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Abstract

In [KSW97a] we proved a lower bound for the spectrum of the Dirac operator on quaternionic Kähler
manifolds. In the present article we show that the only manifolds in the limit case, i. e. the only manifolds
where the lower bound is attained as an eigenvalue, are the quaternionic projective spaces. We use the
equivalent formulation in terms of the quaternionic Killing equation introduced in [KSW97b] and show
that a nontrivial solution defines a parallel spinor on the associated hyperkähler manifold.
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1 Introduction

The square of the first eigenvalue of the Dirac operator on the sphere Sn of scalar curvature κ is κ
4

n
n−1 . In

[Fri80] Friedrich showed that this eigenvalue is a universal lower bound for all eigenvalues on an arbitrary
compact Riemannian spin manifold (Mn, g) with positive scalar curvature κ in the following sense: all
eigenvalues of the Dirac operator satisfy

λ2 ≥ minMκ

4

n

n− 1
.

An eigenspinor realizing this lower bound is characterized by a special differential equation called the Killing
equation. Conversely, on manifolds admitting Killing spinors, i. e. nontrivial solutions of this Killing equation,
the lower bound is realized as an eigenvalue. These manifolds have been characterized by C. Bär [Bär93]

translating the Killing equation on M into the equation of a parallel spinor on the cone M̂ = R+ ×t2 M .
The existence problem of solutions of the Killing equation was thus reduced to the description of manifolds
with parallel spinors by M. Wang [Wan89].

Despite the fact that Friedrich’s estimate is sharp, it is not optimal if M is assumed to have additional
geometric structure, namely special holonomy. Due to a result of O. Hijazi and A. Lichnerowicz ([Hij84],
[Lic87]), there is no solution of the Killing equation if M possesses a non–trivial parallel k–form, k 6= 0, n.
There are two canonical classes of such manifolds which in addition have positive scalar curvature: Kähler
manifolds and quaternionic Kähler manifolds.

The eigenvalue estimate for Kähler manifolds has been improved by K.–D. Kirchberg in [Kir86] and [Kir90]
(see also [Lic90] and [Hij94]). Again, this estimate is sharp: the lower bound is attained as first eigenvalue
on the complex projective space CPm resp. on its product with a flat 2–torus in odd resp. even complex
dimensions. On Kähler manifolds of odd complex dimension, a spinor with smallest possible eigenvalue is
characterized by a suitable modification of the Killing equation, the Kählerian Killing equation. A. Moroianu
showed in [Mor95] that a Kählerian Killing spinor defines an ordinary Killing spinor on the canonical S1–
bundle over M . Hence, the holonomy argument of Bär’s work can be used to study the limit case. In even
complex dimensions, the problem of characterizing the limit case is still open. Nevertheless, there are partial
results by A. Moroianu [Mor97] and A. Lichnerowicz [Lic90].

A quaternionic Kähler manifold is an oriented 4n–dimensional Riemannian manifold with n ≥ 2 whose
holonomy group is contained in the subgroup Sp(1) · Sp(n) ⊂ SO(4n). Equivalently they are characterized
by the existence of a certain parallel 4–form Ω, the so–called fundamental or Kraines form (cf. [Bon67],
[Kra66]). All quaternionic Kähler manifolds are Einstein with constant scalar curvature (cf. [Ale68b] or
[Ish74]) and possess a unique spin structure if n is even, whereas for odd n only the quaternionic projective
spaces are spin (cf. [Sal82]). In [KSW97a] we proved that on a compact quaternionic Kähler spin manifold
(M4n, g) of positive scalar curvature κ the eigenvalues λ of the Dirac operator satisfy

λ2 ≥ κ

4

n+ 3

n+ 2
.

As in the Riemannian or Kähler case, this estimate is sharp, and the lower bound is attained as first eigenvalue
on the quaternionic projective space (cf. [Mil92]).

The natural task is to study the limit case and to find all manifolds which have κ
4
n+3
n+2 in the spectrum of

D2. A first step in this direction was taken in [KSW97b], where we introduced the equation characterizing
an eigenspinor with this particular eigenvalue. A new feature of this quaternionic Killing equation is that
it involves not only the eigenspinor but also an auxiliary section of an additional bundle, which is not
itself a spinor. We used it to show that no compact symmetric quaternionic Kähler manifolds besides the
quaternionic projective spaces carry quaternionic Killing spinors. In the present article we prove the following
more general

Theorem 1 Let M be a compact quaternionic Kähler manifold of quaternionic dimension n and positive
scalar curvature κ. If there is an eigenspinor for the Dirac operator with eigenvalue λ satisfying

λ2 =
κ

4

n+ 3

n+ 2
,
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then M is isometric to the quaternionic projective space.

For the proof we follow the approach of C. Bär and A. Moroianu. We consider the canonical SO(3)–bundle
S associated with any quaternionic Kähler manifold. Introducing an appropriate metric on the total space
S the warped product M̂ := R+×t2 S has a natural hyperkähler metric. Reformulating the Killing equation
in terms of equivariant functions on the Sp(1) ·Sp(n)–frame bundle of the quaternionic Kähler manifold we

show that a quaternionic Killing spinor induces a Killing spinor on S and a parallel spinor on M̂ . The result
of M. Wang then implies that the hyperkähler manifold M̂ has to be locally isometric to Hn+1 forcing M to
be isometric to the quaternionic projective space.

We would like to thank A. Swann for several hints and comments and W. Ballmann for encouragement
and support.

2 Semiquaternionic Vector Spaces and Representations

The tangent space of a quaternionic Kähler manifold is not a priori a quaternionic left vector space because
in general the three local complex structures are not defined globally. This ambivalence gives rise to the
weaker notion of a semiquaternionic structure on a real vector space:

Definition. A semiquaternionic structure on a real vector space T is a subalgebra Q ⊂ End T with id T ∈ Q
and Q ∼= H as R–algebras. It is said to be adapted to a euclidean scalar product 〈, 〉 on T if

〈 qt1, t2 〉 = 〈 t1, qt2 〉

for all t1, t2 ∈ T and q ∈ Q, where q denotes conjugation defined by Q = R⊕ ImQ := R id T ⊕ [Q,Q].

Thus, choosing an isomorphism from H to Q makes T a quaternionic left vector space, however no particular
isomorphism is preferred. Accordingly, the notion of quaternionic linear map has to be refined:

Definition. An R–linear map f : T → T ′ between vector spaces T , T ′ with semiquaternionic structures Q,
Q′ is semilinear, if there exists an isomorphism of R–algebras fQ : Q→ Q′ such that f(qt) = fQ(q)f(t) for
all t ∈ T and q ∈ Q. If f is semilinear and not identically zero fQ is uniquely defined, because id T ′ ∈ Q′
and Q′ ∼= H implies that every non–zero endomorphism in Q′ is invertible.

If T is a euclidean vector space with an adapted semiquaternionic structure, then the group of all semilinear
isometries of T is isomorphic to Sp(1) · Sp(n) := Sp(1) × Sp(n)/Z2. Choosing a particular isomorphism
makes T a true representation of Sp(1) · Sp(n) and any two representations T , T ′ defined this way are
intertwined by a semilinear isometry, which is unique up to sign. For this reason we will call any such T the
defining representation of Sp(1) · Sp(n) with a choice of isomorphism tacitly understood. It turns out that
the defining representation T comes along with a preferred isomorphism H → Q given by the infinitesimal
action of i, j, k ∈ sp(1) ∼= Im H on T .

Similarly, one may construct the defining representation of the group Sp(n) of unitary quaternionic
n × n–matrices. If E is a complex vector space of dimension 2n endowed with a symplectic form σE
and an adapted positive quaternionic structure J , i. e. σE( Je1, Je2 ) = σE( e1, e2 ) for all e1, e2 ∈ E
and σE( e, Je ) > 0 for all 0 6= e ∈ E, then the group of all C–linear symplectic transformations of E
commuting with J is isomorphic to Sp(n). Choosing a particular isomorphism makes E a true Sp(n)–
representation and any two representations E, E′ defined this way are intertwined by a C–linear symplectic
map preserving the quaternionic structure, which is unique up to sign. For this reason we will call any such E
the defining representation of Sp(n). Note that the Lie algebra of all infinitesimal symplectic transformations
of E is canonically isomorphic to Sym2E with e1e2 acting as the endomorphism σE(e1, ·)e2 + σE(e2, ·)e1,
and elements of Sym2E commute with J if and only if they are real with respect to the real structure
Sym2J . Hence, the defining representation comes along with a canonical real Sp(n)–equivariant isomorphism
C⊗R sp(n)→ Sym2E of Lie algebras. We will denote the defining representation of Sp(1) by H.

