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Abstract - A nearly parallel G2-structure on a 7-dimensional Riemannian manifold is equivalent to a spin

structure with a Killing spinor. We prove general results about the automorphism group of such structures

and we construct new examples. We classify all nearly parallel G2-manifolds with large symmetry group and in

particular all homogeneous nearly parallel G2-structures.
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1 Introduction

A nearly parallel G2-structure on a 7-dimensional manifold is a 3-form ω3 of special algebraic
type satisfying the differential equation

dω3 = −8λ(∗ω3)

for some constant λ 6= 0. The existence of ω3 is equivalent to the existence of a spin structure
with a Killing spinor, i.e. a spinor ψ satisfying

0
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∇Xψ = λX · ψ, ∀X ∈ TM.

In case λ = 0, ω3 defines a geometric G2-structure (dω3 = 0, δω3 = 0). Excluding the case of the
7-dimensional sphere there are three types of nearly parallel G2-structures depending on the di-
mension of the space KS of all Killing spinors. Nearly parallel G2-structures with dim(KS) = 3
are 3-Sasakian manifolds and nearly parallel G2-structures such that dim(KS) = 2 are Einstein-
Sasakian spaces. There are examples of compact nearly parallel G2-manifolds where the dimen-
sion of the space of all Killing spinors equals one and we call such spaces proper G2-manifolds.

Recently D. Joyce [22] solved an open problem in holonomy theory, namely the existence prob-
lem of compact 7-dimensional Riemannian manifolds with G2-holonomy. On the other hand,
Boyer / Galicki / Mann [7] constructed new compact examples of 3-Sasakian manifolds and
investigated the global geometry of this spaces. In dimension seven, 3-Sasakian manifolds are
special nearly parallel G2-structures and such manifolds have been studied a long time ago (see
[20], [12]). However, during the last 10 years, these special Einstein manifolds appeared as
Einstein spaces where the Dirac operator has the smallest possible eigenvalue and many com-
pact examples are known since this time (see [11]). The aim of this paper is to revisit once
again the results as well as the examples of compact nearly parallel G2-structures known up to
now. Moreover, starting from 3-Sasakian manifold we construct new manifolds with a nearly
parallel G2-structure. A 3-Sasakian manifold admits a second Einstein metric obtained from
the given one by scaling the metric in the directions of the orbits of the the Spin(3)-action. It
turns out that this Einstein metric is a proper G2-structure and we obtain new nearly parallel
G2-structures from the examples of 3-Sasakian manifolds mentioned above.

Finally we investigate the automorphism group of a compact nearly G2-manifold and we classify
in particular all homogeneous G2-manifolds. The automorphism group G = Aut (M7, ω3) of
a nearly parallel G2-manifold has some special properties. In particular, if dim (G) ≥ 10, G
acts transitively on M7. The zero set of infinitesimal automorphisms is either one- or three-
dimensional and a four-dimensional orbit of this group-action is of special topological and geo-
metric type. Moreover, the isotropy groups G(m) are subgroups of the exceptional G2 and one
can list them explicitly. Combining all these informations we can classify the compact, nearly
parallel G2-manifolds with a large symmetry group.

2 The exceptional group G2.

The group G2 is a compact, simple and simply connected 14-dimensional Lie group. In this
section we collect some basic algebraic facts about this group. In particular, we will define G2

as the isotropy group of a real Spin(7)-spinor. Since in dimension 7 these spinors correspond
to the 3-forms ω3 of general type in Λ3(R7), this definition of the group G2 is equivalent to the
usual one as the subgroup of GL(7;R) preserving the 3-form in R7

ω3
0 = e1 ∧ e2 ∧ e7 + e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6

−e2 ∧ e3 ∧ e6 − e2 ∧ e4 ∧ e5 + e3 ∧ e4 ∧ e7 + e5 ∧ e6 ∧ e7. (1)
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The advantage of this point of view is that a topologicalG2-structure on a 7-dimensional manifold
defines a Riemannian metric as well as a spinor field of constant length. We shall use the
equivalence between topological G2-structures and 3-forms of general type and between these
and Riemannian metrics together with a unit spinor field many times in our investigations of
G2-structures of special geometrical type.
Let e1, ..., e7 be the standard orthonormal basis of the Euclidian vector space R7 and denote
by Cliff(R7) the real Clifford algebra. We will use the real representation of this algebra on
∆7 := R8 given on its generators by

e1 = E18 + E27 − E36 − E45

e2 = − E17 + E28 + E35 − E46

e3 = − E16 + E25 − E38 + E47

e4 = − E15 − E26 − E37 − E48

e5 = − E13 − E24 + E57 + E68

e6 = E14 − E23 − E58 + E67

e7 = E12 − E34 − E56 + E78 ,

where Eij is the standard basis of the Lie algebra so(8) :

Eij =


0 · · · · · · · · · 0
. . . . . . . . . . . . −1 · · ·
. . . . . . . . . . . . . . . . . . . . .
· · · 1 . . . . . . . . . . . .
0 . . . . . . . . . . . . 0


· · · i

· · · j

...
...

i j

If we restrict this representation onto Spin(7) ⊂ Cliff(R7) we obtain the real spin representation
κ : Spin(7) −→ SO(∆7). The group Spin(7) acts transitively on the sphere

S(∆7) = {‖ψ‖ = 1} ⊂ ∆7 = R8.

