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Abstract. In this note, we consider the Dirac operator D on a Riemannian symmetric space M of

noncompact type. Using representation theory, we show that D has point spectrum iff the Â-genus

of its compact dual does not vanish. In this case, if M is irreducible then M = U(p, q)/U(p) × U(q)

with p+ q odd, and Spec
p
(D) = {0}.

0. Introduction

We investigate the existence of point spectrum of the Dirac operator D acting on spinors over a
Riemannian symmetric space M = G/K of noncompact type. Following Seifarth’s approach in [S],
we look at those discrete series representations of G that appear in L2(S), where S is the spinor
bundle over M . We find that the existence of point spectrum of D is equivalent to a regularity
condition for the half sum ρk of positive roots of K, which in turn is equivalent to the nonvanishing
of the Â-genus of the compact dual M ′ of M . Using the classification of compact symmetric spaces,
we finally determine all noncompact symmetric spaces on which the Dirac operator D has point
spectrum. We summarize our results:

0.1. Theorem. Let M be a Riemannian symmetric space of noncompact type, and let D be the

Dirac operator acting on spinors over M . Then the following statements are equivalent:

(1) the point spectrum of D is nonempty;

(2) the point spectrum of D is precisely Specp(D) = {0}; moreover, as a G-module, ker(D)
is irreducible and isomorphic to the discrete series representation with Harish-Chandra

parameter ρk;
(3) the Â-genus of the compact dual of M is nonzero;

(4) each irreducible factor of M is isometric to U(p, q)/U(p) ×U(q), with p+ q odd.

Our present note is motivated by the work of several authors on the spectra of Dirac operators
on noncompact Riemannian symmetric spaces. Using the Plancherel theorem, Bunke computed
the whole spectrum of the untwisted Dirac operator D on the real hyperbolic spaces in [Bu] (note
the incorrect statement concerning the eigenvalue 0). Seifarth showed the nonexistence of point
spectrum on the real and quaternion hyperbolic spaces in [S] (the treatment of the complex hyper-
bolic space is incomplete). Another computation of the spectrum of D on RHn by Camporesi and
Higuchi uses polar coordinates and separation of variables ([CH]). Using a similar approach, Baier
proved in [Ba] that the Dirac operator on CHn has no eigenvalue λ with |λ| ≥ n−1

4
. Let us also

mention the results of Galina and Vargas on the eigenvalues of twisted Dirac operators: In [GV],
they compute the spectrum of Dirac operators on RHn and CHn, twisted with a homogeneous
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vector bundle. They consider only the case where the inducing K-representation has a sufficiently
nonsingular highest weight.

The rest of this paper is organized as follows: In chapter 1, we recall the relation between
point spectrum of homogeneous selfadjoint elliptic operators on M = G/K and discrete series
representations of G. In chapter 2, we show that the existence of point spectrum of D on M is
equivalent to the nonvanishing of the Â-genus on the compact dual of M . Finally, in chapter 3, we
classify the compact symmetric spaces M ′ with Â(M ′)[M ′] 6= 0.

This work was written while the second named author enjoyed the hospitality and support of
the IHES (Bures-sur-Yvette). The first named author would like to thank the Université de Paris-
Sud (Orsay) for its hospitality. We are grateful to C. Bär, J.-M. Bismut and W. Müller for helpful
discussions. We wish to thank M. Olbrich for carefully reading the manuscript, pointing out a few
inaccuracies, and suggesting an alternative proof of Corollary 2.12.

1. The Point Spectrum and the Discrete Series

Let M = G/K be a Riemannian symmetric space of noncompact type. Here, G is a noncompact
connected semisimple Lie group, andK is a maximal compact subgroup. We fix aG-invariant metric
on M . Then M is a Hadamard manifold, i.e. the Riemannian exponential map exp:TpM → M is a
diffeomorphism at each point p of M . In particular, M is contractible, and thus possesses a unique
spin structure.

