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Abstract. We establish extremality of Riemannian metrics g with non-negative curvature
operator on symmetric spaces M = G/K of compact type with rkG − rkK ≤ 1. Let ḡ be
another metric with scalar curvature κ̄, such that ḡ ≥ g on 2-vectors. We show that κ̄ ≥ κ
everywhere on M implies κ̄ = κ. Under an additional condition on the Ricci curvature
of g, κ̄ ≥ κ even implies ḡ = g. We also study area-non-increasing spin maps onto such
Riemannian manifolds.

There is a well known relation between the existence of metrics of positive scalar curvature
on a compact manifold M and the topology of M . Given such a metric g with scalar curvature
κ > 0, it is interesting to ask how large κ can become as a function on M when one varies
the metric g. Of course one should not allow scaling of the metric, so one has to compare g
with suitable other metrics, e.g. with metrics ḡ which do not decrease areas with respect to
the fixed metric g. These are the metrics in

M(g) :=
{
ḡ ∈ Sym2(TM)

∣∣ |v ∧ w|ḡ ≥ |v ∧ w|g for all v, w ∈ TM
}
. (0.1)

For ḡ ∈ M(g) we will write ḡ ≥ g on 2-vectors. Using the K-area inequalities, M. Gromov
showed in [6] that there is a finite upper bound for the minimum of the scalar curvature if
one varies over metrics in M(g). However it remains a problem to find sharp upper bounds
in terms of the curvature of the fixed metric g. A first example for a sharp upper bound
was given by M. Llarull in [11]. He considered metrics on the sphere (Sn, g) where g is the
metric of constant curvature. If ḡ is any metric on Sn with scalar curvature κ̄ and with ḡ ≥ g
on 2-vectors, he showed that (i) κ̄(p) ≤ κ(p) for some p ∈ M and (ii) κ̄ ≥ κ implies κ̄ = κ.
Indeed he showed that (iii) κ̄ ≥ κ even implies ḡ = g.

Metrics g having property (ii) will be called area-extremal. Note that (i) follows from (ii).
If g is an area-extremal metric of constant scalar curvature, this constant provides a sharp
upper bound for the minimum of the scalar curvature of all metrics in M(g).

Let us relate area-extremality to a theorem of J. Lohkamp, which sharpens earlier results
of J. L. Kazdan and F. W. Warner ([7]). Let g be a Riemannian metric on a manifold M
with dim(M) ≥ 3, and let κ0 : M → R be any function such that κ0 ≤ κ everywhere on M .
Then by [12], there exists a metric ḡ, which is C0-close to g, such that κ̄ is C0-close to κ0.
In particular, it is always possible to decrease both the metric and the scalar curvature
simultaneously. On the other hand, if g is area-extremal, then by condition (ii) one cannot
simultaneously increase both g and κ. We apply the construction of J. Lohkamp to see that
not all metrics g on M are area-extremal if dimM ≥ 3. Let us start with an arbitrary metric ḡ
on M . Using [12], we can construct a metric g which is C0-close to 1

2 ḡ and has κ� κ̄. Since
clearly ḡ ∈ M(g), g is not area-extremal. If M admits a metric of positive scalar curvature,
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we start with κ̄ > 0. Then g can be chosen such that κ approximates 1
2 κ̄ in the C0-topology.

This shows that there are metrics with positive scalar curvature that are not area-extremal.
In [6], M. Gromov asked which manifolds possess area-extremal metrics and how such

metrics may look like. He conjectured that Riemannian symmetric spaces should have area-
extremal metrics. He also proposed to investigate not only variations of the metric on M
itself, but to consider also area-non-increasing spin maps of non-vanishing Â-degree from
other Riemannian manifolds to M .

As mentioned above, M. Llarull showed that the standard metric on Sn is area-extremal
with the additional rigidity (iii). In [10], he shows that κ̄ ≥ κ ◦ f implies κ̄ = κ ◦ f if f is an

area-non-increasing spin map of non-vanishing Â-degree from a Riemannian manifold (N, ḡ)
onto the round sphere. Later, M. Min-Oo proved that Hermitian symmetric spaces of com-
pact type are area-extremal (cf. [13]). Finally, W. Kramer proved in [8] that quaternionic
projective spaces are length-extremal, which is a slightly weaker notion than area-extremality.
In particular, area-extremality implies length-extremality.

In this paper, we generalize the preceding results. We prove area-extremality and rigidity
for a certain class of Riemannian metrics with non-negative curvature operator on Λ2(TM),
see Theorem 0.3 below. For this, we also require that either the Euler characteristic χ(M) is
non-zero, or that a certain mod 2-index, which is related to the Kervaire semi-characteristic,
does not vanish.

By the following theorem, a compact, simply connected Riemannian manifold with non-
negative curvature operator is homeomorphic to a symmetric space:

0.2. Theorem ([3], [2], [15]). If (M, g) is a compact irreducible Riemannian manifold with
non-negative curvature operator, then one of the following cases must occur:

(1) the universal covering of M is homeomorphic to a sphere,
(2) the universal covering of M is Kähler and biholomorphic to a complex projective space,
(3) M is locally symmetric.

