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Abstract. Twistor forms are a natural generalization of conformal vector fields on
Riemannian manifolds. They are defined as sections in the kernel of a conformally
invariant first order differential operator. We study twistor forms on compact Kähler
manifolds and give a complete description up to special forms in the middle dimension.
In particular, we show that they are closely related to Hamiltonian 2-forms. This
provides the first examples of compact Kähler manifolds with non–parallel twistor
forms in any even degree.
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1. Introduction

Killing vector fields are important objects in Riemannian geometry. They are by
definition infinitesimal isometries, i.e. their flow preserves a given metric. The existence
of Killing vector fields determines the degree of symmetry of the manifold. Slightly
more generally one can consider conformal vector fields, i.e. vector fields whose flows
preserve a conformal class of metrics. The covariant derivative of a vector field can be
seen as a section of the tensor product Λ1M ⊗TM which is isomorphic to Λ1M ⊗Λ1M .
This tensor product decomposes under the action of O(n) as

Λ1M ⊗ Λ1M ∼= R⊕ Λ2M ⊕ S2
0M,

where S2
0M is the space of trace–free symmetric 2–tensors, identified with the Cartan

product of the two copies of Λ1M . A vector field X is a conformal vector field if and
only if the projection on S2

0M of ∇X vanishes.

More generally, the tensor product Λ1M⊗ΛpM decomposes under the action of O(n)
as

Λ1M ⊗ ΛpM ∼= Λp−1M ⊕ Λp+1M ⊕ T p,1M,
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where again T p,1M denotes the Cartan product. As natural generalizations of conformal
vector fields, twistor p-forms are defined to be p–forms ψ such that the projection of
∇ψ onto T p,1M vanishes.

Coclosed twistor p–forms are called Killing forms. For p = 1 they are dual to Killing
vector fields. Note that parallel forms are trivial examples of twistor forms.

Killing forms, as generalization of Killing vector fields, were introduced by K. Yano
in [20]. Twistor forms were introduced later on by S. Tachibana [18], for the case of
2–forms, and by T. Kashiwada [13], [17] in the general case.

The composition of the covariant derivative and the projection Λ1M⊗ΛpM → T p,1M
defines a first order differential operator T , which was already studied in the context of
Stein–Weiss operators (c.f. [10]). As forms in the kernel of T , twistor forms are very
similar to twistor spinors in spin geometry, which were first studied in [1]. We will give
an explicit construction relating these two objects in Section 2.

The special interest for twistor forms in the physics literature stems from the fact
that they can be used to define quadratic first integrals of the geodesic equation, i.e.
functions which are constant along geodesics. Hence, they can be used to integrate the
equation of motion, which was done for the first time by R. Penrose and M. Walker in
[14]. More recently Killing forms and twistor forms have been successfully applied to
define symmetries of field equations (c.f. [7], [8]).

Despite this longstanding interest in Killing forms, there are only very few global
results on the existence or non–existence of twistor forms on Riemannian manifolds. The
first result for twistor forms on compact Kähler manifolds was obtained in [19], where it
is proved that any Killing form has to be parallel. Some years later S. Yamaguchi et al.
stated in [12] that, with a few exceptions for small degrees and in small dimensions, any
twistor form on a compact Kähler manifold has to be parallel. Nevertheless, it turns
out that their proof contains several serious gaps.

In fact, we will show that there are examples of compact Kähler manifolds having
non–parallel twistor forms in any even degree.

For the convenience of the reader, we outline here the main results of the paper, as
well as the remaining open questions.

If ψ is a twistor p–form on a compact Kähler manifold (M2m, ω) with 2 ≤ p ≤
n − 2 and p 6= m, then it turns out that ψ is completely determined (modulo parallel
forms) by a special 2–form and its generalized trace (Theorem 4.5). Special 2–forms are
closely related to Hamiltonian 2–forms, recently introduced and studied in [3] and [4].
Hamiltonian forms arise for example on weakly Bochner–flat Kähler manifolds and on
Kähler manifolds which are conformally Einstein.

If p = m, the orthogonal projection of ψ onto the kernel of J on m–forms can still be
characterized (up to parallel forms) by special 2–forms, but the complete classification
of non–parallel twistor forms can only be obtained up to the hypothetical existence of
special m–forms of type (m−1, 1)+(1,m−1). At this moment we have no examples of
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such forms for m > 2, and moreover we were able to show that they are automatically
parallel on compact Kähler–Einstein manifolds.

For m > 2, each special 2–form ϕ with generalized trace f (defined by df = δcϕ)
determines an affine line {ϕx = ϕ + xfω} in the space of 2–forms, which contains
distinguished elements : ϕx is Hamiltonian for x = 1

m2−1 , closed for x = 1
m+1

, coclosed

for x = −1 and a twistor form for x = − m−2
2(m2−1) .

For m = 2, the picture is slightly different since the generalized trace of a special 2–
form (and thus the affine line above) are no longer defined. The results are as follows :
every twistor 2–form is (up to parallel forms) primitive and of type (1, 1) (i.e. anti–self–
dual), and defines a special 2–form. This special 2–form induces a Hamiltonian 2–form
if and only if its codifferential is a Killing vector field. Conversely, a Hamiltonian 2–form
always defines the affine line above, and in particular its primitive part is simultaneously
a special 2–form and a twistor form. Thus, special 2–forms are, in some sense, less
restrictive than Hamiltonian 2–forms on Kähler surfaces.

