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ABSTRACT. We prove that compact quaternionic-Kéahler manifolds of positive scalar curva-
ture admit no almost complex structure, even in the weak sense, except for the complex
Grassmannians Gra(C"2). We also prove that irreducible inner symmetric spaces M4" of
compact type are not weakly complex, except for spheres and Hermitian symmetric spaces.
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1. INTRODUCTION

It is a well-known fact that the quaternionic projective spaces HP™ have no almost complex
structure. The proof goes back to F. Hirzebruch in 1953 for n > 4 (cf. [12]). The non-existence
of almost-complex structure on HP! = S* had been established a few years earlier by Ch.
Ehresmann [10] and H. Hopf [15]. According to Hirzebruch’s lecture at the 1958 ICM [13],
J. Milnor had in the meantime settled the remaining cases n = 2 and 3, but his proof has
remained unpublished. Later on, W.S. Massey [20] gave an original proof of the non-existence
of almost-complex structure on HP", for any n, based on the explicit calculation of the ring
K(X) and of the Chern character ch(TX) for X = HP".

Quaternionic projective spaces are particular examples of quaternion-Kdhler manifolds.
These, we recall, are (oriented) 4n-dimensional Riemannian manifolds, whose holonomy is
contained in Sp(n) - Sp(1) C SO(4n), if n > 1, or, if n = 1, (oriented) Einstein, self-dual 4-
dimensional Riemannian manifolds. In all dimensions 4n, n > 1, quaternion-Kahler manifolds
are Einstein and are called of positive type if their scalar curvature is positive. In this paper,
we only consider quaternion-Kahler of positive type and we implicitly assume that they are
complete, hence compact.

For n > 2, the above definition of quaternion-Kéahler manifolds is equivalent to the existence
of locally defined almost complex structures I, .J, K, satisfying the quaternion relations and
spanning a global rank 3 sub-bundle  C End(TM), which is preserved by the Levi-Civita
connection. Almost complex structures on M which are sections of Q are called compatible. In
[2], it is shown that quaternion-Ké&hler manifolds of positive type admit no compatible almost
complex structure. In particular the natural complex structure of the complex Grassmannians
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Gry(C™2), which constitute a well-known class of quaternion-Kahler manifolds of positive
type (cf. below), is not compatible.

The first main result of this paper is:

Theorem 1.1. Let M*", n > 2, be a compact quaternion-Kdhler manifold of positive type,
which is not isometric to the compler Grassmannian Gro(C"™2). Then M'™ has no weak
almost complex structure, in the sense that the tangent bundle TM is not stably isomorphic
to a complex vector bundle.

Notice that the assumption n > 2 is necessary, since HP! = S* is weakly complex but not
almost complex.

At the moment, the only known quaternion-Kéahler manifolds of positive type are the so-
called (symmetric) Wolf spaces, namely [28]:
(i) the quaternionic projective spaces HP" = %,

(ii) the Grassmannians Gry(C"*?) = % of complex 2-planes in C"*2,

(iii) the real Grassmannians @4(]1%"*4) = %, of oriented real 4-planes in R,
and
Fy E By Eg

. . G
(iv) the five eXf:eptlonal spaces 50(24), OEIOL 'SU(6)6Sp(1)’ Spm(12)8p(1)" Brsp(D)’
sions 4n with n = 2,7,10,16 and 28 respectively.

in dimen-

According to Theorem 1.1, none of them admits a (weakly) complex structure except for the
complex Grassmannians Gry(C"*2). Note however that this was already known for HP", as

mentioned above, and also for most real oriented Grassmannians §4(R"+4). Indeed, the non-
existence of (weakly) complex structures on a large class of real Grassmannians, including all
Gry(R™™) except for Gry(R®) and Gry(R'?), was shown in [24] by P. Sankaran and in [27] by
7.-7. Tang.

