr(A2) = −2da(η) − 2(1− 2h)(a2 − λ).

�

We denote by M1 the set of points where Ψ+ is non-vanishing. Like before, M1 is dense,
so M ′ := M0 ∩M1 is dense, too.

It is well known that Λ2
±M acts trivially (by Clifford multiplication) on Σ±M . Moreover,

the map ω+ 7→ ω+ · Ψ− is a bijection from the space of self-dual 2-forms Λ2
+M

′ onto the
orthogonal complement (Ψ−)⊥ in Σ−M ′, and similarly the map ω− 7→ ω− ·Ψ+ is a bijection
from the space of anti-self-dual 2-forms Λ2

−M
′ onto the orthogonal complement (Ψ+)⊥ in

Σ+M ′. This has the following important consequence.

form Lemma 4.3. If ω is a 2-form and X is a vector field on M ′ such that ω ·Ψ = X ·Ψ holds,
then

ω = (X ∧ ξ)+ − 1
|ξ|2 (X ∧ ξ)−.

where σ± denotes the self-dual and anti-self-dual part of a 2-form σ. In particular it follows
that B(ξ) = 0 and that X is orthogonal to ξ.

Proof. Decomposing the generalized Killing spinor as Ψ = Ψ+ + Ψ− and the 2-form as ω =
ω+ + ω−, the equation X ·Ψ = ω ·Ψ can be rewritten as

ω− ·Ψ+ + ω+ ·Ψ− = X ·Ψ = X · (Ψ+ + Ψ−) = X · ξ ·Ψ− − 1
|ξ|2 X · ξ ·Ψ

+

= (X ∧ ξ)+ ·Ψ− − g(X, ξ) Ψ− − 1
|ξ|2 (X ∧ ξ)− ·Ψ+

+ 1
|ξ|2 g(X, ξ) Ψ+.

Comparing types, we find ω+ = (X ∧ ξ)+ and ω− = − 1
|ξ|2 (X ∧ ξ)−. Moreover, since σ+ ·Ψ−

is orthogonal to Ψ− for any 2-form σ, the equation immediately implies g(X, ξ) = 0. Finally
applying this result to Equation (15) we obtain that g(B(Z), ξ) = 0 for any vector field Z,
thus B(ξ) = 0.

�

Lemma 4.3 applied to Equations (14) and (15) allows us to express the full curvature tensor
of (M, g) in terms of the endomorphism A. Indeed we immediately obtain

curv-3curv-3 (23) 1
2
g(R(σ), τ) + 2 g(A(σ), τ) = g(T (σ) ∧ ξ, τ+) − 1

|ξ|2 g(T (σ) ∧ ξ, τ−),
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for any 2-forms σ and τ . Here τ+ and τ− are self- and anti-self dual part of τ . The T -part
needs a short calculation and is given in the following

T Lemma 4.4. Let σ and τ be any 2-forms, then

g(T (σ) ∧ ξ, τ) = 2 g(B(σ+(ξ)), τ(ξ)) − 2
|ξ|2 g(B(σ−(ξ)), τ(ξ)).

Proof. Lemma 4.3 together with Equation (15) imply for any vector field Z the equation

TZ = 2 (B(Z) ∧ ξ)+ − 2
|ξ|2 (B(Z) ∧ ξ)−.

Then T (X ∧Y ) =
∑n

i=1 T
ei(X, Y ) ei =

∑n
i=1 g(T ei , X ∧Y )ei. Thus replacing X ∧Y with any

2-form σ gives

T (σ) = 2
n∑
i=1

g(B(ei) ∧ ξ, σ+) ei −
n∑
i=1

2
|ξ|2 g(B(ei) ∧ ξ, σ−) ei

= −2B(σ+(ξ)) + 2
|ξ|2 B(σ−(ξ)).