Let g = k⊕p be the Cartan decomposition of g, where k is the Lie algebra of K. A homogeneous
spin structure can be described by a lift α̃ of the adjoint representation α:K → SO(p) to Spin(p).
We can assume the existence of such a lift (if necessary, we replace G and K by suitable double
covers). The (complex) spin representation (ρ, S) of Spin(p) gives rise to a K-representation (σ, S),
with σ := ρ ◦ α̃. The spinor bundle is then isomorphic to the homogeneous vector bundle

(1.1) S := G×σ S

induced by σ. The Levi-Civita connection on M induces a connection on S.
Let Γc(S) be the space of compactly supported smooth sections of S, and let L2(S) be its Hilbert

space completion. The Dirac operator acts on Γc(S) as the composition of covariant derivative and
Clifford multiplication. Since M = G/K is a complete manifold, the Dirac operator is essentially
selfadjoint (cf. [W]). Hence, its minimal and maximal closed extension coincide. LetD be the unique
selfadjoint extension to a closed operator. It commutes with the natural action of G on L2(S). More
generally, one can consider Dirac operators on L2(S ⊗W), where W is a homogeneous Hermitian
vector bundle over M which is equipped with an equivariant unitary connection.

Because D is selfadjoint, its spectrum consists only of point spectrum and continuous spectrum.
Moreover, it is completely contained in R. The point spectrum Specp(D), i.e. the set of eigenvalues,
is defined as

Specp(D) :=
{

λ ∈ C
∣

∣ ker(D − λ) 6= {0}
}

.

If λ is an eigenvalue of D, the dimension of the eigenspace ker(D−λ) is called the multiplicity of λ.
Clearly, G acts on the eigenspaces of D. It turns out that the eigenspaces are direct sums of

irreducible G-representations belonging to the discrete series:

1.2. Definition. An irreducible representation (π,H) of G is called a discrete series representation

iff the matrix coefficients g 7→ 〈π(g)v,w〉 for all v, w ∈ H are square integrable on G with respect

to the Haar measure. Let Ĝd be the set of equivalence classes of discrete series representations.

The main tool of our investigation of Specp(D) is the following
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1.3. Theorem (cf. [AS], [CM]). Let D be a homogeneous selfadjoint elliptic differential operator

on E := G ×ε E for some K-representation (ε,E). Then the direct sum of all eigenspaces of D is

isomorphic to
⊕

π∈Ĝd

π ⊗HomK

(

π|K , ε
)

.

In particular, a discrete series representation π of G is isomorphic to a subrepresentation of L2(E)

iff π|K has an irreducible K-subrepresentation in common with ε. In this case, we say that π ∈ Ĝd

contributes to Specp(D).

Proof of Theorem 1.3. SinceD is a G-invariant elliptic differential operator, we can apply a theorem
of Connes and Moscovici ([CM], Theorem 6.1). It follows that each eigenspace of D is isomorphic
to a finite sum of discrete series representations of G.

On the other hand, by the Plancherel Theorem and Frobenius reciprocity (cf. [AS], chapter 2),
we have

HomG

(

π,L2(E)
)

∼= HomK

(

π|K , ε
)

for each discrete series representation π. Moreover, D is G-invariant and HomK(π|K , ε) is finite
dimensional by results of Harish-Chandra (Theorem 8.1 in [K]). Hence, it is easy to check that

π ⊗HomG

(

π,L2(E)
)

⊂ L2(E)

decomposes as a finite sum of D-eigenspaces. �

Each eigenvalue has infinite multiplicity, since all nontrivial unitary representations of a non-
compact connected semisimple Lie group are infinite dimensional. Moreover, if D has nonempty
point spectrum then G has discrete series representations. Due to a theorem of Harish-Chandra
(cf. [K], Theorem 12.20, [AS], Proposition 6.11), this is the case iff rk(G) = rk(K). Hence, we have
the following

1.4. Remark. On a noncompact symmetric space G/K with rk(G) > rk(K), the point spectrum of
the Dirac operator D is empty.