Wolf spaces are (irreducible, simply-connected) inner symmetric spaces of compact type,
i.e. are symmetric spaces of the form G/H, where G, H are connected compact Lie groups
of equal rank. Apart from the Wolf spaces, the class of simply connected irreducible inner
symmetric spaces of compact type includes, cf. e.g. [11], [4], [7]:

(i) the class of (irreducible) Hermitian symmetric spaces of compact type ;

(i) the even-dimensional spheres S*" = sggg:)l), n>1;

. IS . . . . n+2p\ __ _ SO(n+2p)
(iv) the even-dimensional oriented real Grassmannians Gra,(R" ") = 50 xS0(%)”
Sp(n+k

)
)
(v) the quaternionic Grassmannians Gry(HF ") = )k), nk>1;
)
)

n>1:;

"~ Sp(n) Sp(
(iii) the Cayley projective plane %ﬁ({;);

(vi) the two exceptional inner symmetric spaces #@Z? and W'

Notice that all spaces in this list are even-dimensional, c¢f. Section 3. In the second part of
this paper, we show that the techniques introduced in the proof of our main Theorem 1.1 can
be used to establish a similar non-existence theorem for inner symmetric spaces of compact

type. More precisely, we have:
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Theorem 1.2. A 4n-dimensional simply connected irreducible inner symmetric space of com-
pact type is weakly complex if and only if it is a sphere or a Hermitian symmetric space.

Recall that, for any n, the sphere S™ is stably parallelizable, hence weakly complex, whereas
Hermitian symmetric spaces are complex manifolds in a natural way.

Our method uses a unified argument based on the index calculation of a twisted Dirac
operator, via Theorem 3.1 and Proposition 3.2 below. On the other hand, our approach is
ineffective for non-inner symmetric spaces, due to the fact, established by R. Bott [6], that the
index of any homogeneous differential operator vanishes on any non-inner symmetric space
of compact type. For reasons which will be explained in Section 3, cf. in particular Remarks
3.3, 3.5, 3.7, it is also ineffective for inner symmetric spaces of dimension 4n+ 2. In the above
list, these are: (i) Hermitian symmetric spaces of odd complex dimension; (ii) oriented real

Grassmannians &ZP(RZPW), whith p and ¢ both odd; (iii) the exceptional symmetric space

W (which is of dimension 70). The non-existence of weakly complex structure for all

oriented real Grassmannians, except for Gry(R®), Grg(R'?) and Gry(R'?), in particular for all
oriented real Grassmannians of dimensions 4n+2, was established, by different methods, by P.
Sankaran in [24] and by Z.-Z. Tang in [27]. Together with these results, our Theorem 1.2 then
covers all simply connected irreducible inner symmetric spaces, except for the exceptional
symmetric space su(%%v for which, as far as we know, the existence of a (weak) almost
complex structure has remained an open question. Notice that the non-existence of (weak)
almost complex structure on quaternionic Grassmannians was previously established, by a
different approach, by W. C. Hsiang and R. H. Szczarba in [16]. Note also that A. Borel and
F. Hirzebruch [5] have shown that the tangent bundle of the Cayley projective plane has no
almost complex structure, but their proof does not exclude the possibility for that bundle to
being weakly complex.

The irreducibility assumption in Theorem 1.2 can easily be dropped. Indeed, the de Rham
decomposition Theorem implies that any simply connected inner symmetric space can be
written as a product of irreducible inner symmetric spaces. Using the fact that a product
M x N is weakly complex if and only if both factors are weakly complex — the restriction
of the tangent bundle of a product to each factor being stably isomorphic to the tangent
bundle of that factor — and by taking into account the above observations, we thus obtain
the following generalization of Theorem 1.2:

Theorem 1.3. An irreducible component of a simply connected inner symmetric space of
compact type admitting a weak almost complex structure is isomorphic to an even-dimensional

sphere, or to a Hermitian symmetric space or (conceivably) to the exceptional symmetric space
Er
SU®R)/Za "

Our method gives however no information concerning the existence of genuine almost com-
plex structures on products of even-dimensional spheres and Hermitian symmetric spaces (in
contrast, the product S?*! x §29+1 of two odd-dimensional spheres admits integrable almost
complex structures [9]). Theorem 1.3 can be viewed as a topological version of the well-
known fact that an inner symmetric space of compact type which admits an integrable almost
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complex structure compatible with the invariant metric has to be Hermitian symmetric [7],
[3].
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Massey’s paper [20] and for a stimulating and helpful e-mail exchange. We also thank Ulrich
Bunke, Jean Lannes and Simon Salamon for useful discussions. A special thank is due to
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for comments which led to significant improvements of the paper.

