DEFORMATIONS OF NEARLY PARALLEL G,-STRUCTURES

B. ALEXANDROV, U. SEMMELMANN

ABSTRACT. We study the infinitesimal deformations of a proper nearly parallel Ga-structure
and prove that they are characterized by a certain first order differential equation. In par-
ticular we show that the space of infinitesimal deformations modulo the group of diffeomor-
phisms is isomorphic to a subspace of co-closed A3,-eigenforms of the Laplace operator for
the eigenvalue 8scal /21. We give a similar description for the space of infinitesimal Ein-
stein deformations of a fixed nearly parallel Go-structure. Moreover we show that there are
no deformations on the squashed S7 and on SO(5)/SO(3), but that there are infinitesimal
deformations on the Aloff-Wallach manifold N(1,1) = SU(3)/U(1).

1. INTRODUCTION

A nearly parallel Gg-structure on a 7-dimensional manifold M is given by a 3-form o of
special algebraic type satisfying the differential equation *do = 790 for some constant 7.
Such a manifold has a structure group contained in the exceptional Lie group Gy C SO(7)
and, in particular, a Riemannian metric g induced by o. It can be shown that nearly parallel
Go-manifolds are irreducible and Einstein with scalar curvature scal = & 75. Moreover, the
existence of such a structure is equivalent to the existence of a spin structure with a Killing
spinor.

Another equivalent description of nearly parallel Go-structures is in terms of the metric
cone (M ,g), which has to have holonomy contained in Spin(7), considered as subgroup of
SO(8). The metric cone is the manifold M = M x R, with the warped product metric
G=r2g@dr? If (M7, g) is simply connected and not isometric to the standard sphere, then
there are three possible cases: the holonomy of (]\Z/ ,§) is contained in Sp(2), equivalently,
(M7, g) is a 3-Sasakian manifold, the holonomy can be SU(4), equivalently, (M7, g) is an
Einstein-Sasaki manifold, or the holonomy is precisely Spin(7), in which case we call the
Go-structure proper. We recall that these three cases correspond to the existence of a 3-, 2-
resp. l-dimensional space of Killing spinors. Proper nearly parallel Go-structures are also
characterized by the vanishing of the Lie derivative L¢o for any Killing vector field .

In this article we shall mainly consider the case of proper nearly parallel Go-manifolds. In
[12] it is shown that any 7-dimensional 3-Sasakian manifold admits a second nearly parallel
Go-structure which is proper. The corresponding Einstein metric belongs to the metrics
of the canonical variation of the 3-Sasakian Einstein metric. Applying this construction to

The first author was partially supported by Contract 195/2010 with Sofia University ”St. Kl. Ohridski”.



2 B. ALEXANDROV, U. SEMMELMANN

the homogeneous 3-Sasakian spaces S” and N(1,1) one obtains homogeneous proper nearly
parallel Go-structures: the squashed 7-sphere and the second Einstein metric on N(1,1).
The Aloff-Wallach spaces N(k, 1) for (k,l) # (1,1) also have exactly two nearly parallel Go-
structures, both of which are proper. A further example is the isotropy irreducible space
SO(5)/SO(3). In fact, due to the classification [12] these are the only homogeneous nearly
parallel Go-manifolds.

As a last remarkable property of nearly parallel Go-manifolds we mention the existence of a
metric connection V with totally skew-symmetric torsion. The so-called canonical connection
V is defined as V =V — 750 and has holonomy contained in the group Gy C SO(7). Nearly
parallel Go-manifolds appear as one of two exceptional cases in a classification of metric
connections with parallel torsion due to Cleyton and Swann [7]. The other exceptional case
is the class of 6-dimensional nearly Kahler manifolds, which turns out to be in various ways
rather similar to nearly parallel Go-manifolds. The defining condition is the existence of a
nearly parallel almost complex structure J, i.e., J satisfying (VxJ)(X) = 0 for any vector
field X. Nearly Kéhler manifolds in dimension 6 are also Einstein manifolds admitting a
Killing spinor. Moreover, the metric cone has holonomy contained in Gs.

In this article we shall show that nearly parallel Go-manifolds are also in another respect
very similar to nearly K&hler manifolds: the description of infinitesimal deformations. In [16]
the space of infinitesimal nearly Kahler deformations is identified with the space of primitive
co-closed (1, 1)-eigenforms of the Laplace operator for the eigenvalue 2scal /5, [19] contains
a similar description of the space of infinitesimal Einstein deformations. This space turns
out to be the sum of three such eigenspaces. Finally, in [18] it is shown that infinitesimal
deformations for the known homogenous examples only exist in the case of the flag manifold
SU(3)/T?2. For all three results we shall obtain a counterpart on nearly parallel Go-manifolds.

We start with the equations of R. Bryant (cf. Proposition 3.1 and [6]) describing the
infinitesimal deformation of an arbitrary Ge-structure. They give equations for the tangent
vector on a curve of Go-structures. Specializing to the case of nearly parallel Go-structures
and staying transversal to the action of the diffeomorphism group, we obtain that the space of
such deformations is a direct sum of two spaces, D, and Dj, consisting of 1-forms and 3-forms
respectively. As shown in Section 4, the space D; parametrizes Einstein-Sasakian structures
compatible with the given nearly parallel Ga-structure. The more interesting space is Ds
which consists of the solutions ¢ in A3, T*M of the differential equation xd¢p = —7p¢p. In
particular, infinitesimal deformations ¢ € Ds are co-closed and eigenforms of the Hodge-
Laplace operator for the eigenvalue 73 = 8scal /21. But more important for the computation
in examples is that they are also eigenforms for the eigenvalue % of the Go-Laplace operator
A introduced in Section 5. In Section 6 we describe the space of infinitesimal Einstein
deformations of the metric of a nearly parallel Go-structure. In addition to D3 one obtains
two other spaces of sections of A3, T*M which are characterized by similar equations. In the
last section we compute the infinitesimal Einstein deformations of the normal homogeneous

examples: the isotropy irreducible space SO(5)/SO(3), the squashed 7-sphere and the second
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Einstein metric on the Aloff-Wallach space N(1,1). We show that there exist no Einstein
deformations and, in particular, no deformations of the nearly parallel G-structure in the
first two cases, while in the third the space of infinitesimal Einstein deformations coincides
with the space of infinitesimal nearly parallel Go-deformations and is 8-dimensional. We do
not know whether these infinitesimal deformations integrate to real Einstein deformations.

2. PRELIMINARIES

Let ey, ..., er denote the standard basis of R” and e!,...,e" its dual basis. On R” we fix
the canonical scalar product (-,-) and the standard orientation. We shall write e"** for the
wedge product et A ... Ae € A¥(R7)* and define the fundamental 3-form as

(2.1) o= o123 4 Q45 4 246 L (34T 16T | 257 336

The exceptional group G is defined as the subgroup of GL(7,R) that fixes the 3-form o,
ie, Gy ={g € GL(7,R) | g*0c = 0}. The group Gy is a 14-dimensional compact, connected,
simple Lie group, which acts irreducibly on T := R” and preserves the metric, the orientation
and the Hodge dual of o, i.e. the 4-form

(22) %o — 64567 4 62367 + 61357 4 61256 o 62345 + 61346 . 61247.

The irreducible representations of Go can be indexed by their highest weights, which are
pairs of non-negative integers (p, q) if written as linear combinations of the two fundamental
weights. The corresponding representation will be denoted by V,, ,. In this paper we will in
particular be interested in the following four irreducible Ga-representations: the trivial rep-
resentation Vo = R, the standard representation Vg =T := R7, the adjoint representation
Vo1 = g2 and the representation on traceless symmetric 2-forms Vap = SZT*. Among the
irreducible representations these are uniquely determined by their dimensions 1, 7, 14 and
27 respectively. Therefore we shall use the dimensions as lower indices when we decompose
the space of k-forms A*T* into irreducible components. In other words, A* will denote the
r-dimensional irreducible subspace of A¥T*. With this notation we have

(2.3) AN =T =A2a A, N=ANT=ANoAaoAi,

with an isomorphic decomposition for A*T* = A3T* and A°T* = A?T* obtained with the
help of the Hodge *-operator. The one-dimensional spaces in A3 resp. A* are spanned by o
resp. *o0. The space A%, is isomorphic to the Lie algebra of Gy and the other subspaces can
be characterized by

A={X_o0eN|XeT}=T, A={Xix0eAN|XecT}=T,
Ay, ={aeN |aNo=0=aAxc} V.

In the sequel we shall use the following Gy-equivariant isomorphisms, which were introduced
by Bryant in [6]: i: S3T* — A3, and j : A3, — S3T*, where i is the restriction to S3T* C S*T*
of the map S?T* — A3T*, defined on decomposable elements by

a®p—=aN(fuo)+ LA (aso),
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while j is given by
JN(XY) = +((Xa0) A (Yao) Ar).
Note that j = —8i~!. With the help of i one can obtain explicit elements of A3, e.g.

(2.4) i(e! @ e?) = M6 4 (15T 4 (285 _ 267,

Because of T* @ T* = S*T* @ A*T* we have the following decomposition:
(2.5) Vio@Vig=ERO Vo0 Vip® Vo

Later we shall also need the decompositions

(2.6) Vip®@ Voo EVig® Voo ® Vo1 ® Vi @ Vap,

(2.7) Vip@ Vo1 = Vig® Voo ® Vi

The group G can also be defined as the stabilizer of the vector cross product P, given by
(2.8) o(X,)Y,Z)=(P(X,Y), Z),

where XY, Z are any vectors in T. Recall from [8] that a 2-fold vector cross product P is a
bilinear map P : T x T — T satisfying for all X,Y € T the equations

(29)  (P(X,Y),X)=(P(X,Y),Y)=0 and [PX,Y)|*=[X[*[V]* - (X,Y)"

In particular, it follows from the second equation of (2.9) that P is skew-symmetric. Thus
we can consider P as a linear map P : A°T — T and write P(X AY) = P(X,Y). In this
notation the second equation of (2.9) reads: ||[P(X AY)|? = || X AY|2. We also refer to [8]
for the following relations satisfied by a general 2-fold vector cross product:

Lemma 2.1. For X,Y,Z € T we have

(1) (P(X,Y),Z) =(X,P(Y,Z)),
(3) 2P(P(X,Y),Z) = P(P(Y,Z),X) + P(P(Z,X),Y) +3(X, Z)Y — 3(Y, Z)X.

From now on we will usually identify vectors and 1-forms via the metric and denote with
{e;}, i=1,...,7 an orthonormal basis of T. For later use we still note

Lemma 2.2. Let X and Y be any vectors in 'T. Then the following equations hold

(2.10) (Xso)ANo = =2X A %o,

(2.11) (Xio)A*o = 3 x X,

(2.12) Yoo X so)i(esNo) = 3X 1 xo,
(2.13) Yoi(eiaX so)A(eu0o) = 3X 1 xo,
(2.14) (XY so)so + XaY %0 = =X NY,
(2.15) P(X so) = 3X.
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The GLs-orbit of o in A3T* is an open set by dimensional reasons. As usual it is denoted
with A%. Forms in A? are called stable or definite.