Taking the scalar product with τ(ξ) = ξy τ proves the statement of the lemma. �

For later use we still need an expression in the special case σ = η ∧ Y , where Y is an
arbitrary vector field and η is defined in (21).

corT Corollary 4.5. Let Y be any vector field then

T (η, Y ) = (1− 2h)
(
A2(Y )− aA(Y ) + λ

4
Y
)
.

Proof. In dimension 4 we have ∗(X ∧ Y ) = −Xy ∗ Y and ∗(X ∧ Y )(ξ) = −g(∗Y,X ∧ ξ).
Hence, taking σ = X ∧ Y , we deduce from the calculations in the proof of Lemma 4.4 that

T (X ∧ Y ) = ( 1
|ξ|2 − 1)B((X ∧ Y )(ξ)) − (1 + 1

|ξ|2 )B(∗(X ∧ Y )(ξ)).

Thus specializing to X ∧ Y = η ∧ Y the second summand vanishes. Recalling that η = −hξ,
|ξ|2 = 1−h

h
and B(ξ) = 0, we get

T (η, Y ) = 1−|ξ|2
|ξ|2 g(η, ξ)B(Y ) = (1− 2h)B(Y ) = (1− 2h)(A2(Y )− aA(Y ) + λ

4
Y ).

�

In dimension 4 the Einstein condition is equivalent to having R : Λ2
±T → Λ2

±T , i.e. the
curvature operator preserves the space of self-dual and anti-self-dual forms. In particular we
have g(R(σ+), τ−) = 0. Let e1 := ξ

‖ξ‖ . Substituting σ = σ+ and τ = τ− in (23) and using

Lemma 4.4 yields

ABAB (24) 0 = g(A(σ+), τ−) + g(B(σ+(e1)), τ−(e1)).
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We will use (24) to show that A(e1) = a1e1 for some real function a1. Indeed the condition
B(e1) = 0 implies A2(e1) − aA(e1) + λ

4
e1 = 0. Thus the space span{e1, A(e1)} is invariant

under A and we may choose a local orthonormal frame {e1, e2, e3, e4}, with e1 := ξ
‖ξ‖2 and

Ae1 = a1e1 + a12e2, Ae2 = a12e1 + a2e2, Ae3 = a3e3, Ae4 = a4e4.

Consider the 2-forms σ+ = e1 ∧ e3 − e2 ∧ e4 and τ− = e1 ∧ e4 − e2 ∧ e3. Then

evev (25) 0 = g(A(σ+), τ−) = −a12 (a4 + a3).

Next consider the 2-forms σ+ = e1 ∧ e4 + e2 ∧ e3 and τ−e1 ∧ e4 − e2 ∧ e3. Then

0 = g(A(σ+), τ−) + g(B(e4), e4) = (a1a4 − a2a3) + (a2
4 − aa4 + λ

4
)

= −a2(a3 + a4) − a3a4 + λ
4

If a3 + a4 = 0, then a3a4 = λ
4
> 0, which is impossible. Thus a3 + a4 6= 0 and a12 has to

vanish, because of (25). Consequently, around every point in M ′ we have a local orthonormal
frame e1 := ξ

‖ξ‖ , e2, e3, e4 with Aei = aiei and such that the eigenvalues ai satisfy the relation

a2a3 +a2a4 +a3a4 = λ
4
. Moreover a2

1−aa1 + λ
4

= 0 and in particular, since λ > 0, the function
a1 is nowhere zero.

Using Lemma 4.1 (i) and (iii) we get 0 = d(A(η) = d(a1η) = da1 ∧ η and thus da1 is
collinear to η. The precise relation is given in the following

da Proposition 4.6. da1 = 1−2h
h(1−h)

(λ
4
− 3a2

1) η

Proof. Let f be a function with da1 = fη. Then da1(η) = f |η|2 = fh(1− h) and f = η(a1)
h(1−h)

.

In order to compute η(a1), we take the covariant derivative of A(η) = a1η in direction of the
vector field Y . Using Lemma 4.1 (ii) we get

(∇YA) η = −A(∇Y η) + Y (a1) η + a1(1− 2h)A(Y )

= −(1− 2h)A2(Y ) + Y (a1) η + a1(1− 2h)A(Y ).