2. PROOF OF THEOREM 1.1

For notation and basic properties of quaternion-Kéhler manifolds we refer to [22] and [23].
Let (M, g) be a 4n-dimensional quaternion-K&hler manifold of positive type, n > 1. Since
the holonomy group of M is contained in Sp(n)-Sp(1), the standard representations of Sp(n)
on C? and of Sp(1) on C? give rise to locally defined complex vector bundles, denoted by E
and H respectively. These are globally defined only on the quaternionic projective space HP"
([22, Theorem 6.3]). However, tensor products of any even number of copies of H and E are
globally defined complex bundles over any quaternion-Kahler manifold M.

It is well known that the complexified tangent bundle of M is given as TM® = E ® H.
Recall that a quaternion-Kahler manifold M*" of positive type is spin if and only if either
M*" = HP", or the quaternionic dimension n is even ([22, Proposition 2.3]). If this holds,
the spinor bundle ¥M decomposes as the direct sum of R”? := Sym”H ® AE over all positive
integers p, ¢ with p+ ¢ = n, cf. e.g. [18, Proposition 2.1]. Here AJE denotes the sub-bundle
of AE defined as the kernel of the contraction with the symplectic form of E. In particular,
the twisted spin bundles X* M ® RP? are globally defined whenever p + g + n is even. We
then denote by Dge. be the (twisted) Dirac operator defined on sections of "M ® RP? and
by ind(Dge.q) the index of Dgp.a.

Our argument crucially relies on the following result of C. LeBrun and S. Salamon [19,
Theorem 5.1] (cf. also [25]):

. - 0 for p+g<n
@ nd(Drra) = { (=1)7 (bag(M) + boy o(M))  for p+q=n,

where b; (M) denote the Betti numbers of M. Consider the twist bundle V = Sym™ *H®TM®
(it is here that the assumption n > 2 is needed). The Clebsch-Gordan decomposition yields
V=(Sym" 'H®E) @ (Sym" *H®E) .

The bundle XM ®V is globally defined for all quaternionic dimensions n and we can therefore
compute the index ind(Dy) of the corresponding twisted Dirac operator by using (1). We
thus obtain

(2) ind(DSym"’QHQ@TMC) = ind(DSymn’lHQaE)+ind(DSymn’3H®E) = —(ba(M) +bo(M)) .

A key fact, cf. [19, Corollary 4.3], is that bo(M) = 0 for all compact quaternion-Kéahler
manifold M of positive type other than the complex Grassmannians Gry(C"2), whereas
bo(M) = 1 if M = Gry(C™*?), which, as already observed, has a natural complex structure.
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We now assume that M is different from Gry(C"*?), so that by(M) = 0. The above index
calculation then reads

(3) ind(Dgypn—2ngrimc) = —1.

Assume, for a contradiction, that M carries an almost complex structure. Then the tangent
bundle TM is a complex vector bundle and its complexification splits into the sum of two
complex sub-bundles TM® = 0 @ 6*. For the components of the Chern character we have
chy(6*) = (—1)ich;(). On the other hand, ch(Sym" 2H) and A(TM) have non-zero com-
ponents only in degree 4k. Indeed, A(TM ) is a polynomial in the Pontryagin classes of M
and Sym™ 2H is a self-dual locally defined complex bundle. The Atiyah-Singer formula for
twisted Dirac operators (cf. [3]) then yields

ind(Dgypn-—2pgrare) =ch(Sym"™ 2H)ch(TM)A(TM)[M]
=2 ch(Sym"™ 2H)ch(0)A(TM)[M] .
Notice that ch(Sym" 2H) is well-defined in H*(M, Q), even if n is odd.

Now, ch(Sym™ 2H)ch(A)A(TM)[M] is the index of the twisted Dirac operator Dgymn—2ng0
on the (globally defined) bundle XM ® Sym™ ?H ® # and thus has to be an integer. This
implies that that ind(Dgy,»—2pgraec) is even, hence contradicts (3).

(4)

If the manifold is assumed to be weakly complex then there exists a trivial real vector
bundle € such that TM @ ¢ is a complex vector bundle. By replacing V = Sym™ *H ® TMC®
with V = Sym" ?H ® (TM @ ¢)® in the above argument, this remains unchanged, as the
extra term

ind(DSym”_2H®€C) = I‘k(é?) ind(DSym”_QH)

in (2) is zero, again because of (1). This completes the proof of Theorem 1.1.