2. Minimal K-Types and Point Spectrum

In this chapter, we recall a few facts from the theory of discrete series representations of G. We
will show that at most one irreducible subrepresentation of σ can occur as a K-type of a discrete
series representation of G. This happens iff the half sum ρk of positive roots of K is g-regular.
Using this, we prove the equivalence of statements (1) – (3) of Theorem 0.1. We remark that our
arguments in this chapter are also valid for nonirreducible symmetric spaces.

a) Discrete Series Representations and their K-Types. By Remark 1.4, we may and will
assume from now on that rk(G) = rk(K). Then we fix a common maximal torus H ⊂ K ⊂ G with
Lie algebra h and weight lattice

Γ :=
{

γ ∈ ih∗
∣

∣ γ(X) ∈ 2πiZ for all X ∈ h with eX = e
}

.

Let ∆g = ∆k∪∆p be the root system of G with respect to h, decomposed into the root system of K
and the set of noncompact roots. Choose systems of positive roots ∆+

g ⊃ ∆+
k , and let Pg ⊂ Pk ⊂ ih∗

be the Weyl chambers associated to ∆+
g and ∆+

k . Let Wg, Wk be the Weyl groups of G and K,
and set

W ′ := {w ∈ Wg | w(Pg) ⊂ Pk } .
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Let ρg and ρk be the half sums of positive roots of G and K.
We fix an Ad∗K-invariant scalar product on k∗. We call a weight λ ∈ ih∗ g-regular if 〈λ, γ〉 6= 0 for

all γ ∈ ∆g, and g-singular otherwise. If 〈λ, γ〉 6= 0 holds only for γ ∈ ∆k, then λ is called k-regular.

Clearly, g-regularity implies k-regularity. An element κ ∈ ih∗ is called k-algebraically integral iff

2
〈α, κ〉

〈α,α〉
∈ Z

for all α ∈ ∆+
k . Note that all weights of K, i.e. all elements of Γ, are automatically k-algebraically

integral. Note also that ρk and ρg are k-algebraically integral (for ρk this is well known, for ρg
it follows because ρg is g-algebraically integral). Furthermore, ρk uniquely minimizes |κ| among
all k-algebraically integral k-regular elements κ of Pk (for semisimple K, this is well known, in the
general case it follows because the center of K is orthogonal to its semisimple part).

Let us now turn to some facts about the discrete series of G, in particular about the possible
K-types.

2.1. Definition. Let π ∈ Ĝd be a discrete series representation of G, and let ϕκ be an irreducible
representation of K with highest weight κ ∈ Γ∩Pk. Then κ is called a K-type of π, if π|K contains
an irreducible subrepresentation isomorphic to ϕκ. The dimension of HomK(π, ϕκ) is called the
multiplicity of κ.

If κ minimizes |κ+ 2 ρk| among all K-types, then κ is called a minimal K-type of π.

Our argumentation is based upon the following fundamental result of Harish-Chandra:

2.2. Theorem ([AS], Theorems 8.1 and 8.5, [K], Theorems 9.20 and 12.21). The discrete series

representations of G are parametrized by λ ∈ Pk with λ ∈ w(Pg) for some w ∈ W ′ such that λ is

regular and λ − wρg ∈ Γ. For such a λ, the discrete series representation πλ corresponding to λ
has a unique minimal K-type

κ := λ+ wρg − 2 ρk ,

which occurs with multiplicity 1. Finally, each K-type κ′ of πλ is of the form

(2.3) κ′ := κ +
∑

α∈∆g

〈wρg,α〉>0

nα α

where the nα are nonnegative integers.

In the literature, λ is called the Harish-Chandra parameter for πλ, while κ is called the Blattner
parameter.

b) The Dirac Operator on Spinors. Let S = G ×σ S be the spinor bundle on M as in (1.1).
Since we assume that rk(G) = rk(K), the symmetric space M is even dimensional. In particular,
the spinor representation and the spinor bundle split into a positive and a negative part:

S = S+ ⊕ S− , and S = S+ ⊕ S− .

