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Abstract. We study the infinitesimal deformations of a proper nearly parallel G2-structure
and prove that they are characterized by a certain first order differential equation. In par-
ticular we show that the space of infinitesimal deformations modulo the group of diffeomor-
phisms is isomorphic to a subspace of co-closed Λ3

27-eigenforms of the Laplace operator for
the eigenvalue 8scal /21. We give a similar description for the space of infinitesimal Ein-
stein deformations of a fixed nearly parallel G2-structure. Moreover we show that there are
no deformations on the squashed S7 and on SO(5)/SO(3), but that there are infinitesimal
deformations on the Aloff-Wallach manifold N(1, 1) = SU(3)/U(1).

1. Introduction

A nearly parallel G2-structure on a 7-dimensional manifold M is given by a 3-form σ of
special algebraic type satisfying the differential equation ∗dσ = τ0σ for some constant τ0.
Such a manifold has a structure group contained in the exceptional Lie group G2 ⊂ SO(7)
and, in particular, a Riemannian metric g induced by σ. It can be shown that nearly parallel
G2-manifolds are irreducible and Einstein with scalar curvature scal = 21

8
τ 2

0 . Moreover, the
existence of such a structure is equivalent to the existence of a spin structure with a Killing
spinor.

Another equivalent description of nearly parallel G2-structures is in terms of the metric
cone (M̂, ĝ), which has to have holonomy contained in Spin(7), considered as subgroup of

SO(8). The metric cone is the manifold M̂ = M × R+ with the warped product metric
ĝ = r2g ⊕ dr2. If (M7, g) is simply connected and not isometric to the standard sphere, then

there are three possible cases: the holonomy of (M̂, ĝ) is contained in Sp(2), equivalently,
(M7, g) is a 3-Sasakian manifold, the holonomy can be SU(4), equivalently, (M7, g) is an
Einstein-Sasaki manifold, or the holonomy is precisely Spin(7), in which case we call the
G2-structure proper. We recall that these three cases correspond to the existence of a 3-, 2-
resp. 1-dimensional space of Killing spinors. Proper nearly parallel G2-structures are also
characterized by the vanishing of the Lie derivative Lξσ for any Killing vector field ξ.

In this article we shall mainly consider the case of proper nearly parallel G2-manifolds. In
[12] it is shown that any 7-dimensional 3-Sasakian manifold admits a second nearly parallel
G2-structure which is proper. The corresponding Einstein metric belongs to the metrics
of the canonical variation of the 3-Sasakian Einstein metric. Applying this construction to
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the homogeneous 3-Sasakian spaces S7 and N(1, 1) one obtains homogeneous proper nearly
parallel G2-structures: the squashed 7-sphere and the second Einstein metric on N(1, 1).
The Aloff-Wallach spaces N(k, l) for (k, l) 6= (1, 1) also have exactly two nearly parallel G2-
structures, both of which are proper. A further example is the isotropy irreducible space
SO(5)/SO(3). In fact, due to the classification [12] these are the only homogeneous nearly
parallel G2-manifolds.

As a last remarkable property of nearly parallel G2-manifolds we mention the existence of a
metric connection ∇̄ with totally skew-symmetric torsion. The so-called canonical connection
∇̄ is defined as ∇̄ = ∇− τ0

12
σ and has holonomy contained in the group G2 ⊂ SO(7). Nearly

parallel G2-manifolds appear as one of two exceptional cases in a classification of metric
connections with parallel torsion due to Cleyton and Swann [7]. The other exceptional case
is the class of 6-dimensional nearly Kähler manifolds, which turns out to be in various ways
rather similar to nearly parallel G2-manifolds. The defining condition is the existence of a
nearly parallel almost complex structure J , i.e., J satisfying (∇XJ)(X) = 0 for any vector
field X. Nearly Kähler manifolds in dimension 6 are also Einstein manifolds admitting a
Killing spinor. Moreover, the metric cone has holonomy contained in G2.

In this article we shall show that nearly parallel G2-manifolds are also in another respect
very similar to nearly Kähler manifolds: the description of infinitesimal deformations. In [16]
the space of infinitesimal nearly Kähler deformations is identified with the space of primitive
co-closed (1, 1)-eigenforms of the Laplace operator for the eigenvalue 2scal /5, [19] contains
a similar description of the space of infinitesimal Einstein deformations. This space turns
out to be the sum of three such eigenspaces. Finally, in [18] it is shown that infinitesimal
deformations for the known homogenous examples only exist in the case of the flag manifold
SU(3)/T2. For all three results we shall obtain a counterpart on nearly parallel G2-manifolds.

We start with the equations of R. Bryant (cf. Proposition 3.1 and [6]) describing the
infinitesimal deformation of an arbitrary G2-structure. They give equations for the tangent
vector on a curve of G2-structures. Specializing to the case of nearly parallel G2-structures
and staying transversal to the action of the diffeomorphism group, we obtain that the space of
such deformations is a direct sum of two spaces, D1 and D3, consisting of 1-forms and 3-forms
respectively. As shown in Section 4, the space D1 parametrizes Einstein-Sasakian structures
compatible with the given nearly parallel G2-structure. The more interesting space is D3

which consists of the solutions φ in Λ3
27T∗M of the differential equation ∗dφ = −τ0φ. In

particular, infinitesimal deformations φ ∈ D3 are co-closed and eigenforms of the Hodge-
Laplace operator for the eigenvalue τ 2

0 = 8scal /21. But more important for the computation

in examples is that they are also eigenforms for the eigenvalue
5τ20
6

of the G2-Laplace operator
∆̄ introduced in Section 5. In Section 6 we describe the space of infinitesimal Einstein
deformations of the metric of a nearly parallel G2-structure. In addition to D3 one obtains
two other spaces of sections of Λ3

27T∗M which are characterized by similar equations. In the
last section we compute the infinitesimal Einstein deformations of the normal homogeneous
examples: the isotropy irreducible space SO(5)/SO(3), the squashed 7-sphere and the second
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Einstein metric on the Aloff-Wallach space N(1, 1). We show that there exist no Einstein
deformations and, in particular, no deformations of the nearly parallel G2-structure in the
first two cases, while in the third the space of infinitesimal Einstein deformations coincides
with the space of infinitesimal nearly parallel G2-deformations and is 8-dimensional. We do
not know whether these infinitesimal deformations integrate to real Einstein deformations.

2. Preliminaries

Let e1, . . . , e7 denote the standard basis of R7 and e1, . . . , e7 its dual basis. On R7 we fix
the canonical scalar product 〈·, ·〉 and the standard orientation. We shall write ei1...ik for the
wedge product ei1 ∧ . . . ∧ eik ∈ Λk(R7)∗ and define the fundamental 3-form as

(2.1) σ = e123 + e145 + e246 + e347 − e167 + e257 − e356.

The exceptional group G2 is defined as the subgroup of GL(7,R) that fixes the 3-form σ,
i.e., G2 = {g ∈ GL(7,R) | g∗σ = σ}. The group G2 is a 14-dimensional compact, connected,
simple Lie group, which acts irreducibly on T := R7 and preserves the metric, the orientation
and the Hodge dual of σ, i.e. the 4-form

(2.2) ∗σ = e4567 + e2367 + e1357 + e1256 − e2345 + e1346 − e1247.

The irreducible representations of G2 can be indexed by their highest weights, which are
pairs of non-negative integers (p, q) if written as linear combinations of the two fundamental
weights. The corresponding representation will be denoted by Vp,q. In this paper we will in
particular be interested in the following four irreducible G2-representations: the trivial rep-
resentation V0,0 = R, the standard representation V1,0 = T := R7, the adjoint representation
V0,1 = g2 and the representation on traceless symmetric 2-forms V2,0 = S2

0T∗. Among the
irreducible representations these are uniquely determined by their dimensions 1, 7, 14 and
27 respectively. Therefore we shall use the dimensions as lower indices when we decompose
the space of k-forms ΛkT∗ into irreducible components. In other words, Λk

r will denote the
r-dimensional irreducible subspace of ΛkT∗. With this notation we have

(2.3) Λ2 = Λ2T∗ = Λ2
7 ⊕ Λ2

14, Λ3 = Λ3T∗ = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27,

with an isomorphic decomposition for Λ4T∗ ∼= Λ3T∗ and Λ5T∗ ∼= Λ2T∗ obtained with the
help of the Hodge ∗-operator. The one-dimensional spaces in Λ3 resp. Λ4 are spanned by σ
resp. ∗σ. The space Λ2

14 is isomorphic to the Lie algebra of G2 and the other subspaces can
be characterized by

Λ2
7 = {Xyσ ∈ Λ2 | X ∈ T} ∼= T, Λ3

7 = {Xy ∗ σ ∈ Λ3 | X ∈ T} ∼= T,

Λ3
27 = {α ∈ Λ3 | α ∧ σ = 0 = α ∧ ∗σ} ∼= V2,0.

In the sequel we shall use the following G2-equivariant isomorphisms, which were introduced
by Bryant in [6]: i : S2

0T∗ → Λ3
27 and j : Λ3

27 → S2
0T∗, where i is the restriction to S2

0T∗ ⊂ S2T∗

of the map S2T∗ → Λ3T∗, defined on decomposable elements by

α� β 7→ α ∧ (βyσ) + β ∧ (αyσ),
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while j is given by

j(γ)(X, Y ) = ∗((Xyσ) ∧ (Y yσ) ∧ γ).

Note that j = −8i−1. With the help of i one can obtain explicit elements of Λ3
27, e.g.

(2.4) i(e1 � e2) = e146 + e157 + e245 − e267.

Because of T∗ ⊗ T∗ = S2T∗ ⊕ Λ2T∗ we have the following decomposition:

(2.5) V1,0 ⊗ V1,0
∼= R⊕ V2,0 ⊕ V1,0 ⊕ V0,1.

Later we shall also need the decompositions

(2.6) V1,0 ⊗ V2,0
∼= V1,0 ⊕ V2,0 ⊕ V0,1 ⊕ V1,1 ⊕ V3,0,

(2.7) V1,0 ⊗ V0,1
∼= V1,0 ⊕ V2,0 ⊕ V1,1.

The group G2 can also be defined as the stabilizer of the vector cross product P , given by

(2.8) σ(X, Y, Z) = 〈P (X, Y ), Z〉,

where X, Y, Z are any vectors in T. Recall from [8] that a 2-fold vector cross product P is a
bilinear map P : T× T→ T satisfying for all X, Y ∈ T the equations

(2.9) 〈P (X, Y ), X〉 = 〈P (X, Y ), Y 〉 = 0 and ‖P (X, Y )‖2 = ‖X‖2‖Y ‖2 − 〈X, Y 〉2.

In particular, it follows from the second equation of (2.9) that P is skew-symmetric. Thus
we can consider P as a linear map P : Λ2T → T and write P (X ∧ Y ) = P (X, Y ). In this
notation the second equation of (2.9) reads: ‖P (X ∧ Y )‖2 = ‖X ∧ Y ‖2. We also refer to [8]
for the following relations satisfied by a general 2-fold vector cross product:

Lemma 2.1. For X, Y, Z ∈ T we have

(1) 〈P (X, Y ), Z〉 = 〈X,P (Y, Z)〉,
(2) P (X,P (X, Y )) = −‖X‖2Y + 〈X, Y 〉X,
(3) 2P (P (X, Y ), Z) = P (P (Y, Z), X) + P (P (Z,X), Y ) + 3〈X,Z〉Y − 3〈Y, Z〉X.

From now on we will usually identify vectors and 1-forms via the metric and denote with
{ei}, i = 1, . . . , 7 an orthonormal basis of T. For later use we still note

Lemma 2.2. Let X and Y be any vectors in T. Then the following equations hold

(X yσ) ∧ σ = −2X ∧ ∗σ,(2.10)

(X yσ) ∧ ∗σ = 3 ∗X,(2.11) ∑
i (ei yX yσ) y (ei ∧ σ) = 3X y ∗ σ,(2.12) ∑
i (ei yX yσ) ∧ (eiyσ) = 3X y ∗ σ,(2.13)

(X yY yσ) yσ + X yY y ∗ σ = −X ∧ Y,(2.14)

P (X yσ) = 3X.(2.15)
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The GL7-orbit of σ in Λ3T∗ is an open set by dimensional reasons. As usual it is denoted
with Λ3

+. Forms in Λ3
+ are called stable or definite.

Let M be a 7-dimensional manifold. The union of the subspaces Λ3
+T∗xM , x ∈M , of stable

forms defines an open subbundle Λ3
+T∗M ⊂ Λ3T∗M . There is a one-to-one correspondence

between G2-structures on M , i.e. reductions of the structure group of M to the group G2,
and the space of sections of Λ3

+T∗M , which we will denote with Ω3
+(M). The defining 3-form

σ ∈ Ω3
+(M) determines a Riemannian metric g and an orientation of M via the relation

(2.16) −6g(X, Y ) ∗ 1 = Xyσ ∧ Y yσ ∧ σ

(∗1 denotes the volume form). Let ∇ be the Levi-Civita connection of g. Then the covariant
derivative ∇σ is a section of the bundle T∗⊗g⊥2 , where g⊥2

∼= T∗ is the orthogonal complement
of g2 in Λ2T∗ and we identify bundles with the G2-representation defining it. It follows from
(2.5) that this bundle decomposes as R⊕V2,0⊕V1,0⊕V0,1 and thus the covariant derivative of
σ has four components. Accordingly, one has the 16 Fernandez-Gray classes of G2-structures,
with the four basic classes W1,W2,W3,W4 corresponding to the four irreducible summands.