Next we apply (13) and Corollary 4.5 to interchange Y and η. We obtain

(∇ηA)Y = T (η, Y ) − (1− 2h)A2(Y ) + Y (a1) η + a1(1− 2h)A(Y )

= Y (a1) + (1− 2h)
(
(a1 − a)A(Y ) + λ

4
Y
)
.

Since |A|2 = tr(A2) and scal is constant, (12) implies η(|A|2) = η(tr(A2)) = η(a2) =
2aη(a). On the other hand, computing η(|A|2) with η(|A|2) = ∇η|A|2 = 2g(∇ηA,A) =
2g((∇ηA)ei, A(ei)) gives

a η(a) = A(η)(a1) + (1− 2h)
(
(a1 − a)tr(A2) + λ

4
a
)

= a1 η(a1) + (1− 2h)
(
(a1 − a)(a2 − λ) + λ

4
a
)
.
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From B(ξ) = 0 we have a2
1− aa1 + λ

4
= 0 and thus a η(a)− a1η(a1) = − (a1−a)2

a1
η(a1). Another

simple calculation gives (a1 − a)(a2 − λ) + λ
4
a = (a1 − a)2(4a1 − a). Substituting this into

the equation above yields

η(a1) = (1− 2h)(aa1 − 4a2
1) = (1− 2h)(λ

4
− 3a2

1).

�

Comparing the expression of da1 given in Proposition 4.6 and the expression of dh given
in Lemma 4.1 (ii) we get

da1 = 1−2h
2h(1−h)

(
λ

4a1
− 3a1

)
dh.

This shows that the function

c1c1 (26) C := (h(1− h))3
(
a2

1 − λ
12

)
is constant on M ′. Note that although the function a1 is only defined on M ′, the function
l := h(1− h)a2

1 is well-defined on the whole M . Indeed, from Lemma 4.1 (i) and (22) we get
|dh|2 = 4a2

1h(1− h) = 4l. Using the density of M ′ in M , (26) shows that

c2c2 (27) C := (h(1− h))2
(
l − h(1−h)λ

12

)
is constant on M . Moreover this constant turns out to be zero because of

Lemma 4.7. The function h(1− h) has a zero and in particular the constant C vanishes.

Proof. Since M is compact h attains its absolute minimum at some point x0 ∈ M . By (22)
h takes values in [0, 1]. Clearly h(x0) < 1, since otherwise h ≡ 1 on M , i.e. Ψ− ≡ 0, which is
impossible.

Assume that h(x0) 6= 0. Then x0 ∈ M ′ so Lemma 4.1 (i) together with dhx0 = 0 give
2a1(x0)ηx0 = 0. As a1 is nowhere zero on M ′, it follows ηx0 = 0 and thus 0 = |η|2(x0) =
h(1− h)(x0), i.e. h(x0) = 0. This contradiction shows that actually h vanishes at x0. �

We can now conclude:

dim4 Theorem 4.8. Let (M, g) be a compact 4-dimensional Einstein manifold of positive scalar
curvature, admitting a generalized Killing spinor Ψ. Then (M, g) is isometric to the standard
sphere and Ψ is an ordinary Killing spinor.

Proof. Since C = 0 and h is non-constant, (27) gives a2
1 = λ

12
, so a2 = 4

3
λ. In particular, the

function a is constant on M ′, and thus on M . From Corollary 4.2 it follows that 1− 2h is a
an eigenfunction for the Laplace operator for the eigenvalue 4(a2−λ) = 4

3
λ. According to the

Lichnerowicz-Obata Theorem, this is the lowest possible eigenvalue of the Laplace operator
on compact Einstein manifolds, and it characterizes the round sphere.
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Moreover, from Equation (12) we obtain

tr
(
A− a

4
id
)2

= tr(A2)− a2

4
= (a2 − λ)− a2

4
= 0.

This shows that the symmetric endomorphism A is a constant multiple of the identity map,
so Ψ is a Killing spinor and thus the manifold is isometric to S4, cf. [3, 5, 18]. �

4.4. The case of dimension 5. We start by reviewing the algebraic theory of spinors in
dimension 5. Let M be a 5-dimensional spin manifold. Since the spin representation is
isomorphic to the standard representation of Spin(5) = Sp(2) on R8 = H2, the spin bundle
ΣM carries a quaternionic structure. However, as the Clifford algebra Cl5 is isomorphic with
C(4), only one of the complex structures on ΣM (the one given by Clifford multiplication
with the volume element) commutes with the Clifford product with vectors. Let us call this
complex structure I and denote by J and K two other complex structures on ΣM orthogonal
to I and anti-commuting. It is easy to check that J and K anti-commute with the Clifford
product with vectors.