Let M be a 7-dimensional manifold. The union of the subspaces A3 T:M, x € M, of stable
forms defines an open subbundle A3 T*AM C A3T*M. There is a one-to-one correspondence
between Go-structures on M, i.e. reductions of the structure group of M to the group Go,
and the space of sections of A3 T*M, which we will denote with Q2 (M). The defining 3-form
o € Q3 (M) determines a Riemannian metric g and an orientation of M via the relation

(2.16) —6g(X,Y)x1=Xi0AYioN0

(x1 denotes the volume form). Let V be the Levi-Civita connection of g. Then the covariant
derivative Vo is a section of the bundle T* ® gy, where g5 & T* is the orthogonal complement
of gy in A2T* and we identify bundles with the Gy-representation defining it. It follows from
(2.5) that this bundle decomposes as R@ Voo @ V) 0@ Vp1 and thus the covariant derivative of
o has four components. Accordingly, one has the 16 Fernandez-Gray classes of Ga-structures,
with the four basic classes Wy, Wy, W3, Wy corresponding to the four irreducible summands.

In this article we shall consider the class W; of so called nearly parallel (or weak) Go-
structures, i.e. Go-structures induced by a non-parallel 3-form o € Q3 (M), such that Vo
is a section of the 1-dimensional subbundle defined by the trivial Gs-representation. Nearly
parallel Go-structures can be described by several equivalent conditions in terms of o.

Proposition 2.3. Let M be a 7-dimensional manifold with a Go-structure defined by a 3-form
o € Q3 (M). Then the following conditions are equivalent

1) The 3-form o defines a nearly parallel Go-structure.

2) The 3-form o is a Killing 3-form, i.e. Vo = 1do.

3) There exists a 19 € R\ {0} with Vo =7 x 0.

4) There exists a 19 € R\ {0} with Vx(x0) = =X Ao for all vector fields X .
5) There exists a 1o € R\ {0} with do = 19 % 0.

6) XV xo =0 holds for all vector fields X .

Proof: The equivalence of (3) and (4) is obvious, while the equivalence of (1), (2), (3) and
(6) has been proved in [8]. The only point not mentioned there is that 7 is constant. This fact
is also known (see e.g. [12]) and can be proven as follows. Since (5) is an obvious consequence
of (3), we can differentiate it to obtain dry A o = 0, which implies dry = 0. Finally, that (5)
implies the remaining conditions was proved in [12]. This is the only point where one uses
that 79 is different from zero. O

Let P be the associated vector cross product, defined in (2.8). Then the condition (6) of
the proposition above is equivalent to (VxP)(X,Y) = 0 for any vector fields X, Y i.e., to P
being nearly parallel [13]. Further straightforward consequences of Proposition 2.3 in the case
of nearly parallel Gy-manifolds are: d*c = 0 and Ao = 7¢ o, where here and in the following
A = dd* + d*d denotes the Hodge-de Rham Laplacian. Moreover it follows that ¢ is a special
Killing 3-form, i.e. the additional equation Vxdo = —%17'02X * A\ o is satisfied for all vector
fields X (cf. [20]).
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The canonical connection V of a Go-structure is the unique Gy-connection whose torsion
is equal to the intrinsic torsion of the Ga-structure. In the nearly parallel case it has totally
skew-symmetric and parallel torsion and is explicitly given by

or, equivalently, by
(2.18) Vx =Vx — 3Px,

where the endomorphism Py is defined by PxY := P(X,Y).

Remark 2.4. The fact that P is Gg-invariant allows the following important application,
which we shall use several times in this article. Let V' be an irreducible Ga-representation
contained in some tensor space and VM be the corresponding associated bundle. Then
the endomorphism Px extends to an endomorphism of VM and we may consider the Go-
equivariant map V' — T* ® V, defined by ¢ — >, €' ® P,,¢, which we again denote by P.
By (2.18) we have
(V=V)p=-3Py

for any section ¢ of VM. Let U be an irreducible component in T* ® V. Suppose first
that U is not isomorphic to V as a Gg-representation. Then there exists no non-zero Go-
equivariant map from V' to U and therefore the UM-part (Py)yy of Py vanishes, which
implies (V)yar = (V@)uar. On the other hand, if U is isomorphic to V, then U = i(V),
where 7 : V — T* ® V is some Go-equivariant embedding. Let 7 : T* ® V' — U be the
projection. Then mo P : V — U is also Go-equivariant and therefore by Schur’s lemma
7o P = ci for some constant c. Thus (V)i = (Vo)ivar + $2i(y). Finally, since Vi
and Py are sections of T*M ® V M, the same is true for Vi, despite the fact that V is not
a Gg-connection.

Remark 2.5. Our choice of the orientation induced by a stable 3-form o is the opposite of
the choice of Bryant in [6]. As a consequence our %, j, 7o and f; from the next section differ
from those in [6] by a sign.

3. DEFORMATIONS OF G9-STRUCTURES

In this section we will consider a smooth curve o; of nearly parallel Go-structures and
describe its tangent vector ¢ in t = 0. Here and in the sequel the dot denotes the time
derivative at ¢t = 0. As a starting point we use the following result of R. Bryant [6] for curves
of arbitrary Go-structures (cf. also [14]).

Proposition 3.1. Let (M7, g) be a Riemannian manifold with a family o € Q3 (M) of Ga-
structures. Let g, be the family of metrics and %, the Hodge star operator associated with
o;. Then there exist three time-dependent differential forms fo € Q°(M), fi € QY(M) and
f3 € Q3-(M) that satisfy the equations

(1) ¢ = 3foo + *x(fino) + f,
(2) g = 2fog — 5i(fs),
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(3) 0 = 4fyxo + fiNo — xfs,
(4) *1 = Tfy * 1.

Our aim is to study deformations of a given nearly parallel Go-structure o on a compact
manifold M by nearly parallel Go-structures o;. We will only be interested in deformations
of the nearly parallel Gy-structures modulo the action of the group R* x Diff (M), given by

(A p) 0 =Xp(o) = X(g™)Top.
If o induces the metric g, the Hodge dual xo and the volume form x1, then & = A\3c induces

~ — ~ ~ 1
(3.19) g=Xg, ¥o=Mx0o, ¥ =\x1, 7= 17
Therefore we can always assume that the volume of M with respect to ¢ is normalized.
Moreover, we can apply the Ebin’s Slice Theorem and assume that g; is a curve in the slice
through g. A nearly parallel Gy-structure is Einstein with scalar curvature

(3.20) scal, = 275,

Thus ¢ is an infinitesimal Einstein deformation of g and by the theorem of Berger-Ebin (see
[3], Chapter 12) we have

(321) trg =0, 69 =0 Ag=22g5 = i1,

where Ay is the Lichnerowicz Laplacian (see [3] or Section 6 below). Since trg = 14 fo, it
immediately follows that fy vanishes and the equations of Proposition 3.1 may be rewritten
as

(3.22) ¢ =x*(fino) + fs, § = —%i(fs), x0 = fiho — xfs, *1 = 0,
while equations (3.21) become

(3.23) 0j(fs) = 0, Arjfs) =75 3(fs).

The fact that o; is a family of nearly parallel G,-structures means by definition that
(3.24) doy = 1o(t) * oy

for some function 74(¢). However, ¢; is a family of Einstein metrics and therefore scal,, is
constant as function in ¢, as follows from Corollary 2.12 of [3]. This, together with (3.20),
implies that the function 7y is constant too. Thus, differentiating (3.24) with respect to ¢, we
obtain the linearized equation dé = 7y *o, which by (3.22) yields

(325) d * (.fl A U) + dfg = TO(fl No — *fg)
The discussion above motivates the following definition.

Definition 3.2. An infinitesimal (nearly parallel) deformation of a compact nearly parallel
Go-manifold (M, o) is a section (fy, f3) of the bundle A'T*M & A3, T*M, which satisfies the
equations from (3.23) and (3.25).
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The rest of this section is devoted to deriving a more explicit description of the space of in-
finitesimal deformations of nearly parallel Go-structures. In a first step we obtain information
about the 3-form component f3 of the infinitesimal deformation.

Lemma 3.3. The covariant derivatives of f3 with respect to V and V have no component
in' T C T*® A3, ie., it holds (Vf3)r = (Vfs)r = 0. In particular, the differential and
codifferential of f3 satisfy the equations:

<df3)A‘11 = 07 (df3)A‘% = 07 (d*f?))A? = 07 (d * f3>A$ =0.

Proof: The divergence ¢ is defined as the composition of the covariant derivative V and the
equivariant contraction ¢ : T*®S2T* — T*. It follows from Remark 2.4 and the decomposition

(26) that (VJ(fg))T = (v.](fg))'p and (Vfg)T = (vfg)T This implies
(3.26) 0j(fs) = =cVi(fs) = =c(Vi(fs))r = =c(Vi(fs))r = —co (1@ J)(V fy)r,

where the last equality follows from j being Gy-equivariant and V-parallel. Since co (1 ® j)
is non-zero on T C T* ® A3, (which can be checked on an explicit element), we finally obtain
0j(f3) = 0 if and only if (Vj(f3))r = (Vf3)r = 0.

By the definition of the differential we have df; = eV f3, with the Gy-equivariant wedging
map ¢ : T* @ A3T* — AYT*. Again by (2.6) and Remark 2.4 we see that V f3 has no compo-
nents in bundles associated with the trivial representation R. Thus df; has no components in
A}, which proves the first equation for dfs. The second follows from (dfs) a =¢e(Vfs)r =
and the remaining two are proved in a similar way. 0

In the next step we will derive information about the 1-form part of infinitesimal deformations.

Proposition 3.4. For the 1-form f the following holds:

(1) Vfi=—37fia0.

(2) V= —%Tof1JU-

(3) f1 is a Killing 1-form and df, = —% 7o f1 20. In particular, d* f; = 0 and (dfi)az, = 0.
(4) d(fi N xo) = —%7’0 x f1, in particular  d*(f;20) = —%Tofl.

(5) Afr =73 f1.

(6) d*(fi No)=—Tof1 o *0. In particular dx (fi No)=T1of1 No.

(7) f1 has constant length.

Proof: Statements (2) and (3) are obviously equivalent and (1) and (2) are equivalent
because (2.17) implies Vf; = Vf, — 13.f120. The remaining properties are consequences of
each of the first three. To prove (6) we use d*f; = 0, d*oc = 0, (3) of Proposition 2.3 and
(2.13) to obtain

1 1
fl /\O Zvezfl €Z_IO' qu' = _ZTO Z(ei_lflJO')/\(ei_IO')—ZTofl_l*O' = —Tofl_l*O'.

Property (7) follows from

d‘f1|2(X> = 2<VXf17f1> = _%7'0<X—lf1_1<7, f1> = _%Tofl_IX_lfl_IO' = 0.
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For the proof of (3) we start with computing the A% part of df;. Since 7y is a non-zero
constant we may take the differential of equation (3.25) to obtain d(f; A o) = d * f3. Now,
let 5 be the 1-form, defined by (dfi)x2 = Bu0. Then the vanishing of the A3-part of d * f3

and equation (2.10) imply
0= (d(fl A U))A? = (dfl)Ag No — T0f1 N\ %0 = (ﬁ_IO') No — 7'0f1 N\ *0 = (—26 — T0f1> N *0.
Since the wedge product with *o defines an injective map on 1-forms, we find g = —%7‘0 fi-

Hence (dfi)az = —370f100. The A2-part of Vf; with respect to the decomposition (2.5) is
%(dfl)A; and we obtain (V fi)xz = — 270100

We continue with proving (4). Since the fundamental 3-form o is coclosed, it follows
d * 0 = 0. Moreover, the wedge product with *o defines an equivariant map A? — A5 = Al
which by Schur’s Lemma vanishes on A%,. Hence, using (2.11) we obtain

d(fi N*o) = dfi N xo = (dfl)Ag A *x0 = —%To(f1_|0'> A *x0 = —%7'0 * f1.
As an immediate consequence we obtain in addition d*(f; o) = —%7’0 f1. Since 1y # 0, this
implies d* f; = 0.