The Euler characteristic of a Riemannian symmetric spaceG/K of compact type is different
from zero iff rk(G) = rk(K). If the mod 2-index mentioned above is non-zero, then rkG −
rkK ≤ 1 and dimM ≡ 0, 1 mod 4. A certain stabilization trick allows us to treat all
compact symmetric spaces with rkG− rkK ≤ 1. Let us summarize our main results, which
are obtained in Theorems 2.1 and 2.7.

0.3. Theorem. Let (M, g) be a compact, connected, oriented Riemannian manifold with
non-negative curvature operator on Λ2(TM), such that the universal covering of M is home-
omorphic to a symmetric space G/K of compact type with rkG ≤ rkK + 1. Let ḡ ∈ M(g),
then κ̄ ≥ κ implies κ̄ = κ. If moreover, the Ricci curvature of g satisfies ρ > 0 and 2ρ−κ < 0,
then κ̄ ≥ κ implies ḡ = g.

The conditions on ρ will be motivated at the end of this preface, where we also conjecture
a generalization of Theorem 0.3.

If rkG = rkK, we also compare κ with the scalar curvatures of metrics on a different
Riemannian manifold N via spin maps of non-vanishing Â-degree. In Theorem 2.4 we prove
again extremality and rigidity.

The proofs are based on a combination of the Bochner-Lichnerowicz-Weitzenböck (BLW)
formula with the Atiyah-Singer index theorem applied to certain twisted Dirac operators. We
also need an estimate for the curvature term in the BLW formula that uses non-negativity of
the curvature operator. In the odd-dimensional case (rkG = rkK + 1) we use the decompo-
sition of the spinor bundle of G/H.
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In [5], we have established a similar result for Kähler manifolds of positive Ricci curvature
using different estimates.

The rest of the paper is organized as follows: In Section 1, we investigate the BLW formula
for a certain twisted Dirac operator. The main result is contained in Lemma 1.6. In Section
2, we apply this result. We use the index theorem in various settings to show the existence
of harmonic spinors.

We would like to thank Ch. Bär and G. Weingart for helpful comments and continued
interest in our work.

Locally Area-Extremal Metrics. In the rest of this paper, we generally consider globally
area-extremal metrics on M . Here, “globally” means that κ̄ ≥ κ implies κ̄ = κ for all
metrics ḡ ∈ M(g). Here, we want to give a sufficient condition for a metric g to be locally
area-extremal in the following sense: There exists a neighborhood U(g) in the space G of all
Riemannian metrics on M , equipped with the C2-topology, such that κ̄ ≥ κ implies κ̄ = κ
for all metrics ḡ ∈ U(g) ∩M(g).

0.4. Lemma. Let g be a metric on a compact Riemannian manifold M whose Ricci curva-
ture ρ is positive definite. Then there exists a neighborhood U(g) of g in G such that κ̄ ≥ κ
implies κ̄ = κ for all metrics ḡ ∈ U(g) with |v|ḡ ≥ |v|g for all v ∈ TM .

Suppose moreover that 2ρ − κ is negative definite. Then there exists another neighbor-
hood U ′(g) ⊂ G of g such that κ̄ ≥ κ implies κ̄ = κ for all metrics ḡ ∈ U ′(g) ∩M(g).

Proof. Let ḡ be another metric on M , then there exists a g-symmetric endomorphism A
of TM , such that

ḡ(·, ·) = g
(
eA·, ·

)
.

We consider the family

gt(·, ·) = g
(
etA·, ·

)
with scalar curvature κt and Ricci curvature ρt. By a straightforward calculation in normal
coordinates around a point p in M , one checks that the derivative of κt is given by

∂

∂t
κt = ∆t(trgt A)− gt

(
(∇t,2eiejA)ei, ej

)
− trgt ρt(A·, ·) . (0.5)

Here, ∆t denotes the Laplacian with respect to gt, ∇t,2 denotes the second covariant deriv-
ative, and trgt denotes the trace of a two-form with respect to gt. Note that the first two
terms can be written as divergences with respect to the metric gt. In particular, these terms
either vanish identically, or they become negative somewhere on M .

Let us assume that the Ricci curvature ρ is positive definite. If the metric ḡ is larger
or equal than g on vectors, then A is positive semi-definite. In this case, the third term
in (0.5) is ≤ 0 everywhere on M , with equality iff A vanishes identically. Because ρ depends
continuously on the 2-jet of gt, there is some neighborhood U1(g) in G such that ρ′ is positive
definite for all g′ ∈ U1(g). We define U(g) to be the set of all metrics ḡ(·, ·) = g

(
eA·, ·

)
such

that g
(
etA·, ·

)
∈ U1(g) for all t ∈ [0, 1].