In this article we shall consider the class W1 of so called nearly parallel (or weak) G2-
structures, i.e. G2-structures induced by a non-parallel 3-form σ ∈ Ω3

+(M), such that ∇σ
is a section of the 1-dimensional subbundle defined by the trivial G2-representation. Nearly
parallel G2-structures can be described by several equivalent conditions in terms of σ.

Proposition 2.3. Let M be a 7-dimensional manifold with a G2-structure defined by a 3-form
σ ∈ Ω3

+(M). Then the following conditions are equivalent

(1) The 3-form σ defines a nearly parallel G2-structure.
(2) The 3-form σ is a Killing 3-form, i.e. ∇σ = 1

4
dσ.

(3) There exists a τ0 ∈ R \ {0} with ∇σ = τ0
4
∗ σ.

(4) There exists a τ0 ∈ R \ {0} with ∇X(∗σ) = − τ0
4
X ∧ σ for all vector fields X.

(5) There exists a τ0 ∈ R \ {0} with dσ = τ0 ∗ σ.
(6) Xy∇Xσ = 0 holds for all vector fields X.

Proof: The equivalence of (3) and (4) is obvious, while the equivalence of (1), (2), (3) and
(6) has been proved in [8]. The only point not mentioned there is that τ0 is constant. This fact
is also known (see e.g. [12]) and can be proven as follows. Since (5) is an obvious consequence
of (3), we can differentiate it to obtain dτ0 ∧ ∗σ = 0, which implies dτ0 = 0. Finally, that (5)
implies the remaining conditions was proved in [12]. This is the only point where one uses
that τ0 is different from zero. �

Let P be the associated vector cross product, defined in (2.8). Then the condition (6) of
the proposition above is equivalent to (∇XP )(X, Y ) = 0 for any vector fields X, Y , i.e., to P
being nearly parallel [13]. Further straightforward consequences of Proposition 2.3 in the case
of nearly parallel G2-manifolds are: d∗σ = 0 and ∆σ = τ 2

0 σ, where here and in the following
∆ = dd∗+ d∗d denotes the Hodge-de Rham Laplacian. Moreover it follows that σ is a special
Killing 3-form, i.e. the additional equation ∇Xdσ = −1

4
τ 2

0X
∗ ∧ σ is satisfied for all vector

fields X (cf. [20]).
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The canonical connection ∇̄ of a G2-structure is the unique G2-connection whose torsion
is equal to the intrinsic torsion of the G2-structure. In the nearly parallel case it has totally
skew-symmetric and parallel torsion and is explicitly given by

(2.17) g(∇̄XY, Z) = g(∇XY, Z) − τ0
12
σ(X, Y, Z)

or, equivalently, by

(2.18) ∇̄X = ∇X − τ0
12
PX ,

where the endomorphism PX is defined by PXY := P (X, Y ).

Remark 2.4. The fact that P is G2-invariant allows the following important application,
which we shall use several times in this article. Let V be an irreducible G2-representation
contained in some tensor space and VM be the corresponding associated bundle. Then
the endomorphism PX extends to an endomorphism of VM and we may consider the G2-
equivariant map V → T∗ ⊗ V , defined by ϕ 7→

∑
i e
i ⊗ Peiϕ, which we again denote by P .

By (2.18) we have
(∇̄ − ∇)ϕ = − τ0

12
Pϕ

for any section ϕ of VM . Let U be an irreducible component in T∗ ⊗ V . Suppose first
that U is not isomorphic to V as a G2-representation. Then there exists no non-zero G2-
equivariant map from V to U and therefore the UM -part (Pϕ)UM of Pϕ vanishes, which
implies (∇ϕ)UM = (∇̄ϕ)UM . On the other hand, if U is isomorphic to V , then U = i(V ),
where i : V → T∗ ⊗ V is some G2-equivariant embedding. Let π : T∗ ⊗ V → U be the
projection. Then π ◦ P : V → U is also G2-equivariant and therefore by Schur’s lemma
π ◦ P = ci for some constant c. Thus (∇ϕ)i(VM) = (∇̄ϕ)i(VM) + cτ0

12
i(ϕ). Finally, since ∇̄ϕ

and Pϕ are sections of T∗M ⊗ VM , the same is true for ∇ϕ, despite the fact that ∇ is not
a G2-connection.

Remark 2.5. Our choice of the orientation induced by a stable 3-form σ is the opposite of
the choice of Bryant in [6]. As a consequence our ∗, j, τ0 and f1 from the next section differ
from those in [6] by a sign.

3. Deformations of G2-structures

In this section we will consider a smooth curve σt of nearly parallel G2-structures and
describe its tangent vector σ̇ in t = 0. Here and in the sequel the dot denotes the time
derivative at t = 0. As a starting point we use the following result of R. Bryant [6] for curves
of arbitrary G2-structures (cf. also [14]).

Proposition 3.1. Let (M7, g) be a Riemannian manifold with a family σt ∈ Ω3
+(M) of G2-

structures. Let gt be the family of metrics and ∗t the Hodge star operator associated with
σt. Then there exist three time-dependent differential forms f0 ∈ Ω0(M), f1 ∈ Ω1(M) and
f3 ∈ Ω3

27(M) that satisfy the equations

(1) σ̇ = 3 f0 σ + ∗(f1 ∧ σ) + f3,

(2) ġ = 2 f0 g − 1
2
j(f3),
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(3) ∗̇σ = 4 f0 ∗ σ + f1 ∧ σ − ∗f3,

(4) ∗̇1 = 7 f0 ∗ 1.

Our aim is to study deformations of a given nearly parallel G2-structure σ on a compact
manifold M by nearly parallel G2-structures σt. We will only be interested in deformations
of the nearly parallel G2-structures modulo the action of the group R∗ ×Diff(M), given by

(λ, ϕ) · σ = λ3ϕ(σ) = λ3(ϕ−1)∗σ ◦ ϕ.

If σ induces the metric g, the Hodge dual ∗σ and the volume form ∗1, then σ̃ = λ3σ induces

(3.19) g̃ = λ2g, ∗̃σ̃ = λ4 ∗ σ, ∗̃1 = λ7 ∗ 1, τ̃0 =
1

λ
τ0.

Therefore we can always assume that the volume of M with respect to g is normalized.
Moreover, we can apply the Ebin’s Slice Theorem and assume that gt is a curve in the slice
through g. A nearly parallel G2-structure is Einstein with scalar curvature

(3.20) scal g = 21
8
τ 2

0 .

Thus ġ is an infinitesimal Einstein deformation of g and by the theorem of Berger-Ebin (see
[3], Chapter 12) we have

(3.21) tr ġ = 0, δ ġ = 0, ∆Lġ = 2scal
7
ġ = 3

4
τ 2

0 ġ,

where ∆L is the Lichnerowicz Laplacian (see [3] or Section 6 below). Since tr ġ = 14 f0, it
immediately follows that f0 vanishes and the equations of Proposition 3.1 may be rewritten
as

(3.22) σ̇ = ∗(f1 ∧ σ) + f3, ġ = −1
2
j(f3), ∗̇σ = f1 ∧ σ − ∗f3, ∗̇1 = 0,

while equations (3.21) become

(3.23) δ j(f3) = 0, ∆L j(f3) = 3
4
τ 2

0 j(f3).

The fact that σt is a family of nearly parallel G2-structures means by definition that

(3.24) dσt = τ0(t) ∗ σt
for some function τ0(t). However, gt is a family of Einstein metrics and therefore scal gt is
constant as function in t, as follows from Corollary 2.12 of [3]. This, together with (3.20),
implies that the function τ0 is constant too. Thus, differentiating (3.24) with respect to t, we
obtain the linearized equation dσ̇ = τ0 ∗̇σ, which by (3.22) yields

(3.25) d ∗ (f1 ∧ σ) + df3 = τ0(f1 ∧ σ − ∗f3).

The discussion above motivates the following definition.

Definition 3.2. An infinitesimal (nearly parallel) deformation of a compact nearly parallel
G2-manifold (M,σ) is a section (f1, f3) of the bundle Λ1T∗M ⊕ Λ3

27T∗M , which satisfies the
equations from (3.23) and (3.25).
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The rest of this section is devoted to deriving a more explicit description of the space of in-
finitesimal deformations of nearly parallel G2-structures. In a first step we obtain information
about the 3-form component f3 of the infinitesimal deformation.

Lemma 3.3. The covariant derivatives of f3 with respect to ∇̄ and ∇ have no component
in T ⊂ T∗ ⊗ Λ3

27, i.e., it holds (∇̄f3)T = (∇f3)T = 0. In particular, the differential and
codifferential of f3 satisfy the equations:

(df3)Λ4
1

= 0, (df3)Λ4
7

= 0, (d∗f3)Λ2
7

= 0, (d ∗ f3)Λ5
7

= 0.

Proof: The divergence δ is defined as the composition of the covariant derivative ∇ and the
equivariant contraction c : T∗⊗S2

0T∗ → T∗. It follows from Remark 2.4 and the decomposition
(2.6) that (∇j(f3))T = (∇̄j(f3))T and (∇f3)T = (∇̄f3)T. This implies

(3.26) δj(f3) = −c∇j(f3) = −c(∇j(f3))T = −c(∇̄j(f3))T = −c ◦ (1⊗ j)(∇̄f3)T,

where the last equality follows from j being G2-equivariant and ∇̄-parallel. Since c ◦ (1 ⊗ j)
is non-zero on T ⊂ T∗⊗Λ3

27 (which can be checked on an explicit element), we finally obtain
δj(f3) = 0 if and only if (∇j(f3))T = (∇̄f3)T = 0.

By the definition of the differential we have df3 = ε∇f3, with the G2-equivariant wedging
map ε : T∗ ⊗ Λ3T∗ → Λ4T∗. Again by (2.6) and Remark 2.4 we see that ∇f3 has no compo-
nents in bundles associated with the trivial representation R. Thus df3 has no components in
Λ4

1, which proves the first equation for df3. The second follows from (df3)Λ4
7

= ε(∇f3)T = 0
and the remaining two are proved in a similar way. �

In the next step we will derive information about the 1-form part of infinitesimal deformations.

Proposition 3.4. For the 1-form f1 the following holds:

(1) ∇̄f1 = −1
3
τ0 f1 yσ.

(2) ∇f1 = −1
4
τ0 f1 yσ.

(3) f1 is a Killing 1-form and df1 = −1
2
τ0 f1 yσ. In particular, d∗f1 = 0 and (df1)Λ2

14
= 0.

(4) d(f1 ∧ ∗σ) = −3
2
τ0 ∗ f1, in particular d∗(f1 yσ) = −3

2
τ0f1.

(5) ∆f1 = 3
4
τ 2

0 f1.
(6) d∗(f1 ∧ σ) = −τ0f1 y ∗ σ. In particular d ∗ (f1 ∧ σ) = τ0f1 ∧ σ.
(7) f1 has constant length.

Proof: Statements (2) and (3) are obviously equivalent and (1) and (2) are equivalent
because (2.17) implies ∇̄f1 = ∇f1 − τ0

12
f1yσ. The remaining properties are consequences of

each of the first three. To prove (6) we use d∗f1 = 0, d∗σ = 0, (3) of Proposition 2.3 and
(2.13) to obtain

d∗(f1∧σ) =
∑
∇eif1∧(eiyσ)−∇f]1

σ = −1

4
τ0

∑
(eiyf1yσ)∧(eiyσ)− 1

4
τ0f1y∗σ = −τ0f1y∗σ.

Property (7) follows from

d|f1|2(X) = 2〈∇Xf1, f1〉 = −1

2
τ0〈Xyf1yσ, f1〉 = −1

2
τ0f1yXyf1yσ = 0.
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For the proof of (3) we start with computing the Λ2
7 part of df1. Since τ0 is a non-zero

constant we may take the differential of equation (3.25) to obtain d(f1 ∧ σ) = d ∗ f3. Now,
let β be the 1-form, defined by (df1)Λ2

7
= βyσ. Then the vanishing of the Λ5

7-part of d ∗ f3

and equation (2.10) imply

0 = (d(f1 ∧ σ))Λ5
7

= (df1)Λ2
7
∧ σ − τ0f1 ∧ ∗σ = (βyσ) ∧ σ − τ0f1 ∧ ∗σ = (−2β − τ0f1) ∧ ∗σ.

Since the wedge product with ∗σ defines an injective map on 1-forms, we find β = −1
2
τ0f1.

Hence (df1)Λ2
7

= −1
2
τ0f1yσ. The Λ2

7-part of ∇f1 with respect to the decomposition (2.5) is
1
2
(df1)Λ2

7
and we obtain (∇f1)Λ2

7
= −1

4
τ0f1yσ.

We continue with proving (4). Since the fundamental 3-form σ is coclosed, it follows
d ∗ σ = 0. Moreover, the wedge product with ∗σ defines an equivariant map Λ2 → Λ6 ∼= Λ1,
which by Schur’s Lemma vanishes on Λ2

14. Hence, using (2.11) we obtain

d(f1 ∧ ∗σ) = df1 ∧ ∗σ = (df1)Λ2
7
∧ ∗σ = −1

2
τ0(f1yσ) ∧ ∗σ = −3

2
τ0 ∗ f1.

As an immediate consequence we obtain in addition d∗(f1 yσ) = −3
2
τ0f1. Since τ0 6= 0, this

implies d∗f1 = 0.