Next we want to show that the A2-part of d(f;uo) vanishes. Using Proposition 2.3 we
compute

d(fiso) =3, ANV, (fiao) = >, e AN (Ve fiuo + f12V,,0)
=—> .Vefisle; No)+ (d" fr)o — fiado + VﬁiO’
= _(I)(Vfl) - %TOfIJ * 0,
where @ : A' ® A* — A? denotes the map ®(y) = >_.(e;07)1(e’ A o). Since P is obviously
Go-invariant, we obtain

(d(flJO'))A§ = _((I)(vfl))A$_%7-Ofl—|*O- = —q)<<Vf1)A$)—%Tgf1_J*O' = iTOq)(fl—‘O-)_%TOfl—‘*o--

Because (2.12) implies ®(f;10) = 3f11* o, we finally obtain
(3.27) (d(fr30))ag = 0.

Now we shall prove the vanishing of the A2,-part of df; using the compactness of M. From
our equation for (dfy) Az we conclude

0=d*f1 = d((dfr)az + (dfr)az,) = —370d(f120) + d(df1) 2, -
From here it follows with (3.27) that (d(df1)az,)az = 0. By definition the differential d is the

composition of the invariant wedging map ¢ : T* @ A2 — A3 and the covariant derivative V.
By Remark 2.4 V7 is a section of T*M @ A2,M for any section v of A%, M. Since by (2.7)
there is only one component isomorphic to T in T* ® A3,, we obtain for 7 := (df1)s2,:

0= (d’Y)Ag =mpp0eVy =o€ (VY)r.

Because TA3 O I8 different from zero on T C T* ® A?,, as one checks on an explicit element,
this yields (Vv)r = 0.
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We may use a similar argument for the codifferential d*, which is the composition of the
invariant contraction map ¢ : T* ® A2 — A! and the covariant derivative. Hence we have

d'vy=—cVy=—c(Vy)r =0.
Then the L?-scalar product of d*y and f; yields

0= (d"y, fi) = (v, df1) = H’YH2
Thus it follows that v =0, i.e. (df1)x2, = 0, and that df; is indeed a section of A2T*M with
dfy = (dfl)Ag = _%Tﬂfl 40.
We already know that f; is coclosed and thus

Afy =ddfy = —%Tod*(f1J0> = %T()Qfly

which proves (5). Using the fact that the manifold (M7, g) is Einstein with scal = 2 73,
we obtain Af; = 2Ric(f1). By the well-known characterization of Killing vector fields on

compact manifolds this implies that f; is Killing. O

Finally we combine Proposition 3.4 with the initial equations to obtain a characterization
of infinitesimal deformations of nearly parallel Ga-structures.

Theorem 3.5. The space of infinitesimal deformations of a compact nearly parallel Go-
manifold (M, o) is the direct sum of the finite-dimensional spaces

D1 = {fl - QI(M> | Vfl = _iTO fl JO’} and D3 = {fg - 937(M) ’ * dfg = —Tofg}.

In particular, fi and f5 are co-closed eigenforms of the Laplace operator for the eigenvalues
3

378 and 1§ respectively.

Proof: It remains to prove the equations for f5. For this we substitute the expression for
d = (f1 N\ o) of Proposition 3.4 back into equation (3.25) and obtain dfs = —7y * f3. Since
To # 0 this immediately implies that f5 is coclosed. Then the Laplace operator is computed
as Afz = d*dfs = (xd)*fs = 72 f3. It follows that an infinitesimal deformation lies in the
direct sum of the spaces D; and D3. They are finite-dimensional since they are contained in
certain eigenspaces of the Laplace operator.

Conversely, by Proposition 3.4 V f; = —}L 70 f1 o0 and *dfs = —70 f3 imply (3.25). Further,
dfs = —10 % f3 yields (dfs)pys = 0, ie., mya 0 e(Vfz)r = 0, where T C T* ® A3; is the
component isomorphic to V;o. Since T4 0 € is non-zero on T (which can be checked on an
explicit element), it follows that (Vf3)r = 0. Thus, by Remark 2.4 also (Vf3)r = 0 and
therefore by (3.26) dj(f3) = —c(1 ® j)(Vf3)r = 0. It remains to show that *dfs = —7f3
implies Azj(f3) = 2 733(f3), which will be done in Section 6. O

4. (Go-DEFORMATIONS AND SASAKIAN STRUCTURES

In this section we will investigate the relation between nearly parallel G,-manifolds with a
non-trivial space D; in Theorem 3.5 and Sasakian structures. The first result in this direction
is the following.
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Proposition 4.1. Let (M, g,0) be a compact nearly parallel Go-manifold normalized so that
70 = 4. Then:

(1) If dim Dy > 1, then (M, g) is a Sasakian-Einstein manifold.
(2) If dim Dy > 2, then (M, g) is a 3-Sasakian manifold.

Proof: The assumption about the normalization is not a restriction because of (3.19). Let
0 # fi1 € Dy, then Proposition 3.4 shows that f; is a Killing 1-form of constant length and
we can assume | f1| = 1. Thus, to prove that f; is the contact form of a Sasakian structure it
remains (see [4]) to verify the curvature condition

(Viy)(Z) = A(V)9(X,2) = fi(2)9(X.Y) = (L AX)(Y,Z)
However, taking the covariant derivative of the defining equation of D; immediately implies:

(Viyf)(Z2) =—170(Vx(fiso)(V,Z) = —(Vxfiao)(Y,Z) — (fiaVxo)(Y, Z)
%17'0 (Xufyao)ao)Y,Z) — L (iaXoxo)Y,Z2) = (ANX)(Y,2)

4

where we also used (2.14). Since g is known to be Einstein, we obtain the first statement.

If dim D; > 2, then (M, g) has two Sasakian structures, whose contact forms are linearly
independent. This implies the second statement (see [4], Lemma 8.1.17). O

Recall that a Go-structure on a 7-dimensional manifold M defines a canonical spin structure
on M. The Go-structure is furthermore nearly parallel if and only if the associated spin struc-
ture admits real Killing spinors [12]. In this case the nearly parallel Go-structures inducing
the given metric and spin structure are in bijective correspondence with the projectivization
of the space of Killing spinors in the real spinor bundle [12]. The complex spinor bundle is
the complexification of the real spinor bundle and the space of real Killing spinors is the com-
plexification of the space of Killing spinors in the real spinor bundle, so both spaces have the
same dimension over the respective field. After a suitable normalization of the metric (which
in our case amounts to ensuring that 7o = 4) this dimension is also equal to the dimension
of the space of parallel spinors on the metric cone M of M for the spin structure induced
by the one on M. This is a result of Bér [2] in the simply connected case and holds also in
general, as explained by Wang in [21]. Hence, as noticed in [2], if M is compact, then either
the restricted holonomy group of M is one of Spin(7), SU(4), Sp(2), or M is flat. In the latter
case M is a quotient of the standard sphere S7. According to a result of Friedrich [9], all
nearly parallel Go-structures on S” which induce the standard metric are conjugated under
the action of the isometry group. Thus neither S” nor its quotients admit G,-deformations.
Therefore from now on we shall exclude from our considerations the case of nearly parallel
Go-manifolds with constant curvature. Under this assumption the compact nearly parallel
Go-manifolds split into the following three different types.

Type 1. The space of real Killing spinors is 1-dimensional. Then there is only one 3-
form inducing the given metric, orientation and spin structure. We call such nearly parallel
Go-structures proper. Notice that our definition of a proper nearly parallel Go-structure is
slightly different from those in [12] and [4]. In [12] one assumes additionally that the manifold
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is simply connected, while the definition in [4] requires that the cone has holonomy equal to
Spin(7). For simply connected manifolds the three definitions are equivalent.

Type 2. The space of real Killing spinors is 2-dimensional. Then the given metric and
orientation are induced by a Sasaki-Einstein structure but not by a 3-Sasakian structure. In
terms of the cone M this is equivalent to saying that the holonomy group of M is contained
in SU(4) but not in Sp(2). Indeed, the subgroup of Spin(8) which acts as identity on a 2-
dimensional subspace of one of the half-spin representations is Spin(6) = SU(4). In this case
the 3-forms inducing the given metric, orientation and spin structure are parametrized by
RP.

Type 3. The space of real Killing spinors is 3-dimensional. The given metric and orientation
are induced by a 3-Sasakian structure. In terms of the cone M this is equivalent to saying
that the holonomy group of M is equal to Sp(2). In this case the 3-forms inducing the given
metric and orientation are parametrized by RP2.

Now we shall describe the nearly parallel Go-structures of types 2 and 3 without reference
to Killing spinors. Recall that the cone of a Riemannian manifold (M, g) is (M, §), where
M =R, x M, j := dr? 4+ r2g and r is the natural coordinate on R,. As shown in [2], if we
normalize the nearly parallel Go-structure so that 79 = 4, then ¢ = 0,.¢|,—1, where ¢ is a
parallel (and also stable) 4-form on the cone.

Suppose first that the holonomy group of the cone is equal to SU(4) (which implies that M

is Sasaki-Einstein but not 3-Sasakian). Then the space of parallel 4-forms on M is spanned
by Q; A Q;, ReW;, Im¥;. Here €; is the Kéhler form and ¥; the complex volume form of
the SU(4)-structure. Thus

1
o =0, (§COQf ANQ;+ciReV; 4 CQIm\Df)

r=1

Equivalently, one can write this as
oc=conNQ+cReV + colm ¥,

where 7 is the contact form of the Sasaki-Einstein structure on M, Q2 = Vn is the hori-
zontal Kahler form and ¥ is the horizontal complex volume form. Now a straightforward
computation using (2.16) shows that ¢ induces the given metric and orientation if and only
if cg = —1 and ¢ + ¢3 = 1. Hence we have the following explicit S'-family of nearly parallel
Go-structures:

(4.28) op=-nANQ+costReV +sintIm V.

In particular, each oy is of type 2.