2. Twistor forms on Riemannian manifolds

Let (V, 〈·, ·〉) be an n–dimensional Euclidean vector space. The tensor product V ∗ ⊗
ΛpV ∗ has the following O(n)–invariant decomposition:

V ∗ ⊗ ΛpV ∗ ∼= Λp−1V ∗ ⊕ Λp+1V ∗ ⊕ T p,1 V ∗

where T p,1 V ∗ is the intersection of the kernels of wedge and inner product maps, which
can be identified with the Cartan product of V ∗ and ΛpV ∗. This decomposition imme-
diately translates to Riemannian manifolds (Mn, g), where we have

T ∗M ⊗ ΛpT ∗M ∼= Λp−1T ∗M ⊕ Λp+1T ∗M ⊕ T p,1 T ∗M (1)

with T p,1 T ∗M denoting the vector bundle corresponding to the vector space T p,1 . The
covariant derivative ∇ψ of a p–form ψ is a section of T ∗M ⊗ ΛpT ∗M . Its projections
onto the summands Λp+1T ∗M and Λp−1T ∗M are just the differential dψ and the
codifferential δψ. Its projection onto the third summand T p,1 T ∗M defines a natural
first order differential operator T , called the twistor operator. The twistor operator
T : Γ(ΛpT ∗M) → Γ(T p,1 T ∗M) ⊂ Γ(T ∗M ⊗ΛpT ∗M) is given for any vector field X by
the following formula

[Tψ ] (X) := [prT p,1 (∇ψ)] (X) = ∇X ψ − 1
p+1

X y dψ + 1
n−p+1

X ∧ δψ .

Note that here, and in the remaining part of this article, we identify vectors and 1–forms
using the metric.

The twistor operator T is a typical example of a so–called Stein–Weiss operator and it
was in this context already considered by T. Branson in [10]. Its definition is also similar
to the definition of the twistor operator in spin geometry. The tensor product between
the spinor bundle and the cotangent bundle decomposes under the action of the spinor
group into the sum of the spinor bundle and the kernel of the Clifford multiplication. The
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(spinorial) twistor operator is then defined as the projection of the covariant derivative
of a spinor onto the kernel of the Clifford multiplication.

Definition 2.1. A p–form ψ is called a twistor p–form if and only if ψ is in the kernel
of T , i.e. if and only if ψ satisfies

∇X ψ = 1
p+1

X y dψ − 1
n−p+1

X ∧ δψ , (2)

for all vector fields X. If the p–form ψ is in addition coclosed, it is called a Killing
p–form. This is equivalent to ∇ψ ∈ Γ(Λp+1T ∗M) or to X y ∇Xψ = 0 for any vector
field X.

It follows directly from the definition that the Hodge star operator ∗ maps twistor
p–forms into twistor (n − p)–forms. In particular, it interchanges closed and coclosed
twistor forms.

In the physics literature, equation (2) defining a twistor form is often called the
Killing–Yano equation. The terminology conformal Killing forms to denote twistor
forms is also used. Our motivation for using the name twistor form is not only the
similarity of its definition to that of twistor spinors in spin geometry, but also the
existence of a direct relation between these objects. We recall that a twistor spinor on a
Riemannian spin manifold is a section ψ of the spinor bundle lying in the kernel of the
(spinorial) twistor operator. Equivalently, ψ satisfies for all vector fields X the equation
∇Xψ = − 1

n
X · Dψ, where D denotes the Dirac operator. Given two such twistor

spinors, ψ1 and ψ2, we can introduce k–forms ωk, which on tangent vectors X1, . . . , Xk

are defined as
ωk(X1, . . . , Xk) := 〈(X1 ∧ . . . ∧Xk) · ψ1, ψ2〉 .

It is well–known that for k = 1 the form ω1 is dual to a conformal vector field. Moreover,
if ψ1 and ψ2 are Killing spinors the form ω1 is dual to a Killing vector field. More
generally we have

Proposition 2.2. (cf. [15]) Let (Mn, g) be a Riemannian spin manifold with twistor
spinors ψ1 and ψ2. Then for any k the associated k–form ωk is a twistor form.

We will now give an important integrability condition which characterizes twistor
forms on compact manifolds. A similar characterization was obtained in [13]. We first
obtain two Weitzenböck formulas by differentiating the equation defining the twistor
operator.

∇∗∇ψ = 1
p+1

δd ψ + 1
n−p+1

dδ ψ + T ∗T ψ , (3)

q(R)ψ = p
p+1

δd ψ + n−p
n−p+1

dδ ψ − T ∗T ψ , (4)

where q(R) is the curvature expression appearing in the classical Weitzenböck formula
for the Laplacian on p–forms: ∆ = δd + dδ = ∇∗∇ + q(R). It is the symmetric
endomorphism of the bundle of differential forms defined by

q(R) =
∑

ej ∧ ei y Rei,ej , (5)
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where {ei} is any local orthonormal frame and Rei,ej denotes the curvature of the form
bundle. On forms of degree one and two one has an explicit expression for the action of
q(R), e.g. if ξ is any 1–form, then q(R) ξ = Ric(ξ). In fact it is possible to define q(R)
in a more general context. For this we first rewrite equation (5) as

q(R) =
∑
i<j

(ej ∧ ei y − ei ∧ ej y )Rei,ej =
∑
i<j

(ei ∧ ej) •R(ei ∧ ej)•

where the Riemannian curvature R is considered as element of Sym2(Λ2TpM) and •
denotes the standard representation of the Lie algebra so(TpM) ∼= Λ2TpM on the space
of p–forms. Note that we can replace ei∧ ej by any orthonormal basis of so(TpM). Let
(M, g) be a Riemannian manifold with holonomy group Hol. Then the curvature tensor
takes values in the Lie algebra hol of the holonomy group, i.e. we can write q(R) as

q(R) =
∑

ωi •R(ωi)• ∈ Sym2(hol)

where {ωi} is any orthonormal basis of hol and • denotes form representation restricted
to the holonomy group. Writing the bundle endomorphism q(R) in this way has two
immediate consequences: we see that q(R) preserves any parallel subbundle of the form
bundle and it is clear that by the same definition q(R) gives rise to a symmetric endo-
morphism on any associated vector bundle defined via a representation of the holonomy
group.

Integrating the second Weitzenböck formula (4) yields the following integrability con-
dition for twistor forms.

Proposition 2.3. Let (Mn, g) be a compact Riemannian manifold. Then a p–form ψ
is a twistor p–form, if and only if

q(R)ψ = p
p+1

δd ψ + n−p
n−p+1

dδ ψ . (6)

For coclosed forms, Proposition 2.3 is a generalization of the well–known characteri-
zation of Killing vector fields on compact manifolds, as divergence free vector fields in
the kernel of ∆− 2 Ric. In the general case, it can be reformulated as

Corollary 2.4. Let (Mn, g) a compact Riemannian manifold with a coclosed p–form
ψ. Then ψ is a Killing form if and only if

∆ψ =
p+ 1

p
q(R)ψ .