Next we want to show that the Λ3
7-part of d(f1yσ) vanishes. Using Proposition 2.3 we

compute
d(f1yσ) =

∑
i e
i ∧∇ei(f1yσ) =

∑
i e
i ∧ (∇eif1yσ + f1y∇eiσ)

= −
∑

i∇eif1y(ei ∧ σ) + (d∗f1)σ − f1ydσ +∇f]1
σ

= −Φ(∇f1)− 3
4
τ0f1y ∗ σ,

where Φ : Λ1 ⊗ Λ1 → Λ3 denotes the map Φ(γ) =
∑

i(eiyγ)y(ei ∧ σ). Since Φ is obviously
G2-invariant, we obtain

(d(f1yσ))Λ3
7

= −(Φ(∇f1))Λ3
7
− 3

4
τ0f1y∗σ = −Φ((∇f1)Λ2

7
)− 3

4
τ0f1y∗σ =

1

4
τ0Φ(f1yσ)− 3

4
τ0f1y∗σ.

Because (2.12) implies Φ(f1yσ) = 3f1y ∗ σ, we finally obtain

(3.27) (d(f1yσ))Λ3
7

= 0.

Now we shall prove the vanishing of the Λ2
14-part of df1 using the compactness of M . From

our equation for (df1)Λ2
7

we conclude

0 = d2f1 = d((df1)Λ2
7

+ (df1)Λ2
14

) = −1
2
τ0d(f1yσ) + d(df1)Λ2

14
.

From here it follows with (3.27) that (d(df1)Λ2
14

)Λ3
7

= 0. By definition the differential d is the

composition of the invariant wedging map ε : T ∗ ⊗ Λ2 → Λ3 and the covariant derivative ∇.
By Remark 2.4 ∇γ is a section of T∗M ⊗ Λ2

14M for any section γ of Λ2
14M . Since by (2.7)

there is only one component isomorphic to T in T∗ ⊗ Λ2
14, we obtain for γ := (df1)Λ2

14
:

0 = (dγ)Λ3
7

= πΛ3
7
◦ ε∇γ = πΛ3

7
◦ ε (∇γ)T.

Because πΛ3
7
◦ ε is different from zero on T ⊂ T∗ ⊗ Λ2

14, as one checks on an explicit element,

this yields (∇γ)T = 0.
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We may use a similar argument for the codifferential d∗, which is the composition of the
invariant contraction map c : T∗ ⊗ Λ2 → Λ1 and the covariant derivative. Hence we have

d∗γ = −c∇γ = −c (∇γ)T = 0.

Then the L2-scalar product of d∗γ and f1 yields

0 = (d∗γ, f1) = (γ, df1) = ‖γ‖2.

Thus it follows that γ = 0, i.e. (df1)Λ2
14

= 0, and that df1 is indeed a section of Λ2
7T∗M with

df1 = (df1)Λ2
7

= −1
2
τ0f1 yσ.

We already know that f1 is coclosed and thus

∆f1 = d∗df1 = −1
2
τ0d
∗(f1yσ) = 3

4
τ 2

0 f1,

which proves (5). Using the fact that the manifold (M7, g) is Einstein with scal = 21
8
τ 2

0 ,
we obtain ∆f1 = 2Ric(f1). By the well-known characterization of Killing vector fields on
compact manifolds this implies that f1 is Killing. �

Finally we combine Proposition 3.4 with the initial equations to obtain a characterization
of infinitesimal deformations of nearly parallel G2-structures.

Theorem 3.5. The space of infinitesimal deformations of a compact nearly parallel G2-
manifold (M,σ) is the direct sum of the finite-dimensional spaces

D1 := {f1 ∈ Ω1(M) | ∇f1 = −1
4
τ0 f1 yσ} and D3 := {f3 ∈ Ω3

27(M) | ∗ df3 = −τ0f3}.
In particular, f1 and f3 are co-closed eigenforms of the Laplace operator for the eigenvalues
3
4
τ 2

0 and τ 2
0 respectively.

Proof: It remains to prove the equations for f3. For this we substitute the expression for
d ∗ (f1 ∧ σ) of Proposition 3.4 back into equation (3.25) and obtain df3 = −τ0 ∗ f3. Since
τ0 6= 0 this immediately implies that f3 is coclosed. Then the Laplace operator is computed
as ∆f3 = d∗df3 = (∗d)2f3 = τ 2

0 f3. It follows that an infinitesimal deformation lies in the
direct sum of the spaces D1 and D3. They are finite-dimensional since they are contained in
certain eigenspaces of the Laplace operator.

Conversely, by Proposition 3.4 ∇f1 = −1
4
τ0 f1 yσ and ∗df3 = −τ0f3 imply (3.25). Further,

df3 = −τ0 ∗ f3 yields (df3)Λ4
7

= 0, i.e., πΛ4
7
◦ ε(∇f3)T = 0, where T ⊂ T∗ ⊗ Λ3

27 is the

component isomorphic to V1,0. Since πΛ4
7
◦ ε is non-zero on T (which can be checked on an

explicit element), it follows that (∇f3)T = 0. Thus, by Remark 2.4 also (∇̄f3)T = 0 and
therefore by (3.26) δj(f3) = −c(1 ⊗ j)(∇̄f3)T = 0. It remains to show that ∗df3 = −τ0f3

implies ∆Lj(f3) = 3
4
τ 2

0 j(f3), which will be done in Section 6. �

4. G2-deformations and Sasakian structures

In this section we will investigate the relation between nearly parallel G2-manifolds with a
non-trivial space D1 in Theorem 3.5 and Sasakian structures. The first result in this direction
is the following.
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Proposition 4.1. Let (M, g, σ) be a compact nearly parallel G2-manifold normalized so that
τ0 = 4. Then:

(1) If dimD1 ≥ 1, then (M, g) is a Sasakian-Einstein manifold.
(2) If dimD1 ≥ 2, then (M, g) is a 3-Sasakian manifold.

Proof: The assumption about the normalization is not a restriction because of (3.19). Let
0 6= f1 ∈ D1, then Proposition 3.4 shows that f1 is a Killing 1-form of constant length and
we can assume |f1| = 1. Thus, to prove that f1 is the contact form of a Sasakian structure it
remains (see [4]) to verify the curvature condition

(∇2
X,Y f1)(Z) = f1(Y )g(X,Z) − f1(Z)g(X, Y ) = (f1 ∧X)(Y, Z)

However, taking the covariant derivative of the defining equation of D1 immediately implies:

(∇2
X,Y f1)(Z) = −1

4
τ0 (∇X(f1 yσ))(Y, Z) = −(∇Xf1 yσ)(Y, Z) − (f1 y∇Xσ)(Y, Z)

= 1
4
τ0 ((Xyf1 yσ) yσ)(Y, Z) − 1

4
τ0 (f1 yX y ∗ σ)(Y, Z) = (f1 ∧X)(Y, Z)

where we also used (2.14). Since g is known to be Einstein, we obtain the first statement.

If dimD1 ≥ 2, then (M, g) has two Sasakian structures, whose contact forms are linearly
independent. This implies the second statement (see [4], Lemma 8.1.17). �

Recall that a G2-structure on a 7-dimensional manifold M defines a canonical spin structure
on M . The G2-structure is furthermore nearly parallel if and only if the associated spin struc-
ture admits real Killing spinors [12]. In this case the nearly parallel G2-structures inducing
the given metric and spin structure are in bijective correspondence with the projectivization
of the space of Killing spinors in the real spinor bundle [12]. The complex spinor bundle is
the complexification of the real spinor bundle and the space of real Killing spinors is the com-
plexification of the space of Killing spinors in the real spinor bundle, so both spaces have the
same dimension over the respective field. After a suitable normalization of the metric (which
in our case amounts to ensuring that τ0 = 4) this dimension is also equal to the dimension

of the space of parallel spinors on the metric cone M̂ of M for the spin structure induced
by the one on M . This is a result of Bär [2] in the simply connected case and holds also in
general, as explained by Wang in [21]. Hence, as noticed in [2], if M is compact, then either

the restricted holonomy group of M̂ is one of Spin(7), SU(4), Sp(2), or M̂ is flat. In the latter
case M is a quotient of the standard sphere S7. According to a result of Friedrich [9], all
nearly parallel G2-structures on S7 which induce the standard metric are conjugated under
the action of the isometry group. Thus neither S7 nor its quotients admit G2-deformations.
Therefore from now on we shall exclude from our considerations the case of nearly parallel
G2-manifolds with constant curvature. Under this assumption the compact nearly parallel
G2-manifolds split into the following three different types.

Type 1. The space of real Killing spinors is 1-dimensional. Then there is only one 3-
form inducing the given metric, orientation and spin structure. We call such nearly parallel
G2-structures proper. Notice that our definition of a proper nearly parallel G2-structure is
slightly different from those in [12] and [4]. In [12] one assumes additionally that the manifold
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is simply connected, while the definition in [4] requires that the cone has holonomy equal to
Spin(7). For simply connected manifolds the three definitions are equivalent.

Type 2. The space of real Killing spinors is 2-dimensional. Then the given metric and
orientation are induced by a Sasaki-Einstein structure but not by a 3-Sasakian structure. In
terms of the cone M̂ this is equivalent to saying that the holonomy group of M̂ is contained
in SU(4) but not in Sp(2). Indeed, the subgroup of Spin(8) which acts as identity on a 2-
dimensional subspace of one of the half-spin representations is Spin(6) ∼= SU(4). In this case
the 3-forms inducing the given metric, orientation and spin structure are parametrized by
RP 1.

Type 3. The space of real Killing spinors is 3-dimensional. The given metric and orientation
are induced by a 3-Sasakian structure. In terms of the cone M̂ this is equivalent to saying
that the holonomy group of M̂ is equal to Sp(2). In this case the 3-forms inducing the given
metric and orientation are parametrized by RP 2.

Now we shall describe the nearly parallel G2-structures of types 2 and 3 without reference
to Killing spinors. Recall that the cone of a Riemannian manifold (M, g) is (M̂, ĝ), where

M̂ := R+ ×M , ĝ := dr2 + r2g and r is the natural coordinate on R+. As shown in [2], if we
normalize the nearly parallel G2-structure so that τ0 = 4, then σ = ∂ryϕ|r=1, where ϕ is a
parallel (and also stable) 4-form on the cone.

Suppose first that the holonomy group of the cone is equal to SU(4) (which implies that M

is Sasaki-Einstein but not 3-Sasakian). Then the space of parallel 4-forms on M̂ is spanned
by ΩÎ ∧ ΩÎ , Re ΨÎ , Im ΨÎ . Here ΩÎ is the Kähler form and ΨÎ the complex volume form of
the SU(4)-structure. Thus

σ = ∂ry

(
1

2
c0ΩÎ ∧ ΩÎ + c1Re ΨÎ + c2Im ΨÎ

)∣∣∣∣
r=1

.

Equivalently, one can write this as

σ = c0η ∧ Ω + c1Re Ψ + c2Im Ψ,

where η is the contact form of the Sasaki-Einstein structure on M , Ω = ∇η is the hori-
zontal Kähler form and Ψ is the horizontal complex volume form. Now a straightforward
computation using (2.16) shows that σ induces the given metric and orientation if and only
if c0 = −1 and c2

1 + c2
2 = 1. Hence we have the following explicit S1-family of nearly parallel

G2-structures:

(4.28) σt = −η ∧ Ω + cos tRe Ψ + sin t Im Ψ.

In particular, each σt is of type 2.

Now suppose that the holonomy group of the cone is Sp(2) (i.e., M is a 3-Sasakian mani-
fold). Then the space of parallel 4-forms is spanned by

ΩÎ1
∧ ΩÎ1

, ΩÎ2
∧ ΩÎ2

, ΩÎ3
∧ ΩÎ3

, ΩÎ1
∧ ΩÎ2

, ΩÎ2
∧ ΩÎ3

, ΩÎ3
∧ ΩÎ1

.
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Here ΩÎ1
, ΩÎ2

, ΩÎ3
are the Kähler forms of the hyper-Kähler structure Î1, Î2, Î3 on the cone

(we use the convention Î1Î2 = −Î3). Thus

σ = ∂ry

(
1

2

∑
λ

sλλΩÎλ
∧ ΩÎλ

+
∑
λ<µ

sλµΩÎλ
∧ ΩÎµ

)∣∣∣∣∣
r=1

.

Equivalently, this can be written as

(4.29) σ =
3∑

λ,µ=1

sλµηλ ∧ Ωµ

with sλµ = sµλ, where η1, η2, η3 are the contact forms of the 3-Sasakian structure on M
and Ωλ = ∇ηλ are the corresponding Kähler forms. Again a straightforward computation
using (2.16) shows that σ given by (4.29) induces the given metric and orientation if and
only if the matrix S = (sλµ) is in SO(3) and trS = −1. The condition sλµ = sµλ means
furthermore that σ is nearly parallel if and only if S is symmetric. An orthogonal matrix is
symmetric if and only if its eigenvalues are real and the condition trS = −1 implies that they
are 1,−1,−1. But an orthogonal matrix with eigenvalues 1,−1,−1 is completely determined
by its 1-eigenspace. Thus we obtain that the nearly parallel G2-structures are parametrized
by RP 2 (in particular, they are of type 3). We shall identify R3 with span{η1, η2, η3}. Then
η ∈ span{η1, η2, η3} is the contact form of a Saskai-Einstein structure if and only if η lies
on the unit sphere S2. Let S(η) = (sλµ(η)) denote the orthogonal matrix with eigenvalues
1,−1,−1 whose 1-eigenspace is spanned by η. Then the nearly parallel G2-structures are{

σS(η) =
∑
λ,µ

sλµ(η)ηλ ∧ Ωµ | η ∈ S2

}
(notice that S(η) = S(−η)).