Now suppose that the holonomy group of the cone is Sp(2) (i.e., M is a 3-Sasakian mani-
fold). Then the space of parallel 4-forms is spanned by

Qfl/\Qfl’ sz/\sz’ Qfs/\Qfs’ le/\Qj2, sz/\Qfs’ Qfg/\Qf1'
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Here Q; , Q; , Q; are the Kéhler forms of the hyper-Kéhler structure I 1, fg, I on the cone

(we use the convention I;, = —I3). Thus

1
o= 0, <§ E S)\)\QA /\QIAA + E S,\MQA /\qu>
A

A<p

r=1
Equivalently, this can be written as

3
(4.29) o= Z Sxua A 2y

Ap=1

with sy, = s,, where 1y, 72, 13 are the contact forms of the 3-Sasakian structure on M
and €2, = Vn, are the corresponding Kahler forms. Again a straightforward computation
using (2.16) shows that o given by (4.29) induces the given metric and orientation if and
only if the matrix S = (s,,) is in SO(3) and trS = —1. The condition sy, = s, means
furthermore that o is nearly parallel if and only if S is symmetric. An orthogonal matrix is
symmetric if and only if its eigenvalues are real and the condition tr S = —1 implies that they
are 1, —1, —1. But an orthogonal matrix with eigenvalues 1, —1, —1 is completely determined
by its 1-eigenspace. Thus we obtain that the nearly parallel Go-structures are parametrized
by RP? (in particular, they are of type 3). We shall identify R? with span{n,ns,73}. Then
n € span{n,n2,n3} is the contact form of a Saskai-Einstein structure if and only if 7 lies
on the unit sphere S?. Let S(n) = (sx.(n)) denote the orthogonal matrix with eigenvalues
1,—1, —1 whose 1-eigenspace is spanned by 1. Then the nearly parallel Go-structures are

{US(n) = ZSA}L(U)U)\ A Q,u ’ URS 52}

A1
(notice that S(n) = S(—n)).

Fixing an 7, we can again write the S'-family o, ; from the SU(4)-case. Inside the RP?-
family it is identified by
{one} ={ose [0 € 5% 1 Ln}.
This follows from the fact that W; = $(Q; — €2 ) A (Qz, —i€2;), ie.,

Re\Iflzng/\Qg—ng/\Qg, Im\I’l:—T]Q/\Qg—T]g/\QQ.

~

Finally, let the holonomy group Hol(M) of the cone lie strictly between SU(4) and Sp(2).

~

Then the restricted holonomy group is Sp(2) and therefore Hol(M) C Sp(2)Sp(1) as the

A

normalizer of Sp(2) in O(8) is Sp(2)Sp(1). Now the fact that Hol(M) preserves a complex

structure implies Hol(M) C Sp(2)U(1). Finally, Hol(M) preserves a complex volume form,
so the U(1) part of Hol(M) is contained in

{acU®) |a* =1} ={1,i,—1,—i} = Z,.

Since Sp(2)Zs = Sp(2), it remains Hol(M) = Sp(2)Z,. Now we have to find which Sp(2)-
invariant 4-forms are also Sp(2)Zs-invariant. Notice that the action of i € Z, is in fact the
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complex structure I = fl. Since I 1 acts on €2 i, as the identity and on {2 i and 7, as minus
identity, the space of Sp(2)Zs-invariant 4-forms is 4-dimensional and is spanned by

Qfl/\Qf1’ Qf2/\Qf2, Qf3/\Qf3, sz/\Qf3.

Now the results of the Sp(2)-case imply that o is given by (4.29) with 19 = 21 = $13 = s31 =
0. Thus either s;; = 1 and

o=05m) =M AN —n2 AN Qs — 13 A3
or 51 = —1 and 0 = og(y) for some 7’ orthogonal to n = n,, i.e.,
og=0pr=-NANQ+costReV +sintIm W.

Thus in this case we have nearly parallel Go-structures of different types sharing the same
metric: og(,,) is of type 1, while o), are of type 2.

Now we can prove the main result of this section.

Theorem 4.2. Let (M,0) be a compact nearly parallel Go-manifold which is normalized so
that 7o = 4 and is not a space of constant curvature. Then:

(1) (M, o) is of type 1 if and only if dim Dy = 0.
(2) (M, o) is of type 2 if and only if dim Dy = 1.
(3) (M, o) is of type 3 if and only if dim Dy = 2.

Proof: Suppose that (M,o) is of type 2. Then the holonomy of the cone is SU(4) or
Sp(2)Z4 € SU(4) and the consideration above show that o is o} from (4.28) for some t. Again
by Proposition 4.1 we have dim D; < 1. By definition, the contact form 7 of the Sasakian
structure satisfies Vnp = €2. On the other hand, n.o; = —2 and therefore Vi = —%LTQT]JO}.
Thus n € Dy, D; = span{n} and dim D; = 1.

Let (M, o) be of type 3. Then M is 3-Sasakian and the holonomy of the cone is Sp(2),
S0 0 = og(; for some 1 € S?. We shall show that D; is the orthogonal complement of 7 in
span{n;, n2,n3}. Without loss of generality we can assume that n = 7; (otherwise we shall
change the orthonormal frame 7y,12,73). Then o € {o,,,} and 0 € {0,,,:}, so as above
12,m3 € Dy and therefore dim Dy > 2. By Proposition 4.1 every element of D; induces a
Sasakian structure on (M, g) and by Lemma 8.1.17 in [4] it lies in span{n, 2, 73}. Thus, if
we assume that dim Dy > 3, we must have Dy = span{n;,n2,73}. But Vi, = Qy, while S(n;)
is the diagonal matrix with diagonal elements 1, —1, —1 and

1
—TONATS () = —a(m A = Ao —m3 AQz) = =y —mp Ao —m3 A€l

== = 2m Az # .
Hence 7, ¢ D; and we have D; = span{ny,n3} = n; and dim D; = 2. This proves (3) since
the reverse implication follows from Proposition 4.1.

Suppose now that dim D; = 1. Then, by Proposition 4.1, (M, g) is Sasaki-Einstein but not
3-Sasakian. Thus, to prove the reverse implication of (2) we only have to show that the case

~

Hol(M) = Sp(2)Z4 with 0 = 0g(;, is impossible. Indeed, the proof of Proposition 4.1 yields
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that the contact form 7; must be an infinitesimal deformation of og(,,) but in the type 3 case
above we saw that this is not true. This completes the proof of (2).

Finally, (1) follows from Proposition 4.1, (2) and (3). O

Remark 4.3. A nearly parallel Go-structure of type 2 is a part of a whole curve o; of such
structures. It is easy to see that % = x(n A o) (n is the contact form of the Sasaki-Einstein
structure). Let & be the vector field dual to 7. Since all oy have 79 = 4 and D; = span{n},

we obtain from Proposition 3.4 and Proposition 2.3 that
1
Leoy = d(&aoy) + Eodoy = —§d277 +4Eax 0y = —4 % (n A oy).

Let ¢4 be the flow of €. Since € is Killing, ¢, preserves the metric and thus also n and .

Now the fact Leoy = — d"fl—(sat) and the above equations imply
s=0
dps(oy) doiyas
s\ y A — ths
ds * (TI @S(Ut)) ds

This and ¢g(0¢) = 0, show that ¢g(0;) = 04445 for all s. Thus the flow of £ acts transitively
on the family {o;} and so the members of this family are equivalent Go-structures.

In a similar way, if the type is 3, one can generate the whole D; through curves in the
RP?-family {og(,}. But this family consists of equivalent Go-structures since a 3-Sasakian
manifold admits an isometric SO(3) or Sp(1) action which is transitive on the oriented or-
thonormal frames (71,72, 73) and therefore transitive also on the family {og() }-

Thus, whatever the type of the nearly parallel Go-structure, the ”interesting” infinitesimal
deformations are in the space Dj.

Remark 4.4. We have seen above that if the holonomy group of the cone M is Sp(2)Zy, then
M has nearly parallel Go-structures of different type sharing the same metric and orientation.
This is possible because they induce different spin structures on M and therefore also on M.
Indeed, Sp(2)Z, has two different embeddings in Spin(8). The first one, 4;, is the restriction
on Sp(2)Zy of the embedding of SU(4) in Spin(8). The second, s, is equal to i; on the identity
component of Sp(2)Z, and to —i; on the other component, i.e.,

ia([a, 1)) = i1([a, 1]), d2([a,i]) = —ii([a,i]) for a € Sp(2).
Let £ = C* be the standard representation of Sp(2). Then the spin representation, restricted
to Sp(2), is isomorphic to Zizo APE. The action of i,(Sp(2)Z,) is given by

i1(la, z])a = 2Paa for a € APE
and the space of invariant spinors is 2-dimensional: A°E @ A*E. On the other hand, the
action of i5(Sp(2)Zy) is
io(la, 1))a = ac, is([a,i])a = —iPac  for a € APE

and the space of invariant spinors is 1-dimensional: Cop C A*’E = Cop @ AZE, where o is

the Sp(2)-invariant symplectic form. Thus an 8-dimensional manifold with holonomy group
Sp(2)Z,4 is equipped with two canonical spin structures, one of which carries N = 2 and the
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other N = 1 parallel spinors. Similarly, a 7-dimensional manifold whose cone has holonomy
group Sp(2)Z4 has two spin structures, with N = 2 and NV = 1 real Killing spinors respectively.
This adds to the results in [21], where in part 2b of Theorem 4.1 N =1 is given as the only
possibility, while the group Sp(2)Z, is completely missing in part 3 of Corollary 5.2. Notice
that the existence of 7-dimensional manifolds with cones having holonomy group Sp(2)Z4 has
been proved in [17].

5. THE Go-LAPLACE OPERATOR

In Section 3 we have seen that infinitesimal deformations of nearly parallel Go-manifolds
give rise to coclosed eigenforms of the Hodge-de Rham Laplacian acting on sections of
A3, T*M. By the classical Weitzenbock formula the Hodge-de Rham Laplacian is written
as

(5.30) A =d'd+dd* = V'V +q(R),

where ¢(R) is an endomorphism of the form bundle, which is linear in the curvature R
and satisfies ¢(R) = Ric on the space of 1-forms. We will define the operator ¢(R) in
the following more general setting. Let (M, g) be an n-dimensional Riemannian manifold.
For a representation V' of O(n) let VM denote the corresponding associated vector bundle.
We denote the action of @ € A*T* = so(n) on V by a, (here T denotes the standard
representation R™ of O(n)) and in a similar way the action of a € A*T*M on V,M, x € M.
The endomorphism ¢(A) € End (VM) is defined for any A € A*°T*M ® End (VM) by

(5.31) g(A) = " (es Nej)i Alei Ney),

i<j

where {e;} is a local orthonormal frame of TM. Notice that in this definition {e; Ae; | i < j }
could be replaced by any other orthonormal basis of A2TM. The curvature R of the Levi-
Civita connection V or, more generally, the curvature R of any metric connection V on (M, g)
defines a section of A°’T*M ® End (V M), thus the endomorphisms ¢(R) and ¢(R) are well
defined. We denote by A the Laplace type operator

(5.32) A :=V*V +q(R).

The operator Ay := V*V + ¢(R) for the Levi-Civita connection V and a subrepresentation
V € ®PT is also called Lichnerowicz Laplacian (cf. [3], Chapter 1 I). Because of (5.30) it
coincides on differential forms with the Hodge deRham Laplacian A.