We now define the group G2 as the subgroup of Spin(7) preserving the spinor ψ0 := t(1, 0, ..., 0)

G2 = {g ∈ Spin(7) | gψ0 = ψ0}.

Consequently the sphere S7 is diffeomorphic to the homogeneous space Spin(7)/G2 and we
obtain from the exact homotopy sequence of this fibration

π0(G2) = 0, π1(G2) = 0, π2(G2) = 0, π3(G2) = ZZ.

Let us now calculate the Lie algebra g2 of G2. We identify the Lie algebra of Spin(7) with
spin(7) = {ω =

∑
i<j ωijeiej | ωij ∈ R} ⊂ Cliff(R7). The Lie algebra g2 is the subalgebra of

this algebra containing all elements ω satisfying ω · ψ0 = 0. Let ω =
∑
i<j

ωijeiej be any element

of spin(7). Then ω · ψ0 = 0 holds iff

ω12 + ω34 + ω56 = 0, −ω13 + ω24 − ω67 = 0, −ω14 − ω23 − ω57 = 0,

−ω16 − ω25 + ω37 = 0, ω15 − ω26 − ω47 = 0, ω17 + ω36 + ω45 = 0,

ω27 + ω35 − ω46 = 0.
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We consider the universal covering Spin(7) −→ SO(7) of the special orthogonal group SO(7).
Because of (−1) 6∈ G2, there is an isomorphism from G2 onto a subgroup of SO(7), which we
also denote by G2. We now describe this group. This will yield a second definition of G2 using
3-forms on R7. The key point is a special relation in dimension 7 between real spinors and
generic 3-forms.
Let ψ ∈ ∆7 a fixed spinor. Then the map

R73X 7−→ Xψ ∈ ∆7

is an isomorphism between R7 and the orthogonal complement of ψ in ∆7. We observe that for
X,Y ∈ R7 the spinors ψ and Y Xψ + 〈X,Y 〉ψ are orthogonal to each other. Therefore we can
define a (2,1)-tensor Aψ by

Y Xψ = −〈X,Y 〉ψ +Aψ(Y,X)ψ. (2)

Aψ has the following properties

1. Aψ(X,Y ) = −Aψ(Y,X)

2. 〈Y,Aψ(Y,X)〉 = 0

3. Aψ(Y,Aψ(Y,X)) = −‖Y ‖2X + 〈X,Y 〉Y .

It defines a 3-form ω3
ψ by ω3

ψ(X,Y, Z) = 〈X,Aψ(Y, Z)〉.
Vice versa, a (2,1)-tensor A on R7 which has the properties 1, 2, 3 defines a 1-dimensional
subspace E(A) = {ψ ∈ ∆7 | Y Xψ = −〈X,Y 〉ψ + A(Y,X)ψ}. Consequently, we obtain a
bijection from the projective space P (∆7) = RP7 onto the set of 3-forms ω3 ∈ Λ3(R7) whose
tensor A defined by ω3(X,Y, Z) = 〈X,A(Y, Z)〉 has the above mentioned properties.
In particular, if ψ = ψ0 := t(1, 0, ..., 0), then a direct calculation yields ω3

ψ0
= ω3

0, where ω3
0 is

given by (1).
Let g be an element of Spin(7) and π(g) the corresponding element in SO(7). We compare the
3-forms associated to the spinors ψ and gψ and obtain the equation

ω3
gψ = (π(g−1))∗ω3

ψ.

The 3-form ω3
ψ defines the spinor ψ up to a real number. Hence, the image of the group

G2 ⊂ Spin(7) with respect to π : Spin(7) 7−→ SO(7) equals

G2 = {A ∈ SO(7) | A∗ω3
ψ0

= ω3
ψ0
}.

However, the equation A∗ω3
0 = ω3

0 for A ∈ GL(7) implies A ∈ SO(7). See for a proof [8], [24].
Using this, we obtain

G2 = {A ∈ GL(7) | A∗ω3
0 = ω3

0}.

Remark 2.1 Similarly, we can investigate the action of Spin(7) on the Stiefel manifolds V2(∆7)
and V3(∆7) of orthonormal pairs and triples of spinors, respectively. This action is transitive,
too. The isotropy group of a fixed pair of spinors is isomorphic to SU(3) and the one of a triple
is isomorphic to SU(2).
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Remark 2.2 The GL(7)-orbit Λ3
+(R7) := {A∗ω3

0 | A ∈ GL(7)} is an open subset of Λ3(R7)
since dim Λ3(R7) = 35 and dimGL(7) − dimG2 = 49 − 14 = 35. Let α3 be an element of
this orbit, i.e. α3 = A∗ω3 for some A ∈ GL(7). Then α3 defines an inner product on R7 by
〈 , 〉α := A∗〈 , 〉, an orientation Oα := A∗(e1 ∧ ... ∧ e7) and a corresponding Hodge operator
∗α : Λp(R7) 7−→ Λ7−p(R7).