There are several possibilities to give explicit realizations of the representations introduced above. In
calculations and proofs below we will use the following standard picture, differing somewhat from Salamon’s
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conventions (cf. [Sal82]). Consider the space of row vectors Hn over the quaternions with complex and
quaternionic structure given by multiplication with i and j from the left. The group of unitary quaternionic
matrices Sp(n) := {A ∈ Mn,nH : AHA = 1} acts on Hn from the left by multiplying with AH from the
right. Thus, it commutes with the complex and quaternionic structure and preserves the linear form

σHn( v1, v2 ) := [ v1v
H
2 j ]C ,

where [q]C := 1
2 (q− iqi) ∈ C is the C–part of q ∈ H. The C–part is obviously C–bilinear, i. e. [xqy]C = xy[q]C

for all x, y ∈ C ⊂ H, and satisfies
[q]C = [q]C = [−jqj]C .

Using these properties it is easily checked that σHn is indeed C–bilinear symplectic and that the quaternionic
structure is adapted and positive. In this way Hn becomes the defining representation of Sp(n).

With a slight modification of the construction above we can make Hn the defining representation of
Sp(1) · Sp(n), too. The scalar multiplication with q ∈ H from the left on the row vectors in Hn determines
a subspace Q ⊂ End Hn, which obviously is a semiquaternionic structure adapted to the standard scalar
product on Hn given by

〈 v1, v2 〉 := Re v1v
H
2 = Re σHn( v1, jv2 ) .

The group Sp(1) · Sp(n) = {z ·A : z ∈ Sp(1) and A ∈ Sp(n)} acts on Hn from the left through semilinear
isometries by (z ·A)v := zvAH .

An important point is particularly obvious in this standard picture and in consequence true for every
defining representation of Sp(1) · Sp(n). The infinitesimal action of i, j, k ∈ sp(1) ⊂ sp(1) ⊕ sp(n) on T
defines a canonical Sp(1) · Sp(n)–equivariant isomorphism of algebras H→ Q making T a quaternionic left
vector space. Thus, the natural homomorphism Sp(1) · Sp(n) → Aut Q, z · A 7→ (z · A)Q is trivial on
the subgroup Sp(n) and descends to an isomorphism SO(3) := Sp(1)/Z2

∼= Aut Q on the complementary
subgroup Sp(1) sending z · 1 ∈ Sp(1) to zQ := (z · 1)Q.

This observation allows a construction which becomes fundamental for quaternionic Kähler geometry
once it is “gauged”. Let T be the defining representation of Sp(1) · Sp(n) and T ′ an arbitrary euclidean
vector space with an adapted semiquaternionic structure Q′. The representations of Sp(1) ·Sp(n) on T and
SO(3) on Q define simply transitive right group actions on

P = {f : T → T ′ semilinear isometry}

and
S = {fQ : Q→ Q′ isomorphism of algebras}

such that the natural projection f 7→ fQ is Sp(1)–equivariant. Fixing a base point in P to identify P with
Sp(1) · Sp(n) we get the following diagram:

P

S {T ′}-

�
�
�
�
��

A
A
A
A
AU

z ·A

zQ 1-

�
�
�
�
��

A
A
A
A
AU

The quaternionic structure on T can be used to construct two important relations between the defining
representations H, E and T of Sp(1), Sp(n) and Sp(1) · Sp(n):

Lemma 2.1 Let T be the defining representation of Sp(1) · Sp(n). Define the complex and quaternionic
structure on T by the infinitesimal action of i, j (and k) in sp(1) ∼= Im H. With the C–bilinear symplectic
form σT ( t1, t2 ) = 〈 jt1, t2 〉 + i〈 kt1, t2 〉 the vector space T becomes the defining representation of Sp(n).
Conversely, the complex and quaternionic structure of the defining representation E of Sp(n) generate a
subalgebra Q in the R–linear endomorphisms of E, which is a semiquaternionic structure adapted to the
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scalar product 〈 ·, · 〉 := Re σE( ·, J · ) making E the defining representation of Sp(1) · Sp(n). In particular,
there is up to sign a unique Sp(n)–equivariant, C–linear symplectic isomorphism Ψ : T → E preserving the
quaternionic structure. In the standard picture this isomorphism is simply the identity.

This isomorphism has the disadvantage of spoiling the Sp(1)–action on T . Consequently, it is impossible
to use it directly on quaternionic Kähler manifolds. Nevertheless, we may use it to define a family of Sp(n)–
equivariant isomorphisms C ⊗R T → H ⊗C E depending on the choice of a canonical base p, q := Jp of H
satisfying σH(p, q) = 1 by

Φ : x⊗R t 7−→ 1√
2

(
xp⊗C Ψ(t) + xq ⊗C JΨ(t)

)
. (2.2)

All these isomorphisms are real with respect to the real structure J ⊗C J on H ⊗C E and isometries from
〈 , 〉 to σH ⊗C σE :

σH ⊗ σE(Φ(1⊗R t1),Φ(1⊗R t2)) = 1
2

(
σE(Ψ(t1), JΨ(t2))− σE(JΨ(t1),Ψ(t2))

)
= 1

2

(
〈 jt1, jt2 〉+ i〈 kt1, jt2 〉+ 〈 t1, t2 〉 − i〈 it1, t2 〉

)
= 〈 t1, t2 〉 ,

since JΨ(t) = Ψ(jt) and σE(Ψ(t1),Ψ(t2)) = 〈 jt1, t2 〉 + i〈 kt1, t2 〉 by construction. It turns out that
there are exactly two canonical bases p, q for which the isomorphism above is not only Sp(n)– but already
Sp(1) · Sp(n)–equivariant, thus defining a more fundamental isomorphism better suited for globalization:

Lemma 2.3 Up to sign there is a unique real Sp(1) · Sp(n)–equivariant isomorphism of complex vector
spaces

Φ : C⊗R T ∼= H ⊗C E ,

which is an isometry from the the C–bilinear extension of 〈 , 〉 to σH ⊗ σE.

Proof. It is sufficient to prove this lemma in the standard picture as it translates immediately to arbitrary
realizations of the defining representations. In this picture the canonical base to choose is p = j and q = −1
(or p = −j and q = 1) leading to:

Φ : C⊗R Hn −→ H⊗C Hn Φ−1 : H⊗C Hn −→ C⊗R Hn

x⊗R v 7−→ 1√
2
(xj ⊗C v − x⊗C jv) q ⊗C v 7−→ 1√

2
(1⊗R qjv + i⊗R qkv) .

(2.4)
Note that Φ−1(iq ⊗C v) = Φ−1(q ⊗C iv) = iΦ−1(q ⊗C v). Thus, Φ−1 is well defined and C–linear. As
Sp(1) · Sp(n)–equivariance of Φ−1 is obvious and Φ is an isometry it remains to show that Φ and Φ−1 are
mutual inverses:

(Φ−1 ◦ Φ)(x⊗R v) = 1
2

(
1⊗R (−jxjv + xv) + i⊗R (−jxijv + xiv)

)
= 1

2

(
1⊗R 2 Re(x)v + i⊗R 2 Re(−xi)v

)
= x⊗R v .