If we have ḡ ≥ g only on 2-vectors, then the sum of any two eigenvalues of A is ≥ 0.
In other words, at most one eigenvalues ai of A can be negative, and its absolute value
is not larger than any other eigenvalue. On the other hand, 2ρ − κ < 0 implies that no
eigenvalue of ρ can be larger or equal than the sum of the other eigenvalues. In particular,
the condition 2ρt − κt < 0 guarantees that the last term in (0.5) is again non-positive,
with equality iff A vanishes identically. Now, we define a neighborhood U2(g) of g in G such
that ρ′ > 0 and 2ρ′−κ′ < 0 for all g′ ∈ U1(g), and we let U ′(g) be the set of all metrics g

(
eA·, ·

)
with A symmetric, such that g

(
etA·, ·

)
∈ U2(g) for all t ∈ [0, 1]. �
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Note that in Lemma 0.4, we need precisely the same conditions on ρ as in Theorem 0.3.
One might even dare to ask the following

0.6. Question. Are all Riemannian metrics g on compact manifolds M with ρ > 0 and 2ρ−
κ < 0 area-extremal?

For Kähler metrics, this has been answered affirmatively in [5].

1. Scalar Curvature Estimates

In this section, we use the BLW formula to derive estimates on the scalar curvature.

Let (M, g) be a Riemannian manifold. The Riemannian curvature tensor RM induces a
self-adjoint curvature operator RM on Λ2TM , such that

g
(
RM (ei ∧ ej), ek ∧ el

)
= −g

(
RMei,ejek, el

)
, (1.1)

where e1, . . . , em is an orthonormal base of TM . The sign has been chosen such that all
sectional curvatures of M are non-negative when RM is non-negative, i.e., all eigenvalues
of RM are ≥ 0.

Let (M, g) and (N, ḡ) be compact oriented Riemannian manifolds, and let f : N → M be
an area-non-increasing spin map. That is,

| v ∧ w |ḡ ≥ | f∗v ∧ f∗w |g (1.2)

for all v, w ∈ TqN and all q ∈ N ; and the second Stiefel-Whitney classes of TM and TN are
related by

w2(TN) = f∗
(
w2(TM)

)
. (1.3)

Because the total Stiefel-Whitney class is multiplicative, condition (1.3) is equivalent
to w2(TN ⊕ f∗TM) = 0. In particular, the bundle TN ⊕ f∗TM admits a spin struc-
ture. Thus we may chose a principal bundle PSpinn ·Spinm

→ N with fiber Spinn · Spinm =
(Spinn×Spinm)/{±1} that projects down to the frame bundle of TN ⊕ f∗TM . Let SN ⊗
f∗SM denote the bundle associated to the tensor product of the spinor representations. Note
that if M is spin, so is N by (1.3), and we may fix compatible spin structures on M and N .
Then the bundles SM and SN exist, and SN⊗f∗SM is precisely the bundle we have just de-
fined. The bundle SN⊗f∗SM carries a natural Hermitian metric and a unitary connection ∇
compatible with Clifford multiplication by elements of C` TN ⊗ f∗C` TM . We will denote
Clifford multiplication with v ∈ TN by c̄(v) and Clifford multiplication with w ∈ f∗TM
by c(w).

Let D̄ be the Dirac operator on SN ⊗ f∗SM → N , which can locally be expressed as

D̄ =
n∑
i=1

c̄(ēi)∇ēi ,

in terms of an orthonormal base ē1, . . . , ēn with respect to ḡ. By the BLW formula,

D̄2 = ∇∗∇+
κ̄

4
+

1

8

n∑
i,j=1

m∑
k,l=1

g
(
f∗RMēi,ējek, el

)
c̄(ēi)c̄(ēj)⊗ c(ek)c(el) , (1.4)

where e1, . . . , em is a local orthonormal base of f∗TM , κ̄ denotes the scalar curvature of N ,
and f∗RM is the curvature of the bundle f∗TM . Let us define Clifford multiplication by
2-forms by

c̄(v̄ ∧ w̄) = c̄(v̄) c̄(w̄) and c(v ∧ w) = c(v) c(w) ,
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for q ∈ N , v̄, w̄ ∈ TqN and v, w ∈ (f∗TM)q with ḡ(v̄, w̄) = g(v, w) = 0. If {ωi} and {ω̄j} are
orthonormal bases of f∗Λ2TM and Λ2TN , we may rewrite equation (1.4) as

D̄2 = ∇∗∇+
κ̄

4
− 1

2

∑
i,j

g
(
RM (f∗ω̄j), ωi

)
c̄(ω̄j)⊗ c(ωi) . (1.5)

Let κ and ρ denote the scalar and Ricci curvature of M . In the rest of this section, we
prove the following

1.6. Lemma. Let (M, g) and (N, ḡ) be compact, connected, oriented Riemannian manifolds,
and let f : M → N be an area-non-increasing spin map. Suppose that the curvature operator
of M is non-negative and that the bundle SN⊗f∗SM admits a D̄-harmonic spinor. Then κ̄ ≥
κ◦f everywhere on N implies that κ̄ = κ◦f . If moreover, ρ > 0 and 2ρ−κ < 0, then κ̄ ≥ κ◦f
implies that f is a Riemannian submersion.

1.b. The Estimate. In this subsection, we prove the first part of Lemma 1.6: we show
that κ̄ ≥ κ ◦ f together with the existence of a D̄-harmonic spinor implies that κ̄ = κ ◦ f .

We start by investigating the last term on the right hand side of the BLW formula (1.4).
Since we have assumed that RM is non-negative, it possesses a self-adjoint square root L ∈
End(Λ2TM) such that

g
(
RMωi, ωj

)
= g
(
Lωi, Lωj

)
.