One has similar characterizations for closed twistor forms and for twistor m–forms on
2m–dimensional manifolds.

An important property of the equation defining twistor forms is its conformal invari-
ance (c.f. [8]). We note that the same is true for the twistor equation in spin geometry.
The precise formulation for twistor forms is the following. Let ψ be a twistor form on

a Riemannian manifold (M, g). Then ψ̂ := e(p+1)λψ is a twistor p–form with respect to
the conformally equivalent metric ĝ := e2λg. Parallel forms are obviously in the kernel
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of the twistor operator, hence they are twistor forms. Using the conformal invariance

we see that for any parallel form ψ, also the form ψ̂ := e(p+1)λ ψ is a twistor p–form

with respect to the conformally equivalent metric ĝ := e2λg. The form ψ̂ is in general
not parallel.

The first non trivial examples of twistor forms were found on the standard sphere.
Here it is easy to show that any twistor p–form is a linear combination of eigenforms for
the minimal eigenvalue of the Laplace operator on closed resp. coclosed p–forms. It is
shown in [15] that the number of linearly independent twistor forms on a connected Rie-
mannian manifold is bounded from above by the corresponding number on the standard
sphere. Other examples exist on Sasakian, nearly Kähler and on weak G2–manifolds.
In some sense they are all related to the existence of Killing spinors. Up to now these
are more or less all known global examples of twistor forms.

In section 3 we will see that there are many new examples on compact Kähler mani-
folds. The examples include the complex projective space and Hirzebruch surfaces.

3. Twistor forms on Kähler manifolds

In this section we will consider twistor forms on a compact Kähler manifold (M, g, J)
of dimension n = 2m. The case of forms in the middle dimension, i.e. forms of degree
m, is somewhat special and will be treated in the next section.

On a complex manifold the differential splits as d = ∂ + ∂̄. Moreover, one has the
following real differential operator

dc = i (∂̄ − ∂) =
∑

Jei ∧∇ei ,

where {ei} is a local orthonormal frame. The formal adjoints of d and dc are denoted
by δ and δc. If ω is the Kähler form then Λ denotes the contraction with ω and L
the wedge product with ω. Another important operator acting on forms is the natural
extension of the complex structure J on p–forms, defined as follows :

Ju :=
∑

J(ei) ∧ ei y u ∀u ∈ ΛpM.

Notice that this is the Lie algebra extension of J acting as derivative, rather than the
group extension of J acting as automorphism. In particular, J acts on (p, q)–forms by
scalar multiplication with i(q − p).

These operators satisfy the following fundamental commutator relations

dc = − [ δ, L ] = − [ d, J ] , δc = [ d, Λ ] = − [ δ, J ] ,

d = [ δc, L ] = [ dc, J ] , δ = − [ dc, Λ ] = [ δc, J ] .
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In addition, the following commutators resp. anti–commutators vanish

0 = [ d, L ] = [ dc, L ] = [ δ, Λ ] = [ δc, Λ ] = [ Λ, J ] = [ J, ∗ ] ,

0 = δdc + dcδ = ddc + dcd = δδc + δcδ = dδc + δcd .

Using these relations we are now able to derive several consequences of the twistor
equation on Kähler manifolds. We start by computing δcu for a twistor p–form u.

δcu = −
∑

Jei y ∇ei u = −
∑

Jei y ( 1
p+1

ei y du − 1
n−p+1

ei ∧ δu)

= − 2
p+1

Λ(du) + 1
n−p+1

J(δu)

= − 2
p+1

dΛ(u) + 2
p+1

δc u + 1
n−p+1

J(δu)

= − 2
p−1 dΛ(u) + p+1

(p−1)(n−p+1)
J(δu) . (7)

¿From this we immediately obtain

δc d u = − d δc u = − p+1
(p−1)(n−p+1)

(J(dδu) + dcδ u) , (8)

δδc u = − δcδu = − 2(n−p+1)
(n−p)(p+1)

Λ(δdu) . (9)

A similar calculation for the operator dc leads to

dc u = −
∑

ei ∧∇Jei u = −
∑

ei ∧ ( 1
p+1

Jei y du − 1
n−p+1

Jei ∧ δu)

= 1
p+1

J(du) + 2
n−p+1

L(δu) = 1
p+1

J(du) + 2
n−p+1

δ(Lu) + 2
n−p+1

dcu

= n−p+1
(p+1)(n−p−1) J(du) + 2

n−p+1
δ(Lu) . (10)

We apply this to conclude

δdc u = n−p+1
(p+1)(n−p−1) ( Jδdu − δcdu ) . (11)

As a first step we will prove that for a twistor p–form u the form ΛJ(u) has to be
parallel. Here we can assume p 6= 2, since otherwise there is nothing to show. It will
be convenient to introduce for a moment the following notation

x := JΛ(dδu), a := dδ(JΛu), α := δcd(Λu),

y := JΛ(δdu), b := δd(JΛu), β := δdc(Λu) .
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Using the various commutator rules we will derive several equations relating the
quantities x, y, a, b, α and β. We start with

x = JΛ(dδu) = J(dδΛu − δcδu)

= dδ(JΛu) + dδc(Λu) + dcδ(Λu) − Jδcδu

= a − α − β − 2(n−p+1)
(n−p)(p+1)

y ,

where we also used equation (9) to replace the summand Jδcδu. Similarly we have

y = JΛ(δdu) = J(δd(Λu) − δδcu)

= δd(JΛu) + δdc(Λu) + δcd(Λu) − Jδδcu

= b + β + α + 2(n−p+1)
(n−p)(p+1)

y .

Adding the two equations for x resp. y, we obtain that x + y = a + b, i.e. we can
express x and y in terms of a, b, α and β as

y = ε1 (b + α + β), ε1 = (n−p)(p+1)
(n−p)(p+1)−2(n−p+1)

, (12)

x = a + b − y = a + (1 − ε1) b − ε1 (α + β) . (13)

Note that ε1 is well defined since the denominator may vanish only in the case (n, p) =
(4, 2), which we already excluded. Next, we contract equation (8) with the Kähler form
to obtain an equation for α.