3. PROOF OF THEOREM 1.2

We first establish a general formula, of separate interest, for the index of a family of
homogeneous twisted Dirac operators defined on inner symmetric spaces.

Let M = G/K be an irreducible inner symmetric space of compact type, where G denotes
a (connected) compact simple Lie group and K a connected closed subgroup of G. Notice
that the condition implies that M is even-dimensional. We fix a common maximal torus
T C K C G and we endow the dual Lie algebra t* with a suitable positive definite scalar
product (-,-), proportional to the one induced by the opposite of the Killing form of G. We
denote by p* and p® the half-sum of the positive roots of K and G respectively.

The isotropy representation X — SO(m) induces a group homomorphism K — Spin(m)
and thus a representation of K on the spin modules ¥, where K stands for K itself or a
two-fold covering of K. Let V,, be a complex representation of K with highest weight w et
We assume that the induced representation of K on V,, ® XE descends to a representation of
K. We then denote by EfM =G xg (V, ®X%) the corresponding twisted spin bundles and

by Dy, the twisted Dirac operator acting on sections of EffM =G xg (V,®3%).
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Theorem 3.1. Let w € Wy be a Weyl group element for which w(p+ p*) — p? is g-dominant.
Then the index of the twisted Dirac operator Dy, : C®(XFM) — C(X, M) is given by the
formula

(5) ind(Dy,) = [ YE20 i,

a€R+ <pg7 a)

where the product goes over all positive roots of G. If such a w does not exist the index is
zero.

Proof. The generalized Bott-Borel-Weil theorem (cf. [17], Theorem 4.5.1) states that the
kernel of Dy, is an irreducible G-representation of highest weight w(u + p*) — p?, where
w is as in the assumption of the theorem. Note that w is unique as soon as it exists. If
such a w does not exist, the kernel is zero. It follows that the index of Dy, is given as
(—1)!) dim Vi (g pm)—pss OF zero if such a w does not exist (cf. [17], Corollary 4.5.2). Here
[(w) is the length of the Weyl group element w, defined as the number of positive roots «
such that w(«) is a negative root. It is also the smallest integer k& for which w can be written
as the product of k reflections in simple roots. Thus the length of w is the same as the length
of w™! = w?. The Weyl dimension formula implies

©) A (Vaguagerp) = [] CEEEY _ TT 40 )t T G o)

aeR+ <pg’ a> aeR+ a€RT

If we replace in the set {w'(a)| @ € R} the I(w) roots which are mapped by w' to negative
roots by their negative, we obtain again the set R™ of positive roots. Hence

1T e+ w' (@) = (=" ] (n+ 0" ).

aeRt aeRT

Substituting this into formula (6) and using ind(Dy,) = (—1)"™) dim V,,(u4p%)—ps completes
the proof of the theorem. O

The following criterion, extracted from the proof of Theorem 1.1 in Section 2, provides a
general obstruction for the tangent bundle of a compact manifold to being weakly complex.

Proposition 3.2. Let (M*, g) be a compact Riemannian manifold carrying a locally defined
complex vector bundle E such that the following conditions hold:

(a) E is self-dual, i.e. E is isomorphic to its dual bundle E*.
(b) E®XM is globally defined, where XM denotes the (locally defined) spin bundle of M.
(¢) The index of the twisted Dirac operator Dggrye s odd.

Then the tangent bundle of M is not weakly complex and in particular M cannot carry an
almost complex structure.

Proof. The Atiyah-Singer index formula for twisted Dirac operators (cf. [3]) reads

~

(7) ind(Dy) = ch(V)A(TM)[M]
for every complex bundle V' such that V ® XM is globally defined.
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Assume that TM is weakly complex, i.e. there exists a trivial real vector bundle ¢ (of even
rank) such that TM @ ¢ is a complex vector bundle. Then its complexification splits into the
sum of two complex bundles (TM @ ¢)¢ = 0 @ 6*.