Let us write
L̄ ωk :=

∑
i

g(Lωk, f∗ω̄i)ω̄i ∈ Λ2TN . (1.7)

Now the last term on the right hand side of (1.5) can be rewritten as

− 1

2

∑
i,j

g
(
RM (f∗ω̄j), ωi

)
c̄(ω̄j)⊗ c(ωi)

= −1

2

∑
i,j,k

g
(
L(f∗ω̄j), ωk

)
g
(
Lωi, ωk

)
c̄(ω̄j)⊗ c(ωi)

= −1

2

∑
k

c̄(L̄(ωk))⊗ c(Lωk)

=
1

4

∑
k

(
−
(
c̄(L̄ωk)⊗ 1 + 1⊗ c(Lωk)

)2
+ c̄(L̄ωk)

2 ⊗ 1 + 1⊗ c(Lωk)2
)

≥ 1

4

∑
k

(
c̄(L̄ωk)

2 ⊗ 1 + 1⊗ c(Lωk)2
)
. (1.8)

Here we have used that Clifford multiplication with 2-forms is skew symmetric and that

squares of skew-symmetric endomorphisms are non-positive, so −
(
c̄(L̄ωk)⊗ 1 + 1⊗ c(Lωk)

)2
is a non-negative endomorphism.

We claim that the operators
∑

k c̄(L̄ωk)
2 and

∑
k c(Lωk)

2 act on spinors as multiplication
by functions on N , and moreover,∑

k

c̄(L̄ωk)
2 ≥ −κ ◦ f

2
, and

∑
k

c(Lωk)
2 = −κ ◦ f

2
. (1.9)

The term −1
2 κ ◦ f in the second statement of (1.9) arises in precisely the way as the term κ

4
in the classical BLW formula, cf. [9].
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The proof of the first statement is similar: By definition of L̄ in (1.7),∑
k

c̄(L̄ωk)
2 =

∑
i,j,k

g(Lωk, f∗ω̄i) g(Lωk, f∗ω̄j) c̄(ω̄i)c̄(ω̄j)

=
∑
i,j

g
(
RM (f∗ω̄i), f∗ω̄j

)
c̄(ω̄i)c̄(ω̄j) . (1.10)

At this point, we choose a local ḡ-orthonormal frame ē1, . . . , ēn and a local g-orthonormal
frame e1, . . . , em, such that there exists µ1, . . . , µmin(m,n) ≥ 0 with

f∗ēi =

{
µi ei if i ≤ min(m,n), and

0 otherwise.

This can be done by diagonalizing f∗g with respect to the metric ḡ. Then we have the
orthonormal bases ēi ∧ ēj of Λ2TN and ek ∧ el of Λ2TM , with

f∗(ēi ∧ ēj) = µiµj ei ∧ ej and µiµj ≤ 1

for 1 ≤ i < j ≤ min(m,n), because we have assumed f to be area-non-increasing.
We rewrite equation (1.10) in these bases, using the definition (1.1) of RM :∑
k

c̄(L̄ωk)
2 = −

∑
i<j,k<l

g
(
RMf∗ēi,f∗ējf∗ēk, f∗ēl

)
c̄(ēi)c̄(ēj) c̄(ēk)c̄(ēl)

= −1

4

∑
i,j,k,l

µiµjµkµl
(
RMijkl ◦ f

)
c̄(ēi)c̄(ēj) c̄(ēk)c̄(ēl)

= −1

2

∑
i,j

µ2
iµ

2
j

(
RMijji ◦ f

)
≥ −κ ◦ f

2
. (1.11)

Here, all terms with four different indices are eliminated by Bianchi’s first identity, while all
terms with three different indices vanish for symmetry reasons. This proves our claim (1.9).

We are now ready to prove the first statement in Lemma 1.6. Assume that κ̄ ≥ κ ◦ f .
Let 0 6= ψ ∈ Γ(SN ⊗ f∗SM) be a D̄-harmonic spinor, and let ‖·‖ and 〈·, ·〉 denote the L2

norm and L2 scalar product on Γ(SN ⊗ f∗SM). Then by equations (1.5), (1.8) and (1.9),

0 =
∥∥D̄ψ∥∥2

= ‖∇ψ‖2 +

〈
ψ,

(
κ̄

4
− 1

2

∑
i,j

g
(
RM (f∗ω̄j), ωi

)
c̄(ω̄j)⊗ c(ωi)

)
ψ

〉

≥ ‖∇ψ‖2 +

〈
ψ,
κ̄− κ ◦ f

4
ψ

〉
≥ 0 . (1.12)

Because N is connected and ψ 6= 0 is D̄-harmonic, the subset of N where ψ is non-zero is
open and dense in N . In particular, the estimate (1.12) now implies κ̄ = κ ◦ f . This proves
the first claim of Lemma 1.6.

1.c. The Rigidity Statement. We will now establish the second claim in Lemma 1.6. We
have to show that κ̄ ≥ κ ◦ f implies that f is a Riemannian submersion if D̄ possesses a
harmonic spinor and the Ricci curvature satisfies ρ > 0 and 2ρ− κ < 0.