α = δcd(Λu) = Λ(δcdu)

= − p+1
(p−1)(n−p+1)

(ΛJ(dδu) + Λ(dcδ u))

= − p+1
(p−1)(n−p+1)

(x − β) .

Contracting equation (11) with the Kähler form we obtain a similar expression for β.

β = δdc(Λu) = Λ(δdcu)

= n−p+1
(p+1)(n−p−1) ( ΛJδdu − Λ(δcdu) )

= n−p+1
(p+1)(n−p−1) (y − α) .

Replacing x and y in the equations for α resp. β leads to

a + (1 − ε1) b − ε1 (α + β) = ε2 β + α, ε2 = (p−1)(n−p+1)
p+1

ε1 (b + α + β) = ε3 β + α ε3 = (p+1)(n−p−1)
n−p+1

.
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Finally we obtain two equations only involving a, b, α and β,

a + (1 − ε1) b = (ε1 − ε2)α + (ε1 − 1) β (14)

ε1 b = (1 − ε1)α + (ε3 − ε1) β . (15)

Considering equation (15) we note that b and β are in the image of δ, whereas α is in
the image of d. Hence, since the coefficient (1− ε1) is obviously different from one, we
can conclude that α has to vanish. Moreover, we have the equation ε1b = (ε3 − ε1)β.
Applying the same argument in equation (14) we obtain that a has to vanish and that
(1 − ε1)b = (ε1 − 1)β. Combining the two equations for b and β we see that also
these expressions have to vanish. Taking the scalar product of a and b with JΛu and
integrating over M yields that JΛu has to be closed and coclosed, hence harmonic.

Proposition 3.1. Let (M, g, J) be a compact Kähler manifold. Then for any twistor
form u the form ΛJu is parallel.

Proof. Let u be a twistor p–form. We have already shown that JΛu is harmonic, i.e.
∆(JΛu) = 0. Since ∆ = ∇∗∇ + q(R), the proof of the proposition would follow from
q(R)(JΛu) = 0. For a twistor form u we have the Weitzenböck formula (4) and the
argument in Section 2 shows that the curvature endomorphism q(R) commutes with Λ
and J . Hence, we obtain

q(R)(JΛu) = p
p+1

y + n−p
n−p+1

x ,

with the notation above. Since a, b, α and β vanish, equations (12) and (13) show
that x, y vanish too. Hence, q(R)(JΛu) = 0 and the Weitzenböck formula for ∆ and
integration over M prove that JΛu has to be parallel. �

In the case where the degree of the twistor form is different from the complex dimen-
sion, this proposition has an important corollary.

Corollary 3.2. Let (M, g, J) be a compact Kähler manifold of complex dimension m.
Then for any twistor p–form u, with p 6= m, Ju is parallel.

Proof. We first note that the Hodge star operator ∗ commutes with the complex struc-
ture J and with the covariant derivative. Moreover, it interchanges L and Λ. If u is
a twistor p–form, then ∗u is a twistor form, too, and by Proposition 3.1, ΛJ ∗ u is
parallel. Hence, also ∗ΛJ ∗u is parallel. But ∗ΛJ ∗u = ±LJu and it follows that LJu
is parallel. Since the contraction with the Kähler form commutes with the covariant
derivative we conclude that ΛLJu is parallel as well. Thus (m−p)Ju = ΛLJu−LΛJu
is parallel. �

In the remaining part of this section we will investigate twistor forms u for which
Ju is parallel. The results below are thus valid for all twistor p–forms with p 6= m, but
also for twistor m–forms annihilated by J , a fact used in the next section.
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Proposition 3.3. Let (M, g, J) be a compact Kähler manifold of dimension n = 2m.
Then any twistor p–form u for which Ju is parallel satisfies the equations

δcu = µ1 dΛu, dcu = µ2 δLu, δu = −µ1 d
cΛu, du = −µ2 δ

cLu ,

with constants µ1 := − 2(n−p+1)
(p−1)(n−p)−2 and µ2 := 2(p+1)

p(n−p−1)−2 .

Note that this proposition is also valid for forms in the middle dimension.

Proof. The formula for δcu follows from equation (7) after interchanging J and δ and
using the assumption that Ju is parallel. Because of Jδ = δJ + δc we obtain

δcu (1− p+1
(p−1)(n−p+1)

) = − 2
p−1 dΛ(u) + p+1

(p−1)(n−p+1)
δ(Ju) = − 2

p−1 dΛ(u) .

Since JΛu is also parallel, the formula for δu follows by applying J to the above
equation. Similarly we obtain the expression for dcu by using equation (10) and the
relation Jd = dJ + dc. This yields

dcu (1− n−p+1
(p+1)(n−p−1)) = n−p+1

(p+1)(n−p−1) d(Ju) + 2
n−p−1 δ(Lu) = 2

n−p−1 δ(Lu) .

Applying J to this equation yields the formula for du . �

As a first application of Proposition 3.3 we will show that the forms du and δu are
eigenvectors of the operator ΛL.

Lemma 3.4. Let u be a twistor p–form with Ju parallel. Then du and δu satisfy
the equations

ΛL(du) = 1
4

(n− p− 2) (p+ 2) du , ΛL(δu) = 1
4

(n− p) p δu .

Proof. ¿From Proposition 3.3 we have the equation du = −µ2 δ
cLu = −µ2Lδ

cu− µ2u.
This implies

(1 + µ2) du = −µ2L(δcu) = −µ1 µ2 LdΛu = −µ1 µ2 dLΛu

= −µ1 µ2 d(ΛLu − (m− p)u)

= −µ1 µ2 (δcLu + ΛLdu − (m− p) du)

= µ1 du − µ1 µ2 ΛL(du) + µ1 µ2 (m− p) du .
Collecting the terms with du we obtain

ΛL(du) = − 1+µ2−µ1−µ1µ2(m−p)
µ1µ2

du

where m denotes the complex dimension. Substituting the values for µ1 and µ2 given
in Proposition 3.3, the formula for ΛL(du) follows after a straightforward calculation.