Since A(TM ) is a polynomial in the Pontryagin classes of M, it has non-zero components
only in degree 4k. Condition (a) shows that the Chern character ch(£) has the same property.
Moreover, the components of the Chern characters of 6 and 6* satisfy ch;(0*) = (—1)ch;(9).
Applying (7) to V=FE®60 and V = F ® 6* yields

~ ~

(8) ind(Dggg) = ch(E)ch(0)A(TM)[M] = ch(E)ch(0*)A(TM)[M] = ind(Dgge- ).
Using this equation, the condition that rk(e) is even and assumption (b), we infer
ind(Dggrye) = ind(Dpgruc) +1k(e)ind(Dg)  mod 2
= ind(Dpgrmeeesy) mod 2
ind(Dggg) + ind(Dgge«)  mod 2
= 2ind(Dggg) =0 mod 2,

contradicting (c¢). This proves the proposition. O

Remark 3.3. Notice that in dimension 4n + 2, there exists no local bundle E satisfying
conditions (a)—(c). Indeed, if E is self-dual, the Chern character of F ® TMC® has non-zero
components only in degree 4k. Formula (7) applied to V = E ® TM® then shows that the
index of the twisted Dirac operator D ggryc vanishes.

We now check that the criterion given by Proposition 3.2 applies to all 4n-dimensional
(simply connected) irreducible inner symmetric spaces of compact type, using as main tool
the formula (5) in Theorem 3.1. We focus on those cases which were not fully covered by
previous works, namely the oriented real Grassmannians Gry,(R* %) with either p or ¢ even
(of dimension 2pq), the exceptional inner symmetric space Eg/(Spin(16)/Zs) (of dimension
128), and the Cayley projective plane Fy/Spin(9) (of dimension 16). The quaternionic Grass-
mannians can be handled with quite similar methods.

3.1. The oriented real Grassmannians GVI"QP(RQP*"]).

3.1.1. Case I: ¢ = 2¢ is even. Since for p =1 or ¢ = 1 the Grassmannian of oriented 2-planes
is a Hermitian symmetric space, we assume p,q¢" > 2. The symmetric space M = G/K :=
SO(2p + 2¢")/SO(2p) x SO(2¢") is spin (cf. [14]). Let H and H' denote the tautological
bundles over M, associated to the standard representations of SO(2p) x SO(2¢’) on R?* and
R2¢" respectively. It is well-known that TM is isomorphic to H @ H’ (cf. [4], p. 312).

The root system of G consists of the vectors +e; +e;, 1 <i < j < p+¢. We choose as

fundamental Weyl chamber the one containing the vector f:f/ (p+ ¢ — i)e;. The positive

roots are then e; £ej, 1 <i < j <p+ ¢, and their half-sum is

p+q’

pg = Z(p+ q/ — Z)BZ

i=1
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The root system of K is the direct sum of the root systems of SO(2p) and SO(2¢’) and thus

p”zz —Zez—i—z J)ept-

=1

Let E be the complex vector bundle over M associated to the complex representation of K
with highest weight

9) (¢ —1) Zez —2)ept1-

In other words, E is the Cartan component in the tensor product of the (¢’ — 1)-th symmetric
power of APH® and the (p — 2)-th symmetric power of (H’)®. It clearly satisfies (a) and (b)
in Proposition 3.2, and we claim that it also satisfies (c).

To see this, we need to compute the decomposition in irreducible summands of £ ® TMC.
This is given by the following standard facts:

Lemma 3.4. The tensor product of the complex irreducible Spin(2r) representations with
highest weights ey and k(e1+...+e,.) is the direct sum of representations with highest weights
(k+1)eg +k(ea+...+e.) and k(e; + ...+ e,_1) + (k= 1e,.

The tensor product of the complex irreducible Spin(2r) representations with highest weights
e1 and key is the direct sum of representations with highest weights (k + 1)eq, ke + es and

(k — ].)61.