Now let us return to the case of nearly parallel Go-manifolds. We will call the operator A,
defined with the canonical connection V, the Go-Laplace operator. In order to compute the
spectrum of the Lichnerowicz Laplacian A; on naturally reductive spaces, it turns out to be
convenient to express Ay through A. Thus, our next aim will be to compute the difference

A — Ay, which we do by calculating the differences V*V — V*V and ¢(R) — q(R) separately.
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A direct calculation using (2.18) and the third equation of Lemma 2.1 gives
RX,yZ — RxyZ = (R)*[2P(P(X,Y),Z)+ P(P(Y,Z),X)+ P(P(Z,X),Y)]
()2 [4P(P(X,Y),Z) — 39(X, 2)Y + 3¢9(Y, Z)X].
Thus R(X AY)—R(X AY) = (32)? [4Ppxay) — 3(X AY),]. Substituting this equation into

the definition of the curvature endomorphisms ¢(R) and ¢(R), we obtain

(539 o(R) — a(R) = —3(3) Cas™ + 4(3)*S
where Cas (™ is the so(n)-Casimir operator >icilei Nej)i(ei Aej). and S is defined as
(5.34) S= (i Ne;)iPpeney.

i<j

Since P : A>T = A2® A2, — T is a Gy-equivariant map, P| a2, = 0 and we may replace in
the sum in (5.34) the orthonormal basis {e; Ae; | i < j} of AT with the orthonormal basis
{fi = \%6140' |i=1,...,7} of A2, Because obviously f;, = \/Lg(elq 0)s = \%_Pei_and, by
(2.15), P(f;) = V3e;, we obtain S =3 fi, Pps,y = > P, P.,. For the difference V*V — V*V
of the two rough Laplacians we derive directly from (2.18)

V'V =V'V=> (BP,V., +(B)°PFL.).
Summarizing these calculation we obtain an expression for the difference of A and Ay.

Proposition 5.1. The difference of the Laplace type operators A and AAj, on a nearly parallel
Go-manifold is given by

(535) A —Ap = 2Y PV, — 3(B)Cas™? + 5(2)*) P.P..

We shall apply this result for the space A3;. Recalling that the so(n)-Casimir operator
acts as —p(n — p)id on the space of p-forms, we obtain Cas**(My = —12y for v € A},. A
straightforward computation on an explicit element (e.g. the element from (2.4)) shows that
the Gy-equivariant map > P., P., acts as —8id on A3;. Thus it remains to compute > P,,V.,.
The map Y. P.. oe;u: T* ® A3, — A3 is Go-equivariant. Hence, because of (2.3) and (2.6),
it can be non-zero only on the components of T* ® A3, which are isomorphic to Vio = T
and Vo = A3.. A straightforward computation on explicit elements shows that > P,, o e;
is —3*o¢e on the component T C T*® A3, and * o¢ on the component A3, C T* @ A3,. Here
again ¢ : T* ® A — A* denotes the wedging map. Thus

Y P.Vey =) PyoeisVy==3%c(Vy)r+*(Vy)ng, = =3 * (d7)as + *(dy) s,

where d := £0V. Now, by (2.18) we have d = d — 2 3" ¢; A P.,. Again a simple computation
on an element of A3, shows that Y e; A P,, = —2% on A3, and we eventually obtain

Lemma 5.2. On sections of A3, T*M it holds that d = d+ a*. In particular, we have
(dy)as = (dY)as,  (dy)as, = (dy)as, + 2%y, (dy)as = (dy)as =0 for v € Q5 (M),
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Using this lemma we obtain Y. P, V. v = —3* (dv) At x(dy)as + B, which finally enables
us to compute the difference A — A on Q3.(M). Combining the formulas above we find

Proposition 5.3. Let (M7, g,0) be a nearly parallel Go-manifold and let v be a 3-form in
Q3.(M). Then

Ay = Ay — 25 (dy)pas + B+ (dy)as, -

In particular, A and A coincide on closed forms in Q§7(M) Moreover, if v is a 3-form in

Proof: It only remains to prove the last statement: Recall from the proof of Lemma 3.3,
that for v € Q3.(M) the condition (d"7)az = 0 is equivalent to (dy)xs = 0 and thus, by
Lemma 5.2, also to (dvy) AL = dv. Substituting this into the equation for A implies the last
statement. Il

6. INFINITESIMAL EINSTEIN DEFORMATIONS

Nearly parallel Go-structures induce Einstein metrics and thus infinitesimal deformations
of such structures are related to infinitesimal Einstein deformations. In this section we shall
consider the space of infinitesimal Einstein deformations of a given nearly parallel Go-metric
and realize it as a direct sum of certain spaces of 3-forms in Q3. (M).

Let g be an Einstein metric with Ric = Eg. From [3], Theorem 12.30, the space of infin-
itesimal Einstein deformations of ¢ is isomorphic to the set of trace-free symmetric bilinear
forms h on TM with 0h = 0 and Aph = 2FEh, where A = V*V + ¢(R) is the so-called
Lichnerowicz Laplacian (see the previous section). Note that for a nearly parallel Go-metric

. . 372
the eigenvalue can be written as 2F = 2@l = 20

As a Gy-representation the space S3T* is isomorphic to A3, T. We shall now use the explicit
identification i in order to identify infinitesimal Einstein deformations with certain eigenforms
of the Laplacian on forms in A3, T. To do this we still need an analogue of Proposition 5.3.

We apply the results of Proposition 5.1 to the space S2T*. It is well known that the so(n)-
Casimir operator acts on SZT* as —2nld, i.e., as —14Id in our case. Moreover it is clear that
similarly > P, P.,, as a Ge-equivariant map, acts as a multiple of the identity. An explicit
calculation, e.g. on the element e' ® €%, shows that > P, P,, = —14Id.

It remains to determine Y. P..V..h, ie., Q(Vh), where Q : T* @ SZT* — S2ZT* is the
Go-equivariant map defined as Q = > P.. o ¢;1. The map @ is different from zero only on
the component of T* ® SZT*, which is isomorphic to SgT*. Let iy : SFT* — T* ® S2T* be
the embedding given as i5(h) = (1 ® 1) 0 C(g ® h), where g is the metric, C : T*®* — T*®3
is defined by C(a ® b ® c® d) = a ® P(b,c) ® d and 7y : T* ® T* — SgT* denotes the
standard projection. Moreover, let m : T* ® S2T* — S2T* be the projection ”inverse” to iy,
i.e. m 01y = id and my vanishes on the components of T* ® SgT* that are not isomorphic
to SgT*. Then an explicit calculation, e.g. on e; ® eg, shows that Q o iy, = —7id and thus
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QQ = —Tm,. Substituting this and the results for Cas*(™ and 3" P.,P.. into equation (5.35),
we obtain

(6.36) (A—Aph = =Ty (Vh) — T2,

Since S2T* and A3, are isomorphic representations of Gy and V is a Go-connection, the bun-
dles S2T*M and A3, M share the same Gy-Laplace operator A, i.e., with the Go-equivariant
isomorphism i : S2T* — A3, we have io Aoi™t = A. Hence, to compute i o Ay oi™! we
need to compute i om0 Voi~l. An easy calculation shows that i = 7 o (1 ® i) o iy, where
T T*@ A3, — A3 is defined as m (0 ®@7) = 2* (« A7)as - The map ip o7y is the projection
on the component isomorphic to SgT* in T* ® S3T* and since m o (1 ® i) is invariant with
values in SZT*, it vanishes on all other components of T* ® SgT*. Hence ;0 (1 ®1i) =iomy
and we obtain from Lemma 5.2

(6.37) iom(Vh) =mo(1@1)Vh=mV(i(h)) = 2 (di(h)rs = 2 (di(h)) s + Ri(h).

Let h be an infinitesimal Einstein deformation and let v € Q3.(M) denote the 3-form i(h).
Then the condition 6h = 0 translates into (d*7) az = 0 or, equivalently, to dy = (d) A -
Indeed, by Remark 2.4 we have that (Vh)p = (Vh)r and (V) = (Vy)p. Thus dh = 0
is equivalent to (Vh)r = 0 and also to (Vh)p = 0. But since i is an Gg-equivariant map,
(Vh)r = 0if and only if (V4)p = 0, i.e., (V7)1 = 0. However this is equivalent to (d*y),2 = 0
and also to (dy)x2 = 0. Then by Lemma 5.2 (dv),: = 0 can be written as dy = (dy)as, -

Finally, we apply i to (6.36), use Proposition 5.3 and substitute (6.37) to obtain
Proposition 6.1. For each v € Q3.(M) the following equation is satisfied:

. . T T T2
(6.38) PALIT (7)) = Ay — Zx(dy)a + Bx(dy)ag, + 2.

With this formula we are able to translate the conditions for infinitesimal Einstein defor-
mations into equivalent conditions for 3-forms in Q3.(M): The traceless symmetric bilinear
form h is an infinitesimal Einstein deformation if and only if v = i(h) is a section of A3, T*M
with (dy)as = 0 (or, equivalently, (d*y),z = 0), satisfying the equation

(6.39) Ay + Bxdy — By = 0.

We want to decompose the solution space of this equation into eigenspaces of the operator
xd. This is possible since *d is a symmetric operator, commuting with the operator on the
left hand side of equation (6.39) and preserving the condition (d*y)yz = 0. Indeed, xda is
coclosed for any differential form . Moreover, the solution space is finite dimensional because
it is the kernel of an elliptic operator. Assume that xdy = Ay with A\ # 0. Then ~ is coclosed
(in particular, (d*y)xz = 0 and (dy),s = 0) and (6.39) yields the quadratic equation

(6.40) 24y -3 =

with the solutions A = —75 and A = 3. In the case A = 0 we obtain dy = 0 and dd*y = gfy.
Moreover a solution «y of the last equation is automatically closed and thus (dv) as = 0 as well
as (d*y)xz = 0. Summarizing we have
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Theorem 6.2. Let (M, o, g) be a compact nearly parallel Go-manifold. Then the space of
infinitesimal Einstein deformations of g is isomorphic to the direct sum of the spaces

7_2
{ve Qs | xdy=—-mv}, {v€Q | xdy=2v}, {y€Q|ddy="29}.

Notice that the first space is the space D3 from Theorem 3.5. Thus any element f3 € Ds

satisfies 1 Ari~! (f3) = % f3, or, equivalently, Apj(f3) = %j('fg), which finishes the proof
of Theorem 3.5.

In order to check in the examples whether or not infinitesimal Einstein deformations exist
it will be convenient to embed these three spaces into eigenspaces of the operator A acting on
sections of A3, T*M. Let v be a 3-form as above with *dy = Ay for A # 0. Then 7 is coclosed

and Ay = A\?y. Thus Proposition 5.3 implies Ay = (A2 + 2A)y. In the case dd*y = év it
follows that 7 is closed and we obtain Ay = Ay = dd*y = %27. This proves

Lemma 6.3. The three summands of Theorem 6.2 are contained in the eigenspaces of A
2 2 2
acting on Q3.(M) for the eigenvalues 5%, %0 and %0 respectively.

7. NATURALLY REDUCTIVE SPACES

In this section we will make some general remarks which will help us to compute the in-
finitesimal Einstein deformations of nearly parallel Go-manifolds that are naturally reductive
homogenous spaces, i.e. reductive spaces where the torsion of the canonical homogenous
connection can be considered as a 3-form.

Lemma 7.1. Let G/H be a 7-dimensional oriented naturally reductive homogeneous space
with reductive decomposition g = h @ m. Suppose that at the initial point o the torsion of the
canonical homogeneous connection V s TO = —0o, with T % 0 and that o, is stable and
induces the given metric and orientation on m. Then o, defines by translations a G-invariant
3-form o and thus a Ga-structure on G/H compatible with the given metric and orientation.
This Ga-structure is nearly parallel and its canonical connection is V = V. In particular,

do=T1y*o0.