Similarly we could prove the formula for ΛL(δu) by starting from the equation dcu =
µ2 δLu. Nevertheless it is easier to note that ∗u is again a twistor form (of degree n−p).
Hence, 4ΛL(d ∗ u) = (p− 2)(n− p+ 2)d ∗ u and we have

(p−2)(n−p+2) ∗d∗u = 4∗ΛL(d∗u) = 4LΛ∗d∗u = 4 ΛL∗d∗u − 4 (m−p+1)∗d∗u .
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Hence,

4 ΛL(δu) = [(p− 2)(n− p+ 2) + 4 (m− p+ 1)] δu = (n− p) p δu .

�

In order to use the property that du resp. δu are eigenvectors of ΛL we still need
the following elementary lemma.

Lemma 3.5. Let (M2m, g, J) be a Kähler manifold and let α be a p–form on M , then

[ Λ, Ls ]α = s (m− p− s+ 1)Ls−1α .

Moreover, if α is a primitive p–form, i.e. if Λ(α) = 0, then α satisfies in addition the
equation

Λr Ls α = s!(m−p−s+r)!
(s−r)!(m−p−s)! L

s−rα ,

where r, s are any integers.

Proof. In the case r = 1 we prove the formula for the commutator of Λ and L by
induction with respect to s. For s = 1 it is just the well–known commutator relation
for Λ and L. Assume now that we know the formula for s− 1, then

[ Λ, Ls ]α = ( Λ ◦ Ls − Ls ◦ Λ )α = Λ ◦ Ls−1 (Lα) − Ls−1 (L ◦ Λ)α

= Ls−1 ◦ Λ (Lα) + (s− 1) (m− (p+ 1)− (s− 1) + 1)Ls−2 (Lα)

− Ls−1 ◦ Λ (Lα) + (m− p)Ls−1α

= ((s− 1)(m− p− s) + (m− p))Ls−1α

= s (m− p− s+ 1)Ls−1α .

The formula for ΛrLs in the case r > 1 then follows by applying the commutator
relation several times. �

4. Twistor forms versus Hamiltonian 2–forms

On a Kähler manifold, any p–form u with p ≤ m has a unique decomposition,
u = u0 +Lu1 + . . .+Llul, where the ui’s are primitive forms. This is usually called the
LePage decomposition of u. From now on we suppose that p ≤ m, otherwise we just
replace u by its Hodge dual ∗u. Applying ΛL and using the Lemma 3.5 in the case
r = 1 we obtain

ΛL(u) = (m− p)u0 + 2 (m− p+ 1)Λu1 + . . . + (l + 1) (m− p+ l)Llul .

It is easy to see that coefficients in the above sum are all different. Indeed, (s+ 1)(m−
p+s) = (r+1)(m−p+r) if and only if (s−r)(m−p+1+s+r) = 0, and recall that we
assumed that p ≤ m. Hence, a p–form u with p ≤ m is an eigenvector of ΛL if and
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only u = Liα, for some primitive form α and in that case the corresponding eigenvalue
is (i+ 1)(m− p+ i).

Lemma 3.4 thus implies that du = Lsv and δu = Lrw for some primitive forms v
and w, and moreover (2m− p− 2)(p+ 2) = 4(s+ 1)(m− p+ s− 1) and p(2m− p) =
4(r+ 1)(m−p+ r+ 1), which have the unique solutions 2s = p and 2r = p−2. Hence,
denoting p = 2k, we have

du = Lkv δu = Lk−1w

for some vectors v and w. Moreover, we see that the LePage decomposition of u has
the form u = u0 + . . .+ Lkuk, where uk has to be a function.

Lemma 4.1. Let u be a 2k–form with Ju parallel and such that du = Lkv and δu =
Lk−1w, for some vectors v and w. Then

w = k(2m−2k+1)
2k+1

Jv·

Proof. Applying J to the equation du = Lkv leads to dcu = Jdu = Lk(Jv). Thus,
contracting with the Kähler form yields

Λ(dcu) = dcΛu + δu = ΛLk(Jv) = k (m− k)Lk−1(Jv) .

¿From Proposition 3.3 we have the equation δu = −µ1d
cΛu. Hence,

δu = (1 − 1
µ1

)−1k(m− k)Lk−1(Jv) ,

which proves the lemma after substituting the value of µ1. �

In the next step we will show that in the LePage decomposition of u only the last
two terms, i.e. Lk−1uk−1 and Lkuk, may be non–parallel. Indeed we have

∇Xu = ∇Xu0 + L(∇Xu1) + . . . + Lk(∇Xuk)

= 1
p+1

X y Lkv − 1
n−p+1

X ∧ Lk−1w

= Lk−1 ( k
p+1

JX ∧ v − 1
n−p+1

X ∧ w) + Lk( 1
p+1
〈x, v〉)

= Lk−1 ω1 + Lkω2 ,

for some primitive forms ω1, ω2. Hence, comparing the first line with the last, implies
that the components u0, u1, . . . , uk−2 have to be parallel. But then we can without loss
of generality assume that they are zero, i.e. for a twistor p–form u, with Ju parallel,
we have

u = Lk−1uk−1 + Lkuk

where uk−1 is a primitive 2–form and uk is a function, i.e. p = 2k.

Our next aim is to translate the twistor equation for u into equations for uk−1 resp.
uk. This leads naturally to the following definition, which we will need for the rest of
this paper.
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Definition 4.2. A special 2–form on a Kähler manifold M is a primitive 2–form ϕ of
type (1, 1) satisfying the equation

∇X ϕ = γ ∧ JX − Jγ ∧X − 2
m
γ(X)ω , (16)

for some 1–form γ, which then necessarily equals m
2(m2−1)δ

cϕ.

Recall that a 2–form u is of type (1,1) if and only if Ju = 0. As a first property of
such special forms we obtain

Lemma 4.3. If ϕ is a special 2–form on a compact Kähler manifold M of dimension
m > 2, then δcϕ is exact.

Proof. Taking the wedge product with X in (16) and summing over an orthonormal
basis yields dϕ = 2m−1

m
Lγ = 1

m+1
Lδcϕ. It follows that Ldδcϕ = 0 and, since L is

injective on 2–forms, we conclude that δcϕ is closed. Hence, δcϕ = h + df for some
function f and a harmonic 1–form h. We have to show that h vanishes. First, note
that h is in the kernel of dc and δc since the manifold is Kähler. Computing its
L2–norm we obtain

(h, h) = (h, h+ df) = (h, δcϕ) = (dch, ϕ) = 0 .