Remark 2.3 Let ψ1, ψ2 ∈ ∆7 be spinors of the same length and ξ ∈ R7 such that ξψ1 = ψ2.
Then we have for the induced 3-forms ω3

1 = ω3
ψ1

and ω3
2 = ω3

ψ2

ω2 = −ω1 + 2(ξ yω1) ∧ ξ.

Proof. We use the equations which define the tensors A1 = Aψ1 and A2 = Aψ2 . From Y Xψ2 =
−〈Y,X〉ψ2 +A2(Y,X)ψ2 it follows that Y Xξψ1 = −〈Y,X〉ξψ1 +A1(Y,X)ξψ1. By the definition
of A1 this is equivalent to

−〈X, ξ〉Y ψ1 − 〈Y,A1(X, ξ)〉ψ1 +A1(Y,A1(X, ξ))ψ1 =

= −〈Y,X〉ξψ1 − 〈A2(Y,X), ξ〉ψ1 +A1(A2(Y,X), ξ)ψ1,

or to

(−〈X, ξ〉Y +A1(Y,A1(X, ξ)) + 〈Y,X〉ξ −A1(A2(Y,X), ξ))ψ1 =

= (〈Y,A1(X, ξ)〉+ 〈A1(Y,X), ξ〉)ψ1.

Since the Clifford multiplication of real spinors by a vector is anti-symmetric we conclude that

A1(Y,A1(X, ξ)) + 〈Y,X〉ξ = A1(A2(Y,X), ξ) + 〈X, ξ〉Y (3)

〈Y,A1(X, ξ)〉 = 〈A2(Y,X), ξ〉, (4)

where (4) is equivalent to ω1(X,Y, ξ) = ω2(X,Y, ξ) and to A1(X, ξ) = A2(X, ξ).
Let now X,Y, Z ∈ R7 be vectors orthogonal to ξ. There exists an X ∈ R7, X ⊥ ξ such that
Z = A1(X, ξ) = A2(X, ξ). From equations (3) and (4) we conlude

〈W,A1(Y,Z)〉 = 〈W,A1(Y,A1(X, ξ))〉 = 〈W,A1(A2(Y,X), ξ)〉 =

= 〈W,A2(A2(Y,X), ξ)〉 = −〈W,A2(ξ, A2(Y,X))〉,

where the last equation holds because of property 3 of the (2,1)-tensor A2. Consequently, we
get ω1(W,Y,Z) = −ω2(W,Y,Z). The assertion follows.

Now we recall the decomposition of Λp(R7) into irreducible components with respect to the
action of G2.

Proposition 2.4

1. R7 = Λ1(R7) =: Λ1
7 is irreducible.
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2. Λ2(R7) = Λ2
7 ⊕ Λ2

14, where

Λ2
7 = {α2 ∈ Λ2 | ∗(ω3 ∧ α2) = 2α2} = {X yω3 | X ∈ R7}

Λ2
14 = {α2 ∈ Λ2 | ∗(ω3 ∧ α2) = −α2} = g2

3. Λ3(R7) = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27, where

Λ3
1 = {tω3 | t ∈ R1}

Λ3
7 = {∗(ω3 ∧ α1) | α1 ∈ Λ1

7}
Λ3
27 = {α3 ∈ Λ3 | α3 ∧ ω3 = 0, α3 ∧ ∗ω3 = 0}

Proposition 2.5 The wedge product ω3∧ : Λ3(R7) −→ Λ6(R7) has the following properties
with respect to the decomposition Λ3(R7) = Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27.

1. ω3 ∧ (Λ3
1 ⊕ Λ3

27) = 0

2. If η3 = ∗(ω3 ∧ α1) ∈ Λ3
7, then ω3 ∧ η3 = −4 ∗ α1.

Similarly, the wedge product ∗ω3∧ : Λ2(R7) −→ Λ6(R7) has the following properties with respect
to the decomposition Λ2(R7) = Λ2

7 ⊕ Λ2
14.

3. (∗ω3) ∧ Λ2
14 = 0

4. If α2 = X yω3 ∈ Λ2
7, then (∗ω3) ∧ α2 = 3(∗X).

Next we study the action of the group G2 on the Grassmannian manifolds G2(R7) and G3(R7)
of oriented 2- and 3-dimensional linear subspaces in R7.

Proposition 2.6

1. G2 acts transitively on G2(R7).

2. G2 acts on G3(R7) with cohomogeneity one. The principal orbits have dimension 11 and
there are two exceptional orbits of dimension 8.

3. For any E3 ∈ G3(R7) the inequality |ω3(E3)| ≤ 1 holds . The 3-dimensional subspace E3

belongs to the exceptional orbit with respect to the G2-action if and only if |ω3(E3)| = 1.

Proof. G2(R7) = SO(7)/[SO(2) × SO(5)] is a 10-dimensional manifold. On the other hand,
the intersection of the Lie algebras g2 and so(2)× so(5) is the 4-dimensional subalgebra of so(7)
defined by the equations

ω1i = ω2i = 0 for i ≥ 3, ω57 = ω37 = ω47 = 0

ω36 + ω45 = ω35 − ω46 = ω24 − ω67 = 0, ω12 + ω34 + ω56 = 0.