Moreover if G/H is standard up to a scaling factor ¢, i.e., m is the orthogonal complement
of b with respect to the Killing form B of g and the metric is induced by the restriction of

—c?B to m, then the scalar curvature is scal = 355 and 7§ = =25.
Proof: Since o, = —%TO is an H-invariant 3-form on m, o = —T—60T is a G-invariant 3-form

on G/H. In particular, o is parallel with respect to the canonical homogeneous connection
V=V+iT=V-2o
For X € R” we have the identity Pxo = 3X 1 o (which follows from (2.12) and (2.13) or
by an explicit computation for some X # 0). Thus

Vxo=Vxo+ 3 Pxo=2X %0
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and Proposition 2.3 implies that the Go-structure is nearly parallel with do = 79*o. Moreover
V coincides with the canonical connection V of the Gy-structure because of (2.18).

Suppose now that G/H is standard (up to a scaling factor ¢?). Obviously, it is enough to
prove the statement about the scalar curvature when ¢ = 1. Recall that T,(X,Y) = —[X,Y]n

for X,Y € m. Then, considering again T, as a 3-form and using (7.39) in [3], we obtain
scal = ST 2+ I = —;—21|00|2 I

Since o, induces the metric on m we have |0,/ = 7 and, using (3.20) to replace scal, the

equation above yields 73 = 2 and therefore scal = 273 = gg. O]

In view of this lemma and the results of the previous section it will be useful to have an
algebraic description of some differential operators on naturally reductive spaces.

Let M = G/H be a reductive homogeneous space and p be a representation of H on a
vector space V. Denote by £/ := G'x,V the associated vector bundle over M. If a G-invariant
metric is fixed on M, then the canonical homogeneous connection V is a metric connection
and, as explained in Section 5, we can define the Laplace type operator Ap = V'V + q(}?i)
acting on sections of E. With the same proof as for Lemma 5.2 in [19] we have

Lemma 7.2. Let G be a compact semi-simple Lie group, H C G a compact subgroup and let
M=G/H be standard (up to a scaling factor ¢?). Then the endomorphism q(R) acts fibrewise
on B as —= Cas and the operator Ap acts on I'(E), considered as a G-representation via
the left—regular representation l, as —c% Cas, where the Casimir operator Cas XG/W of a G-
representation V., is defined with respect to the Killing form of G.

Lemma 7.2 can be used to compute the spectrum of Ap. We recall that the Peter-Weyl
theorem and the Frobenius reciprocity yield the following decomposition of the left-regular
representation of GG into irreducible summands:

(7.41) (E) = @V, @ Hom y(V,, V),

where the sum is taken over the set of (non-isomorphic) irreducible G-representations V,,
labeled by their highest weight 7. The Casimir operator acts on V, as a certain multiple
of the identity, which can be computed explicitly by the Freudenthal formula. Hence the
eigenspace of Ap for the eigenvalue A is isomorphic as a G-representation to the direct sum
of the spaces V, @ Hom z(V,,, V) for which Cas§} Vo=

Corollary 7.3. Let G/H be standard (up to a scaling factor ¢®), satisfying the assump-
tions of Lemma 7.1. Then the eigenspaces of the Gg-Laplace operator A on Q3.(M) for
2

. 57’2 T . . . .
the eigenvalues TO’ 3, & are isomorphic as G-representations to the dzrect sum of spaces
3

V., ® Hom g (V,,, A3, m*), on which the Casimir operator Casv acts as —1, =%, —2.

In the examples below we have to solve equations of the form dyg + ¢ % ¢ = 0 for 3-forms ¢
on naturally reductive spaces M = G/H. Using the explicit embedding of V., @ Hom g (V, V)
of (7.41) into I'(E) we will translate this into an algebraic equation.
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As above let E := G x, V be the vector bundle over M = G//H associated to a rep-
resentation p : H — Aut(V). The space of H-equivariant functions from G to V| i.e.,
functions f : G — V with fo R, = p(h™') o f for all h € H, can be identified with
the space of the sections of E. Indeed, the section ¢ corresponding to the function f is
given by p(m(a)) = a(f(a)). Here 7 : G — G/H denotes the projection, 7(a) = aH, and
a € G is considered as a linear isomorphism from V' to the fibre (), defined on v € V' as
a(v) := [a,v] € Er). Since G acts from the left on the space of H-equivariant functions from
GtoVbya-f:= L* f = fo Ly, we obtain a left action of G on I'(E).

Let U be an irreducible G-representation. Then U @ Hom 5 (U, V') embeds into I'(E) by
U@Hompg(U, V)3 a® A f2, where f2:G =V, f4a)=A(a"a).

In particular, fixing A € Hom 5 (U, V') one obtains a G-equivariant homomorphism U — I'(E),
given by U > a — f%. The meaning of (7.41) is that each G-equivariant homomorphism
U — TI'(F) is obtained in this way. In other words, a subspace of I'(F) is isomorphic as
a G-representation to U if and only if it coincides with the space {f4 : o € U} for some
A € Hom (U, V), A #0.

Let M = G/H be reductive with Ad (H)-invariant decomposition g = h & m and £ =
AT*M, i.e., the vector bundle associated to the H-representation V = A*m*. Then a
straightforward computation shows that in this case a - ¢ = L’ _,p for a € G and ¢ €
['(E). This means that if ¢ corresponds to the function f, then L’¢ corresponds to the
function L f. Let V be the canonical homogeneous connection and consider the operator
d=coV :D(AT*M) — D(AST'T*M). Since V is translation invariant, we have

(d‘P)ﬂ(a) = LZ—I((dLZSO)ﬂ(e))-
For (cZLng)ﬂ(e) we obtain the equation

s+1
(AL)ato)(Xt, o Xosr) = S (=1 AL (XD (X, X X))

i=1
for Xy,..., Xspn em =T, M. Let ¢ correspond to fo‘? Then

L, f(X) = (dADb™ a @) )p=e(X) = A((A(D7))p=e(X) - a”la) = —A(X - a”'a),
where X - « denotes the action of X € g on o € U. Thus

s+1
(dsz@)W(e)(Xla s 7Xs+1) = Z<_1)1A(Xl : afiloé)(Xla B 7Xi7 s 7Xs+1)
i=1
for Xy,..., Xspp em =T )M. In a similar way one obtains

s+1
(dL:;,@)ﬂ'(e)(Xla s 7Xs+1) - Z<_1)1A(XZ ' CI,_IOé)(Xl, s 7Xi7 s 7Xs+1)

i=1

+ Z H_]A a Oé)([Xi,Xj]m,Xl,...,Xi,...,Xj,...,XSJrl)

1<i<j<s+1
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for Xq,..., Xop1 € m = Ty)M. From these formulas one can compute (dAgp)Tr(a) and (dy)x(a)
for any a € G.

Next we fix a G-invariant metric and an orientation on M. Then x¢ = L*_((*L}¢)r(e))-

Therefore, if we would like to solve the G-invariant equation dcp + c*x p = 0, for a certain
constant ¢, it is enough to solve (CZLZQO)W(Q) +cx (Lip)rey =0 foralla € G. In fact, we
shall be interested in subspaces of solutions of this equation, which are isomorphic to a given
irreducible G-representation U. Thus we have to find A € Hom g (U, V') so that

s+1

Z Z(—l)iA(eij cata)(egy, 8y )ENTT Lok AlaT ) = 0

1<i1 < <ig41<n j=1

for all a € G, a € U. Here eq,...,e, is a basis of m. It is clear that it suffices to write a = e
in this equation, i.e., we are looking for A € Hom g (U, V') so that

s+1

(7.42) S D (WA - a)en, iy €iy,) €7 4 cx Ala) = 0

1<i1 < <is41<n j=1

holds for all o € U. Notice that this equation is H-invariant.

8. EXAMPLES

In this section we shall compute the infinitesimal Einstein deformations of three examples
of proper nearly parallel Go-structures on standard homogeneous spaces (up to a factor).

The first example is SO(5)/SO(3), where the embedding of SO(3) in SO(5) is given by the
5-dimensional irreducible representation of SO(3). This space is isotropy irreducible. In fact,
the isotropy representation is the unique 7-dimensional irreducible representation of SO(3),
which also defines an embedding of SO(3) in Gy and thus a Go-structure on SO(5)/SO(3).
The Go-structure is proper nearly parallel (cf. [5]).

The other two examples come from 3-Sasakian geometry. Recall that there is a second
Einstein metric in the canonical variation of a 3-Sasakian metric. In the 7-dimensional case
this metric is induced by a proper nearly parallel Go-structure [12]. In general, for each
simply connected compact simple Lie group G there exists exactly one simply connected 3-
Sasakian homogeneous manifold of the form G/ H and the only other 3-Sasakian homogeneous
manifolds are the real projective spaces [4]. The second Einstein metric is also G-homogeneous

but not normal (neither is the 3-Sasakian metric). But if one writes the space in the form
GxSp(1)
HxSp(1)’

it becomes normal [1] and in the 7-dimensional case even standard (up to a factor).

The simply connected 7-dimensional homogeneous 3-Sasakian manifolds are the round
sphere S7 and the Aloff-Wallach space N(1,1). The corresponding second Einstein metrics

: Sp(2) xSp(1)
are the standardUg))H;oienous metrics (up to a factor) on Sp(D)xSp(1)
Xop

sphere) and on SU(l)XSp(l))' As remarked by B. Wilking in [22], the latter space was overlooked
in the Berger classification of normal homogenous spaces of positive sectional curvature.

It follows from Equation (7.87b) of [3] that a normal homogenous space has non-negative

(the so-called squashed
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sectional curvature. However, if in addition one has a Go-structure as desribed in Lemma 7.1
the torsion is non-degenerate and the sectional curvature has to be positive. Thus by the
Berger classification there are only the examples considered above.

To compute the space of infinitesimal Einstein deformations on our examples M = G/H,
we shall proceed in the following way. First we determine which H-representation V' define
the bundle A3, T*M and then we use Corollary 7.3 to find the irreducible G-representations U

— 2
appearing in the eigenspaces of A for the eigenvalues 5%, = and & (as given in Lemma 6.3).
In all three examples the computation of the Casimir elgenvalues will show that the eigen-

2
values %0 and 2 do not appear and thus the spaces of infinitesimal Einstein deformations

and inﬁmtesnnal Go-deformations coincide. It is interesting to note that in all three cases the
2

non-zero candidates U comming from the eigenvalue 5% turn out to be exactly the compo-
nents of the adjoint representation of G. However this is not too surprising since the Casimir
eigenvalue of the adjoint representation (with respect to the Killing form) is always —1. If
such representations U do exist, we have to solve the equation dp = —7y * ¢ or equivalently
(d+cx)p =0 for the constant ¢ = % To. By the results of the previous section, this is reduced
to finding A € Hom (U, A3;m) that solves (7.42) with ¢ = 2 7.