�

Definition 4.4. The function f given by the lemma above will be called the generalized
trace of the special 2–form ϕ. It is only defined up to a constant.

We can now state the main result of this section

Theorem 4.5. Let u be a form of degree p on a compact Kähler manifold M2m and
suppose that n − 2 ≥ p ≥ 2 and p 6= m. Then u is a twistor form if and only if there
exists a special 2–form ϕ whose generalized trace is f and a positive integer k such that
p = 2k and

u = Lk−1ϕ − m−p
p(m2−1)L

kf + parallel form.

The same statement is valid for p = m under the additional assumption that Ju is
parallel.

Proof. Consider first the case p ≤ m. Using the notations from Lemma 4.1, the twistor
equation for u reads

∇Xuk−1 + L∇Xuk = k
p+1

JX ∧ v − 1
n−p+1

X ∧ w. (17)

An equality between 2–forms is equivalent with the equality of their primitive parts and
that of their traces with respect to the Kähler form. The equality of the primitive parts
in (17) is equivalent to

∇Xuk−1 = ( k
p+1

JX ∧ v − 1
n−p+1

X ∧ w) − 1
m

Λ ( k
p+1

JX ∧ v − 1
n−p+1

X ∧ w)ω ,
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where ω is the Kähler form. Now, Λ(JX ∧ v) = −〈v,X〉 and Λ(X ∧w)− 〈Jw,X〉 so
we obtain

∇Xuk−1 = k
p+1

JX ∧ v − 1
n−p+1

X ∧ w + 1
m

( k
p+1
〈v,X〉 − 1

n−p+1
〈Jw,X〉)ω

= k
p+1

JX ∧ v − 1
n−p+1

k(n−p+1)
p+1

X ∧ Jv + ( k
m(p+1)

− 1
m(n−p+1)

k(n−p+1)
p+1

) 〈v,X〉ω

= k
p+1

JX ∧ v − k
p+1

X ∧ Jv + 2k
m(p+1)

〈v,X〉ω

= γ ∧ JX − Jγ ∧X − 2
m
γ(X)ω ,

where γ is the 1–form defined by γ(X) = − k
p+1
〈v,X〉. Contracting with JX shows

that γ = m
2(m2−1)δ

cuk−1, so v = (p+1)m
p(m2−1)δ

cuk−1.

The second part of (17) consists in the equality of the traces, which is equivalent to

X(uk) = − p
m(p+1)

〈v,X〉 + 1
p+1
〈v,X〉 = m−p

m(p+1)
X y v ,

i.e.

duk = m−p
m(p+1)

v = − m−p
p(m2−1)δ

cuk−1.

We have shown that u is a twistor form if and only if uk−1 is a special form and uk is
− m−p
p(m2−1) times its generalized trace.

A priori, this only proves the theorem for p ≤ m, but because of the invariance of
the hypothesis and conclusion of the theorem with respect to the Hodge duality, the
theorem is proved in full generality. �

Specializing the above result for k = 1 yields the following characterization of twistor
2–forms also obtained in [4]. Note that the result that we obtain is more complete than
that of [4] since we do not assume the fact that the 2–form u is a (1, 1)–form.

Lemma 4.6. Let (M2m, g, J, ω) be a Kähler manifold. Then a 2–form u is a twistor
form if and only if there exists a 1–form γ with

∇X u = γ ∧ JX − Jγ ∧X − γ(X)ω . (18)

The 1–form γ is necessarily equal to γ = 1
2m−1 Jδu. Moreover, γ = − 1

m−2 d 〈u, ω〉
provided that m > 2.

Proof. First of all we can rewrite equation (18) as ∇Xu = −X y (γ ∧ ω) + X ∧ Jγ.
Contracting (resp. taking the wedge product) in (18) with X and summing over an
orthonormal frame {ei} we obtain

Jγ = − 1
2m−1 δu and γ ∧ ω = − 1

3
du .

Substituting this back into (18) yields the defining equation for a twistor 2–form, i.e.:

∇X u = 1
3
X y du − 1

2m−1 X ∧ δu .
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Conversely, Theorem 4.5 shows that u = u0 + Lf , where

∇X u0 = (γ ∧ JX − Jγ ∧X) − 2
m
γ(X)ω ,

and df = − m−2
2(m2−1)δ

cu0 = − (m−2)
m

γ, so clearly u satisfies (18). �

This characterization of twistor 2–forms in particular implies that for m > 2 special
forms are just the primitive parts of twistor 2–forms and vice versa. In the remain-
ing part of this section we will describe a similar relation between twistor forms and
Hamiltonian 2–forms. Using the results of [4] we can thus produce many examples of
non–parallel twistor forms.

Definition 4.7. A (1, 1)–form ψ is called Hamiltonian if there is a function σ such
that

∇Xψ = 1
2

(dσ ∧ JX − Jdσ ∧X)

for any vector field X. When m = 2 one has to require in addition that Jgrad(σ) is a
Killing vector field.

It follows immediately from the definition that dσ = d〈ψ, ω〉. Hence, one could
without loss of generality replace σ with 〈ψ, ω〉.

Any special 2–form ϕ with generalized trace f defines an affine line ϕ + Rfω in the
space of 2–forms modulo constant multiples of the Kähler form. Lemma 4.6 shows
that this line contains a twistor 2–form and it is not difficult to see that it contains a
unique closed form and also an unique coclosed form. Indeed, for some real number x,
d(ϕ+xfω) = 0 is equivalent to − 1

m+1
Lδcϕ+xLdf = 0, i.e. x = 1

m+1
, and δ(ϕ+xfω) = 0

is equivalent to δϕ = xdcf = xJdf = xJδcϕ = −xδϕ, i.e. x = −1. The following
proposition shows that this affine line also contains a Hamiltonian 2–form.