The K-action on S+ and S− is described by a formula of Parthasarathy:

2.4. Lemma ([P], Lemma 2.2). For w ∈ W ′, let σwρg−ρk be the K-representation with highest

weight wρg − ρk ∈ Pk. Then for a suitable orientation of M , σ decomposes as

σ = σ+ ⊕ σ− :=
⊕

w∈W ′

sign(w)=1

σwρg−ρk ⊕
⊕

w∈W ′

sign(w)=−1

σwρg−ρk .
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2.5. Remark. This implies in particular that ρk − wρg ∈ Γ, because we have assumed that σ is a
representation of K. Note that w ∈ Wg may be arbitrary, because different Wg-translates differ by
linear combinations of roots of G, which are clearly in Γ.

2.6. Remark. We recall that the operator D splits as

D± := D|Γ(S±): Γ(S
±) → Γ(S∓) .

If Eµ is an eigenspace corresponding to an eigenvalue µ of D, then Eµ splits into E+
µ ⊕ E−

µ ,

with E±
µ := Eµ ∩ Γ(S±). If moreover, µ 6= 0, then D±|E±

µ
:E±

µ → E∓
µ is an isomorphism.

We will now establish an algebraic criterion for the existence of point spectrum for untwisted
Dirac operators.

2.7. Theorem. Let D be the untwisted Dirac operator on M = G/K. If ρk is g-regular,

then Specp(D) = {0}, and ker(D) is isomorphic to the discrete series representation with Harish-

Chandra parameter ρk. If ρk is g-singular, then there is no point spectrum.

Remark. By [AS], Theorem 9.3, we already know that ker(D) 6= 0 iff ρk is g-regular. It would thus
be enough to check that Specp(D) contains no nonzero eigenvalues.

Proof. First of all, if ρk is g-regular, then there exists a discrete series representation with Harish-
Chandra parameter ρk because of Theorem 2.2 and Remark 2.5. Let w ∈ W ′ such that ρk ∈ w(Pg).
The minimal K-type of πρk

is wρg − ρk, which is a highest weight of σ by Lemma 2.4. Hence by
Theorem 1.3, D has point spectrum.

On the other hand, let us assume that πλ is a discrete series representation of G that contributes
to Specp(D). We will show that then necessarily λ = ρk.

Let w ∈ W ′ be such that λ ∈ w(Pg). By Theorem 1.3 and Lemma 2.4, for some w0 ∈ W ′, the
weight w0ρg−ρk is a K-type of πλ. Then by Theorem 2.2, there exist nonnegative integers nα such
that

(2.8) w0ρg + ρk = λ+ wρg +
∑

α∈∆+
g

〈wρg,α〉≥0

nα α .

We establish a few inequalities: By construction, λ and wρg are both g-regular and lie in the same
Weyl chamber w(Pg) of g. This has two consequences: First, the weight wρg uniquely minimizes
the distance to λ among all Wg-translates of ρg. Thus

(2.9) 〈λ,w0ρg〉 ≤ 〈λ,wρg〉 ,

with equality iff w0 = w. Second, 〈α,wρg〉 > 0 iff 〈α, λ〉 > 0. This implies

(2.10)
〈

λ,
∑

nα α
〉

≥ 0 ,

since the nα have to be nonnegative. Moreover, we have equality iff all the nα are zero.
If (2.8) holds for λ, then λ must clearly be k-algebraically integral, because the same holds for ρk,

ρg and all α ∈ ∆+
g . Now the weight ρk uniquely minimizes |κ| among all k-regular k-algebraically

integral κ ∈ Pk. Because λ is g-regular, it is also k-regular, and we have

(2.11) 〈ρk, λ〉 ≤ |λ| · |ρk| ≤ |λ|
2
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with equality iff λ = ρk.
In order to show that λ = ρk, we multiply (2.8) by λ and apply (2.9) und (2.10):

〈w0ρg + ρk, λ〉 =
〈

λ+ wρg +
∑

nα α, λ
〉

=⇒ 〈ρk, λ〉 ≥ |λ|
2
.