A direct calculation of Φ ◦ Φ−1 = id is more tedious, but can be done. 2

3 Principal Bundles on Quaternionic Kähler Manifolds

“Gauging” the pointwise constructions of the previous section leads to the definitions of the basic objects
of quaternionic Kähler geometry. However, in strict analogy with Kähler geometry one has to impose an
additional integrability condition:

Definition. A quaternionic Kähler manifold is a Riemannian manifold M of dimension 4n, n ≥ 2 with an
adapted semiquaternionic structure QxM ⊂ End TxM on every tangent space which is respected by the
Levi–Civitá connection of M :

∇Γ(Q) ⊂ Γ(T ∗M ⊗Q) .
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Thus, parallel transport of endomorphisms along arbitrary curves γ induces isomorphisms of R–algebras
Qγ(0)M → Qγ(τ)M , and a fortiori parallel transport of tangent vectors defines semilinear isometries
Tγ(0)M → Tγ(τ)M . In particular, the Levi–Civitá connection is tangent to the reduction of the frame
bundle to the principal Sp(1) · Sp(n)–bundle of semilinear orthogonal frames

P := {f : T → TxM semilinear isometry} (3.5)

with projection πM : P →M, f 7→ x. Additionally, P projects Sp(1)–equivariantly to

S := {fQ : Q→ QxM isomorphism of algebras} (3.6)

via πS : P → S, f 7→ fQ, which is in turn a principal SO(3)–bundle over M with projection π : S →
M, fQ 7→ x. In this way P may be considered as a principal Sp(1) · Sp(n)–bundle over M or as a principal
Sp(n)–bundle over S:

P

S M-

�
�
�
�
���

A
A
A
A
AAU

πS πM

π

f :T→TxM

fQ :Q→QxM x-

�
�
�
�
���

A
A
A
A
AAU

πS πM

π

The tangent bundle TM of M is canonically isomorphic to the bundle associated to P by the defining
representation T sending the class [f, t] ∈ P ×Sp(1)·Sp(n) T to f(t). Alternatively, this isomorphism can be
expressed by the soldering form θM := f−1 ◦ (πM )∗ ∈ Γ(T ∗P ⊗ T ) of M . Considering the fundamental
isomorphism Φ : C ⊗R T → H ⊗ E one might try to define vector bundles H and E from the defining
representations H and E of Sp(1) and Sp(n). In this generality, this is only possible on the quaternionic
projective spaces, because only for these manifolds the bundle P can be covered by a principal Sp(1)×Sp(n)–
bundle. Nevertheless, representations of Sp(1)×Sp(n) contained in some H⊗p⊗E⊗q with p+q even descend
to Sp(1)·Sp(n) defining vector bundles on M associated to P . In this way M carries a multitude of naturally
defined vector bundles besides bundles constructed out of the tangent bundle. The usefulness of these vector
bundles has been shown by [Sal82] (see also [KSW97a]). In particular, the bundle H⊗E is globally defined and
canonically isomorphic to TMC as expressed e. g. by the soldering form θH⊗EM := Φ◦θM ∈ Γ(T ∗P⊗(H⊗E)).

By definition, the Levi–Civitá connection is tangent to P and determined by a connection 1–form ωM
with values in the direct sum sp(1) ⊕ sp(n); accordingly, ωM splits into ω

sp(1)
M ⊕ ω

sp(n)
M . Additionally,

the Levi–Civitá connection defines a connection on the principal bundle S. Recall that horizontal lifts
Xh ∈ Tf0P of tangent vectors X = d

dτ

∣∣
0
xτ ∈ Tx0M can be represented by curves of semilinear orthogonal

frames fτ : T → TxτM over xτ satisfying ∇dτ
∣∣
0
fτ = 0. Likewise the connection on S is defined by representing

horizontal liftsXh ∈ TfQ0 S by curves fQτ : Q→ QxτM of algebra isomorphisms over xτ satisfying ∇dτ
∣∣
0
fQτ = 0.

More succinctly, the connection 1–form ω on S for arbitrary tangent vectors d
dτ

∣∣
0
fQτ is given by

ω
( d
dτ

∣∣∣
0
fQτ

)
:=

(
fQ0
)−1 ∇

dτ

∣∣∣
0
fQτ .

Using the Leibniz rule for the covariant derivative along curves, it is immediately seen that πS projects
horizontal vectors d

dτ

∣∣
0
fτ on P to horizontal vectors d

dτ

∣∣
0
fQτ on S, because for arbitrary q ∈ Q, t ∈ T(∇

dτ

∣∣∣
0
fτ

)
(qt) =

(∇
dτ

∣∣∣
0
fQτ

)
(q) f0(t) + fQ0 (q)

(∇
dτ

∣∣∣
0
fτ

)
(t) ,

and consequently ∇dτ
∣∣
0
fτ = 0 implies ∇dτ

∣∣
0
fQτ = 0. Since the projection πS : P → S is Sp(1)–equivariant, and

vectors tangent to the Sp(n)–action on P are surely vertical with respect to the projection πS we conclude:

Lemma 3.7 π∗Sω = ω
sp(1)
M .
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Remarkably, the curvature of this connection on S depends only on the scalar curvature κ of M . In fact,
according to the classification of sp(1) ⊕ sp(n)–curvature tensors due to Alekseevskii (cf. [Ale68a], [Sal82])
the curvature tensor of a quaternionic Kähler manifold can be expressed in terms of the scalar curvature κ
and a section R of Sym4E∗. We have

R = − κ

8n(n+ 2)

(
RH +RE

)
+Rhyper, (3.8)

where RH , RE and Rhyper are Sym2H– or Sym2E–valued 2–forms defined on sections of H⊗E ∼= TMC:

RHh1⊗e1,h2⊗e2 = σE(e1, e2)h1 · h2 ∈ Sym2H

REh1⊗e1,h2⊗e2 = σH(h1, h2)e1 · e2 ∈ Sym2E

Rhyperh1⊗e1,h2⊗e2 = σH(h1, h2)R(e1, e2, ·, ·) ∈ Sym2E∗ ∼= Sym2E ,

(3.9)

acting as endomorphisms on H⊗E. Analyzing these terms leads to the following formula for the pull–back
of the curvature 2–form Ω of the connection ω to P :

Lemma 3.10 The curvature 2–form of the connection ω on S pulled back to P is given by

π∗SΩ =
κ

16n(n+ 2)

(
〈 θM ∧ iθM 〉i+ 〈 θM ∧ jθM 〉j + 〈 θM ∧ kθM 〉k

)
,

where by definition 〈 θM ∧ iθM 〉(X,Y ) := 2〈 θM (X), iθM (Y ) 〉.

Proof. Instead of calculating the curvature on S directly we will calculate the curvature of the bundle

Sym2H, which can be associated to S or P inheriting the same connection due to π∗Sω = ω
sp(1)
M . Its

curvature considered as an sp(1)–valued 2–form on P is thus π∗SΩ. Obviously only RH acts non–trivially on
Sym2H and neglecting for a moment that it is defined for sections of vector bundles we may consider it as
a real Sp(1) · Sp(n)–equivariant morphism

C⊗R Λ2T
∼=−→ Λ2(H ⊗ E)

RH−→ Sym2H
∼=−→ C⊗R sp(1) ,

where the first isomorphism is the extension of C⊗RT ∼= H⊗E and the second is the canonical isomorphism
C ⊗R sp(1) ∼= Sym2H, which makes H the defining representation of Sp(1). To make this isomorphism
explicit in the standard picture we choose the canonical base j, −1 of H with σH(j,−1) = 1 and find for the
infinitesimal action of i, j and k ∈ Im H:

i : 1 7→ −i = i(−1) j : 1 7→ −j k : 1 7→ −k = i(−j)
j 7→ k = i(j) j 7→ 1 j 7→ −i = i(−1) .

Hence, the isomorphism C⊗Rsp(1) ∼= Sym2H maps i to i(1 j), j to 1
2 (j2+12) and k to i

2 (j2−12). Accordingly,
the morphism RH reads in the standard picture

RH1⊗Rv1,1⊗Rv2
= 1

2

(
RHj⊗v1,j⊗v2 −R

H
1⊗jv1,j⊗v2 −R

H
j⊗v1,1⊗jv2 +RH1⊗jv1,1⊗jv2

)
= 1

2

(
σHn(v1, v2)j2 − σHn(jv1, v2)1 j − σHn(v1, jv2)1 j + σHn(jv1, jv2)12

)
= Re σHn(v1, v2) · 1

2 (j2 + 12) + Im σHn(v1, v2) · i2 (j2 − 12)− Im σHn(v1, jv2) · i(1 j)

= −〈 v1, jv2 〉j − 〈 v1, kv2 〉k − 〈 v1, iv2 〉i

for v1, v2 ∈ Hn. Being Sp(1) · Sp(n)–equivariant RH can be made a C⊗R (P ×Ad sp(1)) ∼= Sym2H–valued
2–form in a straightforward way and becomes the RH defined above. Alternatively, − κ

8n(n+2)R
H can be

thought of as the horizontal Sp(1) · Sp(n)–equivariant sp(1)–valued curvature form π∗SΩ on P and is given
by the stated formula. The additional factor 1

2 comes from the definition of the wedge product. 2
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4 The Levi–Civitá Connection on S and M̂

Let π : S → M be the canonical SO(3)–bundle over M defined in (3.6), with connection form ω and
Riemannian metric

gS = 16n(n+2)
κ B(ω, ω) + π∗gM ,

where B is the standard metric on sp(1) ∼= Im H, and κ denotes the scalar curvature of M . This metric is
Einstein, and if we rescale the metrics of M and S so that κ = 16n(n+2), then (S, gS) has a natural Sasakian
3–structure. The structure group of S reduces to Sp(n), and we can embed the principal Sp(n)–bundle P
into the frame bundle of S in such a way that the soldering form θS ∈ Γ(T ∗P ⊗ (sp(1) ⊕ T )) of S on P is
given by

θS =

√
16n(n+2)

κ ω
sp(1)
M ⊕ θM . (4.11)

In this way the Riemannian metric of S is associated to the standard metric B⊕〈 , 〉 on sp(1)⊕T . In terms
of covariant derivatives the Levi–Civitá connection of gS is easily computed, and we obtain:

Lemma 4.12 Let U, V be vertical vector fields given as fundamental vector fields induced by elements of the
Lie algebra sp(1). Further, let Xh, Y h be the horizontal lifts of vector fields X, Y on M and {eν}ν=1,...,4n a
locally defined horizontal orthonormal frame on S. Then the only non–zero covariant derivatives are given
by

∇UV = 1
2 [U, V ]

∇XhY h = (∇XY )h − 1
2 Ω(Xh, Y h)

∇XhU = ∇UXh = 1
2

∑4n
ν=1 gS

(
Ω(Xh, eν), U

)
eν .