Fixing an η, we can again write the S1-family ση,t from the SU(4)-case. Inside the RP 2-
family it is identified by

{ση,t} = {σS(η′) | η′ ∈ S2, η′ ⊥ η}.
This follows from the fact that ΨÎ1

= 1
2
(ΩÎ2

− iΩÎ3
) ∧ (ΩÎ2

− iΩÎ3
), i.e.,

Re Ψ1 = η2 ∧ Ω2 − η3 ∧ Ω3, Im Ψ1 = −η2 ∧ Ω3 − η3 ∧ Ω2.

Finally, let the holonomy group Hol(M̂) of the cone lie strictly between SU(4) and Sp(2).

Then the restricted holonomy group is Sp(2) and therefore Hol(M̂) ⊂ Sp(2)Sp(1) as the

normalizer of Sp(2) in O(8) is Sp(2)Sp(1). Now the fact that Hol(M̂) preserves a complex

structure implies Hol(M̂) ⊂ Sp(2)U(1). Finally, Hol(M̂) preserves a complex volume form,

so the U(1) part of Hol(M̂) is contained in

{a ∈ U(1) | a4 = 1} = {1, i,−1,−i} = Z4.

Since Sp(2)Z2 = Sp(2), it remains Hol(M̂) = Sp(2)Z4. Now we have to find which Sp(2)-
invariant 4-forms are also Sp(2)Z4-invariant. Notice that the action of i ∈ Z4 is in fact the
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complex structure Î = Î1. Since Î1 acts on ΩÎ1
as the identity and on ΩÎ2

and ΩÎ3
as minus

identity, the space of Sp(2)Z4-invariant 4-forms is 4-dimensional and is spanned by

ΩÎ1
∧ ΩÎ1

, ΩÎ2
∧ ΩÎ2

, ΩÎ3
∧ ΩÎ3

, ΩÎ2
∧ ΩÎ3

.

Now the results of the Sp(2)-case imply that σ is given by (4.29) with s12 = s21 = s13 = s31 =
0. Thus either s11 = 1 and

σ = σS(η1) = η1 ∧ Ω1 − η2 ∧ Ω2 − η3 ∧ Ω3

or s11 = −1 and σ = σS(η′) for some η′ orthogonal to η = η1, i.e.,

σ = ση,t = −η ∧ Ω + cos tRe Ψ + sin t Im Ψ.

Thus in this case we have nearly parallel G2-structures of different types sharing the same
metric: σS(η1) is of type 1, while ση,t are of type 2.

Now we can prove the main result of this section.

Theorem 4.2. Let (M,σ) be a compact nearly parallel G2-manifold which is normalized so
that τ0 = 4 and is not a space of constant curvature. Then:

(1) (M,σ) is of type 1 if and only if dimD1 = 0.
(2) (M,σ) is of type 2 if and only if dimD1 = 1.
(3) (M,σ) is of type 3 if and only if dimD1 = 2.

Proof: Suppose that (M,σ) is of type 2. Then the holonomy of the cone is SU(4) or
Sp(2)Z4 ⊂ SU(4) and the consideration above show that σ is σt from (4.28) for some t. Again
by Proposition 4.1 we have dimD1 ≤ 1. By definition, the contact form η of the Sasakian
structure satisfies ∇η = Ω. On the other hand, ηyσt = −Ω and therefore ∇η = −1

4
τ0ηyσt.

Thus η ∈ D1, D1 = span{η} and dimD1 = 1.

Let (M,σ) be of type 3. Then M is 3-Sasakian and the holonomy of the cone is Sp(2),
so σ = σS(η) for some η ∈ S2. We shall show that D1 is the orthogonal complement of η in
span{η1, η2, η3}. Without loss of generality we can assume that η = η1 (otherwise we shall
change the orthonormal frame η1, η2, η3). Then σ ∈ {ση2,t} and σ ∈ {ση3,t}, so as above
η2, η3 ∈ D1 and therefore dimD1 ≥ 2. By Proposition 4.1 every element of D1 induces a
Sasakian structure on (M, g) and by Lemma 8.1.17 in [4] it lies in span{η1, η2, η3}. Thus, if
we assume that dimD1 ≥ 3, we must have D1 = span{η1, η2, η3}. But ∇η1 = Ω1, while S(η1)
is the diagonal matrix with diagonal elements 1,−1,−1 and

−1

4
τ0η1yσS(η1) = −η1y(η1 ∧ Ω1 − η2 ∧ Ω2 − η3 ∧ Ω3) = −Ω1 − η2 ∧ η1yΩ2 − η3 ∧ η1yΩ3

= −Ω1 − 2η2 ∧ η3 6= Ω1.

Hence η1 6∈ D1 and we have D1 = span{η2, η3} = η⊥1 and dimD1 = 2. This proves (3) since
the reverse implication follows from Proposition 4.1.

Suppose now that dimD1 = 1. Then, by Proposition 4.1, (M, g) is Sasaki-Einstein but not
3-Sasakian. Thus, to prove the reverse implication of (2) we only have to show that the case

Hol(M̂) = Sp(2)Z4 with σ = σS(η1) is impossible. Indeed, the proof of Proposition 4.1 yields
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that the contact form η1 must be an infinitesimal deformation of σS(η1) but in the type 3 case
above we saw that this is not true. This completes the proof of (2).

Finally, (1) follows from Proposition 4.1, (2) and (3). �

Remark 4.3. A nearly parallel G2-structure of type 2 is a part of a whole curve σt of such
structures. It is easy to see that dσt

dt
= ∗(η ∧ σt) (η is the contact form of the Sasaki-Einstein

structure). Let ξ be the vector field dual to η. Since all σt have τ0 = 4 and D1 = span{η},
we obtain from Proposition 3.4 and Proposition 2.3 that

Lξσt = d(ξyσt) + ξydσt = −1

2
d2η + 4ξy ∗ σt = −4 ∗ (η ∧ σt).

Let ϕs be the flow of ξ. Since ξ is Killing, ϕs preserves the metric and thus also η and ∗.
Now the fact Lξσt = − dϕs(σt)

ds

∣∣∣
s=0

and the above equations imply

dϕs(σt)

ds
= 4 ∗ (η ∧ ϕs(σt)) =

dσt+4s

ds
.

This and ϕ0(σt) = σt show that ϕs(σt) = σt+4s for all s. Thus the flow of ξ acts transitively
on the family {σt} and so the members of this family are equivalent G2-structures.

In a similar way, if the type is 3, one can generate the whole D1 through curves in the
RP 2-family {σS(η)}. But this family consists of equivalent G2-structures since a 3-Sasakian
manifold admits an isometric SO(3) or Sp(1) action which is transitive on the oriented or-
thonormal frames (η1, η2, η3) and therefore transitive also on the family {σS(η)}.

Thus, whatever the type of the nearly parallel G2-structure, the ”interesting” infinitesimal
deformations are in the space D3.

Remark 4.4. We have seen above that if the holonomy group of the cone M̂ is Sp(2)Z4, then
M has nearly parallel G2-structures of different type sharing the same metric and orientation.
This is possible because they induce different spin structures on M and therefore also on M̂ .
Indeed, Sp(2)Z4 has two different embeddings in Spin(8). The first one, i1, is the restriction
on Sp(2)Z4 of the embedding of SU(4) in Spin(8). The second, i2, is equal to i1 on the identity
component of Sp(2)Z4 and to −i1 on the other component, i.e.,

i2([a, 1]) = i1([a, 1]), i2([a, i]) = −i1([a, i]) for a ∈ Sp(2).

Let E ∼= C4 be the standard representation of Sp(2). Then the spin representation, restricted
to Sp(2), is isomorphic to

∑4
p=0 ΛpE. The action of i1(Sp(2)Z4) is given by

i1([a, z])α = zpaα for α ∈ ΛpE

and the space of invariant spinors is 2-dimensional: Λ0E ⊕ Λ4E. On the other hand, the
action of i2(Sp(2)Z4) is

i2([a, 1])α = aα, i2([a, i])α = −ipaα for α ∈ ΛpE

and the space of invariant spinors is 1-dimensional: CσE ⊂ Λ2E = CσE ⊕ Λ2
0E, where σE is

the Sp(2)-invariant symplectic form. Thus an 8-dimensional manifold with holonomy group
Sp(2)Z4 is equipped with two canonical spin structures, one of which carries N = 2 and the
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other N = 1 parallel spinors. Similarly, a 7-dimensional manifold whose cone has holonomy
group Sp(2)Z4 has two spin structures, withN = 2 andN = 1 real Killing spinors respectively.
This adds to the results in [21], where in part 2b of Theorem 4.1 N = 1 is given as the only
possibility, while the group Sp(2)Z4 is completely missing in part 3 of Corollary 5.2. Notice
that the existence of 7-dimensional manifolds with cones having holonomy group Sp(2)Z4 has
been proved in [17].

5. The G2-Laplace operator

In Section 3 we have seen that infinitesimal deformations of nearly parallel G2-manifolds
give rise to coclosed eigenforms of the Hodge-de Rham Laplacian acting on sections of
Λ3

27T∗M . By the classical Weitzenböck formula the Hodge-de Rham Laplacian is written
as

(5.30) ∆ = d∗d+ dd∗ = ∇∗∇+ q(R),

where q(R) is an endomorphism of the form bundle, which is linear in the curvature R
and satisfies q(R) = Ric on the space of 1-forms. We will define the operator q(R) in
the following more general setting. Let (M, g) be an n-dimensional Riemannian manifold.
For a representation V of O(n) let VM denote the corresponding associated vector bundle.
We denote the action of α ∈ Λ2T∗ ∼= so(n) on V by α∗ (here T denotes the standard
representation Rn of O(n)) and in a similar way the action of α ∈ Λ2T∗xM on VxM , x ∈ M .
The endomorphism q(A) ∈ End (VM) is defined for any A ∈ Λ2T∗M ⊗ End (VM) by

(5.31) q(A) =
∑
i<j

(ei ∧ ej)∗A(ei ∧ ej),

where {ei} is a local orthonormal frame of TM . Notice that in this definition {ei∧ej | i < j }
could be replaced by any other orthonormal basis of Λ2TM . The curvature R of the Levi-
Civita connection ∇ or, more generally, the curvature R̄ of any metric connection ∇̄ on (M, g)
defines a section of Λ2T∗M ⊗ End (VM), thus the endomorphisms q(R) and q(R̄) are well
defined. We denote by ∆̄ the Laplace type operator

(5.32) ∆̄ := ∇̄∗∇̄+ q(R̄).

The operator ∆L := ∇∗∇ + q(R) for the Levi-Civita connection ∇ and a subrepresentation
V ⊂ ⊗p T is also called Lichnerowicz Laplacian (cf. [3], Chapter 1 I). Because of (5.30) it
coincides on differential forms with the Hodge deRham Laplacian ∆.

Now let us return to the case of nearly parallel G2-manifolds. We will call the operator ∆̄,
defined with the canonical connection ∇̄, the G2-Laplace operator. In order to compute the
spectrum of the Lichnerowicz Laplacian ∆L on naturally reductive spaces, it turns out to be
convenient to express ∆L through ∆̄. Thus, our next aim will be to compute the difference
∆̄−∆L, which we do by calculating the differences ∇̄∗∇̄ −∇∗∇ and q(R̄)− q(R) separately.
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A direct calculation using (2.18) and the third equation of Lemma 2.1 gives

R̄X,YZ −RX,YZ = ( τ0
12

)2 [2P (P (X, Y ), Z) + P (P (Y, Z), X) + P (P (Z,X), Y )]

= ( τ0
12

)2 [4P (P (X, Y ), Z)− 3g(X,Z)Y + 3g(Y, Z)X].

Thus R̄(X ∧ Y )−R(X ∧ Y ) = ( τ0
12

)2 [4PP (X∧Y )− 3(X ∧ Y )∗]. Substituting this equation into
the definition of the curvature endomorphisms q(R) and q(R̄), we obtain

(5.33) q(R̄) − q(R) = −3( τ0
12

)2 Cas so(7) + 4( τ0
12

)2 S

where Cas so(n) is the so(n)-Casimir operator
∑

i<j(ei ∧ ej)∗(ei ∧ ej)∗ and S is defined as

(5.34) S =
∑
i<j

(ei ∧ ej)∗PP (ei∧ej).

Since P : Λ2T ∼= Λ2
7 ⊕ Λ2

14 → T is a G2-equivariant map, P |Λ2
14

= 0 and we may replace in

the sum in (5.34) the orthonormal basis {ei ∧ ej | i < j} of Λ2T with the orthonormal basis
{fi = 1√

3
eiyσ | i = 1, . . . , 7} of Λ2

7. Because obviously fi∗ = 1√
3
(eiyσ)∗ = 1√

3
Pei and, by

(2.15), P (fi) =
√

3 ei, we obtain S =
∑
fi∗PP (fi) =

∑
PeiPei . For the difference ∇̄∗∇̄ −∇∗∇

of the two rough Laplacians we derive directly from (2.18)

∇̄∗∇̄ − ∇∗∇ =
∑(

τ0
6
Pei∇̄ei + ( τ0

12
)2PeiPei

)
.