So by (2.11), we have equality, which means that λ = ρk, that w0 = w, and that all nα are zero.
Now, ρk can only be a Harish-Chandra parameter for a discrete series representation of G if ρk is
g-regular. Thus, there is no point spectrum if ρk is g-singular.

Let us assume that ρk is g-regular. Then, among the highest weights of σ, only wρg − ρk can
appear as a K-type of a discrete series representation of G. This implies that the eigenspaces of D
are contained either in L2(S+) or in L2(S−). In particular, Specp(D) ⊂ {0}, because by Remark 2.6,

any nonzero eigenvalue µ would lead to an eigenspace Eµ = E+
µ ⊕E−

µ with E+
µ

∼= E−
µ 6∼= {0}. Finally,

wρg − ρk is the minimal K-type of πρk
. Hence, it has multiplicity 1, and ker(D) is irreducible as a

G-module. �

Remark. Another way to check that D vanishes on πρk
⊂ L2(S) is to express D2 in terms of the

Casimir operator Ω of G ([P], Proposition 3.1, [K], Lemma 12.12), and using the explicit formula
for πλ(Ω) ([K], Lemma 12.28).

We will now reformulate the theorem above in terms of the compact dual of M . Therefore, let gC

be the complexification of g. Recall that there exists a compact, connected, simply connected Lie
group G′ with Lie algebra g′ := k⊕ ip. Let K ′ ⊂ G′ be its Lie subgroup with Lie algebra k, then K ′

is closed, and M ′ := G′/K ′ is called the compact dual of M . Note that h is a common Cartan
subalgebra of g, g′ and k, and that g and g′ have the same roots, Weyl chambers etc. with respect
to h.

With these definitions, we can give an equivalent criterion for the existence of point spectrum:

2.12. Corollary. Let D be the untwisted Dirac operator on M = G/K. Then D has point

spectrum iff the Â-genus of the compact dual M ′ = G′/K ′ of M is nonzero.

Proof. By [BH], the Â-genus of M ′ is given by the formula

(2.13) Â(M ′)[M ′] =
∏

α∈∆g

〈α, ρk〉

〈α, ρg〉

for a suitable orientation of M ′. In particular, Â(M ′)[M ′] 6= 0 iff ρk is g-regular, cf. Theorem 23.3
in [BH]. Thus, our claim follows from Theorem 2.7. �

Remark. The following alternative proof motivates the appearance of the Â-genus: By Theorem 2.7,
D has point spectrum iff its L2-index is nonzero. Using Hirzebruch proportionality, one then
concludes that this is the case iff Â(M ′)[M ′] 6= 0 (cf. [AS], chapter 3 and erratum). This was
suggested by M. Olbrich.

Let us state some consequences of our criterion.

2.14. Corollary. Let D be the untwisted Dirac operator on M = G/K. If D has point spectrum,

then

(1) M is a Hermitian symmetric space,

(2) the compact dual M ′ of M carries no spin structure, and

(3) the dimension of M is divisible by 4.
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Proof. By [BH], Theorem 23.3, M ′ is Hermitian symmetric if its Â-genus is nonzero. Then M
is also Hermitian symmetric. Next, M ′ has positive scalar curvature. Thus if M ′ was spin, its
Â-genus would vanish by Lichnerowicz’ theorem ([LM], Corollary 8.9). Finally, the Â-genus of M ′

can be nonzero only if dimM ′ is divisible by 4. Hence, the claims follows from Corollary 2.12. �

Remark. The conditions listed in Corollary 2.14 are not sufficient for the existence of point spec-
trum: In the next section, we will see that for M ′ := Sp(n)/U(n) with n ∈ 4N, conditions (1) – (3)

above are satisfied. Nevertheless, the Â-genus of M ′ vanishes.

3. Compact Symmetric Spaces with Nonvanishing Â-Genus

In this section we want to determine the compact Riemannian symmetric spaces M ′ = G′/K ′

with non-vanishing Â-genus. By [Bo], we may again assume that rk(G′) = rk(K ′). Because the Â-
genus is multiplicative on products of manifolds, we restrict our attention to irreducible symmetric
spaces. By Corollary 2.14, we only have to investigate compact Hermitian symmetric spaces M ′

with dimM ′ ∈ 4N which are not spin.
The simply connected symmetric spaces that admit a spin structure are known (cf. [CG] or [HS]).