By the arguments of the last section, κ̄ ≥ κ ◦ f implies that all inequalities in (1.8), (1.11)
and (1.12) turn into equalities. From (1.11), we get in particular that∑

i,j

µ2
iµ

2
j

(
RMijji ◦ f

)
= κ ◦ f =

∑
i,j

RMijji ◦ f ,
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so

0 =
∑
i,j

(
1− µ2

iµ
2
j

) (
RMijji ◦ f

)
. (1.13)

Since RMijji ≥ 0 and µiµj ≤ 1 because f is area-non-increasing, all summands are non-negative.
Assume first that f is length-non-increasing, i.e., µi ≤ 1 for all i. Because we have

assumed the Ricci curvature ρ to be positive definite, we have ρii =
∑

j R
M
ijji > 0. Thus

for any i there is a j with RMijji ◦ f 6= 0. Hence, µiµj = 1, so µi = µj = 1. Since we

can start with any i ∈ {1, . . . ,m}, we get µ1 = · · · = µm = 1. This implies in particular
that m = dimM ≤ n = dimN and that f is a Riemannian submersion.

We turn to the general case, i.e., f is now only area-non-increasing. The condition 2ρ−κ <
0 implies for fixed k that

2
∑
j

RMkjjk <
∑
i,j

RMijji , so 0 <
∑

i 6=k,j 6=k
RMijji ,

Hence, there is at least one pair (i, j) with i 6= k, j 6= k, and RMijji 6= 0. Then we have
again µiµj = 1. Together with µiµk ≤ 1 and µjµk ≤ 1, this clearly implies µk ≤ 1. It
follows that f is length-non-increasing. The arguments above show that f is a Riemannian
submersion. This finishes the proof of Lemma 1.6. �

1.14. Remark. Let (M, g) and (N, ḡ) be as in Lemma 1.6, and again RM ≥ 0, but assume
that f is a length-non-increasing spin map. Suppose that κ̄ ≥ κ ◦ f , that ρ > 0, and the
bundle SN ⊗ f∗SM admits a D̄-harmonic spinor. Then κ̄ = κ ◦ f everywhere on N , and f
is a Riemannian submersion.

Note that 2ρ− κ < 0 implies that dimM ≥ 3: The condition 2ρ− κ < 0 can be rephrased
by saying that no eigenvalue of the Ricci curvature is larger or equal than the sum of the
remaining eigenvalues. Clearly this implies the existence of at least three (not necessarily
different) eigenvalues of ρ.

On the other hand, if M is a locally symmetric space of compact type and dimM ≥ 3,
then the conditions ρ > 0 and 2ρ − κ < 0 are automatically satisfied. Indeed, M splits
locally into irreducible components of dimension ≥ 2 which are Einstein. In particular, all
eigenvalues of ρ are strictly positive, and each eigenvalue has multiplicity at least 2. Together
with dimM ≥ 3, this implies that no eigenvalue of ρ can be larger or equal than the sum of
the remaining eigenvalues.

Finally, we remark that for manifolds with a non-negative curvature operator, the two
conditions ρ > 0 and 2ρ − κ < 0 are only restrictive if the universal cover of M contains
factors which are either flat or non-symmetric spheres or complex projective spaces.

2. Index-Theoretic Considerations

In order to apply the results of the previous section to a specific map f : N →M , we have
to ensure that the operator D̄ of Section 1 has a non-zero kernel. We list some criteria that
imply the existence of D̄-harmonic spinors.

2.a. Manifolds with Non-Vanishing Euler Characteristic. In the simplest application
of Lemma 1.6, we take a Riemannian manifold (M, g) with RM ≥ 0 and non-vanishing Euler
characteristic χ(M). Recall that M(g) was defined in (0.1). If we take ḡ ∈ M(g), then the
identity map idM : (M, ḡ)→ (M, g) is area-non-increasing and spin by (1.2) and (1.3).

2.1. Theorem. Let (M, g) be a compact, connected, oriented Riemannian manifold with
non-negative curvature operator and non-vanishing Euler characteristic. Let ḡ ∈ M(g),
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then κ̄ ≥ κ implies κ̄ = κ. If moreover, the Ricci curvature of g satisfies ρ > 0 and 2ρ−κ < 0,
then κ̄ ≥ κ implies ḡ = g.

Proof. Let S denote the spinor bundle of M , which exists over all sufficiently small open
subsets of M even if M is not spin. We equip S with the metric and connection induced
by g. If the Euler characteristic χ(M) of M is non-zero, then M is even-dimensional, and
the local spinor bundle splits as S = S+ ⊕ S−. It is a well known fact that

ΛevenTM =
(
S+ ⊗ S+

)
⊕
(
S− ⊗ S−

)
and ΛoddTM =

(
S+ ⊗ S−

)
⊕
(
S− ⊗ S+

)
,

that the Dirac operator on Λ∗TM = S ⊗ S is precisely the operator D = d + d∗, and that
the index of D : Ωeven(M)→ Ωodd(M) equals χ(M).