Summarizing these calculation we obtain an expression for the difference of ∆̄ and ∆L.

Proposition 5.1. The difference of the Laplace type operators ∆̄ and ∆L on a nearly parallel
G2-manifold is given by

(5.35) ∆̄ − ∆L = τ0
6

∑
Pei∇̄ei − 3( τ0

12
)2Cas so(7) + 5( τ0

12
)2
∑

PeiPei .

We shall apply this result for the space Λ3
27. Recalling that the so(n)-Casimir operator

acts as −p(n − p)id on the space of p-forms, we obtain Cas so(7)γ = −12γ for γ ∈ Λ3
27. A

straightforward computation on an explicit element (e.g. the element from (2.4)) shows that
the G2-equivariant map

∑
PeiPei acts as −8id on Λ3

27. Thus it remains to compute
∑
Pei∇̄ei .

The map
∑
Pei ◦ eiy : T∗ ⊗ Λ3

27 → Λ3 is G2-equivariant. Hence, because of (2.3) and (2.6),
it can be non-zero only on the components of T∗ ⊗ Λ3

27 which are isomorphic to V1,0
∼= T

and V2,0
∼= Λ3

27. A straightforward computation on explicit elements shows that
∑
Pei ◦ eiy

is −3 ∗ ◦ ε on the component T ⊂ T∗⊗Λ3
27 and ∗ ◦ ε on the component Λ3

27 ⊂ T∗⊗Λ3
27. Here

again ε : T∗ ⊗ Λ3 → Λ4 denotes the wedging map. Thus∑
Pei∇̄eiγ =

∑
Pei ◦ eiy∇̄γ = −3 ∗ ε(∇̄γ)T + ∗ε(∇̄γ)Λ3

27
= −3 ∗ (d̄γ)Λ4

7
+ ∗(d̄γ)Λ4

27
,

where d̄ := ε ◦ ∇̄. Now, by (2.18) we have d̄ = d− τ0
12

∑
ei ∧Pei . Again a simple computation

on an element of Λ3
27 shows that

∑
ei ∧ Pei = −2∗ on Λ3

27 and we eventually obtain

Lemma 5.2. On sections of Λ3
27T∗M it holds that d̄ = d+ τ0

6
∗. In particular, we have

(d̄γ)Λ4
7

= (dγ)Λ4
7
, (d̄γ)Λ4

27
= (dγ)Λ4

27
+ τ0

6
∗ γ, (dγ)Λ4

1
= (d̄γ)Λ4

1
= 0 for γ ∈ Ω3

27(M).
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Using this lemma we obtain
∑
Pei∇̄eiγ = −3 ∗ (dγ)Λ4

7
+ ∗(dγ)Λ4

27
+ τ0

6
γ, which finally enables

us to compute the difference ∆̄−∆ on Ω3
27(M). Combining the formulas above we find

Proposition 5.3. Let (M7, g, σ) be a nearly parallel G2-manifold and let γ be a 3-form in
Ω3

27(M). Then

∆̄γ = ∆γ − τ0
2
∗ (dγ)Λ4

7
+ τ0

6
∗ (dγ)Λ4

27
.

In particular, ∆ and ∆̄ coincide on closed forms in Ω3
27(M). Moreover, if γ is a 3-form in

Ω3
27(M) with (d∗γ)Λ2

7
= 0, then ∆̄γ = ∆γ + τ0

6
∗ dγ.

Proof: It only remains to prove the last statement: Recall from the proof of Lemma 3.3,
that for γ ∈ Ω3

27(M) the condition (d∗γ)Λ2
7

= 0 is equivalent to (dγ)Λ4
7

= 0 and thus, by

Lemma 5.2, also to (dγ)Λ4
27

= dγ. Substituting this into the equation for ∆̄ implies the last
statement. �

6. Infinitesimal Einstein deformations

Nearly parallel G2-structures induce Einstein metrics and thus infinitesimal deformations
of such structures are related to infinitesimal Einstein deformations. In this section we shall
consider the space of infinitesimal Einstein deformations of a given nearly parallel G2-metric
and realize it as a direct sum of certain spaces of 3-forms in Ω3

27(M).

Let g be an Einstein metric with Ric = Eg. From [3], Theorem 12.30, the space of infin-
itesimal Einstein deformations of g is isomorphic to the set of trace-free symmetric bilinear
forms h on TM with δh = 0 and ∆Lh = 2Eh, where ∆L = ∇∗∇ + q(R) is the so-called
Lichnerowicz Laplacian (see the previous section). Note that for a nearly parallel G2-metric

the eigenvalue can be written as 2E = 2scal
7

=
3τ20
4

.

As a G2-representation the space S2
0T∗ is isomorphic to Λ3

27T. We shall now use the explicit
identification i in order to identify infinitesimal Einstein deformations with certain eigenforms
of the Laplacian on forms in Λ3

27T. To do this we still need an analogue of Proposition 5.3.

We apply the results of Proposition 5.1 to the space S2
0T∗. It is well known that the so(n)-

Casimir operator acts on S2
0T∗ as −2nId, i.e., as −14Id in our case. Moreover it is clear that

similarly
∑
PeiPei , as a G2-equivariant map, acts as a multiple of the identity. An explicit

calculation, e.g. on the element e1 � e2, shows that
∑
PeiPei = −14Id.

It remains to determine
∑
Pei∇̄eih, i.e., Q(∇̄h), where Q : T∗ ⊗ S2

0T∗ → S2
0T∗ is the

G2-equivariant map defined as Q =
∑
Pei ◦ eiy. The map Q is different from zero only on

the component of T ∗ ⊗ S2
0T∗, which is isomorphic to S2

0T∗. Let i2 : S2
0T∗ → T∗ ⊗ S2

0T∗ be
the embedding given as i2(h) = (1⊗ π0) ◦ C(g ⊗ h), where g is the metric, C : T∗⊗4 → T∗⊗3

is defined by C(a ⊗ b ⊗ c ⊗ d) = a ⊗ P (b, c) ⊗ d and π0 : T∗ ⊗ T∗ → S2
0T∗ denotes the

standard projection. Moreover, let π2 : T∗ ⊗ S2
0T∗ → S2

0T∗ be the projection ”inverse” to i2,
i.e. π2 ◦ i2 = id and π2 vanishes on the components of T∗ ⊗ S2

0T∗ that are not isomorphic
to S2

0T∗. Then an explicit calculation, e.g. on e1 � e2, shows that Q ◦ i2 = −7id and thus
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Q = −7π2. Substituting this and the results for Cas so(7) and
∑
PeiPei into equation (5.35),

we obtain

(6.36) (∆̄−∆L)h = −7τ0
6
π2(∇̄h) − 7τ20

36
h.

Since S2
0T∗ and Λ3

27 are isomorphic representations of G2 and ∇̄ is a G2-connection, the bun-
dles S2

0T∗M and Λ3
27M share the same G2-Laplace operator ∆̄, i.e., with the G2-equivariant

isomorphism i : S2
0T∗ → Λ3

27 we have i ◦ ∆̄ ◦ i−1 = ∆̄. Hence, to compute i ◦ ∆L ◦ i−1 we
need to compute i ◦ π2 ◦ ∇̄ ◦ i−1. An easy calculation shows that i = π1 ◦ (1 ⊗ i) ◦ i2, where
π1 : T∗⊗Λ3

27 → Λ3
27 is defined as π1(α⊗ γ) = 2

7
∗ (α∧ γ)Λ4

27
. The map i2 ◦π2 is the projection

on the component isomorphic to S2
0T∗ in T∗ ⊗ S2

0T∗ and since π1 ◦ (1 ⊗ i) is invariant with
values in S2

0T∗, it vanishes on all other components of T∗ ⊗ S2
0T∗. Hence π1 ◦ (1⊗ i) = i ◦ π2

and we obtain from Lemma 5.2

(6.37) i ◦ π2(∇̄h) = π1 ◦ (1⊗ i)∇̄h = π1∇̄(i(h)) = 2
7
∗ (d̄i(h))Λ4

27
= 2

7
∗ (di(h))Λ4

27
+ τ0

21
i(h).

Let h be an infinitesimal Einstein deformation and let γ ∈ Ω3
27(M) denote the 3-form i(h).

Then the condition δh = 0 translates into (d∗γ)Λ2
7

= 0 or, equivalently, to dγ = (dγ)Λ4
27

.

Indeed, by Remark 2.4 we have that (∇h)T = (∇̄h)T and (∇γ)T = (∇̄γ)T. Thus δh = 0
is equivalent to (∇h)T = 0 and also to (∇̄h)T = 0. But since i is an G2-equivariant map,
(∇̄h)T = 0 if and only if (∇̄γ)T = 0, i.e., (∇γ)T = 0. However this is equivalent to (d∗γ)Λ2

7
= 0

and also to (dγ)Λ4
7

= 0. Then by Lemma 5.2 (dγ)Λ4
7

= 0 can be written as dγ = (dγ)Λ4
27

.

Finally, we apply i to (6.36), use Proposition 5.3 and substitute (6.37) to obtain

Proposition 6.1. For each γ ∈ Ω3
27(M) the following equation is satisfied:

(6.38) i ∆L i−1(γ) = ∆γ − τ0
2
∗ (dγ)Λ4

7
+ τ0

2
∗ (dγ)Λ4

27
+

τ20
4
γ.

With this formula we are able to translate the conditions for infinitesimal Einstein defor-
mations into equivalent conditions for 3-forms in Ω3

27(M): The traceless symmetric bilinear
form h is an infinitesimal Einstein deformation if and only if γ = i(h) is a section of Λ3

27T∗M
with (dγ)Λ4

7
= 0 (or, equivalently, (d∗γ)Λ2

7
= 0), satisfying the equation

(6.39) ∆γ + τ0
2
∗ dγ − τ20

2
γ = 0.

We want to decompose the solution space of this equation into eigenspaces of the operator
∗d. This is possible since ∗d is a symmetric operator, commuting with the operator on the
left hand side of equation (6.39) and preserving the condition (d∗γ)Λ2

7
= 0. Indeed, ∗dα is

coclosed for any differential form α. Moreover, the solution space is finite dimensional because
it is the kernel of an elliptic operator. Assume that ∗dγ = λγ with λ 6= 0. Then γ is coclosed
(in particular, (d∗γ)Λ2

7
= 0 and (dγ)Λ4

7
= 0) and (6.39) yields the quadratic equation

(6.40) λ2 + τ0
2
λ − τ20

2
= 0

with the solutions λ = −τ0 and λ = τ0
2

. In the case λ = 0 we obtain dγ = 0 and dd∗γ =
τ20
2
γ.

Moreover a solution γ of the last equation is automatically closed and thus (dγ)Λ4
7

= 0 as well

as (d∗γ)Λ2
7

= 0. Summarizing we have
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Theorem 6.2. Let (M, σ, g) be a compact nearly parallel G2-manifold. Then the space of
infinitesimal Einstein deformations of g is isomorphic to the direct sum of the spaces

{γ ∈ Ω3
27 | ∗ dγ = −τ0γ}, {γ ∈ Ω3

27 | ∗ dγ = τ0
2
γ}, {γ ∈ Ω3

27 | dd∗γ =
τ20
2
γ}.

Notice that the first space is the space D3 from Theorem 3.5. Thus any element f3 ∈ D3

satisfies i ∆Li−1 (f3) =
3τ20
4
f3, or, equivalently, ∆L j(f3) =

3τ20
4

j(f3), which finishes the proof
of Theorem 3.5.

In order to check in the examples whether or not infinitesimal Einstein deformations exist
it will be convenient to embed these three spaces into eigenspaces of the operator ∆̄ acting on
sections of Λ3

27T∗M . Let γ be a 3-form as above with ∗dγ = λγ for λ 6= 0. Then γ is coclosed

and ∆γ = λ2γ. Thus Proposition 5.3 implies ∆̄γ = (λ2 + τ0
6
λ)γ. In the case dd∗γ =

τ20
2
γ it

follows that γ is closed and we obtain ∆̄γ = ∆γ = dd∗γ =
τ20
2
γ. This proves

Lemma 6.3. The three summands of Theorem 6.2 are contained in the eigenspaces of ∆̄

acting on Ω3
27(M) for the eigenvalues

5τ20
6

,
τ20
3

and
τ20
2

respectively.

7. Naturally reductive spaces

In this section we will make some general remarks which will help us to compute the in-
finitesimal Einstein deformations of nearly parallel G2-manifolds that are naturally reductive
homogenous spaces, i.e. reductive spaces where the torsion of the canonical homogenous
connection can be considered as a 3-form.

Lemma 7.1. Let G/H be a 7-dimensional oriented naturally reductive homogeneous space
with reductive decomposition g = h⊕m. Suppose that at the initial point o the torsion of the
canonical homogeneous connection ∇̂ is T̂o = − τ0

6
σo with τ0 6= 0 and that σo is stable and

induces the given metric and orientation on m. Then σo defines by translations a G-invariant
3-form σ and thus a G2-structure on G/H compatible with the given metric and orientation.

This G2-structure is nearly parallel and its canonical connection is ∇̄ = ∇̂. In particular,
dσ = τ0 ∗ σ.

Moreover if G/H is standard up to a scaling factor c2, i.e., m is the orthogonal complement
of h with respect to the Killing form B of g and the metric is induced by the restriction of
−c2B to m, then the scalar curvature is scal = 63

20c2
and τ 2

0 = 6
5c2

.