For every nowhere vanishing spinor Ψ, the spin bundle has the following orthogonal direct
sum decomposition:

decodeco (28) ΣM = TM ·Ψ⊕ 〈Ψ〉 ⊕ 〈JΨ〉 ⊕ 〈KΨ〉.
Indeed, it is straightforward to check from the above properties of the complex structures
J and K that all factors are mutually orthogonal. Since IΨ is orthogonal to the last three
factors, we must have IΨ ∈ TM ·Ψ, so there exists a unit vector field ξ such that

xixi (29) IΨ = ξ ·Ψ.
We denote by D := ξ⊥ the distribution orthogonal to ξ. For every X ∈ D the spinor X ·IΨ is
orthogonal to Ψ, IΨ, JΨ and KΨ, so there exists a vector YX ∈ D such that X ·IΨ = YX ·Ψ.
We denote by L the endomorphism of TM which maps ξ to 0 and X to YX for X ∈ D. It is
easy to check that L is skew-symmetric and satisfies the relations

t1t1 (30) L2 = −id + ξ ⊗ ξ,
(so L defines a complex structure on D), and

t2t2 (31) X · IΨ = LX ·Ψ− g(X, ξ)Ψ, ∀X ∈ TM.

This last relation allows us to explicit the Clifford product of 2-forms with Ψ. We decompose
Λ2M as

Λ2M = ξ ∧ TM ⊕ Λ(1,1)D ⊕ Λ(2,0)+(0,2)D

and using (31) we get

cl1cl1 (32) (ξ ∧X) ·Ψ = −LX ·Ψ, ∀X ∈ TM,

cl2cl2 (33) Λ(1,1)D ·Ψ = 〈IΨ〉 = 〈ξ ·Ψ〉,

cl3cl3 (34) Λ(2,0)+(0,2)D ·Ψ = 〈JΨ〉 ⊕ 〈KΨ〉.
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The last relation actually yields a trivialization of Λ(2,0)+(0,2)D (and thus a SU(2) reduction
of the structure group of M), but we will not need this in the sequel.

We are now ready to prove the main result of this section:

dim5 Theorem 4.9. Any generalized Killing spinor on the 5-sphere S5 is a real Killing spinor.

Proof. Let Ψ be a generalized Killing spinor on S5 satisfying (1). The curvature endomorphism
of the sphere is minus the identity on 2-forms, so (14) reads

T (X ∧ Y ) ·Ψ =
[
2AX ∧ AY − 1

2
X ∧ Y

]
·Ψ, ∀X, Y ∈ TM.

From (32)–(34) we deduce that

1111 (35) AX ∧ AY − 1
4
X ∧ Y ∈ ξ ∧ TM ⊕ Λ(1,1)D, ∀X, Y ∈ TM.

Let Aξ = αξ+ ζ with ζ ∈ D. Taking X = ξ in (35) we obtain that ζ ∧AY belongs to Λ(1,1)D
for every Y orthogonal to Aξ. Assume that ζ 6= 0. Then AY belongs to the subspace spanned
by ζ and Lζ for all Y orthogonal to Aξ, whence the image of A is a subset of 〈ξ, ζ, Lζ〉. Since
A is symmetric, Ker(A) contains the orthogonal complement of 〈ξ, ζ, Lζ〉 in TM . Let Y be a
vector in this orthogonal complement. By (35) again, X ∧ Y ∈ Λ(1,1)D for all X ∈ D, which
is a contradiction for X = ζ. This shows that ζ = 0, so D is left invariant by A.

Let {e1, e2, e3, e4} be an orthonormal basis of eigenvectors of the restriction of A to D
corresponding to the eigenvalues αi. Thus in the basis {ξ, e1, e2, e3, e4} the matrix of A is
diagonal, with entries {α, α1, α2, α3, α4}. Equation (35) implies that

(αiαj − 1
4
) ei ∧ ej ∈ Λ(1,1)D

for all subscripts 1 ≤ i, j ≤ 4. This shows that for every subscript i, there are at least two
other subscripts j and k such that αiαj = αiαk = 1

4
. Up to a permutation we can thus assume

that α1 = α2 and α3 = α4 = 1
4α1

. We see that either α1 = α2 = α3 = α4, or α1 6= α3, in

which case e1 ∧ e2 and e3 ∧ e4 belong to Λ(1,1)D. In this last case L preserves the eigenspaces
〈e1, e2〉 and 〈e3, e4〉 of A, so in both cases L and A commute.