Here and in the sequel we identify elements of sp(1) with their associated fundamental vector fields. The
Levi–Civitá connection of S is determined by a so(sp(1)⊕ T )–valued 1–form ωS on the orthonormal frame
bundle of S, but as the structure group reduces to Sp(n), it is sufficient to know its restriction to the
Sp(n)–reduction P again denoted by ωS .

Lemma 4.13 The connection form ωS on P can be written as

ωS = ω
sp(n)
M + 1

2 ad
(
ω
sp(1)
M

)
+
√

κ
16n(n+2)

(
i θM ∧ i + j θM ∧ j + k θM ∧ k

)
.

Proof. For the proof we identify vector fields on S with equivariant functions on P , i. e.

Γ(TS) ∼= C∞(P, sp(1)⊕ T )Sp(n)

A 7→ Â .

With respect to this identification the covariant derivative translates as

∇̂AB = dB̂(Ã) + ωS(Ã) B̂ ,

where Ã denotes an arbitrary lift of A to a vector field on P . We will use this formula and Lemma 4.12
to compute all non–zero terms ωS(Ã) B̂, which then combine to give the stated expression for ωS . The

definition of the soldering form θS immediately implies that the function Â is given by θS(Ã). In particular,
we have for a fundamental vector field U

Û = θS(Ũ) =

√
16n(n+2)

κ π∗Sω(Ũ) =

√
16n(n+2)

κ ω(U) =

√
16n(n+2)

κ U ∈ sp(1) . (4.14)

Let Xh, Y h denote the horizontal lifts of the vector fields X, Y on M . Because of π ◦ πS = πM we can

assume X̃h = X̃. Then,

∇̂XhY h = dŶ (X̃) + ωS(X̃) Ŷ .
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Using Lemma 4.12, Lemma 3.10 and equation (4.14) we find

ωS(X̃) Ŷ = ̂(∇XY )h − 1
2

̂Ω(Xh, Y h) − dŶ (X̃)

= ωM (X̃) Ŷ −
√

κ
16n(n+2)

(〈
θM (X̃), i θM (Ỹ )

〉
i +

〈
θM (X̃), j θM (Ỹ )

〉
j

+
〈
θM (X̃), k θM (Ỹ )

〉
k
)

= ωM (X̃) Ŷ +
√

κ
16n(n+2)

(〈
i θM (X̃), Ŷ

〉
i +

〈
j θM (X̃), Ŷ

〉
j +

〈
k θM (X̃), Ŷ

〉
k
)

= ωM (X̃) Ŷ +
√

κ
16n(n+2)

(
i θM (X̃) ∧ i + j θM (X̃) ∧ j + k θM (X̃) ∧ k

)
Ŷ .

Let U, V be fundamental vector fields. Then V̂ is a constant function and dV̂ (Ũ) = Ũ(V̂ ) = 0. Hence,

∇̂UV = ωS(Ũ)V̂ = 1
2 [̂U, V ] = 1

2 [Û , V̂ ] = 1
2 ad

(
ω
sp(1)
M (Ũ)

)
V̂ .

Finally, let U be fundamental, Xh a horizontal lift of X and {eν}ν=1,...,4n a horizontal orthonormal frame

on S, with Eν = θS(ẽν) = êν . Then dÛ(X̃) = X̃(Û) = 0 and we obtain

ωS(X̃) Û = ∇̂XhU = 1
2

∑4n
ν=1 gS

(
Ω(Xh, eν), U

)
Eν

= κ
16n(n+2)

∑4n
ν=1

(〈
θM (X̃), i Eν

〉
gS(i, U)Eν +

〈
θM (X̃), j Eν

〉
gS(j, U)Eν

+
〈
θM (X̃), k Eν

〉
gS(k, U)Eν

)
= −

∑4n
ν=1

(〈
i X̂, Eν

〉
B(i, U)Eν +

〈
j X̂, Eν

〉
B(j, U)Eν +

〈
k X̂, Eν

〉
B(k, U)Eν

)
= −

∑4n
ν=1

〈(
i B(i, U) + j B(j, U) + k B(k, U)

)
X̂, Eν

〉
Eν

= −ωsp(1)
M (Ũ) X̂ .

Combining these three calculations leads to

ωS = ωM + 1
2 ad

(
ω
sp(1)
M

)
+
√

κ
16n(n+2)

(
i θM ∧ i + j θM ∧ j + k θM ∧ k

)
− ω

sp(1)
M .

In this formula the last summand −ωsp(1)
M acts by the infinitesimal sp(1)–action on T and thus cancels the

action of ω
sp(1)
M as part of the first summand ωM . So we end up with the stated formula for ωS . 2

Besides the manifold S we also need to consider the cone M̂ over S, i. e. the warped product M̂ := R+×t2S
with metric

ĝ = 16n(n+2)
κ dt2 + t2 gS .

The structure group of M̂ reduces to Sp(n), and we can embed the principal Sp(n)–bundle P
M̂

:= R+ × P
into the bundle of orthonormal frames of M̂ in such a way that the R⊕ sp(1)⊕ T–valued soldering form on
P
M̂

is given by

θ
M̂

=

√
16n(n+2)

κ (−dt) ⊕ t θS =

√
16n(n+2)

κ

(
− dt ⊕ t ω

sp(1)
M

)
⊕ t θM .

This convention makes the inward pointing vector field Ξ := −
√

κ
16n(n+2)

∂
∂t correspond to 1 := θ

M̂
(Ξ) ∈ R.

This may be surprising at first but it turns out that only this orientation is compatible with a hyperkähler
structure on M̂ introduced later. With this choice of soldering form the Riemannian metric ĝ is associated
to the standard metric 〈 , 〉 ⊕B ⊕ 〈 , 〉 on R⊕ sp(1)⊕ T .
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Lemma 4.15 The restriction ω
M̂

of the Levi–Civitá connection of M̂ to the reduction P
M̂

of the bundle of
orthonormal frames reads:

ω
M̂

= ωS +
√

κ
16n(n+2) θS ∧ 1

= ω
sp(n)
M + 1

2 ad
(
ω
sp(1)
M

)
+ ω

sp(1)
M ∧ 1

+
√

κ
16n(n+2)

(
θM ∧ 1 + i θM ∧ i + j θM ∧ j + k θM ∧ k

)
.

In particular, the connection form ω
M̂

is the pull–back of a well defined 1–form on P .

Proof. The proof is similar to the proof of the corresponding formula for ωS . Let ∇̂ denote the covariant
derivative for the Levi–Civitá connection of ĝ. The only non–vanishing terms are

∇̂XY = ∇SXY +
√

κ
16n(n+2)

1
t ĝ(X, Y ) Ξ and ∇̂XΞ = ∇̂ΞX = −

√
κ

16n(n+2)
1
t X .

Using the same notation as in the proof of Lemma 4.13 we obtain

ω
M̂

(X̃)Ŷ = ωS(X̃)Ŷ +
√

κ
16n(n+2)

1
t

〈
θ
M̂

(X̃), θ
M̂

(Ỹ )
〉

Ξ̂ = ωS(X̃)Ŷ +
√

κ
16n(n+2)

〈
θS(X̃), Ŷ

〉
1 .