For reference below we mention the following facts about Casimir operators. The Casimir
operator of the representation V(ki,...,k,) of Sp(n) with highest weight v = (ki1,..., ky),
where k; > --- > k, > 0 are integers, is given by

Sp(n) _ 1 : 2
(8.43) Cas ot o) =~ D (2(n — i+ Dk + k7)

i=1
and the Casimir operator of the representation V(ki,...,k,) of SU(n) with highest weight
v = (k1,..., k), where ky > --- > k;, are integers satisfying —% < ky +--- + k, < 5, by
SU(n
(8.44) Cas V(lgh) ) = —3 Z((n +1 =20k + k) + 55 Zk
i=1

Finally, if V; and V5 are representations of the groups G; and G respectively, then

(8.45) Cas (1272 = Cas ' + Cas 2

8.1. The example SO(5)/SO(3).

We have the reductive, i.e. Ad (SO(3))-invariant, decomposition so(5) = so0(3)@®m, where m
is the orthogonal complement of s0(3) with respect to the Killing form of so(5). As mentioned
above, m is the irreducible 7-dimensional representation of SO(3). The complex irreducible
SO(3)-representations can be written as the symmetric powers S**E, where E = C? is the
standard representation of the double cover Sp(1) of SO(3), in particular m® = SSE. Tt is
easy to obtain the following decomposition into irreducible summands

MmN E =Cp S'Ee SSE @ SSE @ SY2E.
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We see that there is a 1-dimensional space of SO(3)-invariant 3-forms, which implies that
on M = SO(5)/SO(3) the canonical homogeneous connection coincides with the canonical
Gy-connection. Moreover, since A*m* 2 R & m @ A3.m* as a Go-representation, we obtain

(8.46) AMm > S E e S E e S2E.

Since Sp(2) double covers SO(5), the two groups have the same Casimir operator. Therefore,
by Corollary 7.3 and (8.43), we have to find all pairs of integers (ki, k2) with k; > ky > 0, such
that — 5 (4k1 +k3+2ky+k3) is equal to one of —1, —2, —2. The only solution is (ki, k2) = (2,0)
for the eigenvalue —1. The representation V(2,0) is the adjoint representation of Sp(2) and
it corresponds, of course, to the adjoint representation so(5) of SO(5). It remains to compute
the dimension of Hom go3)(s0(5)%, A§7m*c), which turns out to be zero. Indeed, from the
reductive decomposition above we have the following decomposition of s0(5)® into irreducible

SO(3)-representations:
s50(5)° =2 s0(3)* @m® = S’E @ S°F.
Comparing this with (8.46), we see that s0(5)¢ and A§7m*(C do not have any common compo-

nents and therefore Hom oz (50(5)C, A3, m*“) = 0. Thus the eigenvalues %7 ;_3 and é do
not appear in the A-spectrum on Q3.(M) and so we have proved

Proposition 8.1. There are no infinitesimal Einstein deformations and, in particular, no
infinitesimal Gao-deformations of the nearly parallel Go-structure on SO(5)/SO(3).

8.2. The example %.

We denote by Sp(1), and Sp(1), the following embeddings of Sp(1) in Sp(2) x Sp(1):

o= {((§ §) Draesow) o= (5 o) 0)saespm)

In this realization the Lie algebras of Sp(1), and Sp(1), are given as

sp(1), ;:{((g 8),0):a€sp(1)}, sp(1), :{((8 2),a);aesp(1>}.

Sp(2)xSp(1)
Sp(1)uxSp(1)a
metric induced by —ﬁB , where B is the Killing form of g = sp(2) @ sp(1). Then we have

the reductive decomposition g = b & m, with

h=sp(1), ©sp(l)a,  m=h" =sp(l), Hm'.

We consider the homogeneous space as a normal homogeneous space taking the

The Lie algebra sp(1), and the space m’ are given as

w00 = (g 5] -s0:acsm) wii( % §)0ioem
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We define the orientation by means of the following orthonormal frame of m:
I (0 0 . I (0 0 . 1 /0 0
€1 = %((0 22) ,—3Z), €9 1= E((O 2]) ,-3]), €3 = %((O 2]{) ,—3]{5),

i (O )0 a= (0 5) 00 w=((§ )0 a=((} 5).0

Then, computing the comutators of these basis elements, we see that at the initial point o the
torsion of the canonical homogeneous connection is T, = \%00, where o, is given by (2.1).

Sp(2)xSp(1) . o 12
Sp(1)xSp(Dg With 70 = — %

We want to determine infinitesimal Einstein deformations of this structure. Thus by Corol-
lary 7.3 together with (8.45) and (8.43) we are looking for ky > ko > 0 and [ > 0 such that

CastiE =~ (Wb K+ 2k ) = Lo+ 1)

Hence, by Lemma 7.1 we obtain a nearly parallel Gy-structure on

is equal to one of —1, —%, —%. The only solutions, both for the eigenvalue —1, are k1 = 2, ky =

0, =0and ky = 0, ks = 0,1 = 2. Thus the space of infinitesimal Einstein deformations
is equal to the space of infinitesimal Go-deformations and the only two representations of
Sp(2) x Sp(1) which could be contained in this space are V(2,0) = sp(2) and V(2) = sp(1).
Next we have to determine whether these spaces admit H-invariant homomorphisms to A3, m*.

If the standard representations of Sp(1), and Sp(1), are denoted by E and H respectively,
an arbitrary irreducible representation of Sp(1),, x Sp(1),4 can be written as S ES'H. (In this
and the next subsection we shall omit the tensor product sign and the complexification sign).
Then we have the following decompositions into irreducible Sp(1),, x Sp(1)4-representations:

sp(l), = S%H, m' =~ FH, m=S*’H ¢ EH,

Nm* =~ S’ES?HOES’H ®2EH @ S*H © S*H ¢ 2C,

Aw* = S?ES?H @ ES*H @ EH @ S*H ¢ C,

V(2,0) sp(2) > S?E® EH @ S*H, V(2) = sp(l) = S?H.

1

Since Aj;m* and sp(1) have no common summands, Hom gp(1), xsp(1), (5p(1), A3;m*) = 0
and therefore the Sp(2) x Sp(1)-representation sp(1) is not contained in 3.(M).

The only common summand of A3, m* and sp(2) is EH, so Hom gp(1), xsp(1), (5p(2), A3;m*)
is 1-dimensional. In order to proceed we have to find an explicit equivariant homomorphism
A :5p(2) — A3,m* spanning this space. Since x0, and €*%7 are the two linear independent
Sp(1), x Sp(1)g4-invariant forms in A*m* an arbitrary embedding of FH in A®m* is given by

FH=w > X — X2(A*0,+ pe®7) € A®m*.
The image of this map is contained in A3.m* if and only if it is orthogonal to the FH in
A3m*. Obviously this is equivalent to 1 = —4\ and we can take the embedding
i:EH=m — Ajbm*, EFH=w > X X,(x0, — 4",
Hence Hom gp(1), xsp(1), (5p(2), A3;m*) is spanned by the equivariant homomorphism A := iop,
where p : sp(2) — EH is the orthogonal projection.
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Thus U = sp(2) is the only Sp(2) x Sp(1)-representation which remains for the solution
space of the equation *xdy = —7y¢, describing the infinitesimal Go-deformations. As men-
tioned above, this equation is equivalent to (d + 570*)g0 = 0, i.e. in the case at hand to
(d —2v/5%)¢ = 0. From the results of the last part of Section 7 for V = A3 m* and U = sp(2)
it follows that equation (7.42) with ¢ = —2v/5 must be satisfied for the chosen A and all
u € sp(2). However this is not the case: take o ;== e, € EH =2 m’' C sp(2). Then

e1-a=[eg,eq = —%65, i(es) = 3107 4 137 4 126 4 234
e = |eg, 4] = _%667 i(e) = _36457 12T _ 125 _ 134’
= [ere = —per, i(er) = 860 — W — (I g o131
e = [ea,eq] = 0, ies) = 3 56T _ o235 4 6136 127

Using these equations one easily sees that the coefficient of €'*** in the left-hand side of (7.42)
is \3/—% # 0. Hence sp(2) is not contained in the space of solutions of (d — 2v/5%)¢p

Since the nearly parallel Go-structure of the squashed sphere is a double covering of the
one on RP7 the same argument applies for the real projective space and we obtain

Proposition 8.2. There are no infinitesimal Einstein deformations and, in particular, no in-
finitesimal Go-deformations of the nearly parallel Go-structure on the squashed sphere %
and of the nearly parallel Go-structure on RP7 inducing the second Einstein metric.

SU(3)x5U(2)

8.3. The example W

We denote by SU(2), the following embedding of SU(2) in SU(3) x SU(2):

SU(2)g := {((8 (1)) ya) ra € SU(2)}.

The group U(1) is realized as a subgroup of SU(3) € SU(3) x SU(2) by the embedding

e 0 0

v ={(o ¢ o | 1):ter).
0 0 €—2it
SU(3)xSU(2)

We consider the homogeneous space as a normal homogeneous space taking the

T(1)xSU2)y
metric induced by —5:B, where B is the Killing form of g = su(3) @ su(2). Then we have

the reductive decomposition g = b & m, with

h=u(l) ®su(2),, m= bt =su(2), pm'.

Here
u(1) := span{C'}, where C := ( 6 (z) 8 0), and su(2) _{(<a 0) )ra€su(2)}
| 00 —2) 00
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are the Lie algebras of U(1) and SU(2), respectively and

0 =z

2a 0 ) 2
st 0),0).26@}.

au, = (7§ ) s0secm@n w(((

Let

= <(’) _OZ> esu(2), Ji= <(1) _01) esu2), K= (? é) € su(2).

Then we define the orientation fixing the following orthonormal frame of m:

L R BRI

0 0 V2 0 0 V2i
es:=( 0 0 0 ],0), e:=(| 0 0 0 |],0),
-2 0 0 2 0 0
0 0 0 0 0 0
es:=({0 0 V2,0, e:=({0 0 2i | ,0)
0 —v2 0 0 V2 0

Then, as in the previous example we see that T, = \%00, where o, is given by (2.1). Hence,
by Lemma 7.1 we obtain a nearly parallel Go-structure on % with 79 = —%.

Again we want to find the infinitesimal Einstein deformations of this structure. By Corol-
lary 7.3 together with (8.45) and (8.44) we are this time looking for integers ki > ko > k3
and [; > o, satisfying —% <ki4+ky+ k3 < % and —1 < [; + I3 < 1, such that

SU(3)xSU 1 1
Cas e ) = — 5 (ka3 Bk — kaky— ok —Kaha) = 2 (2L +1F 205+ 3—20).

is equal to one of —1, —%, —g. The only solutions, both for the eigenvalue —1, are
k:lzl,k‘g:(),k‘gz—l,l1:O,l2:0 and kflz(),kQZO,ng:O,ll:l,lQ:—l,

Thus the space of infinitesimal Einstein deformations is equal to the space of infinitesimal
Go-deformations and the only two representations of SU(3) x SU(2) which could be contained
in this space are V(1,0,—1) = su(3) and V (1, —1) = su(2). Next we have to determine the
H-equivariant homomorphisms of these spaces into A3, m*.