Let S̄ denote the (local) spinor bundle of M , equipped with the metric and connection
induced by ḡ. Then the operator D̄ considered in Section 1 is precisely the twisted Dirac
operator on S̄ ⊗ S. If we introduce a grading of S̄ ⊗ S analogous to the grading of Λ∗TM by
even and odd degree, then the index of D̄ with respect to this grading again equals χ(M).
In particular, there is a D̄-harmonic spinor 0 6= ψ ∈ Γ(S̄ ⊗ S). Now our claim follows from
Lemma 1.6. �

Recall that a symmetric space M = G/K of compact type has RM ≥ 0. Moreover,
χ(M) 6= 0 iff rkG = rkK. Hence we have

2.2. Corollary. Let (M = G/K, g) be a compact Riemannian symmetric space with rkG =
rkK. If ḡ ∈M(g), then κ̄ ≥ κ implies ḡ = g.

2.3. Remark. We could also consider another grading of the bundle S̄ ⊗ S analogous to the
splitting of Λ∗TM into self-dual and anti-self-dual forms. The index of D̄ with respect to
this grading is the signature Sign(M). By Hirzebruch’s signature theorem, Sign(M) can
be expressed as a certain Pontrjagin number of M . A classical result of Bott implies that
all Pontrjagin numbers of a quotient G/K of compact Lie groups vanish unless rkG =
rkK. Thus, we do not gain anything here if we consider the signature instead of the Euler
characteristic.

2.b. Maps of Non-Vanishing Â-Degree. In this section, we investigate a certain class of
maps to manifolds with a non-negative curvature operator on 2-vectors. In order to state our
result, let us recall the following definition: the Â-degree of f is given by

degÂ f =
(
Â(N) f∗ω

)
[N ] ,

where ω ∈ Hm(M,Z) is the fundamental class of M corresponding to the orientation of M .
Recall that the notion of an area-non-increasing spin map was defined in (1.2) and (1.3).

2.4. Theorem. Let (M, g) be a compact connected oriented Riemannian manifold with non-
negative curvature operator and with non-vanishing Euler characteristic. Let (N, ḡ) be a com-
pact connected oriented Riemannian manifold, and let f : N →M be an area-non-increasing
spin map of non-vanishing Â-degree. Then κ̄ ≥ κ ◦ f implies κ̄ = κ ◦ f . If moreover, the
Ricci curvature ρ of M satisfies ρ > 0 and 2ρ − κ < 0, then f : N → M is a Riemannian
submersion.

Proof. Since f is spin, we can construct the bundle SN ⊗ f∗SM and the Dirac operator D̄
on Γ(SN ⊗ f∗SM) as in Section 1. By the Atiyah-Singer index theorem, the index of

D̄ :
(
S+N ⊗ f∗S+M

)
⊕
(
S−N ⊗ f∗S−M

)
−→

(
S−N ⊗ f∗S+M

)
⊕
(
S+N ⊗ f∗S−M

)
is given by

ind(D̄) =
(
Â(N) f∗ ch(S+M − S−M)

)
[N ] = degÂ f · χ(M) ,
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because ch(S+M − S−M) ∈ Hm(M,R) equals the Euler class of M . Under the hypotheses
of the theorem, we have ind(D̄) 6= 0. Now, the theorem follows from Lemma 1.6. �

2.5. Remark. The conditions that f be spin and degÂ(f) 6= 0 look very technical. To see
that they are necessary, suppose that M is a point. In this situation, Theorem 2.4 becomes
precisely Lichnerowicz’ theorem, which states that a compact, connected, oriented spin man-
ifold N of non-vanishing Â-genus cannot carry a metric ḡ with κ̄ ≥ 0 and strict inequality
somewhere on N . This gives us a hint how to construct counterexamples to Theorem 2.4 with-
out the assumptions mentioned above: If N is the Riemannian product M ×CP k for k ≥ 1,
then clearly the projection f onto the first factor is area-non-increasing, but κ̄ > κ ◦ f .
However, it is easy to see in this situation that

degÂ(f) = Â(CP k)[CP k]

which vanishes if k is odd, while the map f is spin iff CP k is spin, which is not the case for
even k.

We do not know if the condition χ(M) 6= 0, which we need to ensure the existence of
harmonic spinors, can be omitted entirely. However, it can be replaced by different conditions.
Here is one possible example:

2.6. Remark. In the proof of Theorem 2.4, we worked with the Dirac operator on N , twisted
by the virtual bundle f∗(S+M − S−M). We could equally well twist with only one com-
ponent f∗S±M , or with the sum f∗SM . In the latter case, the index of the corresponding
Dirac operator on M is given by(

Â(N) f∗ ch(SM)
)
[N ] =: degSign(f) ,

which we will call the signature degree of f , because for the identity idM , we get the signature
of M : (

Â(M) ch(SM)
)
[M ] = L(M)[M ] = Sign(M) .

Thus, in 2.4, we can replace the two conditions χ(M) 6= 0 and degÂ(f) 6= 0 by the single
condition degSign(f) 6= 0 to obtain another version of the theorem.

2.c. Odd-Dimensional Manifolds. In this section, we present an analogue of Theorem 2.1
for a certain class of odd-dimensional manifolds with non-negative curvature operator. The
idea here is to use the invariance of the mod 2-index of an anti-self-adjoint real Fredholm
operator in order to find a D̄-harmonic spinor. We consider a mod 2-index that is related to
the Kervaire semi-characteristic, as we will explain in Remark 2.13 below.