Having this expression for horizontal vector fields X, Y we immediately derive

ω
M̂

= ωS +
√

κ
16n(n+2) θS ∧ 1 = ωS +

√
κ

16n(n+2) θM ∧ 1 + ω
sp(1)
M ∧ 1 . 2

An interesting application of the formulas given above relates the curvature tensor R̂ of the manifold (M̂, ĝ)
to the hyperkähler part Rhyper of the curvature tensor of (M, g). The proof will be given in appendix B.

Proposition 4.16 The curvature tensor R̂ is horizontal with respect to π̂ : M̂ →M . Its only non–vanishing
terms are

R̂(X, Y ) = Rhyper(π̂∗X, π̂∗Y ) .

The right–hand side acts on the orthogonal complement (TV M̂)⊥ of the vertical tangent bundle, which is
canonical isomorphic to π̂∗TM .

The manifold M̂ has been previously studied by A. Swann using the notation U(M) [Swa91]. He constructs

M̂ as the Z2–quotient of the total space of the locally defined bundle H with zero section removed. The
metric ĝ is a member of the family of hyperkähler metrics on M̂ introduced in [Swa91]. In particular, the
proposition above is implicit in his work (see also [Swa97]).

5 Quaternionic Killing Spinors

In this chapter we recall the quaternionic Killing equation introduced in [KSW97b]. It will provide us with
an equivalent formulation of the limit case. First, we have to collect some facts for the spinor bundle and
Clifford multiplication on a quaternionic Kähler manifold (cf. [KSW97a]).

The spinor bundle of a 4n–dimensional quaternionic Kähler spin manifold decomposes into a sum of
n+ 1 subbundles, which can be expressed using the locally defined bundles E and H (cf. [BaS83], [HiM95]
or [Wan89]). For this we have to introduce the bundles Λs◦E. They are associated to the irreducible
Sp(n)–representations on the spaces Λs◦E of primitive s–vectors, which are the kernels of the contraction
σEy : ΛsE −→ Λs−2E with the symplectic form σE . With this notation the spinor bundle can be written

S(M) =

n⊕
r=0

Sr(M) :=

n⊕
r=0

SymrH⊗ Λn−r◦ E . (5.17)
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In order to define the Clifford multiplication we have to fix notations for modified contraction and multiplica-
tion on SymrH and Λs◦E. Contraction preserves the primitive spaces, i. e. if η is in Λs◦E then e] y η ∈ Λs−1

◦ E,
where e] := σE(e, ·) ∈ E∗ denotes the dual of e ∈ E. However, this is not true for the wedge product and
the projection e ∧◦ η of e ∧ η onto Λs+1

◦ E is given by

e ∧◦ η = e ∧ η − 1
n−s+1 LE ∧ (e] y η) ,

where LE is the canonical bivector associated to σE under the isomorphism Λ2E ∼= Λ2E∗. Let h· denote
the symmetric product with h ∈ H, and for h] := σH(h, ·) ∈ H∗ we define h] y◦ : SymrH → Symr−1H
by h] y◦ := 1

rh
] y . Let h ⊗ e ∈ H ⊗ E = TMC be a tangent vector. Then, the Clifford multiplication

µ(h⊗ e) : S(M)→ S(M) is given by

µ(h⊗ e) =
√

2 (h · ⊗ e] y + h] y◦ ⊗ e∧◦ ) . (5.18)

In particular, it maps the subbundle Sr(M) to the sum Sr−1(M) ⊕ Sr+1(M) and thus splits into two
components

µ+
− : TM ⊗ Sr(M) −→ Sr+1(M) and µ−+ : TM ⊗ Sr(M) −→ Sr−1(M) ,

with µ+
−(e ⊗ h) =

√
2 (h · ⊗ e] y ) and µ−+(e ⊗ h) =

√
2 (h] y◦ ⊗ e∧◦ ). There are two operations defined

similar to Clifford multiplication

µ+
+ : TM ⊗ SymrH⊗ Λs◦E −→ Symr+1H⊗ Λs+1

◦ E

h⊗ e⊗ ψ 7−→
√

2 (h · ⊗ e∧◦ )ψ

and
µ−− : TM ⊗ SymrH⊗ Λs◦E −→ Symr−1H⊗ Λs−1

◦ E

h⊗ e⊗ ψ 7−→
√

2 (h] y◦ ⊗ e] y )ψ .

Using these notations the Dirac operator D can be written D = D+
− +D−+ with

D+
− := µ+

− ◦ ∇ : Sr(M) −→ Sr+1(M) D−+ := µ−+ ◦ ∇ : Sr(M) −→ Sr−1(M) .

The square of the Dirac operator respects the splitting of the spinor bundle, i. e. D2 : Sr(M) −→ Sr(M)
and we have D+

−D
+
− = 0 = D−+D

−
+ .

A quaternionic Killing spinor is by definition (cf. [KSW97b]) a section ψ = (ψ0, ψ1, ψ−) of the Killing
bundle

SKilling(M) := S0(M) ⊕ S1(M) ⊕ Λn−2
◦ E ∼= Λn◦E ⊕ (H⊗ Λn−1

◦ E) ⊕ Λn−2
◦ E ,

satisfying the following quaternionic Killing equation for some parameter λ 6= 0 and all tangent vectors X:

∇Xψ0 = − λ
n+3 µ

−
+(X)ψ1

∇Xψ1 = − λ
4n µ

+
−(X)ψ0 + 3λ

2(n+3) µ
+
+(X)ψ−

∇Xψ− = − λ
4n µ

−
−(X)ψ1 .

We remark that if (ψ0, ψ1, ψ−) is a solution for parameter λ, then (ψ0, −ψ1, ψ−) is a solution for parameter
−λ. In [KSW97b] we showed that for any solution ψ 6= 0 the spinor ψ0 +ψ1 is an eigenspinor for the minimal
eigenvalue

λ = ±
√

κ
4
n+3
n+2 .

In particular, only for two values of the parameter λ 6= 0 there can possibly exist non–trivial solutions.
Conversely, any eigenspinor for the minimal eigenvalue is of the form ψ0 + ψ1 ∈ Γ(S0(M) ⊕ S1(M)), and
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the augmented eigenspinor (ψ0, ψ1, ψ−) with ψ− := 1
4λ

n+3
n+4 (µ−− ◦ ∇)ψ1 ∈ Γ(Λn−2

◦ E) is a solution of the
quaternionic Killing equation. Obviously, solutions are sections parallel with respect to a modified connection.
Its curvature is precisely the hyperkähler part Rhyper of the curvature of M . Since this part vanishes on
the quaternionic projective space the Killing bundle of HPn is trivialized by augmented eigenspinors with
minimal eigenvalue. Proposition 4.16 then motivates to lift a quaternionic Killing spinor to a parallel spinor
on M̂ .

For our purpose of characterizing the limit case it is more convenient to consider an equivalent version
of the quaternionic Killing equation. Let ψ = (ψ0, ψ1, ψ−) be a solution of the original equation, then the
scaled section

ψscal := (ψscal0 , ψscal1 , ψscal− ) =
(√

n+3
4n ψ0, ψ1, −

√
4n
n+3 ψ−

)
is a solution of the equation

∇X ψscal = −
√

κ
16n(n+2) AX ψ

scal ,

where ψscal is considered as column vector with three entries and AX denotes the matrix

AX =


0 µ−+(X) 0

µ+
−(X) 0 3

2 µ
+
+(X)

0 −µ−−(X) 0

 .

For the remainder of this article, the index denoting the scaling will be omitted. The following lemma shows
that AX can be interpreted as part of an sp(n+ 1)–action.

Lemma 5.19 Let F = H⊕E be the defining representation of Sp(n+1) with symplectic form σF = σH+σE.
Restricted to the subgroup Sp(1)× Sp(n) the Sp(n+ 1)–representation Λs◦F decomposes into

Λs◦F
∼= Λs◦E ⊕ (H ⊗ Λs−1

◦ E) ⊕ Λs−2
◦ E ,

which descends to a well defined representation of Sp(1) · Sp(n) if s is even. Explicitly, the isomorphism
ι : Λs◦E ⊕ (H ⊗ Λs−1

◦ E) ⊕ Λs−2
◦ E −→ Λs◦F is given by

ι
(
φ0 ⊕ (h⊗ φ1)⊕ φ−

)
= φ0 + (h ∧ φ1) + (LH − 1

n−s+2LE) ∧ φ− .