Proof: Since σo = − 6
τ0

T̂o is an H-invariant 3-form on m, σ = − 6
τ0

T̂ is a G-invariant 3-form

on G/H. In particular, σ is parallel with respect to the canonical homogeneous connection

∇̂ = ∇+ 1
2

T̂ = ∇− τ0
12
σ.

For X ∈ R7 we have the identity PXσ = 3Xy ∗ σ (which follows from (2.12) and (2.13) or
by an explicit computation for some X 6= 0). Thus

∇Xσ = ∇̂Xσ + τ0
12
PXσ = τ0

4
X y ∗ σ
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and Proposition 2.3 implies that the G2-structure is nearly parallel with dσ = τ0∗σ. Moreover
∇̂ coincides with the canonical connection ∇̄ of the G2-structure because of (2.18).

Suppose now that G/H is standard (up to a scaling factor c2). Obviously, it is enough to

prove the statement about the scalar curvature when c = 1. Recall that T̂o(X, Y ) = −[X, Y ]m
for X, Y ∈ m. Then, considering again T̂o as a 3-form and using (7.39) in [3], we obtain

scal = −6
4
|T̂o|2 + 7

2
= − τ20

24
|σo|2 + 7

2
.

Since σo induces the metric on m we have |σo|2 = 7 and, using (3.20) to replace scal , the
equation above yields τ 2

0 = 6
5

and therefore scal = 21
8
τ 2

0 = 63
20

. �

In view of this lemma and the results of the previous section it will be useful to have an
algebraic description of some differential operators on naturally reductive spaces.

Let M = G/H be a reductive homogeneous space and ρ be a representation of H on a
vector space V . Denote by E := G×ρV the associated vector bundle over M . If a G-invariant

metric is fixed on M , then the canonical homogeneous connection ∇̂ is a metric connection
and, as explained in Section 5, we can define the Laplace type operator ∆̂ρ = ∇̂∗∇̂ + q(R̂)
acting on sections of E. With the same proof as for Lemma 5.2 in [19] we have

Lemma 7.2. Let G be a compact semi-simple Lie group, H ⊂ G a compact subgroup and let
M = G/H be standard (up to a scaling factor c2). Then the endomorphism q(R̂) acts fibrewise

on E as − 1
c2

CasHρ and the operator ∆̂ρ acts on Γ(E), considered as a G-representation via

the left-regular representation l, as − 1
c2

Cas Gl , where the Casimir operator Cas GVγ of a G-
representation Vγ is defined with respect to the Killing form of G.

Lemma 7.2 can be used to compute the spectrum of ∆̂ρ. We recall that the Peter-Weyl
theorem and the Frobenius reciprocity yield the following decomposition of the left-regular
representation of G into irreducible summands:

(7.41) Γ(E) ∼=
⊕

Vγ ⊗ HomH(Vγ, V ),

where the sum is taken over the set of (non-isomorphic) irreducible G-representations Vγ,
labeled by their highest weight γ. The Casimir operator acts on Vγ as a certain multiple
of the identity, which can be computed explicitly by the Freudenthal formula. Hence the
eigenspace of ∆̂ρ for the eigenvalue λ is isomorphic as a G-representation to the direct sum
of the spaces Vγ ⊗ HomH(Vγ, V ) for which Cas GVγ = −c2λ.

Corollary 7.3. Let G/H be standard (up to a scaling factor c2), satisfying the assump-
tions of Lemma 7.1. Then the eigenspaces of the G2-Laplace operator ∆̄ on Ω3

27(M) for

the eigenvalues
5τ20
6

,
τ20
3

,
τ20
2

are isomorphic as G-representations to the direct sum of spaces

Vγ ⊗ HomH(Vγ,Λ
3
27m

∗), on which the Casimir operator Cas GVγ acts as −1, −2
5
, −3

5
.

In the examples below we have to solve equations of the form d̄ϕ+ c ∗ϕ = 0 for 3-forms ϕ
on naturally reductive spaces M = G/H. Using the explicit embedding of Vγ⊗HomH(Vγ, V )
of (7.41) into Γ(E) we will translate this into an algebraic equation.
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As above let E := G ×ρ V be the vector bundle over M = G/H associated to a rep-
resentation ρ : H → Aut(V ). The space of H-equivariant functions from G to V , i.e.,
functions f : G → V with f ◦ Rh = ρ(h−1) ◦ f for all h ∈ H, can be identified with
the space of the sections of E. Indeed, the section ϕ corresponding to the function f is
given by ϕ(π(a)) = a(f(a)). Here π : G → G/H denotes the projection, π(a) = aH, and
a ∈ G is considered as a linear isomorphism from V to the fibre Eπ(a), defined on v ∈ V as
a(v) := [a, v] ∈ Eπ(a). Since G acts from the left on the space of H-equivariant functions from
G to V by a · f := L∗a−1f = f ◦ La−1 , we obtain a left action of G on Γ(E).

Let U be an irreducible G-representation. Then U ⊗ HomH(U, V ) embeds into Γ(E) by

U ⊗ HomH(U, V ) 3 α⊗ A 7→ fAα , where fAα : G→ V, fAα (a) = A(a−1α).

In particular, fixing A ∈ HomH(U, V ) one obtains aG-equivariant homomorphism U → Γ(E),
given by U 3 α 7→ fAα . The meaning of (7.41) is that each G-equivariant homomorphism
U → Γ(E) is obtained in this way. In other words, a subspace of Γ(E) is isomorphic as
a G-representation to U if and only if it coincides with the space {fAα : α ∈ U} for some
A ∈ HomH(U, V ), A 6= 0.

Let M = G/H be reductive with Ad (H)-invariant decomposition g = h ⊕ m and E =
ΛsT ∗M , i.e., the vector bundle associated to the H-representation V = Λsm∗. Then a
straightforward computation shows that in this case a · ϕ = L∗a−1ϕ for a ∈ G and ϕ ∈
Γ(E). This means that if ϕ corresponds to the function f , then L∗aϕ corresponds to the

function L∗af . Let ∇̂ be the canonical homogeneous connection and consider the operator

d̂ = ε ◦ ∇̂ : Γ(ΛsT ∗M)→ Γ(Λs+1T ∗M). Since ∇̂ is translation invariant, we have

(d̂ϕ)π(a) = L∗a−1((d̂L∗aϕ)π(e)).

For (d̂L∗aϕ)π(e) we obtain the equation

(d̂L∗aϕ)π(e)(X1, . . . , Xs+1) =
s+1∑
i=1

(−1)i−1dL∗af(Xi)(X1, . . . , X̂i, . . . , Xs+1)

for X1, . . . , Xs+1 ∈ m ∼= Tπ(e)M . Let ϕ correspond to fAα . Then

dL∗af
A
α (X) = (dA(b−1a−1α))b=e(X) = A((d(b−1))b=e(X) · a−1α) = −A(X · a−1α),

where X · α denotes the action of X ∈ g on α ∈ U . Thus

(d̂L∗aϕ)π(e)(X1, . . . , Xs+1) =
s+1∑
i=1

(−1)iA(Xi · a−1α)(X1, . . . , X̂i, . . . , Xs+1)

for X1, . . . , Xs+1 ∈ m ∼= Tπ(e)M . In a similar way one obtains

(dL∗aϕ)π(e)(X1, . . . , Xs+1) =
s+1∑
i=1

(−1)iA(Xi · a−1α)(X1, . . . , X̂i, . . . , Xs+1)

+
∑

1≤i<j≤s+1

(−1)i+jA(a−1α)([Xi, Xj]m, X1, . . . , X̂i, . . . , X̂j, . . . , Xs+1)
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for X1, . . . , Xs+1 ∈ m ∼= Tπ(e)M . From these formulas one can compute (d̂ϕ)π(a) and (dϕ)π(a)

for any a ∈ G.

Next we fix a G-invariant metric and an orientation on M . Then ∗ϕ = L∗a−1((∗L∗aϕ)π(e)).

Therefore, if we would like to solve the G-invariant equation d̂ϕ + c ∗ ϕ = 0, for a certain
constant c, it is enough to solve (d̂L∗aϕ)π(e) + c ∗ (L∗aϕ)π(e) = 0 for all a ∈ G. In fact, we
shall be interested in subspaces of solutions of this equation, which are isomorphic to a given
irreducible G-representation U . Thus we have to find A ∈ HomH(U, V ) so that∑

1≤i1<···<is+1≤n

s+1∑
j=1

(−1)iA(eij · a−1α)(ei1 , . . . , êij , . . . , eis+1)e
i1...is+1 + c ∗ A(a−1α) = 0

for all a ∈ G, α ∈ U . Here e1, . . . , en is a basis of m. It is clear that it suffices to write a = e
in this equation, i.e., we are looking for A ∈ HomH(U, V ) so that

(7.42)
∑

1≤i1<···<is+1≤n

s+1∑
j=1

(−1)jA(eij · α)(ei1 , . . . , êij , . . . , eis+1) e
i1...is+1 + c ∗ A(α) = 0

holds for all α ∈ U . Notice that this equation is H-invariant.

8. Examples

In this section we shall compute the infinitesimal Einstein deformations of three examples
of proper nearly parallel G2-structures on standard homogeneous spaces (up to a factor).

The first example is SO(5)/SO(3), where the embedding of SO(3) in SO(5) is given by the
5-dimensional irreducible representation of SO(3). This space is isotropy irreducible. In fact,
the isotropy representation is the unique 7-dimensional irreducible representation of SO(3),
which also defines an embedding of SO(3) in G2 and thus a G2-structure on SO(5)/SO(3).
The G2-structure is proper nearly parallel (cf. [5]).

The other two examples come from 3-Sasakian geometry. Recall that there is a second
Einstein metric in the canonical variation of a 3-Sasakian metric. In the 7-dimensional case
this metric is induced by a proper nearly parallel G2-structure [12]. In general, for each
simply connected compact simple Lie group G there exists exactly one simply connected 3-
Sasakian homogeneous manifold of the form G/H and the only other 3-Sasakian homogeneous
manifolds are the real projective spaces [4]. The second Einstein metric is also G-homogeneous
but not normal (neither is the 3-Sasakian metric). But if one writes the space in the form
G×Sp(1)
H×Sp(1)

, it becomes normal [1] and in the 7-dimensional case even standard (up to a factor).

The simply connected 7-dimensional homogeneous 3-Sasakian manifolds are the round
sphere S7 and the Aloff-Wallach space N(1, 1). The corresponding second Einstein metrics

are the standard homogenous metrics (up to a factor) on Sp(2)×Sp(1)
Sp(1)×Sp(1)

(the so-called squashed

sphere) and on SU(3)×Sp(1)
U(1)×Sp(1)

. As remarked by B. Wilking in [22], the latter space was overlooked

in the Berger classification of normal homogenous spaces of positive sectional curvature.
It follows from Equation (7.87b) of [3] that a normal homogenous space has non-negative
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sectional curvature. However, if in addition one has a G2-structure as desribed in Lemma 7.1
the torsion is non-degenerate and the sectional curvature has to be positive. Thus by the
Berger classification there are only the examples considered above.

To compute the space of infinitesimal Einstein deformations on our examples M = G/H,
we shall proceed in the following way. First we determine which H-representation V define
the bundle Λ3

27T∗M and then we use Corollary 7.3 to find the irreducible G-representations U

appearing in the eigenspaces of ∆̄ for the eigenvalues
5τ20
6

,
τ20
3

and
τ20
2

(as given in Lemma 6.3).
In all three examples the computation of the Casimir eigenvalues will show that the eigen-

values
τ20
3

and
τ20
2

do not appear and thus the spaces of infinitesimal Einstein deformations
and infinitesimal G2-deformations coincide. It is interesting to note that in all three cases the

non-zero candidates U comming from the eigenvalue
5τ20
6

turn out to be exactly the compo-
nents of the adjoint representation of G. However this is not too surprising since the Casimir
eigenvalue of the adjoint representation (with respect to the Killing form) is always −1. If
such representations U do exist, we have to solve the equation dϕ = −τ0 ∗ ϕ or equivalently
(d̄+c∗)ϕ = 0 for the constant c = 5

6
τ0. By the results of the previous section, this is reduced

to finding A ∈ HomH(U,Λ3
27m) that solves (7.42) with c = 5

6
τ0.

For reference below we mention the following facts about Casimir operators. The Casimir
operator of the representation V (k1, . . . , kn) of Sp(n) with highest weight γ = (k1, . . . , kn),
where k1 ≥ · · · ≥ kn ≥ 0 are integers, is given by

(8.43) Cas
Sp(n)
V (k1,...,kn) = − 1

4(n+1)

n∑
i=1

(2(n− i+ 1)ki + k2
i )

and the Casimir operator of the representation V (k1, . . . , kn) of SU(n) with highest weight
γ = (k1, . . . , kn), where k1 ≥ · · · ≥ kn are integers satisfying −n

2
< k1 + · · ·+ kn ≤ n

2
, by

(8.44) Cas
SU(n)
V (k1,...,kn) = − 1

2n

n∑
i=1

((n+ 1− 2i)ki + k2
i ) + 1

2n2 (
n∑
i=1

ki)
2.

Finally, if V1 and V2 are representations of the groups G1 and G2 respectively, then

(8.45) Cas G1×G2
V1⊗V2 = Cas G1

V1
+ Cas G2

V2
.