Hence the G2-orbit of the standard 2-plane Span{e1, e2} has dimension 10. Since this orbit is a
compact submanifold of G2(R7), it coincides with the Grassmannian manifold.
Fix a 3-dimensional subspace E3 . Since G2 acts transitively on G2(R7) in the G2-orbit through
E3 there exists a 3-dimensional subspace containing the vectors e1 and e2. For simplicity we
denote this space by E3, too. The isotropy group of the vectors e1, e2 inside G2 is the group
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SU(2) acting on Span{e3, e4, e5, e6}. Therefore we may assume that the third vector of E3 is
given by cos(ϕ)e3 + sin(ϕ)e7. Consequently, any G2-orbit in G3(R7) contains a subspace of the
special form

E3(ϕ) = Span{e1, e2, cos(ϕ)e3 + sin(ϕ)e7}.
The Lie algebra h(ϕ) of the isotropy group of E3(ϕ) is the 9-dimensional subalgebra of so(7)
given by the equations

ω14 = ω15 = ω16 = ω24 = ω25 = ω26 = 0, ω37 = 0,

cos(ϕ)ω34 + sin(ϕ)ω74 = cos(ϕ)ω35 + sin(ϕ)ω75 = cos(ϕ)ω36 + sin(ϕ)ω76 = 0,

sin(ϕ)ω13 − cos(ϕ)ω17 = sin(ϕ)ω23 − cos(ϕ)ω27 = 0.

We calculate the intersection of the Lie algebras g2 and h(ϕ). It turns out that

dim [g2 ∩ h(ϕ)] =

{
3 if cos(ϕ) 6= 0
6 if cos(ϕ) = 0.

Consequently, the G2-orbit of the space E3(ϕ) has dimension 11 (in case cos(ϕ) 6= 0), or dimen-
sion 8 (in case cos(ϕ) = 0). Moreover, we calculate the value ω3(E3(ϕ)) :

ω3(E3(ϕ)) = sin(ϕ).

Remark 2.7 A 3-dimensional subspace E3 ⊂ R7 is said to be G2-special if its G2-orbit is an
exceptional orbit. The following conditions are equivalent.

(i) E3 is a special G2-subspace.

(ii) |ω3(E3)| = 1

(iii) For any vectors X,Y ∈ E3 and Z ⊥ E3 the relation ω3(X,Y, Z) = 0 holds.

3 Topological and Geometrical G2-Reductions.

Let M7 be a 7-dimensional manifold and R(M7) the frame bundle of M7. We define the bundle
Λ3
+(M7) by

Λ3
+(M7) := R(M7)×GL(7) Λ3

+(R7) ⊂ R(M7)×GL(7) Λ3(R7) = Λ3(M7).

Definition 3.1 A topological G2-structure on M7 is a G2- reduction of the frame bundle R(M7),
i.e. a subbundle PG2 satisfying

G2 ↪→ GL(7)

↓ ↓
PG2 ↪→ R(M7)

↘ ↙
M7 .

Similarly we define topological SU(2)-, SU(3)- and Spin (7)-structures.
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The fact that G2 is a subset of SO(7) and of Spin (7) implies that a G2-structure PG2 on
M7 induces an orientation of M7 (i.e. ω1 = 0), a Riemannian metric g on M7 such that
the corresponding SO(7)-bundle equals PG2 ×G2 SO(7), and a spin structure PG2 ×G2 Spin (7)
(i.e. ω2 = 0). Furthermore it defines the following nowhere vanishing spinor ψ ∈ Γ(S) in
the real spinor bundle S = PG2 ×G2 ∆7 of M7. Since G2 ⊂ Spin(7) is the isotropy group of
ψ0 ∈ ∆7 the map ψ : PG2 −→ ∆7, ψ(p) = ψ0, has the property ψ(pg) = g−1ψ for all g ∈ G2

and is therefore a section in S. Because of the G2 - invariance of ω0 the G2-structure defines
in the same way a section ω3 in Λ3

+(M7) = R(M7) ×GL(7) Λ3
+(R7) = PG2 ×G2 Λ3

+(R7), by
ω3 : PG2 −→ Λ3

+(R7), ω3(p) = ω3
0. On the other hand the spinor ψ defines a (2,1)-tensor field

A = Aψ (see equation (2)) on M7 and we have ω3 = g(·, A(·, ·)).

Proposition 3.2 Let M7 be a compact 7-dimensional manifold. The following conditions are
equivalent.

(i) M7 admits a topological SU(2)-structure.

(ii) M7 admits a topological SU(3)-structure.

(iii) M7 admits a topological G2-structure.

(iv) M7 admits a topological Spin (7)-structure.

(v) The first and the second Stiefel - Whitney class of M7 vanish, i.e. ω1 = 0 and ω2 = 0

Proof. The implications (i)⇒ (ii)⇒ (iii)⇒ (iv) and the equivalence (iv)⇔ (v) are obvious. It
remains to show that the existence of a topological Spin (7)-structure implies the existence of a
topological SU(2) - structure. Let S be the real spinor bundle associated to the given Spin(7)-
structure. Its dimension equals 8, the dimension of M7 equals 7. Thus, there exists section ψ
of length 1 in Γ(S). On the other hand, any 7-dimensional orientable compact manifold admits
two linearly independent vector fields [26]. Denote these vector fields by X and Y . Then ψ,Xψ
and Y ψ are spinor fields, which are linearly independent in any point of M7. Thus M7 admits a
triple (ψ1, ψ2, ψ3) of spinor fields which are orthogonal in any point. The spinors ψi (i = 1, 2, 3)
are maps ψi : PSpin −→ ∆7 satisfying ψi(pg) = g−1ψi(p) for all g ∈ Spin(7). Now we can define
a SU(2)-structure on M7 by

PSU(2) := {p ∈ PSpin | ψ1(p) =t (1, 0, ..., 0), ψ2(p) =t (0, 1, 0, ..., 0), ψ3(p) =t (0, 0, 1, 0, ..., 0)}.