Similarly, Sym2F ∼= C⊗R sp(n+ 1) decomposes into Sym2H ⊕ (H ⊗E) ⊕ Sym2E. For s = n, the subspace
H ⊗ E ⊂ Sym2F acts on Λn◦F via (h⊗ e)φ = 1√

2
Ah⊗e φ.

Proof. It is clear that ι is an injective map to ΛsF . It remains to show that its image is already contained
in Λs◦F . Since σF = σH + σE the statement follows from

σF y (LH − 1
n−s+2 LE) ∧ φ− = [σH y , LH∧]φ− − 1

n−s+2 [σE y , LE∧]φ− = 0 ,

where we used the relations [σH y , LH∧]φ− = φ− and [σE y , LE∧]φ− = (n − s + 2)φ−. Comparing
dimensions shows that ι is in addition surjective, hence it defines an isomorphism.

The action of an element f1 f2 ∈ Sym2F on F is given by (f1 f2)(f) = σF (f1, f)f2 + σF (f2, f) f1 . It

extends as derivation to Λ∗◦F and can be explicitly written as (f1 f2)(ω) = (f2∧f ]1y + f1∧f ]2y )(ω). Hence,
for h ∈ H and e ∈ E considered as elements of F , the element h⊗ e ∈ H ⊗E is identified with h e ∈ Sym2F ,
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and the action on ι(φ) = φ0 ⊕ (a ∧ φ1)⊕ (LH − 1
2LE) ∧ φ− ∈ Λn◦F is given by

(h⊗ e) ι(φ0) = h ∧ e]y φ0

= 1√
2
ι
(
µ+
−(h⊗ e)φ0

)
(h⊗ e) ι(a⊗ φ1) = (h ∧ e]y + e ∧ h]y )(a ∧ φ1)

= − h ∧ a ∧ e]y φ1 + σH(h, a) e ∧ φ1

= −σH(h, a)
(
LH − 1

2LE
)
∧ e]y φ1 + σH(h, a) e ∧◦ φ1

= 1√
2
ι
(
µ−+(h⊗ e) (a⊗ φ1) − µ−−(h⊗ e) (a⊗ φ1)

)
and

(h⊗ e) ι(φ−) = − 1
2 h ∧ e

]y (LE ∧ φ−) + e ∧ h]y (LH ∧ φ−)

= 1
2 h ∧ e ∧ φ− −

1
2 h ∧ LE ∧ (e]y φ−) − e ∧ h ∧ φ−

= 3
2 h ∧ e ∧◦ φ−

= 3
2
√

2
ι
(
µ+

+(h⊗ e)φ−
)
.

Hence, we see that operation of (h ⊗ e) on ι(φ) is just application of the matrix 1√
2
Ah⊗e to the column

vector φ. 2

To stress the origin of the operation 1√
2
AX from a group action, we introduce ? : H ⊗E ⊗ Λn◦F → Λn◦F for

the infinitesimal action of H ⊗ E on Λn◦F . With this notation the quaternionic Killing equation reads

∇Xψ = −
√

κ
16n(n+2) AXψ = −

√
κ

8n(n+2) Φ(X) ? ψ , (5.20)

where Φ is the isomorphism defined in Lemma 2.3.

6 The Geometry of M̂ and Application to Spinors

The aim of this section is to show that the quaternionic Killing equation, considered as a differential equation
on equivariant functions on P can be interpreted in three different ways: first, of course, when we think
of its solutions as sections of the Killing–bundle SKilling(M) on M they are quaternionic Killing spinors.
Interpreted as a section of the spinor bundle on S, the solutions are Killing spinors, and finally solutions
pulled back to P

M̂
= R+ × P are parallel sections of the spinor bundle of M̂ .

6.1 The Hyperkähler Structure of M̂

First we recall that the structure group of both S and M̂ reduce to Sp(n), i. e. the tangent bundles may
be associated to the principal Sp(n)–bundles P and P

M̂
through the Sp(n)–representations sp(1) ⊕ T and

R⊕sp(1)⊕T respectively. However, as Sp(n)–representation T can be identified with E according to Lemma
2.1 reflecting the isomorphism

π∗TM ∼= P ×Sp(n) T ∼= P ×Sp(n) E

of vector bundles on S. More important, this identification is respected by the Levi–Civitá connection,

because the infinitesimal sp(1)–action on T present in ωM = ω
sp(1)
M ⊕ ωsp(n)

M is canceled in the connection
form ωS of S. For this reason we will consequently identify T with E and consider E as a euclidean vector
space with scalar product 〈 ·, · 〉 = Re σE(·, J ·).

In the same vein we combine the obvious identification R⊕ sp(1) ∼= R⊕ Im H = H with the isomorphism
H→ H of defining representations of Sp(1) unique up to sign to get an isometry from the standard metric
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on R⊕ sp(1) to H with scalar product Re σH(·, J ·) sending 1 , i, j, k to 1, I, J, K ∈ H. In this way we get
an isometry

R⊕ sp(1)⊕ T −→ F

with the defining representation F = H ⊕E of Sp(n+ 1) considered as a euclidean vector space with scalar

product Re σF (·, J ·). As this isometry is Sp(n)–equivariant by construction the tangent bundles of M̂ and
S are associated to the Sp(n)–representations F and {1}⊥ =: (Im H)⊕ E ⊂ F .

Though the structure group of M̂ reduces to Sp(n), the holonomy of M̂ does not. Nevertheless, we will

show that it is a subgroup of Sp(n + 1), i. e. M̂ is hyperkähler. For this purpose we group the summands

of the connection form ω
M̂

of M̂ given in Lemma 4.15 as follows

ω
sp(1)

M̂
:= 1

2 ad(ω
sp(1)
M ) + ω

sp(1)
M ∧ 1

ω
sp(n)

M̂
:= ω

sp(n)
M

ωHn
M̂

:=
√

κ
16n(n+2)

(
θM ∧ 1 + iθM ∧ I + jθM ∧ J + kθM ∧K

)
.

Thus, the Levi–Civitá connection can be written ω
M̂

= ω
sp(1)

M̂
+ ω

sp(n)

M̂
+ ωHn

M̂
.

Lemma 6.21 The actions of ω
sp(1)

M̂
and ω

sp(1)
M are the same, i. e.

ω
M̂

= ω
sp(1)
M + ω

sp(n)
M +

√
κ

16n(n+2)

(
θM ∧ 1 + iθM ∧ I + jθM ∧ J + kθM ∧K

)
. (6.22)

In particular, the connection form ω
M̂

takes values in sp(n+ 1).

Proof. Note that for q ∈ H and imaginary z ∈ Im H we have 1
2 (zq + qz) = (Re q)z − 〈 q, z 〉 = −(z ∧ 1)q.

Using this algebraic identity the infinitesimal sp(1)–action on H in the standard picture can be written as

−qz = 1
2ad(z)q + (z ∧ 1)q .

Hence, a particular merit of the identifications above is that the two summands 1
2ad(ω

sp(1)
M ) and ω

sp(1)
M ∧ 1

of the Levi–Civitá connection of M̂ acting on R⊕ sp(1) combine into the infinitesimal action of ω
sp(1)
M on H.

Consequently, the summands ω
sp(1)

M̂
and ω

sp(n)

M̂
take values in sp(n+ 1), i. e. in the infinitesimal quaternionic

linear isometries of F . The same is true for ωHn
M̂

because of its H–linearity. 2

With the Levi–Civitá connection being sp(n + 1)–valued the manifold M̂ is hyperkähler, and we may
use the description of the spinor bundle for the more general quaternionic Kähler manifolds given in (5.17).
Consider a complex vector space C2 endowed with a symplectic form σC2 and a positive quaternionic structure
J . Choosing an isomorphism to the group of all symplectic transformations of C2 commuting with J would
make C2 the defining representation of Sp(1). However, on a hyperkähler manifold this Sp(1)–symmetry is

not a local “gauged” symmetry, but a purely global one. For this reason the trivial C2–bundle on M̂ plays
the role of H on M . Accordingly, the spinor bundle of M̂ is associated to the Sp(n)–representation

Σ =

n+1⊕
r=0

Σr =

n+1⊕
r=0

SymrC2 ⊗ Λn+1−r
◦ F ,

where Sp(n) operates trivially on H ⊂ F . The Clifford multiplication with complex tangent vectors in
C2⊗F is then given by the formula (5.18). To describe the Clifford multiplication with real tangent vectors
however, we have to choose an isomorphism among the family of isometries Φ : C ⊗R F → C2 ⊗ F defined
in equation (2.2). For quaternionic Kähler manifolds this isometry is uniquely fixed by the additional local
Sp(1)–symmetry up to sign, but this is no longer true in the hyperkähler case. In fact, we get a family of
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Clifford multiplications depending on the choice of Φ, i. e. of a canonical base p, q of C2 satisfying Jp = q
and σC2( p, q ) = 1. All these are intertwined by the global Sp(1)–symmetry acting on C2. In this sense, to
define the Clifford multiplication with real tangent vectors f ∈ F , we first have to apply the isomorphism

Φ : 1⊗R f 7−→ 1√
2

(
p⊗ f − q ⊗ Jf

)
. (6.23)

Note that this isomorphism points out the ambivalence of the vector bundle associated to the defining
representation F of Sp(n+1). Normally, this vector bundle is the real tangent bundle, but in the description
of the spinor bundle it plays a role strictly analogous to the isotropic subspace T 0,1M of the complexified
tangent bundle on Kähler manifolds.