Proof. The statements of the lemma follow from a routine decomposition of tensor products.
However, in this special case, where one of the factors is the standard representation of
Spin(2r), the decomposition can directly be read off the table given in [26] p. 511. 0

The complexified bundles H® and (H')® are associated to the irreducible SO(2p) x SO(2¢')
representations with highest weights e; and e,;;. (This is where the hypothesis p,¢" > 2
is used: The complexification of the standard representation of SO(2) on R? is reducible!)
Lemma 3.4 shows that £ ® TM® is associated to the direct sum of representations with
highest weights

p p—1
pm=qder+ (¢ 1) Z eit+ (p—1)epr, pe = (q'—1) Z eit+ (¢ —2)ep+ (p—1)eps1,
i—2 i=1
p p—1
ps=qer+(q=1)> et (p—2epritepa, s =(q=1)> _ eit(q =2)e,+(p—2)epr1+epra,
=2 =1
14 p—1
ps=der+ (¢ —1)) et (p—3)epi, pe = (g = 1)) e+ (d —2ep+ (p—3)epin.
i—2 i=1

It is clear that the coordinates of u; + p* are a permutation of the coordinates of p9, so
i(u1) = £1. Moreover, i(u;) = 0 for 2 < i < 6 since p; + p* has two equal coordinates in each
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case. By Theorem 3.1, condition (c) in Proposition 3.2 is satisfied, hence the tangent bundle
of M is not weakly complex.

3.1.2. Case II: p = 2p’ is even. We can assume that ¢ is odd since the case where ¢ is even
is included in the previous one. The manifold M = SO(2p + ¢)/SO(2p) x SO(q) is not spin
(cf. [14]). Nevertheless, the tensor product of the (locally defined) spin bundle of M and
any odd tensor power of the locally defined spin bundle of H is globally defined. For ¢ > 3
we take E as the locally defined complex vector bundle over M associated to the complex
representation of Spin(2p) x Spin(g) with highest weight

p
(10) p=E-1D> ei+(p—2epn

i=1
(incidentally this is exactly the same formula as (9)). Like before, Theorem 3.1 shows that
the index of the Dirac operator twisted with £ @ TMC is +1. Moreover, E is self-dual,
being associated to the Cartan component of the tensor product of self-dual representations:
The complexification of the standard representation of SO(q) and the spin representation of
Spin(4p). Proposition 3.2 thus shows that M is not weakly complex.

The argument does not apply for ¢ = 1 since p is no longer a highest weight in that case.
This is of course compatible with the fact that the sphere S?? = SO(2p+1)/SO(2p) is weakly
complex, having stably trivial tangent bundle.

Remark 3.5. The above construction can also be carried out verbatim on the remaining even-
dimensional oriented real Grassmannians Gra,(R?*9), when p and ¢ are both odd, by choosing
for F the locally defined complex vector bundle associated to the complex representation of
Spin(2p) x Spin(q) with highest weight given by (10). In other words, E is the Cartan
component in the tensor product of the (¢ — 2)-th symmetric power of the spin representation
33, and the (p — 2)-th symmetric power of (H')®. The same argument shows that the index
of the corresponding twisted Dirac operator is £1. However, the bundle E is no longer self-
dual if p and ¢ are both odd, since the spin representation of Z;; — and thus its (¢ — 2)-th
symmetric power — is not self-dual in this case.

3.2. The exceptional symmetric space M = Eg/(Spin(16)/Zy). The group Z, acting on
Spin(16) is generated by the volume element v :=e; ... e;5 € Spin(16) (cf. [1]). The positive
half-spin representation factors through v and induces a representation of Spin(16)/Z, on 7,
whose associated bundle is just TM®. Since v maps to —id € SO(16), the representation of
Spin(16) on R'® defined by the spin covering & : Spin(16) — SO(16) induces a locally defined
real vector bundle H on M. Of course, all even tensor products of H are globally defined
vector bundles on M. Moreover, the manifold M is spin (cf. [14]). Conditions (a) and (b)
in Proposition 3.2 are thus satisfied for £ = Sym2*HC, i.e. the Cartan summand of the
2k-th tensor power of H, associated to the representation of Spin(16) with highest weight
(2%,0,0,0,0,0,0,0) € t* ~ RE.

We will use Theorem 3.1 in order to compute the index of the Dirac operator on M twisted
with TM® ® Symng €. Since TMC is associated to the positive half-spin representation,
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whose highest weight is %(1, 1,1,1,1,1,1,1), we need to decompose Sym3*H® @ ¥y into
irreducible components.

Lemma 3.6. Sylrngk]-[(C ® Xy is the direct sum of the Spin(16)-representations with highest
weights %(41{: +1,1,1,1,1,1,1,1) and %(4k -1,1,1,1,1,1,1,-1).