We now take a covariant derivative with respect to an arbitrary vector X in (29) and use
(31) to obtain

∇Xξ ·Ψ = ∇X(ξ ·Ψ)− ξ · ∇XΨ

= I(AX ·Ψ)− ξ · AX ·Ψ = AX · IΨ + AX · ξ ·Ψ + 2g(AX, ξ)Ψ

= 2AX · IΨ + 2g(AX, ξ)Ψ = 2LAX ·Ψ,
whence

nxinxi (36) ∇Xξ = 2LAX, ∀X ∈ TM.

Since L and A commute, LA is skew-symmetric, thus ξ is a Killing vector field on S5, i.e.
there exists a skew-symmetric matrix M ∈ so(6) such that ξx = Mx for every x ∈ S5 ⊂ R6.
Moreover, ξ has constant length 1, thus M is orthogonal, so M2 = −id. On the other
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hand, the covariant derivative of ξ can also be computed by projecting in TS5 the Euclidean
covariant derivative in R6. We thus obtain (∇Xξ)x = prTxS5(MX) = MX − 〈x,MX〉x. Let
ϕ denote the skew-symmetric endomorphism corresponding to ∇ξ. The previous relation
implies

ϕ2(X) = ϕ(MX−〈x,MX〉x) = M2X−〈x,MX〉Mx = −X+〈Mx,X〉Mx = −X+g(X, ξ)ξ.

(Note that this relation could also have been obtained by saying that every unit Killing vector
field on S5 is Sasakian). Comparing it with (36) and using (30) yields

−X + g(X, ξ)ξ = 4L2A2X = −4A2X + 4g(A2X, ξ)ξ.

Consequently, the restriction of 4A2 to D is the identity, thus trA2 = α2 + 1. Moreover the
eigenvalues αi of A|D belong to {±1

2
}. Since these eigenvalues are pairwise equal, assuming

that they are not all equal then tr(A|D) = 0 so a = trA = α. This contradicts Equation (12)
which in our case reads a2 − trA2 = 1

4
scal = 5. In the remaining cases the eigenvalues of

A|D are all equal to either α1 = 1
2

or α1 = −1
2
, so a = α + 4α1 and from (12) again we get

(α+ 4α1)2 − (1 + α2) = 5, which finally gives αα1 = 1
4

i.e. α = α1 and A is a constant scalar

matrix ±1
2
id. This finishes the proof of the theorem. �

4.4

4.5. The case of dimension 6 and 7. As already mentioned, generalized Killing spinors
are equivalent to half-flat SU(3)-structures [8, 19] in dimension 6 and to co-calibrated G2-
structures [10, 12] in dimension 7.

Using this correspondence, examples of Einstein metrics with generalized Killing spinors
in these dimensions can be found in the recent literature. In [26], Table 3, p. 74, Schulte-
Hengesbach constructs a half-flat structure on the Riemannian product S3 × S3 (see also
[26], Remark 1.12, p. 87). In fact Schulte-Hengesbach classifies all half-flat structures on
the product of two 3-dimensional spheres, and it turns out that for a certain choice of the
parameters the corresponding structure is compatible with the product metric S3 × S3 (see
also [23], p. 14).

The Fubini-Study metric on CP3 admits a half-flat structure with respect to the non-
integrable almost complex structure. This example can be found in [9], Section 4.5, Prop.
4.12. Conti considers the complex projective space CP3 realized as a hypersurface in the
total space of the vector bundle of anti-self-dual 2-forms Λ2

−S4 equipped with the parallel
G2-structure found by Bryant and Salamon [7].