Proposition 4.8. Let (M2m, g, J, ω) be a Kähler manifold with a Hamiltonian 2–form

ψ. Then u := ψ − 〈ψ,ω〉
2

ω is a twistor 2–form. Conversely, if u is a twistor 2–form

and m > 2, then ψ := u− 〈u,ω〉
m−2 ω is a Hamiltonian 2–form.

Proof. Let ψ be a Hamiltonian 2–form and let u be defined as u := ψ − 〈ψ,ω〉
2

ω, then

∇X u = ∇X ψ − 1
2
d〈ψ, ω〉(X)ω

= 1
2

(dσ ∧ JX − Jdσ ∧X) − 1
2
dσ(X)ω .

Thus, the (1, 1)–form u satisfies the equation (18) of Lemma 4.6 with, γ := 1
2
dσ, and

it follows that u is a twistor 2–form. Conversely, starting from a twistor 2–form u and

defining ψ := u− 〈u,ω〉
m−2 ω, we can use the characterization of Lemma 4.6 to obtain

∇Xψ = γ ∧ JX − Jγ ∧X .

Since for m > 2 we have γ = − 1
m−2d〈u, ω〉 = 1

2
d〈ψ, ω〉, which implies that ψ has to

be a Hamiltonian 2–form. �
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The situation is somewhat different in dimension 4. If ψ is a Hamiltonian 2–form

then u = ψ − 〈ψ,ω〉
2
ω = u0 is an anti–self–dual twistor 2–form (or equivalently, of type

(1, 1) and primitive). Conversely, if we start with an anti–self–dual twistor 2–form u0
and ask for which functions f is the (1, 1)–form ψ := u0 + fω a Hamiltonian 2–form
we have

Lemma 4.9. Let (M4, g, J) be a Kähler manifold with an anti–self–dual twistor 2–
form u0. Then ψ := u0 + fω is Hamiltonian 2–form if and only if

δu0 = − 3 Jdf (19)

and δu0 is dual to a Killing vector field. In particular, this is the case on simply
connected Einstein manifolds.

Proof. Since f = 〈ψ,ω〉
2

we conclude from the definition that ψ is a Hamiltonian 2–
form if and only if ∇Xψ = df ∧ JX − Jdf ∧ X for any vector field X. On the other
hand u0 is assumed to be a twistor (1, 1)–form. Hence, from Lemma 4.6 u0 satisfies
∇X u0 = −X y (γ ∧ ω)− Jγ ∧X, where γ = 1

3
Jδu0. This implies that ψ = u0 + fω is

a Hamiltonian 2–form if and only if

−X y (γ ∧ ω)− Jγ ∧X = df ∧ JX − Jdf ∧X − df(X)ω = −X y (df ∧ ω)− Jdf ∧X.

This is the case if and only if γ = df , or equivalently if δu0 = − 3 Jdf . If the complex
dimension is 2, the definition of Hamiltonian 2–forms made the additional requirement
that Jdσ, which here is proportional to δu0, is dual to a Killing vector field. Hence,
it remains to show that on simply connected Einstein manifolds the equation (19) has
a solution such that δu0 is dual to a Killing vector field. Let X be any Killing vector
field on an arbitrary Kähler manifold, then

0 = LX ω = dX y ω + X y dω = d J X ,

i.e. the 1–form JX is closed. Hence, since the manifold is simply connected, there
exists some function f with JX = df and also X = −Jdf . Finally, it is easy to see
that on Einstein manifolds, for any twistor 2–form u0, the 2–form δu0 is dual to a
Killing vector field (cf. [15]). �

Hamiltonian 2–forms have the following remarkable property (c.f. [4]). If ψ is Hamil-
tonian, and if σ1, . . . , σm are the elementary symmetric functions in the eigenvalues of
ψ with respect to the Kähler form ω, then all vector fields Kj = Jgrad(σj) are Killing.
Furthermore, the Poisson brackets {σi, σj} vanish, which implies that the Killing vec-
tor fields K1, . . . , Km commute. If the Killing vector fields are linearly independent,
then the Kähler metric is toric. But even if they are not linearly independent one has
further interesting properties, which eventually lead to a complete local classification
of Kähler manifolds with Hamiltonian 2–forms in [4]. The most important sources of
Kähler manifolds with Hamiltonian 2–forms are weakly Bochner–flat Kähler manifolds
and (in dimension greater than four) Kähler manifolds which are conformally–Einstein.
A Kähler manifold is weakly Bochner–flat if its Bochner tensor is coclosed, which is the
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case if and only if the normalized Ricci form is a Hamiltonian 2–form. The examples
include some Hirzebruch surfaces and the complex projective spaces.

5. The middle dimension

In this section we study twistor forms of degree m on compact Kähler manifolds of
real dimension n = 2m. This case is very special thanks to the following

Lemma 5.1. Let ΛmM = L1 ⊕ . . . ⊕ Lr be a decomposition of the bundle of m–forms
in parallel subbundles and u = u1 + . . . + ur be the corresponding decomposition of an
arbitrary m–form u. Then u is a twistor form if and only if ui is a twistor form for
every i.

Proof. In the case of m–forms on 2m-dimensional manifolds Proposition 2.3 provides
a characterization of twistor forms similar to that of Killing forms. A m–form u is a
twistor form if and only if

∆u =
m+ 1

m
q(R)u (20)

Given a decomposition of the form bundle ΛmM into parallel subbundles we know that
the Laplace operator ∆ as well as the symmetric endomorphism q(R) preserve this
decomposition. Hence, equation (20) can be projected onto the summands, i.e. (20)
is satisfied for u = u1 + . . . + ur if and only it is satisfied for all summands ui, which
proves the lemma. �

In Section 3 we defined special 2–forms, which turned out to be the main build-
ing block for twistor p–forms with p 6= m. In dealing with twistor m–forms on 2m–
dimensional Kähler manifolds we have to introduce the following

Definition 5.2. A special m–form on a 2m–dimensional Kähler manifold is a m–form
ψ of type (1,m− 1) + (m− 1, 1) satisfying for all vector fields X the equation

∇X ψ = X ∧ Jτ − (m− 1) JX ∧ τ − (m− 1) (X y τ) ∧ ω , (21)

for some 1–form τ , which then necessarily equals 1
m2−1δ

cψ.