Proof. Again the decomposition follows from a standard calculation, where in this case the
result can also be found in [21], p. 303. O

The root system R(Eg) is the disjoint union of the root system of Spin(16) and the weights
of the half-spin representation ¥{;. It thus consists of the vectors +e; +e;, 1 <i < j < 8 and

8

1

52&]‘6@', Ei::lzl, 81"'88:1.
=1

With respect to the fundamental Weyl chamber containing the vector (23,6,5,4,3,2,1,0),
the set of positive roots of Spin(16) is R*(Spin(16)) = {e; £ e; | 1 <i < j <8}, and the set
of positive roots of Eg is

8
R+(E8) = R+(Sp1n(16)) U {% ZEiei | &1 = 1, g — :i:l, E1 €8 = 1}

i=1
The half-sums of the positive roots of K = Spin(16)/Zy and G = Eg are thus given by
o= (7,6,5,4,3,2,1,0) and p° = (23,6,5,4,3,2,1,0).

It is clear that u; + p® is orthogonal to the root a = %(1,—1,—1,—1,—1,—1,—1,1) for
[y = %(33, 1,1,1,1,1,1,1), so the integer i(x) defined by (5) vanishes for p = uy. Moreover,
an elementary computation shows that i(us) = —1 for s = %(31,17 1,1,1,1,1,—1). By
Lemma 3.6, the tensor product TMC @ Sym ® H® is associated to the direct sum of Spin(16)-
representations with highest weights p; and py. Theorem 3.1 thus shows that condition (c)
in Proposition 3.2 is satisfied for £ = Sym{° H®, hence the tangent bundle of M is not weakly
complex. Notice that the index of the Dirac operator twisted with TM® ® SymgH € vanishes
for every k£ < 16, by Lemma 3.6 and Theorem 3.1 again.

3.3. The Cayley projective plane M = F,/Spin(9). The complexified tangent bundle
TMC is associated to the spin representation on Xy ~ C' (cf. [4], p. 302). Let H denote
the real bundle associated to the representation of Spin(9) on R? defined by the spin covering
Spin(9) — SO(9), with highest weight (1,0,0,0) € t* ~ R, Tt is well-known that the Cayley
projective plane is spin (cf. [14]). Conditions (a) and (b) in Proposition 3.2 are thus satisfied
for E = HC.

We will use Theorem 3.1 again in order to compute the index of the Dirac operator on M

3
twisted with TM® ® HC. Recall that X9 ® C? ~ 3¢ @ %3¢, the two summands having highest
weights 1(1,1,1,1) and 1(3,1,1,1) respectively.
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The root system R(F,) is the disjoint union of the root system of Spin(9) and the weights
of the spin representation Xg. It thus consists of the vectors e; e, 1 <1 < j < 4, +e,,

1 <i<4 and
1 4
5261'6@', E; — +1.
i=1

With respect to the fundamental Weyl chamber containing the vector (11,5, 3,1), the set of
positive roots of Spin(9) is R*(Spin(9)) ={e; e; |1 <i<j <4} U{e; | 1 <i <4}, and
the set of positive roots of Fy is

4
) 1
R*(F4) = R*(Spin(9)) U {5 izlaiei ler=1, & = :I:l}.

The half-sums of the positive roots of K = Spin(9) and G = F, are thus given by
p"=3(7,5,3,1) and p®=3(11,5,3,1).

It is clear that %(1, 1,1,1) + p* is orthogonal to the root o = %(1, —1,—1,1) so the integer

i(11) defined by (5) vanishes for g = $(1,1,1,1). An easy elementary computation shows that
i(p) = —1 for p:=1(3,1,1,1). Theorem 3.1 thus shows that condition (c) in Proposition 3.2
is satisfied for £ = H®, hence the tangent bundle of M is not weakly complex.

Remark 3.7. A similar argument shows that the remaining exceptional symmetric space
M = E7/(SU(8)/Z5) (which is spin [14] and of dimension 70) also carries a complex vector
bundle F satisfying conditions (b) and (c) in Proposition 3.2. More precisely, E is the
10-th symmetric power of the locally defined bundle H on M associated to the standard
representation of SU(8) (like in Section 3.2, Theorem 3.1 shows that the index of the twisted
Dirac operator vanishes for every lower even symmetric power Sym?**H, 0 < k < 4). Of
course, F is not self-dual, cf. Remark 3.3.
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