8.1. The example SO(5)/SO(3).

We have the reductive, i.e. Ad (SO(3))-invariant, decomposition so(5) = so(3)⊕m, where m
is the orthogonal complement of so(3) with respect to the Killing form of so(5). As mentioned
above, m is the irreducible 7-dimensional representation of SO(3). The complex irreducible
SO(3)-representations can be written as the symmetric powers S2kE, where E = C2 is the
standard representation of the double cover Sp(1) of SO(3), in particular mC ∼= S6E. It is
easy to obtain the following decomposition into irreducible summands

Λ3m∗
C ∼= Λ3S6E = C⊕ S4E ⊕ S6E ⊕ S8E ⊕ S12E.
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We see that there is a 1-dimensional space of SO(3)-invariant 3-forms, which implies that
on M = SO(5)/SO(3) the canonical homogeneous connection coincides with the canonical
G2-connection. Moreover, since Λ3m∗ ∼= R⊕m⊕ Λ3

27m
∗ as a G2-representation, we obtain

(8.46) Λ3
27m

∗C ∼= S4E ⊕ S8E ⊕ S12E.

Since Sp(2) double covers SO(5), the two groups have the same Casimir operator. Therefore,
by Corollary 7.3 and (8.43), we have to find all pairs of integers (k1, k2) with k1 ≥ k2 ≥ 0, such
that− 1

12
(4k1+k2

1+2k2+k2
2) is equal to one of−1, −2

5
, −3

5
. The only solution is (k1, k2) = (2, 0)

for the eigenvalue −1. The representation V (2, 0) is the adjoint representation of Sp(2) and
it corresponds, of course, to the adjoint representation so(5) of SO(5). It remains to compute

the dimension of Hom SO(3)(so(5)C,Λ3
27m

∗C), which turns out to be zero. Indeed, from the
reductive decomposition above we have the following decomposition of so(5)C into irreducible
SO(3)-representations:

so(5)C ∼= so(3)C ⊕mC ∼= S2E ⊕ S6E.

Comparing this with (8.46), we see that so(5)C and Λ3
27m

∗C do not have any common compo-

nents and therefore Hom SO(3)(so(5)C,Λ3
27m

∗C) = 0. Thus the eigenvalues
5τ20
6

,
τ20
3

and
τ20
2

do
not appear in the ∆̄-spectrum on Ω3

27(M) and so we have proved

Proposition 8.1. There are no infinitesimal Einstein deformations and, in particular, no
infinitesimal G2-deformations of the nearly parallel G2-structure on SO(5)/SO(3).

8.2. The example Sp(2)×Sp(1)
Sp(1)×Sp(1).

We denote by Sp(1)u and Sp(1)d the following embeddings of Sp(1) in Sp(2)× Sp(1):

Sp(1)u := {(
(
a 0
0 1

)
, 1) : a ∈ Sp(1)}, Sp(1)d := {(

(
1 0
0 a

)
, a) : a ∈ Sp(1)}.

In this realization the Lie algebras of Sp(1)u and Sp(1)d are given as

sp(1)u := {(
(
a 0
0 0

)
, 0) : a ∈ sp(1)}, sp(1)d := {(

(
0 0
0 a

)
, a) : a ∈ sp(1)}.

We consider the homogeneous space Sp(2)×Sp(1)
Sp(1)u×Sp(1)d

as a normal homogeneous space taking the

metric induced by − 1
24
B, where B is the Killing form of g = sp(2) ⊕ sp(1). Then we have

the reductive decomposition g = h⊕m, with

h = sp(1)u ⊕ sp(1)d, m = h⊥ = sp(1)o ⊕m′.

The Lie algebra sp(1)o and the space m′ are given as

sp(1)o := {(
(

0 0
0 2a

)
,−3a) : a ∈ sp(1)}, m′ := {(

(
0 x
−x̄ 0

)
, 0) : x ∈ H}.
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We define the orientation by means of the following orthonormal frame of m:

e1 :=
1√
5

(

(
0 0
0 2i

)
,−3i), e2 :=

1√
5

(

(
0 0
0 2j

)
,−3j), e3 :=

1√
5

(

(
0 0
0 2k

)
,−3k),

e4 := (

(
0 1
−1 0

)
, 0), e5 := (

(
0 i
i 0

)
, 0), e6 := (

(
0 j
j 0

)
, 0), e7 := (

(
0 k
k 0

)
, 0).

Then, computing the comutators of these basis elements, we see that at the initial point o the
torsion of the canonical homogeneous connection is T̂o = 2√

5
σo, where σo is given by (2.1).

Hence, by Lemma 7.1 we obtain a nearly parallel G2-structure on Sp(2)×Sp(1)
Sp(1)u×Sp(1)d

with τ0 = − 12√
5
.

We want to determine infinitesimal Einstein deformations of this structure. Thus by Corol-
lary 7.3 together with (8.45) and (8.43) we are looking for k1 ≥ k2 ≥ 0 and l ≥ 0 such that

Cas
Sp(2)×Sp(1)
V (k1,k2)⊗V (l) = − 1

12
(4k1 + k2

1 + 2k2 + k2
2)− 1

8
(2l + l2)

is equal to one of−1, −2
5
, −3

5
. The only solutions, both for the eigenvalue−1, are k1 = 2, k2 =

0, l = 0 and k1 = 0, k2 = 0, l = 2. Thus the space of infinitesimal Einstein deformations
is equal to the space of infinitesimal G2-deformations and the only two representations of
Sp(2)× Sp(1) which could be contained in this space are V (2, 0) ∼= sp(2) and V (2) ∼= sp(1).
Next we have to determine whether these spaces admit H-invariant homomorphisms to Λ3

27m
∗.

If the standard representations of Sp(1)u and Sp(1)d are denoted by E and H respectively,
an arbitrary irreducible representation of Sp(1)u×Sp(1)d can be written as SkESlH. (In this
and the next subsection we shall omit the tensor product sign and the complexification sign).
Then we have the following decompositions into irreducible Sp(1)u × Sp(1)d-representations:

sp(1)o ∼= S2H, m′ ∼= EH, m ∼= S2H ⊕ EH,
Λ3m∗ ∼= S2ES2H ⊕ ES3H ⊕ 2EH ⊕ S4H ⊕ S2H ⊕ 2C,
Λ3

27m
∗ ∼= S2ES2H ⊕ ES3H ⊕ EH ⊕ S4H ⊕ C,

V (2, 0) ∼= sp(2) ∼= S2E ⊕ EH ⊕ S2H, V (2) ∼= sp(1) = S2H.

Since Λ3
27m

∗ and sp(1) have no common summands, Hom Sp(1)u×Sp(1)d(sp(1),Λ3
27m

∗) = 0
and therefore the Sp(2)× Sp(1)-representation sp(1) is not contained in Ω3

27(M).

The only common summand of Λ3
27m

∗ and sp(2) is EH, so Hom Sp(1)u×Sp(1)d(sp(2),Λ3
27m

∗)
is 1-dimensional. In order to proceed we have to find an explicit equivariant homomorphism
A : sp(2) → Λ3

27m
∗ spanning this space. Since ∗σo and e4567 are the two linear independent

Sp(1)u × Sp(1)d-invariant forms in Λ4m∗, an arbitrary embedding of EH in Λ3m∗ is given by

EH ∼= m′ 3 X 7→ Xy (λ ∗ σo + µe4567) ∈ Λ3m∗.

The image of this map is contained in Λ3
27m

∗ if and only if it is orthogonal to the EH in
Λ3

7m
∗. Obviously this is equivalent to µ = −4λ and we can take the embedding

i : EH ∼= m′ → Λ3
27m

∗, EH ∼= m′ 3 X 7→ Xy(∗σo − 4e4567).

Hence Hom Sp(1)u×Sp(1)d(sp(2),Λ3
27m

∗) is spanned by the equivariant homomorphism A := i◦p,
where p : sp(2)→ EH is the orthogonal projection.
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Thus U = sp(2) is the only Sp(2) × Sp(1)-representation which remains for the solution
space of the equation ∗dϕ = −τ0ϕ, describing the infinitesimal G2-deformations. As men-
tioned above, this equation is equivalent to (d̄ + 5

6
τ0∗)ϕ = 0, i.e. in the case at hand to

(d̄−2
√

5∗)ϕ = 0. From the results of the last part of Section 7 for V = Λ3
27m

∗ and U = sp(2)
it follows that equation (7.42) with c = −2

√
5 must be satisfied for the chosen A and all

u ∈ sp(2). However this is not the case: take α := e4 ∈ EH ∼= m′ ⊂ sp(2). Then

e1 · α = [e1, e4] = − 2√
5
e5, i(e5) = 3e467 + e137 + e126 + e234,

e2 · α = [e2, e4] = − 2√
5
e6, i(e6) = −3e457 + e237 − e125 − e134,

e3 · α = [e3, e4] = − 2√
5
e7, i(e7) = 3e456 − e236 − e135 + e124,

e4 · α = [e4, e4] = 0, i(e4) = −3e567 − e235 + e136 − e127.

Using these equations one easily sees that the coefficient of e1234 in the left-hand side of (7.42)
is 36√

5
6= 0. Hence sp(2) is not contained in the space of solutions of (d̄− 2

√
5∗)ϕ = 0.

Since the nearly parallel G2-structure of the squashed sphere is a double covering of the
one on RP 7 the same argument applies for the real projective space and we obtain

Proposition 8.2. There are no infinitesimal Einstein deformations and, in particular, no in-

finitesimal G2-deformations of the nearly parallel G2-structure on the squashed sphere Sp(2)×Sp(1)
Sp(1)×Sp(1)

and of the nearly parallel G2-structure on RP 7 inducing the second Einstein metric.

8.3. The example SU(3)×SU(2)
U(1)×SU(2) .

We denote by SU(2)d the following embedding of SU(2) in SU(3)× SU(2):

SU(2)d := {(
(
a 0
0 1

)
, a) : a ∈ SU(2)}.

The group U(1) is realized as a subgroup of SU(3) ⊂ SU(3)× SU(2) by the embedding

U(1) = {(

eit 0 0
0 eit 0
0 0 e−2it

 , 1) : t ∈ R}.

We consider the homogeneous space SU(3)×SU(2)
U(1)×SU(2)d

as a normal homogeneous space taking the

metric induced by − 1
24
B, where B is the Killing form of g = su(3) ⊕ su(2). Then we have

the reductive decomposition g = h⊕m, with

h = u(1)⊕ su(2)d, m = h⊥ = su(2)o ⊕m′.

Here

u(1) := span{C}, where C := (

i 0 0
0 i 0
0 0 −2i

 , 0), and su(2)d := {(
(
a 0
0 0

)
, a) : a ∈ su(2)}
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are the Lie algebras of U(1) and SU(2)d respectively and

su(2)o := {(
(

2a 0
0 0

)
,−3a) : a ∈ su(2)}, m′ := {(

(
0 z
−z̄t 0

)
, 0) : z ∈ C2}.

Let

I :=

(
i 0
0 −i

)
∈ su(2), J :=

(
0 −1
1 0

)
∈ su(2), K :=

(
0 i
i 0

)
∈ su(2).

Then we define the orientation fixing the following orthonormal frame of m:

e1 := − 1√
5

(

(
2I 0
0 0

)
,−3I), e2 := − 1√

5
(

(
2J 0
0 0

)
,−3J), e3 := − 1√

5
(

(
2K 0
0 0

)
,−3K),

e4 := (

 0 0
√

2
0 0 0

−
√

2 0 0

 , 0), e5 := (

 0 0
√

2i
0 0 0√
2i 0 0

 , 0),

e6 := (

0 0 0

0 0
√

2

0 −
√

2 0

 , 0), e7 := (

0 0 0

0 0
√

2i

0
√

2i 0

 , 0).

Then, as in the previous example we see that T̂o = 2√
5
σo, where σo is given by (2.1). Hence,

by Lemma 7.1 we obtain a nearly parallel G2-structure on SU(3)×SU(2)
U(1)×SU(2)d

with τ0 = − 12√
5
.

Again we want to find the infinitesimal Einstein deformations of this structure. By Corol-
lary 7.3 together with (8.45) and (8.44) we are this time looking for integers k1 ≥ k2 ≥ k3

and l1 ≥ l2, satisfying −3
2
< k1 + k2 + k3 ≤ 3

2
and −1 < l1 + l2 ≤ 1, such that

Cas
SU(3)×SU(2)
V (k1,k2,k3)⊗V (l1,l2) = −1

9
(3k1+k2

1+k2
2−3k3+k2

3−k1k2−k2k3−k3k2)−1

8
(2l1+l21−2l2+l22−2l1l2).

is equal to one of −1, −2
5
, −3

5
. The only solutions, both for the eigenvalue −1, are

k1 = 1, k2 = 0, k3 = −1, l1 = 0, l2 = 0 and k1 = 0, k2 = 0, k3 = 0, l1 = 1, l2 = −1,

Thus the space of infinitesimal Einstein deformations is equal to the space of infinitesimal
G2-deformations and the only two representations of SU(3)×SU(2) which could be contained
in this space are V (1, 0,−1) ∼= su(3) and V (1,−1) ∼= su(2). Next we have to determine the
H-equivariant homomorphisms of these spaces into Λ3

27m
∗.