Note that for m = 2, we retrieve the definition of special 2–forms on 4–dimensional
manifolds (Definition 4.2).

Proposition 5.3. Let u be a m–form on a compact Kähler manifold M2m. Then u is
a twistor form if and only if m = 2k and there exists a special 2–form φ and a special
m–form ψ such that

u = Lk−1 φ + ψ + parallel form.

Proof. Lemma 5.1 shows that we can assume u = Lkuk for some primitive form uk.
Suppose k ≥ 1, then it follows from Proposition 3.1 that JΛu = JΛLkuk = 0. Thus
Lemma 3.5 implies JLk−1uk = 0. Since Lk−1 is injective on Λm−2k, we get Juk = 0 and
eventually Ju = 0. For twistor forms annihilated by J , the conclusion of Theorem 4.5
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also holds in the case p = m. Hence, u = Lk−1φ + parallel form, where φ is a special
2–form.

It remains to treat the case k = 0, i.e. the case where u is a primitive m–form.
Contracting the twistor equation with the Kähler form yields

X y δcu + JX y δu = 0 (22)

for all vector fields X. After wedging with X and JX and summing over an orthonormal
basis, this gives

J δ u = (m− 1) δc u and J δcu = − (m− 1) δ u . (23)

Now, ∗u is again a twistor m–form and the above argument shows that we can suppose
∗u to be primitive. (Otherwise, ∗u = Lk−1φ + parallel form, for a special 2–form φ,
which in particular is self–dual, i.e. u = Lk−1φ+ parallel form). Applying the Hodge
star operator to Λ(∗u) = 0 immediately implies Lu = 0. This shows that du = −Lδcu,
so the twistor equation becomes

∇X u =
1

m+ 1
(−X y L δc u − X ∧ δ u ) (24)

=
1

m+ 1
(− JX ∧ δcu − L (X y δcu) +

1

m− 1
X ∧ Jδcu ) ,

which is just the defining equation (21) of a special m–form with τ = 1
m2−1δ

cu. Ac-
cording to our definition of special m–forms, we still have to show that (up to parallel
forms) u is of type (m − 1, 1) + (1,m − 1). Equivalently we will show this for ∇Xu,
where X is any vector field. Recall that u is of type (m− 1, 1) + (1,m− 1) if and only
if J2u = −(m − 2)2u. We will compute J2(∇Xu) using the twistor equation. Equa-
tion (23) implies that δu is of type (m− 1, 0) + (0,m− 1), i.e J2(δu) = −(m− 1)2δu.
Moreover, using (22) and (23) we obtain

J2(X ∧ δu) = (−1− (m− 1)2)X ∧ δu + 2 JX ∧ Jδu

= (−1− (m− 1)2)X ∧ δu + 2 (m− 1) JX ∧ δcu
and similarly

J2(X y Lδcu) = (−1− (m− 1)2)X y Lδcu + 2 JX y JLδcu

= (−1− (m− 1)2)X y Lδcu − 2 (m− 1) JX y Lδu

= −(m− 2)2X y Lδcu + 2 (m− 1)X ∧ δu − 2(m− 1) JX ∧ δcu .
Adding these two equations implies J2(∇Xu) = −(m− 2)2∇Xu after using the twistor
equation as written in (24). �

As an application of Proposition 5.3 we see that any twistor 2–form on a 4–dimensional
Kähler manifold has to be of type (1, 1) and primitive, i.e. any twistor 2–form has to
be a special 2–form. In this case we know from Lemma 4.9 that any Hamiltonian 2–
form gives rise to a twistor 2–form and vice versa, under some additional conditions.
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This clarifies the situation of twistor 2–forms in dimension 4 and shows in particular
that one can exhibit many examples. Moreover, one can show that any special m–form
(m ≥ 3) on a Kähler-Einstein manifold has to be parallel. Nevertheless for the moment
it remains unclear whether these forms have to be parallel in general.

6. Twistor forms on the complex projective space

In this section we describe the the construction of twistor forms on the complex
projective space (c.f. [4]). Let M = CPm be equipped with the Fubini-Study metric
and the corresponding Kähler form ω. Then the Riemannian curvature is given as

RX,YZ = − (X ∧ Y + JX ∧ JY )Z − 2ω(X, Y ) JZ

for any vector fields X, Y, Z. This implies for the Ricci curvature Ric = 2(m + 1)id.
Let K be any Killing vector field on CPm. Then there exists a function f with
∆f = 4(m+1)f and K = Jgrad(f), i.e. f is an eigenfunction of the Laplace operator
for the first non–zero eigenvalue. Now, consider the 2–form φ := dK = dJdf = ddc(f).
Since K is a Killing vector field it follows:

∇X φ = ∇X(dK) = 2∇X(∇K) = 2∇2
X, ·K = − 2R(K, X)

= − 2 (df ∧ JX − Jdf ∧X) − 4 df(X)ω .

It is clear that φ is a (1, 1)–form and an eigenform of the Laplace operator for the
minimal eigenvalue 4(m + 1). A small modification of φ yields a twistor 2–form.

Indeed, defining φ̂ := φ+ 6fω one obtains

∇X φ̂ = − 2 (df ∧ JX − Jdf ∧X) + 2 df(X)ω .

Using Lemma 4.6 for γ := −2 df one concludes that φ̂ is a twistor 2–form. It is not
difficult to show that indeed any twistor (1, 1)–form on CPm has to arise in this way.
Summarizing the construction one has

Proposition 6.1 ([4]). Let K = Jgrad(f) be any Killing vector field on the complex
projective space CPm then

φ̂ := ddc(f) + 6 f ω = (ddc(f))0 + 2m−4
m

f ω

defines a non–parallel twistor (1, 1)–form. Moreover, in dimension 4, φ̂ is a primitive

(1,1)–form, i.e. φ̂ = (ddc(f))0.

There are examples of twistor 2–forms on 4–dimensional manifolds which do not come
from Hamiltonian 2–forms [2]. The complete local classification of Hamiltonian 2–forms
was obtained in [3] for m = 2 and in [4] in the general case. The same references contain
examples of compact Kähler manifolds with non–parallel Hamiltonian 2–forms.
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