On the other hand there are four families of Hermitian symmetric spaces and two exceptional ones
(cf. [H]). Combining these lists, we see that the irreducible Hermitian symmetric spaces which have
no spin structure form the following three families:

(1) SO(n+ 2)/SO(2) × SO(n) for n odd,

(2) Sp(n)/U(n) for n even, and

(3) U(p + q)/U(p)×U(q) for p+ q odd

(in the last case, M should actually be represented as a quotient of a finite cover of SU(p, q), rather

than of U(p, q)). We will show that all manifolds of the families (1) and (2) have vanishing Â-genus,

while the Â-genus of U(p + q)/U(p)×U(q) is different from zero if p+ q is odd.
The manifolds of family (1) have dimension 2n. Since we assume that n is odd, the dimen-

sion is not divisible by 4, and the Â-genus vanishes. For the two other families, we have to use
formula (2.13) and to compute the scalar products 〈α, ρk〉 for all positive roots α ∈ ∆+

g .

Let us investigate family (2). The Lie algebra of Sp(n) is the Lie algebra of skew-Hermitian
quaternionic matrices of order n. The Lie algebra of U(n) is realized as the sub-algebra of skew-
Hermitian complex matrices of order n. A common Cartan sub-algebra h is the Lie algebra of the
matrices of the form

λ = (λ1, . . . , λn) := diag(λ1, . . . , λn) ,

with λj ∈ iR. As a system of positive roots of Sp(n), we take

∆+
g = {λi ± λj | 1 ≤ i < j ≤ n } ∪ { 2λi | i = 1, . . . , n } .

The positive roots in K ′ = U(n) are ∆+
k := {λi −λj | i < j }. Hence, ρk = (n− 1, n− 3, . . . , 1−n).

Clearly, the standard scalar product on h∗ ∼= R
n extends to an Ad∗G′-invariant scalar product

on g′∗. In particular, for α = (λ1 + λn) we have 〈α, ρk〉 = 0. Hence, according to formula (2.13),

the Â-genus of all manifolds Sp(n)/U(n) is zero.
The computation for family (3) is similar. As a system of positive roots we take

∆+
g = {λi − λj | 1 ≤ i < j ≤ p+ q } .



8 S. GOETTE, U. SEMMELMANN

The positive roots in K ′ = U(p)×U(q) are

∆+
k = {λi − λj | 1 ≤ i < j ≤ p } ∪ {λi − λj | p+ 1 ≤ i < j ≤ p+ q } .

This yields ρk = (p − 1, p − 3, . . . , 1 − p, q − 1, q − 3, . . . 1 − q). Again we take as a scalar product
for the roots the canonical scalar product of vectors in R

n. Since p + q is odd, we can assume p
to be even and q to be odd. Hence, all numbers p − 1, p − 3, . . . , 1 − p are odd and all numbers
q− 1, q− 3, . . . , 1− q are even. From this it follows that the scalar product 〈α, ρk〉 for any positive

root α ∈ ∆+
g is different from zero. Using once again formula (2.13), we obtain that the Â-genus

of U(p+ q)/U(p)×U(q) is nonzero.

In particular, the Â-genus of the complex projective space CP 2n does not vanish. Here a simple
computation gives Â(CP 2n)[CP 2n] = (−4)−n

∏n

i=1
2i−1
2i = (−16)−n

(

2n
n

)

. Finally, we have

3.1. Theorem. Let M ′ = G′/K ′ be an irreducible Riemannian symmetric space of compact type.

Then M ′ has nonvanishing Â-genus iff M ′ is isometric to

U(p + q)/U(p) ×U(q) , with p+ q odd. �

Together with Theorem 2.7, Corollary 2.12, and the multiplicativity of Â, this proves Theo-
rem 0.1. �
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