To describe the spinor bundle on S we recall that the spinor module of Spin(4n + 4) decomposes into
the two half–spin modules Σ±. When restricted to Sp(n+ 1) the representations Σ± decompose further into
a sum of certain Σr. Since Clifford multiplication maps Σr to Σr−1 ⊕ Σr+1 and interchanges Σ+ with Σ−,
we conclude

Σ+ =

n+1⊕
r=0

r≡1 (2)

SymrC2 ⊗ Λn+1−r
◦ F Σ− =

n+1⊕
r=0

r≡0 (2)

SymrC2 ⊗ Λn+1−r
◦ F ,

at least if n is even. Due to Lemma 5.19 Σ+ and Σ− are equivalent as Sp(n)–representations, and the
spinor module of S is associated to the Sp(n)–principal bundle P through either one, e. g. Σ+. The Clifford
multiplication with f ∈ {1}⊥ ⊂ F is then given by f ·

S
:= (f ∧ 1)· = f · 1·.

6.2 Reinterpretation of the Quaternionic Killing Equation

In this section we will translate the quaternionic Killing equation (5.20) on M into the equation for a parallel

spinor on M̂ . Let ψ be a quaternionic Killing spinor on M , which we will consider as an equivariant function
on P , i. e. ψ ∈ C∞(P, Λn◦F )Sp(n). Then the quaternionic Killing equation reads(

d + ωM +
√

κ
8n(n+2) θ

H⊗E
M ?

)
ψ = 0 , (6.24)

where by definition θH⊗EM := Φ ◦ θM . The subbundle S1(M̂) of the spinor bundle of M̂ is associated to P
M̂

by the representation C2 ⊗ Λn◦F . To construct a section of this bundle, we proceed as follows: we lift ψ
to P

M̂
by extending it constantly along the R+–direction and choose an arbitrary constant vector ξ ∈ C2.

Then, the function ξ ⊗ ψ defines a section in S1(M̂). As function on P
M̂

it satisfies(
d + ωM +

√
κ

8n(n+2) id ⊗ θH⊗EM ?
)
(ξ ⊗ ψ) = 0 ,

where the connection and soldering form are considered to be pulled back to P
M̂

. Obviously, they do not

act on ξ but only on ψ. Using the crucial Lemma 6.25 below we can replace
√

κ
8n(n+2) id ⊗ θH⊗EM ? by ωHn

M̂
,

so that the resulting equation on P
M̂

reads(
d + ω

sp(1)
M + ω

sp(n)
M + ωHn

M̂

)
(ξ ⊗ ψ) =

(
d + ω

M̂

)
(ξ ⊗ ψ) = 0 .

Hence, ξ ⊗ ψ defines a parallel spinor on M̂ .

We remark that the parallel spinor ξ ⊗ ψ also gives rise to a Killing spinor on S. This follows of course
from the general equivalence between Killing spinors on a Riemannian manifold and parallel spinors on its
cone, as described by C. Bär (cf. [Bär93]) and briefly summarized in appendix A. Nevertheless, we will
include this construction since it is an immediate consequence of our approach. We have seen above that
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ξ ⊗ ψ, considered as function on P
M̂

, satisfies (d + ω
M̂

)(ξ ⊗ ψ) = 0 . If we substitute the expression ω
M̂

given in Lemma 4.15 we obtain(
d + ωS +

√
κ

16n(n+2) θS ∧ 1
)
(ξ ⊗ ψ) = 0 .

Interpreted as equation on P this is just the Killing equation, i.e.

(d + ωS) (ξ ⊗ ψ) = − 1
2

√
κ

16n(n+2) θS ·S(ξ ⊗ ψ) .

The additional factor 1
2 is due to the action of the orthogonal Lie algebra on the spinor bundle. Before

closing this section we formulate the lemma needed above.

Lemma 6.25 √
κ

8n(n+2) id ⊗ θH⊗EM ? = ωHn
M̂
.

The proof needs an additional proposition which is analogous to Proposition 2.3 in [KSW97a].

Proposition 6.26 Let p, q be a base of C2 ∼= H with σ( p, q ) = 1 and f1, f2 ∈ F . Then we have the
following identity of operators on the spinor bundle:

(p⊗ f1) ∧ (q ⊗ f2)− (q ⊗ f1) ∧ (p⊗ f2) = id ⊗ f1 · f2 .

As element of so(4n + 4), the left hand side acts on the spinor module via the isomorphism so(4n + 4) ∼=
spin(4n+ 4) sending e1 ∧ e2 to 1

2 ( e1 e2 + 〈 e1, e2 〉 ).

We remark that the proof of these two technical Propositions amounts to prove the decomposition (5.17) of
the spinor bundle. With the help of this proposition it is easy to prove Lemma 6.25.

Proof. Let p, q be the canonical base of C2 used to define Clifford multiplication. We can then extend the
isomorphism C⊗R F ∼= C2 ⊗ F in equation (6.23) to C⊗R Λ2F ∼= Λ2(C2 ⊗ F ) to get

(θM ∧ 1) = 1
2 (p⊗ θM + q ⊗ JθM ) ∧ (p⊗ 1 + q ⊗ J)

(iθM ∧ I) = − 1
2 (p⊗ θM − q ⊗ JθM ) ∧ (p⊗ 1− q ⊗ J)

(jθM ∧ J) = 1
2 (p⊗ JθM − q ⊗ θM ) ∧ (p⊗ J− q ⊗ 1)

(kθM ∧K) = − 1
2 (p⊗ JθM + q ⊗ θM ) ∧ (p⊗ J + q ⊗ 1) .

In the second and fourth line we use that J is conjugate linear. By summing up the four equations, some
terms cancel, and we obtain

ωHn
M̂

=
√

κ
16n(n+2)

(
(p⊗ θM ) ∧ (q ⊗ J)− (q ⊗ θM ) ∧ (p⊗ J)

− (p⊗ JθM ) ∧ (q ⊗ 1) + (q ⊗ JθM ) ∧ (p⊗ 1)
)
.

Applying the proposition above yields the following equivalence

ωHn
M̂

=
√

κ
16n(n+2) (id ⊗ θM · J− id ⊗ JθM · 1)

=
√

κ
16n(n+2) id ⊗ (J⊗ θM − 1⊗ JθM )? =

√
κ

8n(n+2) id ⊗ θH⊗EM ? . 2
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7 Proof of the Theorem

The fact that a quaternionic Killing spinor on M translates into a parallel spinor on the hyperkähler manifold
M̂ is crucial to the proof of the main theorem.

Theorem 1 Let M be a compact quaternionic Kähler manifold of quaternionic dimension n and positive
scalar curvature κ > 0. If there is an eigenspinor for the Dirac operator with eigenvalue λ satisfying

λ2 =
κ

4

n+ 3

n+ 2
,

then M is isometric to the quaternionic projective space.

Proof. After the work done in the preceding sections the proof of this theorem reduces to a simple holonomy
argument. The spinor bundle of the hyperkähler manifold M̂ is associated to the Sp(n)–representation

Σ =

n+1⊕
r=0

Σr =

n+1⊕
r=0

SymrC2 ⊗ Λn+1−r
◦ F ,

where F = H ⊕ E, and Sp(n) operates trivially on H. The holonomy of M̂ is contained in Sp(n + 1)

and operates trivially on SymrC2. The subbundle Sn+1(M̂) of S(M̂) associated to Σn+1 = Symn+1C2 is
consequently trivialized by n+ 2 = dim (Symn+1C2) linearly independent parallel spinors.

If M admits a quaternionic Killing spinor, there are additional parallel spinors on M̂ , which are sections
of the subbundle S1(M̂) associated to the representation C2 ⊗ Λn◦F .