If the representation of U(1) with weight & is denoted by F(k) and the standard repre-
sentation of SU(2), by H, then an arbitrary irreducible representation of U(1) x SU(2), has
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the form F(k)S'H. We have the following decompositions into irreducible U(1) x SU(2)4-
representations:

su(2), = S?H, wXFQ)H®F(-3)H, wm~S’HoFQ3)H® F(-3)H,
APm* ~  F(6)S?H @ F(—6)S?H @ F(3)S*H ® F(-3)S*H ®2F(3)H ® 2F(-3)H
® S*H ®25°H @ 2C,
ABm* = F(6)S2H @ F(—6)S?*H & F(3)S3H @ F(—3)S*H & F(3)H & F(—3)H
®S*H ¢ S’H @ C,

V(1,0,-1) = su3)2Ce FG3)H® F(-3)H & S?H,  V(1,—1) = su(2) = S2H,

The only common summand of Aj;m* and su(2) is S?H, so Hom y1)xsu(2), (5u(2), A3;m*)
is 1-dimensional. Let

g SPH = su(2) — su(2),,  SH = su(2) 5 a — ((20“ g) \—3a) € su(2),

be the identification of S*H and su(2),. The S?H in A3m* coming from A3m* is given by the
embedding
S’H > a s ga(a) = qaa)ax o € A2m*,
Since the 2-form  := €% 4 €7 is also U(1) x SU(2)4-invariant, another embedding of S*H
in A®m* is
iy S?H — A*m*,  S?H 3 a v gu(a) — ga(a)’ AQ € APm”.

It is easy to see that iy(S? H) is orthogonal to the S*H in A2m*, so in fact iy is the embedding
of S?H into A3;m*. Therefore Hom ;;(1)xsu(2), (5u(2), A3;m*) is spanned by A := 5.

Now, as in the previous example, it remains to solve the equation (d — 2\/5*)g0 = 0 by
applying the results of the last part of section 7 for V = A3 m* and for the summands
U = su(3) and U = su(2) found above.

If su(2) is contained in the space of solutions of (d — 2v/5%)p = 0, then equation (7.42)
(with s = 3 and ¢ = —21/5) must be satisfied for the chosen A and all a € su(2). We shall
show this is not the case. Take o := (0,1) € S?H = s5u(2) C su(3) & su(2). Then

6
ex = [eg,a] = —=(0,K), i5(0, K) = q2(0, K)’AQ = —V/5e3 A (e¥+€57) = —/5(e345+¢%7),

V5

e3-a = [e3,a] = —%(O, J), i2(0,0) = q2(0, J)’AQ = —VBe2A (P +65) = —V/5(e245 427,

es-a=les, ) =0, e5-a=lesa] =0,
i2(0,1) = q2(0,1)” AQ = —V/Bel A (e®® 4 €57) = —/5(e!® + 197).
Using these equations one easily sees that the coefficient of 2% in the left-hand side of (7.42)

is 22 # 0. Hence su(2) is not contained in the space of solutions of (d — 2v/5%)p = 0.

There are four common summands of A3.m* and su(3): C, S*H, F(3)H, F(—3)H. Since
they are all different, Hom y(1)xsu(2), (s4(3), A3;m*) is 4-dimensional. Our next goal is to de-
termine a basis Ay, Ag, A3, As of Hom y1yxsu(), (5u(3), A3;m*) corresponding to these spaces.
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The C in A>m* coming from A$m* is spanned by o, and the second C in A*m* is spanned
by e'2. Thus an arbitrary C in A3m is spanned by Ao, + pe'?3. This is orthogonal to o, if
and only if 4 = —7\. Hence the C in A3, m* is spanned by o, — 7¢!?3. On the other hand, C
in su(3) is u(1) and is spanned by C. Define

iru(l) —» Ajm*, C w0, — Te'?.
Then the subspace of Hom y(1)xsu2),(s1(3), A3;m*) which corresponds to C is spanned by
Ay :=1y o py, where p; : su(3) — u(1) is the projection.
Let

g 0 SPH =~ su(2) — su(3), S*H ~s5u(2)>ar— (<8 8) ,0) € su(3) C su(3) @ su(2).

Then the subspace of Hom y(1)xsu(2), (54(3), A3;m*) corresponding to S?H is spanned by A, :=
iy 0 j5 ' 0 Py, Where py 1 su(3) — S?H is the projection and i, was defined earlier.

Considered as subspaces of m’ C su(3) @ su(2), F(3)H and F(—3)H are
F(3)H = span{ey — ies, e — ier}, F(—3)H = span{es + ies, e + ier}.

In the same way as for FH in the case of % we obtain that the embeddings 3 :

F(3)H — A3m* and i4 : F(—3)H — Aj,m* are given by the restrictions on F(3)H and
F(—=3)H of the embedding

m' > X — X.i(xo, — 4e®%7),
Then the subspaces of Hom ¢(1yxsu 2, (s11(3), A3;m*) corresponding to F'(3)H and F(—3)H are
spanned by Aj := i3 0 ps and Ay := iy 0 py, where p3 : su(3) — F(3)H, py : su(3) — F(—3)H
are the projections.

Thus we have to find for which A = ¢; Ay + ¢ Az + c3 A3 + ¢4 Ay equation (7.42) (with s = 3
and ¢ = —2v/5) is satisfied for all a € su(3). As this equation is U(1) x SU(2)4-invariant, this
is equivalent to the requirement that the equation is satisfied for one representative of each
of the four summands in su(3). We take

ap :=C € C C su(3), ag = Jo(I) € S*H C su(3),
ag:=e4 —ies € F(3)H Csu(3), ay:=es+ies € F(—3)H C su(3).
Then we have

A(C) = ¢1i1(0) = ¢1(0, — Te'??),

= CQiQ(I) = —\/5026 ANQ = —\/_62(6145 + 6167),
(J) = —V5Bee® A Q = —V/Bey (24 + 7)),
A(jo(K)) = caig(K) = —V5epe® A Q = —v/5ey (€34 + 27,

<€4 - i€5) — 03i3(€4 . i65) — 63(( 36567 o 6235 4 6136 127) '(36467 4 6137 4 6126 4 6234)),
A(eG _ i67) — Cgi3(€6 - i€7) — Cg(( 36457 4 6237 6125 134) 2(36456 2 - 6135 4 6124)),
Ales +ies) = cyig(eq +ies) = ca((—3€™7 — € + €10 — 12T) +(3e™07 + 7 + €170 4 21,
A(GG +i67) _ C4i4(66 +i67) — 04(( 36457 + 6237 _ 6125 134) Z(36456 2 36 6135 + 6124))
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Since equation (7.42) is invariant with respect to U (1) x SU(2)y, its left-hand side for o = a4
lies in 2C = span{xa,,e*%"} C A'm*. Hence, to determine it, it is enough to compute the
coefficients of €77 and €357,

We have
er-ap=[e1,Cl =0, ex-a;=1e,C] =0, e3-a;=][es,C]=0,
eq-aq = [eg,C|l = —=3e5, e5-aq = [e5,C] = 3ey,
eg - aq = [eg, C| = —3er, er-aq = [e7,C] = 3eg.
Using these equations we see that the coefficients of e*°%7 and €%*7 are —18i(c5 —c4) +12v/5¢;
and 3i(c3 — ¢4) — 2v/5e1. So the whole left-hand side of (7.42) for a = o is

(—2\/561 + 3i(03 — 64))(*0'0 — 764567)
and this vanishes if and only if —2v/5¢; 4 3i(cs — ¢4) = 0.

Since equation (7.42) is U(1) x SU(2)g-invariant, its left-hand side for o € S*H lies in
25?H C A*m*. The two embeddings of S?2H in A*m* are obtained as the composition of the
two embeddings of S?H in A®m* with x. Thus the left-hand side of (7.42) for a = ay lies in

span{e!216 | o147 | 1257 _ (1356 (2367 | 2345}
Hence, to determine it, it is enough to compute the coefficients of €!?46 and €23,
We have
: . 4 , 4
€1 Qg = [61,]2(1)] =0, e-ap= [62,J2(I)] = —%Jz(K), €3 Q2 = [63,32(1)] = ﬁ]z(«f%
ey g = [eg, fo(I)] = —es5,  e5-ap = [e5,52(1)] = e,
eg - g = [eg, Jo(I)] = €7, er- = [er, jo(I)] = —e.
With these equations we see that the coefficients of !¢ and €?3%7 are c3+c, and 2co—i(c3—cy).

So the whole left-hand side of (7.42) for a = a is
(03 + 04)(61246 + 61347 + 61257 _ 61356) + (202 _ i(03 _ C4))(62367 + 62345)
and this vanishes if and only if ¢3 4+ ¢4 = 0 and 2¢5 — i(c3 — ¢4) = 0.

Again the U(1) x SU(2)g-invariance of equation (7.42) implies that its left-hand side for
a € F(3)H lies in 2F(3)H C A'm*. The two embeddings of F(3)H in A*m* are obtained as
the composition of the two embeddings of F/(3)H in A>m* with . Thus the left-hand side of
(7.42) for a = a3 lies in

span{e!? o125 (MOT _ 2057 | jBI56) _ (2156 | 35T | 1567))
Hence, to determine it, it is enough to compute the coefficients of e!?3* and 4.
We have
. 2 . . 2 .
e1 - ag = [e1,eq4 — ies] = ——5Z(64 —ies), ey-Qaz = [ea,eq —ies| = —%(66 —iez),

€3 - (3 = [63, €4 — i€5] = —ﬁl(ee, — i€7),



32 B. ALEXANDROV, U. SEMMELMANN

€4 - Q3 = [64, €4 — i65)] = —220 — 22]2([), €5 - (3 = [65,64 — i65] = —20 — 2]2(]),

€6 - a3 = [€g, €4 — ies] = —2jo(J) — 2ija(K), er-az = [er,eq — ie5] = i(2)2(J]) + 21j2(K)).
36

Then, using these equations we find that the coefficients of ¢'23* and e'467 are 12ic; + NS

and 2ic; + 2iv/5eg + f03 So the whole left-hand side of (7.42) for a = ay is

36
(12ic; + —=c3)(e'?* — je!?3)

G
16

+(2i01 + 22-\/502 + —Cg)((€1467 o 62457 + 63456) o i(62456 + 63457 + 61567))

V5

and this vanishes if and only if 12i¢; + \[03 = 0 and 2ic; + 2iv5ey + \1/6—63 = 0.

The computations for o = ay € F(—3)H are similar. In fact, one has to take the results
for a3, change c3 to ¢y, preserve ¢; and ¢y and take the complex conjugate of everything else.
So the whole left-hand side of (7.42) for a = ay is

36
(—12ic; + —=cq)(e'®* 4 ie'?3)

V5
16

+(—2i61 . 2@-\/502 + —04)((61467 o 62457 T 3456) + ’L( 2456 + 63457 + 61567))

V5

and this vanishes if and only if —12:¢; + f04 =0 and —2ic; — 2iv/bes + \[04 =0.

Hence equation (7.42) is satisfied for A = ¢; Ay + 2 As + c3A3 + ¢4 Ay and all « € su(3) if
and only if

—2\/5C1 + 3i(03 - 04) = 0, C3+C4 = 0, 2C2 - ’i(C3 - C4) = O,

36 16
12iC1 + —=c3 = 0, 21'01 + 22'\/502 + —=cC3 = 0,

V5 V5
: 36 . ‘ 16
—12201 + E&; = 0, —2201 — 2Z\/562 + E&l =0.
The solution of this linear system is 1-dimensional:

V5 V5. V5.

Cy = —(—(Cq, C3 = ———1(Cq, Cqy = —1Cq.

3 3 3
This means that exactly one copy of su(3) is contained in the space of solutions of the equation

(CZ— 2\/5*)4,0 =

Thus we have proved

Proposition 8.3. The space of infinitesimal Einstein deformations of the proper nearly par-

allel Go-structure on % coincides with the space of its infinitesimal Go-deformations.

This space is 8-dimensional and is isomorphic to su(3) as an SU(3) x SU(2)-representation.
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