In fact, using the methods of [5], Chapter 5.4, it is easy to show that on the homogeneous
spaces S3 × S3, CP3 and the flag manifold SU(3)/T2 there exists a 1-parameter family of
metrics with a generalized Killing spinor, given as a constant map on the respective groups.
For each of the three cases, this family of metrics contains exactly two Einstein metrics. One
of these Einstein metrics is compatible with a nearly Kähler structure and the corresponding
spinor is a Killing spinor. The second Einstein metric is the standard Kähler-Einstein metric
on the two twistor spaces CP3 and SU(3)/T2 and the product metric on S3×S3. Note that in
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the first two cases, the generalized Killing spinor turns out to be a Kählerian Killing spinor
[20, 25].

In dimension 7, examples of generalized Killing spinors which are not Killing were recently
constructed by Agricola and Friedrich [1] on every 3-Sasakian metric (it is well known that
3-Sasakian metrics are automatically Einstein). They actually show that every 7-dimensional
3-Sasakian manifold carries a so-called canonical spinor Ψ0, which is not a Killing spinor itself,
but generates the 3-dimensional space of Killing spinors in the sense that the three Killing
spinors of the 3-Sasakian structure are obtained by Clifford product of Ψ0 with the three
Sasakian Killing vector fields. Agricola and Friedrich show that the G2-structure defined by
Ψ0 is co-calibrated not only on the original metric g but on the whole 1-parameter family
of metrics gt obtained by rescaling g along the 3-dimensional Sasakian distribution. Thus
Ψ0 is a generalized Killing spinor for each metric in this family, which contains two Einstein
metrics: the 3-Sasakian metric g for t = 1 and a proper G2-metric for t = 1

5
(cf. [14]). For

this second Einstein metric, Ψ0 turns out to be a genuine Killing spinor.

Note in particular that this construction gives a generalized Killing spinor which is not
Killing on the standard sphere S7.

5. Final remarks and open questions

In view of the correspondence between generalized Killing spinors and hypersurface em-
beddings in manifolds with parallel spinors, we obtain the following corollaries of our main
results:

Corollary 5.1. Let (M4, g) be a compact Einstein hypersurface with positive scalar curva-
ture in a Riemannian product (Z5, gZ) = R × (N4, h) where (N, h) is simply connected and
hyperkähler (e.g. the flat space R4, a K3 surface, an Eguchi-Hanson manifold, a Taub-NUT
or a Kronheimer ALE space). Then (N, h) is flat and (M4, g) = S4.

Proof. The manifold (Z, gZ) is spin and has a parallel spinor. By [4], Equation (30), (M4, g)
carries a generalized Killing spinor, so (M4, g) = S4 by Theorem 4.8. From the uniqueness
part of Theorem 1.1 in [2] we deduce that the ambient metric gZ is flat. �

A similar argument together with Theorem 4.9 yields:

Corollary 5.2. Let (Z6, gZ) be a simply connected Ricci-flat Kähler threefold (e.g. the flat
space R6, a Calabi-Yau threefold, or R2 ×K3). If S5 has an isometric embedding in (Z, gZ),
then Z is a flat space.

We finally list some open questions which arose during the preparation of this work, which
we think worth of further investigation:

• Does the sphere Sn carry generalized Killing spinors which are not Killing? From the
above, we know that the answer is “yes” for n = 3 and n = 7, “no” for n = 2, n = 4
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and n = 5, and unknown for n = 6 and n ≥ 8. It is surprising that one does not know
whether a half-flat structure on S6 is necessarily nearly Kähler.
• Find all generalized Killing spinors on a given spin manifold. To our knowledge,

the only cases where a complete answer is available are given by Theorems 4.8 and
4.9. Even for one of the simplest possible manifolds, the round sphere S3, the set of
generalized Killing spinors is unknown.
• In the real analytic case, a spin manifold with generalized Killing spinors embeds as a

hypersurface in a manifold with parallel spinors ([2], Theorem 1.1). What is (locally)
the ambient metric corresponding to the examples above, e.g. for the spinors on S3

constructed in Section 4.2? This metric is interesting since it is hyperkähler, non-flat,
and contains round spheres as hypersurfaces.
• In all available examples of generalized Killing spinors on Einstein manifolds, the

symmetric tensor A has constant eigenvalues. Is this a general phenomenon?
• Is it possible to construct examples of generalized Killing spinors on 3-Sasakian man-

ifolds of dimension 4n+ 3 ≥ 11 using methods similar to those in [1]?
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