Obviously the above mentioned map from the set of G2 - reductions of R(M7) into the set of
3-forms is injective. Thus we obtain

Proposition 3.3 There is a one-to-one correspondence between the G2 - stuctures on M7 and
the sections of Λ3

+(M7).

And, similarly

Proposition 3.4 There is a one-to-one correspondence between the G2-stuctures on M7 and
the 4-tupels (O, g, PSpin, ψ), where O is an orientation, g a metric, PSpin a spin structure and
ψ a spinor field of length 1 on M7.
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Now we turn to geometrical G2-stuctures.

Definition 3.5 Let PG2 ⊂ R(M7) be a G2-reduction and g the associated Riemannian metric.
We denote by ∇ the Levi-Civita connection of g. PG2 is said to be geometrical if one of the
following equivalent conditions is satisfied.

(i) ∇ reduces to PG2.

(ii) The holonomy group Hol(M7, g) of M7 is contained in G2.

(iii) The associated 3-form ω3 is parallel, i.e. ∇ω3 = 0.

(iii) The associated spinor field ψ is parallel, i.e. ∇ψ = 0 where here ∇ is the induced covariant
derivative on the spinor bundle S.

An immediate consequence is the following fact proved by E. Bonan in 1966 (see [5])

Proposition 3.6 If g is the Riemannian metric of a geometrical G2-structure on M7 , then
(M7, g) is Ricci-flat, i.e. Ric = 0.

Proof. Let ψ be the associated section of the spinor bundle S of M7. Because of ∇ψ = 0 we
obtain for the curvature tensor <S of the induced connection ∇ on S

<S(X,Y )ψ = ∇X∇Y ψ −∇Y∇Xψ −∇[X,Y ]ψ = 0

for all vector fields X, Y on M7. We recall that the Ricci tensor on M7 satisfies

Ric(X)ϕ = −2
7∑

k=1

sk<S(X, sk)ϕ

for any vector field X and any spinor ϕ on M7, where s1, ..., s7 is a local orthonormal frame
(see [2]). Consequently, Ric(X)ψ = 0 for all vector fields X and the assertion follows since ψ
vanishes nowhere.

Now we can generalize the condition ∇ψ = 0 and obtain the notion of a nearly parallel G2-
structure.

Definition 3.7 A topological G2-structure on M7 is said to be nearly parallel if the associated
spinor ψ is a Killing spinor, i.e. there exists a real number λ such that ψ satisfies the differential
equation

∇Xψ = λXψ

with respect to the Levi-Civita connection of the induced metric.

Differentiating the equation that defines the (2,1)-tensor A we obtain the following equivalent
condition.

Proposition 3.8 A topological G2-structure on M7 is nearly parallel if and only if the associated
tensor A satisfies

(∇ZA)(Y,X) = 2λ{g(Y,Z)X − g(X,Z)Y +A(Z,A(Y,X))} (5)

with respect to the Levi-Civita connection of the induced metric where λ is the same number as
in Definition (3.7).
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Now we translate this condition into a differential equation for the 3-form ω3.

Proposition 3.9 A topological G2-structure on M7 is nearly parallel if and only if the associated
3-form ω3 satisfies

∇Zω3 = −2λ(Z y ∗ ω3)

with respect to the Levi-Civita connection of the induced metric where λ is the same number as
in Definition (3.7).

Proof. The 3-form ω3 is defined by ω3(X,Y, Z) = g(X,A(Y,Z)). Differentiating this equation
we observe that the equation (5) is equivalent to

(∇Zω3)(W,Y,X) = 2λg(Z, g(W,X)Y − g(W,Y )X −A(W,A(Y,X)))

for any vector field Z. For fixed Z the 3-form on the right hand side of this equation equals
locally

2λ
∑
i<j<k

g(Z, g(si, sk)sj − g(si, sj)ek −A(si, A(sj , sk)))si ∧ sj ∧ sk =

= −2λ
∑
i<j<k

g(Z,A(si, A(sj , sk)))si ∧ sj ∧ sk

where s1, ..., s7 is a section of the G2-structure on M7. However, we obtain from

ω3 = s1 ∧ s2 ∧ s7 + s1 ∧ s3 ∧ s5 − s1 ∧ s4 ∧ s6
−s2 ∧ s3 ∧ s6 − s2 ∧ s4 ∧ s5 + s3 ∧ s4 ∧ s7 + s5 ∧ s6 ∧ s7.

on one hand all A(si, A(sj , sk)) and on the other hand ∗ω3. The assertion follows by comparing
these terms.