If the representation of U(1) with weight k is denoted by F (k) and the standard repre-
sentation of SU(2)d by H, then an arbitrary irreducible representation of U(1)× SU(2)d has
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the form F (k)SlH. We have the following decompositions into irreducible U(1) × SU(2)d-
representations:

su(2)o ∼= S2H, m′ ∼= F (3)H ⊕ F (−3)H, m ∼= S2H ⊕ F (3)H ⊕ F (−3)H,

Λ3m∗ ∼= F (6)S2H ⊕ F (−6)S2H ⊕ F (3)S3H ⊕ F (−3)S3H ⊕ 2F (3)H ⊕ 2F (−3)H
⊕ S4H ⊕ 2S2H ⊕ 2C,

Λ3
27m

∗ ∼= F (6)S2H ⊕ F (−6)S2H ⊕ F (3)S3H ⊕ F (−3)S3H ⊕ F (3)H ⊕ F (−3)H
⊕ S4H ⊕ S2H ⊕ C,

V (1, 0,−1) ∼= su(3) ∼= C⊕ F (3)H ⊕ F (−3)H ⊕ S2H, V (1,−1) ∼= su(2) ∼= S2H,

The only common summand of Λ3
27m

∗ and su(2) is S2H, so Hom U(1)×SU(2)d(su(2),Λ3
27m

∗)
is 1-dimensional. Let

q2 : S2H ∼= su(2)→ su(2)o, S2H ∼= su(2) 3 a 7→ (

(
2a 0
0 0

)
,−3a) ∈ su(2)o

be the identification of S2H and su(2)o. The S2H in Λ3m∗ coming from Λ3
7m
∗ is given by the

embedding
S2H 3 a 7→ q2(a) 7→ q2(a)y ∗ σ0 ∈ Λ3

7m
∗.

Since the 2-form Ω := e45 + e67 is also U(1) × SU(2)d-invariant, another embedding of S2H
in Λ3m∗ is

i2 : S2H → Λ3m∗, S2H 3 a 7→ q2(a) 7→ q2(a)[ ∧ Ω ∈ Λ3m∗.

It is easy to see that i2(S2H) is orthogonal to the S2H in Λ3
7m
∗, so in fact i2 is the embedding

of S2H into Λ3
27m

∗. Therefore Hom U(1)×SU(2)d(su(2),Λ3
27m

∗) is spanned by A := i2.

Now, as in the previous example, it remains to solve the equation (d̄ − 2
√

5∗)ϕ = 0 by
applying the results of the last part of section 7 for V = Λ3

27m
∗ and for the summands

U = su(3) and U = su(2) found above.

If su(2) is contained in the space of solutions of (d̄ − 2
√

5∗)ϕ = 0, then equation (7.42)
(with s = 3 and c = −2

√
5) must be satisfied for the chosen A and all α ∈ su(2). We shall

show this is not the case. Take α := (0, I) ∈ S2H ∼= su(2) ⊂ su(3)⊕ su(2). Then

e2·α = [e2, α] =
6√
5

(0, K), i2(0, K) = q2(0, K)[∧Ω = −
√

5e3∧(e45+e67) = −
√

5(e345+e367),

e3·α = [e3, α] = − 6√
5

(0, J), i2(0, J) = q2(0, J)[∧Ω = −
√

5e2∧(e45+e67) = −
√

5(e245+e267),

e4 · α = [e4, α] = 0, e5 · α = [e5, α] = 0,

i2(0, I) = q2(0, I)[ ∧ Ω = −
√

5e1 ∧ (e45 + e67) = −
√

5(e145 + e167).

Using these equations one easily sees that the coefficient of e2345 in the left-hand side of (7.42)
is 22 6= 0. Hence su(2) is not contained in the space of solutions of (d̄− 2

√
5∗)ϕ = 0.

There are four common summands of Λ3
27m

∗ and su(3): C, S2H, F (3)H, F (−3)H. Since
they are all different, Hom U(1)×SU(2)d(su(3),Λ3

27m
∗) is 4-dimensional. Our next goal is to de-

termine a basis A1, A2, A3, A4 of Hom U(1)×SU(2)d(su(3),Λ3
27m

∗) corresponding to these spaces.
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The C in Λ3m∗ coming from Λ3
1m
∗ is spanned by σo and the second C in Λ3m∗ is spanned

by e123. Thus an arbitrary C in Λ3m∗ is spanned by λσo + µe123. This is orthogonal to σo if
and only if µ = −7λ. Hence the C in Λ3

27m
∗ is spanned by σo − 7e123. On the other hand, C

in su(3) is u(1) and is spanned by C. Define

i1 : u(1)→ Λ3
27m

∗, C 7→ σo − 7e123.

Then the subspace of Hom U(1)×SU(2)d(su(3),Λ3
27m

∗) which corresponds to C is spanned by
A1 := i1 ◦ p1, where p1 : su(3)→ u(1) is the projection.

Let

j2 : S2H ∼= su(2)→ su(3), S2H ∼= su(2) 3 a 7→ (

(
a 0
0 0

)
, 0) ∈ su(3) ⊂ su(3)⊕ su(2).

Then the subspace of Hom U(1)×SU(2)d(su(3),Λ3
27m

∗) corresponding to S2H is spanned by A2 :=
i2 ◦ j−1

2 ◦ p2, where p2 : su(3)→ S2H is the projection and i2 was defined earlier.

Considered as subspaces of m′ ⊂ su(3)⊕ su(2), F (3)H and F (−3)H are

F (3)H ∼= span{e4 − ie5, e6 − ie7}, F (−3)H ∼= span{e4 + ie5, e6 + ie7}.

In the same way as for EH in the case of Sp(2)×Sp(1)
Sp(1)×Sp(1)

we obtain that the embeddings i3 :

F (3)H → Λ3
27m

∗ and i4 : F (−3)H → Λ3
27m

∗ are given by the restrictions on F (3)H and
F (−3)H of the embedding

m′ 3 X 7→ Xy(∗σo − 4e4567).

Then the subspaces of Hom U(1)×SU(2)d(su(3),Λ3
27m

∗) corresponding to F (3)H and F (−3)H are
spanned by A3 := i3 ◦ p3 and A4 := i4 ◦ p4, where p3 : su(3)→ F (3)H, p4 : su(3)→ F (−3)H
are the projections.

Thus we have to find for which A = c1A1 + c2A2 + c3A3 + c4A4 equation (7.42) (with s = 3
and c = −2

√
5) is satisfied for all α ∈ su(3). As this equation is U(1)×SU(2)d-invariant, this

is equivalent to the requirement that the equation is satisfied for one representative of each
of the four summands in su(3). We take

α1 := C ∈ C ⊂ su(3), α2 := j2(I) ∈ S2H ⊂ su(3),
α3 := e4 − ie5 ∈ F (3)H ⊂ su(3), α4 := e4 + ie5 ∈ F (−3)H ⊂ su(3).

Then we have
A(C) = c1i1(C) = c1(σo − 7e123),

A(j2(I)) = c2i2(I) = −
√

5c2e
1 ∧ Ω = −

√
5c2(e145 + e167),

A(j2(J)) = c2i2(J) = −
√

5c2e
2 ∧ Ω = −

√
5c2(e245 + e267),

A(j2(K)) = c2i2(K) = −
√

5c2e
3 ∧ Ω = −

√
5c2(e345 + e367),

A(e4 − ie5) = c3i3(e4 − ie5) = c3((−3e567 − e235 + e136 − e127)− i(3e467 + e137 + e126 + e234)),

A(e6 − ie7) = c3i3(e6 − ie7) = c3((−3e457 + e237 − e125 − e134)− i(3e456 − e236 − e135 + e124)),

A(e4 + ie5) = c4i4(e4 + ie5) = c4((−3e567 − e235 + e136 − e127) + i(3e467 + e137 + e126 + e234)),

A(e6 + ie7) = c4i4(e6 + ie7) = c4((−3e457 + e237 − e125 − e134) + i(3e456 − e236 − e135 + e124)).
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Since equation (7.42) is invariant with respect to U(1)×SU(2)d, its left-hand side for α = α1

lies in 2C = span{∗σo, e4567} ⊂ Λ4m∗. Hence, to determine it, it is enough to compute the
coefficients of e4567 and e2367.

We have

e1 · α1 = [e1, C] = 0, e2 · α1 = [e2, C] = 0, e3 · α1 = [e3, C] = 0,

e4 · α1 = [e4, C] = −3e5, e5 · α1 = [e5, C] = 3e4,

e6 · α1 = [e6, C] = −3e7, e7 · α1 = [e7, C] = 3e6.

Using these equations we see that the coefficients of e4567 and e2367 are −18i(c3−c4)+12
√

5c1

and 3i(c3 − c4)− 2
√

5c1. So the whole left-hand side of (7.42) for α = α1 is

(−2
√

5c1 + 3i(c3 − c4))(∗σ0 − 7e4567)

and this vanishes if and only if −2
√

5c1 + 3i(c3 − c4) = 0.

Since equation (7.42) is U(1) × SU(2)d-invariant, its left-hand side for α ∈ S2H lies in
2S2H ⊂ Λ4m∗. The two embeddings of S2H in Λ4m∗ are obtained as the composition of the
two embeddings of S2H in Λ3m∗ with ∗. Thus the left-hand side of (7.42) for α = α2 lies in

span{e1246 + e1347 + e1257 − e1356, e2367 + e2345}.
Hence, to determine it, it is enough to compute the coefficients of e1246 and e2367.

We have

e1 · α2 = [e1, j2(I)] = 0, e2 · α2 = [e2, j2(I)] = − 4√
5
j2(K), e3 · α2 = [e3, j2(I)] =

4√
5
j2(J),

e4 · α2 = [e4, j2(I)] = −e5, e5 · α2 = [e5, j2(I)] = e4,

e6 · α2 = [e6, j2(I)] = e7, e7 · α2 = [e7, j2(I)] = −e6.

With these equations we see that the coefficients of e1246 and e2367 are c3+c4 and 2c2−i(c3−c4).
So the whole left-hand side of (7.42) for α = α2 is

(c3 + c4)(e1246 + e1347 + e1257 − e1356) + (2c2 − i(c3 − c4))(e2367 + e2345)

and this vanishes if and only if c3 + c4 = 0 and 2c2 − i(c3 − c4) = 0.

Again the U(1) × SU(2)d-invariance of equation (7.42) implies that its left-hand side for
α ∈ F (3)H lies in 2F (3)H ⊂ Λ4m∗. The two embeddings of F (3)H in Λ4m∗ are obtained as
the composition of the two embeddings of F (3)H in Λ3m∗ with ∗. Thus the left-hand side of
(7.42) for α = α3 lies in

span{e1234 − ie1235, (e1467 − e2457 + e3456)− i(e2456 + e3457 + e1567)}.
Hence, to determine it, it is enough to compute the coefficients of e1234 and e1467.

We have

e1 · α3 = [e1, e4 − ie5] = − 2√
5
i(e4 − ie5), e2 · α3 = [e2, e4 − ie5] = − 2√

5
(e6 − ie7),

e3 · α3 = [e3, e4 − ie5] = − 2√
5
i(e6 − ie7),
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e4 · α3 = [e4, e4 − ie5)] = −2iC − 2ij2(I), e5 · α3 = [e5, e4 − ie5] = −2C − 2j2(I),

e6 · α3 = [e6, e4 − ie5] = −2j2(J)− 2ij2(K), e7 · α3 = [e7, e4 − ie5] = i(2j2(J) + 2ij2(K)).

Then, using these equations we find that the coefficients of e1234 and e1467 are 12ic1 + 36√
5
c3

and 2ic1 + 2i
√

5c2 + 16√
5
c3. So the whole left-hand side of (7.42) for α = α3 is

(12ic1 +
36√

5
c3)(e1234 − ie1235)

+(2ic1 + 2i
√

5c2 +
16√

5
c3)((e1467 − e2457 + e3456)− i(e2456 + e3457 + e1567))

and this vanishes if and only if 12ic1 + 36√
5
c3 = 0 and 2ic1 + 2i

√
5c2 + 16√

5
c3 = 0.

The computations for α = α4 ∈ F (−3)H are similar. In fact, one has to take the results
for α3, change c3 to c4, preserve c1 and c2 and take the complex conjugate of everything else.
So the whole left-hand side of (7.42) for α = α4 is

(−12ic1 +
36√

5
c4)(e1234 + ie1235)

+(−2ic1 − 2i
√

5c2 +
16√

5
c4)((e1467 − e2457 + e3456) + i(e2456 + e3457 + e1567))

and this vanishes if and only if −12ic1 + 36√
5
c4 = 0 and −2ic1 − 2i

√
5c2 + 16√

5
c4 = 0.

Hence equation (7.42) is satisfied for A = c1A1 + c2A2 + c3A3 + c4A4 and all α ∈ su(3) if
and only if

−2
√

5c1 + 3i(c3 − c4) = 0, c3 + c4 = 0, 2c2 − i(c3 − c4) = 0,

12ic1 +
36√

5
c3 = 0, 2ic1 + 2i

√
5c2 +

16√
5
c3 = 0,

−12ic1 +
36√

5
c4 = 0, −2ic1 − 2i

√
5c2 +

16√
5
c4 = 0.

The solution of this linear system is 1-dimensional:

c2 =

√
5

3
c1, c3 = −

√
5

3
ic1, c4 =

√
5

3
ic1.

This means that exactly one copy of su(3) is contained in the space of solutions of the equation
(d̄− 2

√
5∗)ϕ = 0.

Thus we have proved

Proposition 8.3. The space of infinitesimal Einstein deformations of the proper nearly par-

allel G2-structure on SU(3)×SU(2)
U(1)×SU(2)

coincides with the space of its infinitesimal G2-deformations.

This space is 8-dimensional and is isomorphic to su(3) as an SU(3)× SU(2)-representation.
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