2.7. Theorem. Let (M, g) be an odd-dimensional compact, connected, oriented Riemannian
manifold with non-negative curvature operator on Λ2(TM), and assume that the universal
covering of M is homeomorphic to a Riemannian symmetric space G/K of compact type
with rkG = rkK + 1. Let ḡ ∈ M(g), then κ̄ ≥ κ implies κ̄ = κ. Moreover, if ρ > 0 and
2ρ− κ < 0, then κ̄ ≥ κ implies ḡ = g.

Note that our assumption on M rules out the possibility that the universal covering of M
contains a Euclidean de Rham factor. We recall the following description of the complex
spinor bundle of not necessarily irreducible symmetric spaces:

2.8. Proposition ([14], [4]). Let M = G/K be a symmetric space with rkG = rkK + k.
Then the complex spinor bundle S is locally induced by a representation σ of the Lie algebra k
of K, which splits as

σ = 2

[
k
2

] q⊕
i=1

σi ,
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where σ1, . . . , σq are certain pairwise non-isomorphic irreducible complex representations
of k.

Using this proposition, we derive a splitting of the bundle ΛevenTM of even, real exterior
forms on M . We refer the reader to [1] and [9] for all technical details concerning real
representations of real semi-simple Lie algebras and real Clifford algebras.

2.9. Proposition. Let M = G/K be a symmetric space of dimension m = 8p + 1 such
that rkG = rkK + 1. Then the bundle ΛevenTM splits as a direct sum

ΛevenTM =

q⊕
i=1

E i ,

such that each E i is a parallel, G-invariant subbundle of ΛevenTM which is invariant under
the natural left action of C`even TM . Moreover, for each E i, the space of parallel sections has
real dimension 1, and each parallel section is G-invariant.

Proof. Recall that for m = 8p + 1, the real spinor representation σR of Spinm acts on a
real vector space SR of real dimension 24p ([9]). The complex spinor representation arises
as σ = σR ⊗R C on S = SR ⊗R C. Complex conjugation induces a C-antilinear involution ·̄
on S, which commutes with σ. If we restrict σ and σR to the Lie algebra k, then ·̄ descends to
a C-antilinear involution on each of the irreducible subrepresentations σi of Proposition 2.8.
Let SR,i be the (+1)-eigenspace of ·̄ on Si, then σi = σR,i ⊗R C, and

σR =

q⊕
i=1

σR,i .

By [9], we have Λevenp ∼= C`even p ∼= SR ⊗R SR. Setting

E i := G×K
(
SR ⊗R SR,i

)
,

we obtain the decomposition of the Proposition. By Proposition 2.8 and Schur’s Lemma,
the trivial K-isotypical component of σ ⊗ σi is one-dimensional over C. Arguing with com-
plex conjugation as above, we see that the trivial K-isotypical component of σR ⊗R σR,i is
one-dimensional over R. This implies that the space of parallel sections of E i is also one-
dimensional and G-invariant. �

Proof of Theorem 2.7. We start with the following basic case: Assume that (M, g) is a Rie-
mannian locally symmetric space of compact type with m = dimM = 8p + 1. Let e1, . . . ,
em be a local g-orthonormal base of TM , and let

ωR = c(e1) . . . c(em) ∈ End(Λ∗TM)

denote the real Clifford volume element. We consider the real Dirac operator

DR :=

m∑
i=1

ωR c(ei)∇ei . (2.10)

Note that ωR c(ei) ∈ C`even(TM) for all i, so DR acts on ΩevenM . Because the adjoint of ωR
equals ω∗R = −ωR for m ≡ 1 mod 4, and because ωR is parallel and commutes with Clifford
multiplication c(ei), the operator DR is formally anti-self-adjoint. Moreover, −D2

R is equal
to the Hodge-Laplacian (d+ d∗)2.

Since M is of compact type, after passing to a finite cover, we may assume that M = G/K
is simply connected. We assume that rkG = rkK+1. By Proposition 2.9, the bundle ΛevenM
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splits as a direct sum of parallel sub-bundles

ΛevenM =

q⊕
i=1

E i =

q⊕
i=1

SR ⊗R SR,i (2.11)

with an obvious notation; and for each of these sub-bundles, the space of parallel sections
has real dimension 1. The operator DR respects this splitting. Because M is symmetric, a
form α ∈ Ω∗M is DR-harmonic iff it is d + d∗-harmonic iff it is parallel. In particular, the
restriction DR,i of DR to G×K (SR ⊗R SR,i) has a one-dimensional kernel.

Now let ḡ ∈ M(g). Let S̄R be the real spinor bundle of M , equipped with the metric and
connection induced by ḡ, which exists over all sufficiently small open subsets of M . Then the
vector bundles

S̄R ⊗R SR,i

exist globally on M . Because S̄R⊗RSR,i is a Dirac bundle with respect to ḡ, we may define real
operators D̄R,i as in (2.10). Then D̄R,i is an anti-self-adjoint deformation of the operator DR,i.
For an anti-self-adjoint real Fredholm operator, the parity of the dimension of its kernel is
invariant under deformations. Thus D̄R,i has an odd-dimensional and in particular non-empty
kernel. After complexification, the operator D̄ of Section 1 also has a non-empty kernel, so
the theorem follows from Lemma 1.6 in this special case.