In the same way as in the case of geometrical G2-structures we prove

Proposition 3.10 If g is the Riemannian metric of a nearly parallel G2-structure on M7 , then
(M7, g) is an Einstein space.

Proof. The induced spinor ψ is a Killing spinor and we obtain from ∇Xψ = λX · ψ

<S(X,Y )ψ = ∇X∇Y ψ −∇Y∇Xψ −∇[X,Y ]ψ = 2λ2(Y ·X + g(X,Y )) · ψ.

This yields for the Ricci tensor

Ric(X)ψ = −2
7∑

k=1

sk<S(X, sk)ψ = −4λ2
7∑

k=1

sk(skX + g(X, sk))ψ = 24λ2Xψ

Since ψ has no zeros, Ric(X) = 24λ2X and, therefore, (M7, g) is an Einstein space of constant
scalar curvature R = 7 · 24λ2.
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Next we generalize the following theorem of Gray and Fernandez.

Proposition 3.11 ([20], [21], [9]) Let PG2 ⊂ R(M7) be a topological G2-reduction, g its induced
metric, ω3 the induced 3-form and ∗ the Hodge operator. Then the following conditions are
equivalent.

(i) PG2 is geometrical.

(ii) ∇ω3 = 0

(iii) dω3 = 0, d ∗ ω3 = 0.

We transfer the proof of this theorem given in ([9]) to the case of nearly parallel G2-reductions
and obtain

Proposition 3.12 Let PG2 ⊂ R(M7) be a topological G2-reduction, g its induced metric, ω3 the
induced 3-form, ψ the induced spinor and ∗ the Hodge operator. Then the following conditions
are equivalent.

(i) PG2 is nearly parallel, i.e. the spinor ψ satisfies ∇Xψ = λXψ.

(ii) ∇Zω3 = −2λ(Z y ∗ ω3)

(iii) δω3 = 0, dω3 = −8λ ∗ ω3.

Proof. The 3-form ω3 defines the metric g. Let Σg ⊂ Λ3
+(M7) be the set of 3-forms that define

this metric, too. The fibre of Σg equals the SO(7)-orbit of ω3, i.e. SO(7)/G2. Its tangent space
T (SO(7)/G2) is G2-invariant and 7-dimensional, therefore T (SO(7)/G2) = Sω3 := {X y ∗ ω3 |
X ∈ TM7}. Since ω3 is a section in Σg and ∇ is a covariant derivative in Σg, the covariant
derivative ∇ω3 is a section of T ∗M7 ⊗ Sω3 . We consider now the projection p1 defined by

p1 : T ∗M7 ⊗ Sω3 3 α1 ⊗ α3 7−→ α1 ∧ α3 ∈ Λ4

and the contraction
p2 : T ∗M7 ⊗ Sω3 −→ Λ2.

By comparing the decomposition of T ∗M7 ⊗ Sω3 and Λ4 ⊕ Λ2 into irreducible G2-subspaces we
see that the sum of p1 and p2

p1 ⊕ p2 : T ∗M7 ⊗ Sω3 −→ Λ4 ⊕ Λ2

is injective. Consequently, ∇Xψ = λXψ is equivalent to

p1(∇ω3) = −2λp1(· y ∗ ω3) = −2λ
7∑
i=1

si ∧ si y ∗ ω3 = −8λ ∗ ω3

p2(∇ω3) = −2λp2(· y ∗ ω3) = −2λ
7∑
i=1

∗ω3(si, si, ...) = 0

The assertion now follows from p1(∇ω3) = dω3, p2(∇ω3) = δω3.

Remark 3.13 There is the following difference between the cases λ = 0 and λ 6= 0. We proved
that a G2-structure is nearly parallel if and only if for the induced 3-form ω3 the equations
δω3 = 0, dω3 = −8λ ∗ ω3 hold. In case λ = 0, the resulting equations dω3 = 0 and δω3 = 0
are independent. In case λ 6= 0, the condition dω3 = −8λ ∗ ω3 implies δω3 = 0.
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4 Nearly Parallel G2-Structures, Killing Spinors and Contact
Geometry.

We summarize now several results on nearly parallel G2-structures. A general reference is the
book [2]. In particular, we derive necessary geometric conditions for the underlying Riemannian
metric and we introduce three types of nearly parallel G2-structures depending on the number
of Killing spinors. Finally we discuss the compact examples of each type known up to now.

Let (M7, g) be a compact Riemannian spin manifold with a Killing spinor ψ,

∇Xψ = λX · ψ,

and denote by ω3 the corresponding 3-form satisfying the differential equation

dω3 = −8λ ∗ ω3.

Then M7 is an Einstein manifold of positive scalar curvature R = 4 · 7 · 6 · λ2 = 168λ2 and,
consequently, the fundamental group π1(M) is finite. In case λ 6= 0 the Riemannian manifold
(M7, g) is locally irreducible and not locally symmetric except if it has constant sectional cur-
vature (see [2]). Using the associated nearly parallel G2-structure we decompose the bundles of
forms Λp(M7) into the irreducible components mentioned above. The curvature tensor

< : Λ2 = Λ2
7 ⊕ Λ2

14 → Λ2
7 ⊕ Λ2

14 = Λ2

splits into the scalar curvature and the Weyl tensor W :

< = W − R

42
.