Due to a result of Wang [Wan89], on a manifold with holonomy equal to Sp(n + 1) there are exactly

n + 2 linearly independent parallel spinors, just those trivializing Sn+1(M̂). The additional parallel spinor
constructed out of a quaternionic Killing spinor reduces the holonomy further. According to Berger’s list
this can only happen if M̂ is reducible or locally symmetric. In the first case, as consequence of a theorem of
Gallot [Gal79], M̂ has to be flat. But so it is in the second case, because it is hyperkähler, hence Ricci–flat,

and in addition locally symmetric. Therefore M̂ is flat which forces M to be isometric to the quaternionic
projective space. 2

A Spinors on Cones

In this appendix we will describe how to lift spinors on a Riemannian spin manifold N to spinors on its cone
N̂ := R+ × N . In particular, we will show that Killing spinors on N translate into parallel spinors on N̂ .
This construction is originally due to C. Bär [Bär93].

Let (N, gN ) be a spin manifold of dimension n and let π : N̂ = R+×N → N be the cone over N endowed
with the warped product metric gN̂ = dt2 + e2λπ∗gN . The soldering and connection form on the principal
bundle P := PSpin(n)N associated to the chosen spin structure are denoted by θN and ωN . Obviously, the

cone is again spin and the spin structure reduces to the principal Spin(n)–bundle P̂ := R+ × P . Forms on

P give rise to forms on P̂ by extending them constantly along the R+–direction. It easy to see that the
soldering resp. the connection form of N̂ on P̂ are given by

θN̂ = dt+ eλθN resp. ωN̂ = ωN − eλ
∂λ

∂t
θN ∧ Ξ,

where Ξ = ∂
∂t denotes the vertical unit vector.

A spinor ψ on N can be interpreted as a Spin(n)–equivariant function on P with values in the spinor
module Σn with a fixed Clifford module structure. With the canonical isomorphism Cln ∼= Cl0n+1, ei 7→ ei ·Ξ
in mind, we can consider Σn as an Cl0n+1– and therefore as an Spin(n + 1)–representation. The values of
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ψ have now to be interpreted as lying in the Spin(n + 1)–representation. Let ψ be a Killing spinor on N .
Interpreted as function on P , it satisfies:

dψ + (ωN − µθN )ψ = 0 ,

where µ is the Killing constant. Extending ψ constantly in R+–direction and using the isomorphism of the
Clifford algebras above defines a spinor on N̂ . As a function on P̂ , it satisfies

dψ + (ωN − µπ∗θNΞ)ψ = 0 .

If the warping function is chosen such that µ = 1
2e
λ ∂λ
∂t , the expression in brackets is equal to ωN̂ , and

therefore ψ has to be parallel on N̂ . The other way round, it is also clear that, if ψ is a parallel spinor on
N̂ , then its associated function on P̂ is constant in R+–direction and it projects onto a Killing spinor on N .

B The Curvature Tensor of M̂

In this appendix we will prove of Proposition 4.16 relating the curvature tensor of M̂ to the hyperkähler
part Rhyper of the curvature of M . We recall that the connection form of M̂ restricted to P

M̂
is pulled back

from P and so is its curvature Ω
M̂

. We have seen in section 6.1 that the most convenient way to read the
connection form ω

M̂
given in Lemma 4.15 is

ω
M̂

= ω
sp(1)

M̂
+ ω

sp(n)

M̂
+ ωHn

M̂
,

where ω
sp(1)

M̂
and ω

sp(n)

M̂
are the pull–backs of ω

sp(1)
M and ω

sp(n)
M respectively, and

ωHn
M̂

:=
√

κ
16n(n+2)

(
θM ∧ 1 + iθM ∧ I + jθM ∧ J + kθM ∧K

)
.

Defining [α ∧ β](X, Y ) := [α(X), β(Y )]− [α(Y ), β(X)] = [β ∧ α](X, Y ) for Lie algebra valued 1–forms α,
β, the curvature 2–form ΩM of M on P can be written

ΩM = dωM + 1
2

[
ωM ∧ ωM

]
=

(
dω

sp(1)
M + 1

2

[
ω
sp(1)
M ∧ ωsp(1)

M

])
+
(
dω

sp(n)
M + 1

2

[
ω
sp(n)
M ∧ ωsp(n)

M

])
.

Of course, [ω
sp(1)
M ∧ ωsp(n)

M ] = 0 since sp(1) and sp(n) centralize each other in sp(1) ⊕ sp(n). Using the

naturality of the exterior differential and ω
sp(1)
M = π∗Sω we conclude that the first summand is equal to π∗SΩ.

Thus, it corresponds to − κ
8n(n+2) R

H in the sense of decomposition (3.8) as shown in the proof of Lemma

3.10. We conclude that the second summand corresponds to − κ
8n(n+2) R

E + Rhyper. The curvature Ω
M̂

of M̂ can be calculated similarly. With sp(1) and sp(n) centralizing each other in sp(n + 1) we still have

[ω
sp(1)

M̂
∧ ωsp(n)

M̂
] = 0, and Ω

M̂
is the sum of the three terms:

dω
sp(1)

M̂
+ 1

2

[
ω
sp(1)

M̂
∧ ωsp(1)

M̂

]
+ 1

2

[
ωHn
M̂
∧ ωHn

M̂

]sp(1)

dωHn
M̂

+
[
ω
sp(1)

M̂
∧ ωHn

M̂

]
+

[
ω
sp(n)

M̂
∧ ωHn

M̂

]
dω

sp(n)

M̂
+ 1

2

[
ω
sp(n)

M̂
∧ ωsp(n)

M̂

]
+ 1

2

[
ωHn
M̂
∧ ωHn

M̂

]sp(n)

(B.27)

where [ωHn
M̂
∧ ωHn

M̂
] is projected onto its two components in sp(1) and sp(n) according to the Cartan decom-

position sp(n+ 1) = (sp(1)⊕ sp(n))⊕Hn. Using the formula

[ a1 ∧ b1, a2 ∧ b2 ] = 〈a1, a2〉b1 ∧ b2 − 〈b1, a2〉a1 ∧ b2 − 〈a1, b2〉b1 ∧ a2 + 〈b1, b2〉a1 ∧ a2
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we find

1
2

[
ωHn
M̂
∧ ωHn

M̂

]
= κ

32n(n+2)

(
θM ∧ θM + iθM ∧ iθM + jθM ∧ jθM + kθM ∧ kθM
+ 2〈θM ∧ iθM 〉1 ∧ I + 2〈θM ∧ jθM 〉1 ∧ J + 2〈θM ∧ kθM 〉1 ∧K

+ 2〈iθM ∧ jθM 〉I ∧ J + 2〈iθM ∧ kθM 〉I ∧K + 2〈jθM ∧ kθM 〉J ∧K
)

= κ
32n(n+2)

(
θM ∧ θM + iθM ∧ iθM + jθM ∧ jθM + kθM ∧ kθM

)
(B.28)

+ κ
16n(n+2)

(
〈θM∧iθM 〉(1∧I−J∧K) + 〈θM∧jθM 〉(1∧J−K∧I) + 〈θM∧kθM 〉(1∧K−I∧J)

)
(B.29)

We remark that by construction of the base 1, I, J and K the infinitesimal action of i, j and k ∈ sp(1) on
H can be written

i : 1 7→ −I J 7→ K j : 1 7→ −J K 7→ I k : 1 7→ −K I 7→ J
I 7→ 1 K 7→ −J J 7→ 1 I 7→ −K K 7→ 1 J 7→ −I

,

i. e. i corresponds to −(1 ∧ I − J ∧K). Thus, the summand (B.29) is equal to −π∗SΩ according to Lemma
3.10, i. e. equal to κ

8n(n+2)R
H . Without proof we state that the summand (B.28) is equal to κ

8n(n+2)R
E as

this is certainly true on the quaternionic projective space. Consequently, in the decomposition (B.27) of Ω
M̂

the first term vanishes as does the second, because straightforward calculations show that it depends linearly
on the torsion of the Levi–Civitá connection ωM of M . Hence, the curvature Ω

M̂
reduces to

Ω
M̂

= dω
sp(n)

M̂
+ 1

2

[
ω
sp(n)

M̂
∧ ωsp(n)

M̂

]
+ κ

8n(n+2)R
E = Rhyper .

In this way Ω
M̂

operates only on the subbundle P
M̂
×Sp(n) E of the tangent bundle of M̂ . We remark that

this subbundle is canonically isomorphic to P
M̂
×Sp(n) T , i. e. to π̂∗TM . 2
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