Next, suppose that (M, g) is an 8p+ 1-dimensional, closed, compact Riemannian manifold
with non-positive curvature operator on 2-vectors, and that ḡ ∈ M(g). Assume that the
universal covering of M is homeomorphic to a Riemannian symmetric space G/K of compact
type with rkG = rkK + 1. We may assume that M is itself homeomorphic to G/K. Then
Theorem 0.2 implies that M has the same holonomy as G/K. In particular, we still have
a splitting of Λ∗TM as in (2.11), and for each of the bundles E i, the real dimension of
the space of parallel sections is 1. Because the sum of the even Betti numbers is the same
for M and G/K, there are no non-parallel DR,i-harmonic forms (this also follows directly

because RM ≥ 0, cf. [3]). Now, the argument continues as above.
Finally, assume that (M, g) is as in the theorem, i.e., M is as above, but of arbitrary odd

dimension. Then there is an even number r ≥ 2, such that M ′ := M×Sr is 8p+1-dimensional
for some p. Suppose that ḡ ∈M(g). We equip Sr with its standard metric g0 and define two
metrics

g′ := g ⊕ g0 and ḡ′ := ḡ ⊕ g0

on M ′. Now, M ′ is a Riemannian manifold of the type we have just considered. In particular,
if we construct D̄′R,i using the real spinor bundles of M ′ with respect to the metrics g′ and ḡ′,

then D̄′R,i has a non-empty kernel, so the complex Dirac operator D̄′ also has a non-empty
kernel.

Nevertheless, we cannot apply Lemma 1.6 directly, because in general, ḡ′ ≥ g′ does not
hold on 2-vectors, cf. [8]. By diagonalizing ḡ with respect to g, we construct a g-orthonormal
frame e1, . . . , em at p ∈M as in Section 1.b, such that the vectors ē1 = µ1e1, . . . , ēm = µmem
form an orthonormal base with respect to ḡ for scalars µ1, . . . , µm ≥ 0. We also choose a
g0-orthonormal frame em+1, . . . , em+r on Sr, and define ēm+1 = em+1, . . . , ēm+r = em+r as
above with µm+1 = · · · = µm+r = 1. We note that RM

′
ijkl = 0 unless i, j, k, l ≤ m or i, j, k,

l > m. Because we know that µiµj ≤ 1 if i, j ≤ m or i, j > m, the inequality 1.11 still holds,
so our arguments of Section 1.b still show that κ̄′ ≥ κ′ implies κ̄′ = κ′. Because κ′ = κ+ κ0

and κ̄′ = κ̄ + κ0, where κ0 denotes the (constant) scalar curvature of Sr, we have proved
that κ̄ ≥ κ implies κ̄ = κ.
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Suppose that κ̄ ≥ κ and that ρ > 0 and 2ρ − κ. Then as before, the inequality (1.11)
becomes an equality, and the analogue of (1.13) holds for M ′:

0 =
m+r∑
i,j=1

(
1− µ2

iµ
2
j

)
RM

′
ijji . (2.12)

Because µi = 1 for i > m and RM
′

ijji = 0 for i ≤ m < j or vice versa, we only have to sum

over 1 ≤ i, j ≤ m, so (2.12) turns into (1.13). Then the reasoning of Section 1.c shows that
the metrics ḡ and g are equal. This finishes the proof of Theorem 2.7. �

2.13. Remark. Recall that the Kervaire semi-characteristic σ(M) ∈ Z2 of M4k+1 is de-

fined as
∑2k

i=0 b2i mod 2, where bj := dimHj(M ;R) denotes the j-th Betti number over R.

If M4k+1 = G/K is a Riemannian symmetric space of compact type, then σ(M) 6= 0
iff rkG = rkK + 1 and the number q in Propositions 2.8 and 2.9 is odd. For a compact, ori-
ented manifold of dimension 4k+1 with σ(M) 6= 0, we see immediately that the operator D̄R
constructed above has a non-trivial kernel, cf. [9], Example II.7.7. We can thus reformulate
Theorem 2.7 for compact, connected, oriented Riemannian manifolds M with σ(M) 6= 0
and RM ≥ 0. However, it is not clear if such a reformulation will give us any new exam-
ple of a compact, connected, oriented Riemannian manifold with RM ≥ 0 that carries an
area-extremal metric. Such a new example could be of the type M/Γ, where M = G/K is a
symmetric space of compact type with rkG > rkK+ 1, and Γ acts nontrivially on H∗(M,R)
(in particular, Γ does not act as a subgroup of G).

2.14. Remark. One could generalize Theorem 2.4 to area-non-increasing spin maps f : N →M
between compact, connected, oriented Riemannian manifolds (M, g) and (N, ḡ) withRM ≥ 0,
where dimM and dimN are not necessarily even. For certain pairs of dimensions, the
Atiyah-Singer index theorem provides a K-theoretic condition on f that is sufficient for the
existence of a D̄-harmonic spinor in Γ(SN ⊗ f∗SM), so that one can apply Lemma 1.6. In
general, this K-theoretic condition will not admit a reformulation in terms of characteristic
classes (even the Kervaire semi-characteristic mentioned above cannot be expressed in terms
of characteristic classes).
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