The Weyl tensor satisfies several algebraic equations. They can be formulated in the following
way. For any 2-form ω2 ∈ Λ2 the Clifford product W (ω2) · ψ vanishes, i.e.

W (ω2) · ψ = 0

holds (see [2]). Since Λ2
14 is the Lie algebra of the group G2, being the isotropy group of the

spinor ψ, we conclude that the Weyl tensor has the form

W =

(
0 0
0 W14

)
,

where W14 : Λ2
14 → Λ2

14 is a symmetric endomorphism. In case W14 6= 0, the holonomy repre-
sentation Hol0 → SO(7) is irreducible and we can apply Berger’s Holonomy Theorem. Since
dim(M7) = 7, there are two possibilities: Hol0 = G2 or Hol0 = SO(7). The case of Hol0 = G2

cannot occur since M7 is an Einstein space with positive scalar curvature (λ 6= 0). Consequently,
the Riemannian manifold M7 is - at least from the point of view of holonomy theory - of gen-
eral type: Hol0 = SO(7). Since the fundamental group of M7 is finite we can without loss of
generality assume that M7 is simply-connected, π1(M

7) = 0. Furthermore, we exclude the case
of the space of constant curvature, i.e. M7 6= S7. Denote by KS(M7, g) the space of all Killing
spinors,
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KS(M7, g) = {ψ ∈ Γ(S) : ∇Xψ = λX · ψ for all vectorsX ∈ T (M7)}

The dimension of KS(M7, g) is bounded by three, dim [KS(M7, g)] ≤ 3 (see [2]). The nearly
parallel G2-structures split into three different types:

nearly parallel G2-structures of type 1: dim[KS] = 1. ( proper G2-structures)

nearly parallel G2-structures of type 2: dim[KS] = 2.

nearly parallel G2-structures of type 3: dim[KS] = 3.

The nearly parallel G2-structures of type 2 and 3 are described using the language of contact
geometry. In fact, Th. Friedrich and I. Kath observed that a simply-connected 7-dimensional
Riemannian spin manifold with scalar curvature R = 42 admits at least

two Killing spinors ⇐⇒ M7 is an Einstein-Sasakian manifold

three Killing spinors ⇐⇒ M7 is a 3-Sasakian manifold

(see [16]; for the definition of a Sasakian manifold also see next section). For the G2-structures
of type 1 we also use the notion of a proper G2-structure.

Examples of nearly parallel G2-structures of type three (i.e. 3-Sasakian manifolds) are known.
We have the sphere S7, the space N(1, 1) = SU(3)/S1 and these are the only regular 3-Sasakian
manifolds in dimension seven (see [16]). During the last years Boyer / Galicki / Mann obtained
non-regular examples S(p1, p2, p3), (see [6], [7]). Up to now, strong topological conditions for a
compact 7-dimensional manifold M7 in order to admit a 3-Sasakian structure are not known. For
example, it seems to be an open question whether the manifold S2×S5 posseses such a structure
or not! This special question is interesting since a 7-dimensional manifold with 3-Sasakian struc-
ture and being the product of two lower-dimensional manifolds must be diffeomorphic to S2×S5.

Examples of nearly parallel G2-structures of type 3 (3-Sasakian manifolds)

M7 Isoo(M
7) dim[Iso]

N(1, 1) SU(3)× SU(2) 11

S(p1, p2, p3) depends on pi < 8

Nearly parallel G2-structures of type two (i.e. Einstein-Sasakian manifolds) can be obtained as
principal S1-bundles over 6-dimensional Kähler-Einstein manifolds with positive scalar curva-
ture. Indeed, let X6 be a Kähler-Einstein manifold with positive scalar curvature and denote
by c1(X

6) its first Chern class. Let A > 0 be the largest integer such that c1(X
6)/A is an

integral cohomology class. Consider the principal S1-bundle S1 → M7 → X6 with Chern class
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c∗1 = c1(X
6)/A. Then M7 is simply-connected and admits an Einstein-Sasakian structure. Using

the described construction we obtain the following regular Einstein-Sasakian manifolds:

Examples of nearly parallel G2-structures of type 2 (Einstein-Sasakian manifolds)

X6 M7 Isoo(M
7) dim[Iso]

F (1, 2) N(1, 1) SU(3)× SU(2) 11

S2 × S2 × S2 Q(1, 1, 1) SU(2)× SU(2)× SU(2)× U(1) 10

CP2 × S2 M(3, 2) SU(3)× SU(2)× U(1) 12

G5,2 V5,2 SO(5)× U(1) 11

Pk × S2 M7
k (3 ≤ k ≤ 8) SO(3)× U(1) 4

where Pk (3 ≤ k ≤ 8) denotes one of the del Pezzo surfaces with a Kähler-Einstein metric of
positive scalar curvature. The spaces N(1, 1), Q(1, 1, 1), M(3, 2) and the Stiefel manifold V5,2
are homogeneous spaces together with some invariant Einstein metric. The table contains also
the isometry group of the Einstein-Sasakian manifold M7 as well as its dimension (see [11]).

There are three examples of nearly parallel G2-structures of type 1, i.e. proper G2-structures.
The first example is the so-called squashed 7-sphere. Indeed, the standard sphere (S7, gcan) is
a Riemannian submersion over the projective space HP1 with fibre S3. Scaling the canonical
metric in the fibre S3, there exists a second scaling factor such that the metric g1 on S7 is
an Einstein metric. It turns out that (S7, g1) admits exactly one Killing spinor. The second
example is the homogeneous space N(k, l) = SU(3)/S1

k,l where the embedding of the group

S1 = U(1) into SU(3) is given by

S1 3 z 7−→ diag (zk, zl, z−(k+l)) ∈ SU(3).

These spaces have two homogeneous Einstein metrics. In case (k, l) = (1, 1) one of these Einstein
metrics is the 3-Sasakian structure mentioned above and the second Einstein metric admits one
Killing spinor. In case (k, l) 6= (1, 1), there exists only one Killing spinor for each of these two
metrics, i.e. the nearly parallel G2-structure is of type 1 (a proper G2-structure). The third
example is a special Riemannian metric on SO(5)/SO(3) with one Killing spinor (see [8]). The
isotropy representation of this space is the unique 7-dimension irreducible representation of the
group SO(3)→ G2 ⊂ SO(7).
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Examples of nearly parallel G2-structures of type 1

M7 Isoo(M
7) dim [Iso]

(S7, gsquas) Sp(2)× Sp(1) 13

N(k, l), (k, l) 6= (1, 1) SU(3)× U(1) 9

SO(5)/SO(3) SO(5) 10

Remark 4.1

As we mentioned before, strong topological obstructions for the existence of a 3-Sasakian met-
ric on a compact 7-dimensional spin manifold are not known (very recently, the obstruction
b3(M

7) = 0 was found, see [17]). The same situation happens in case of an Einstein-Sasakian
metric with positive scalar curvature. This gives rise to the following question:
Do there exist compact, simply-connected spin manifolds M7 with a nearly parallel G2-structure
of type 1 (resp. 2) which cannot admit - for example for topological reasons - any Einstein-
Sasakian (resp. 3-Sasakian) metric at all?

5 New Examples.

In this section we construct new examples of nearly parallel G2-structures and show that they
are of type 1, i.e. they are proper G2-structures. Let us recall the definition of a Sasakian
structure.

Definition 5.1 A vector field V on a Riemannian manifold (M, g) is called a Sasakian structure
if the following conditions are satisfied:
1. V is a Killing vector field of unit length;
2. The (1,1)-tensor ϕ defined by ϕ = −∇V is an almost complex structure on the distribution
orthogonal to V (ϕ2 = −1 and ϕ = −ϕ∗ on V ⊥);
3. (∇Xϕ)Y = g(X,Y )V − g(V, Y )X, for all vectorsX , Y .

Definition 5.2 A triple (V1, V2, V3) is called a 3-Sasakian structure on M if the following con-
ditions are satisfied:
1. The vector Vi defines a Sasakian structure for each i = 1, 2, 3;
2. The frame (V1, V2, V3) is orthonormal;
3. For each permutation (i, j, k) of signature δ, we have ∇ViVj = (−1)δ Vk;
4. On the distribution orthogonal to (V1, V2, V3), the tensors ϕi = −∇Vi satisfy ϕi ϕj = (−1)δ ϕk.

Consider a Riemannian manifold M7 of dimension 7, admitting a 3-Sasakian structure. A vector
is called horizontal if it is orthogonal to each Vi and vertical if it is a linear combination of Vi.
Define, for s > 0, the metric gs on M7 by

gs(X,Y ) = g(X,Y ) if X (or Y ) is horizontal, and gs(V,W ) = s2 g(V,W ) for vertical V,W .

A straightforward computation gives the following
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Lemma 5.3 The manifold (M7, gs) is Einstein if and only if s = 1 or s = 1√
5
.

The 3-Sasakian manifold (M7, g1) admits, by definition, a nearly parallel G2-structure of type
3. On the other hand, by Proposition 3.10, every nearly parallel G2-structure on M defines an
Einstein metric. Hence, the manifold (M7, gs) with s = 1√

5
is a natural candidate for a nearly

parallel G2-structure. Indeed, we have

Theorem 5.4 The manifold (M7, gs) admits a nearly parallel G2-structure for s = 1√
5
.

Proof. Fix s > 0 and a local orthonormal frame X1, . . . , X4 of the horizontal distribution. Let
Za (a = 1, 2, 3) be the vector Za := Va/s and denote by ∇ the Levi-Civita connection of the
metric g = g1. We define a 3-form ω by

ω := F1 + F2

where F1 := Z1 ∧ Z2 ∧ Z3 , F2 :=
∑
a
Za ∧ ωa and ωa := 1

2

∑
i
Xi ∧∇XiVa.

The 3-form ω is clearly in Λ3
+(M7). Denote by ∗ the Hodge operator with respect to the metric

gs. Then we calculate the forms ∗F1 and ∗F2:

6 ∗ F1 =
∑
a

ωa ∧ ωa , ∗F2 = Z1 ∧ Z2 ∧ ω3 + Z2 ∧ Z3 ∧ ω1 + Z3 ∧ Z1 ∧ ω2.

A straightforward computation yields the formulas

dZ1 = 2sω1 −
2

s
Z2 ∧ Z3 , dZ2 = 2sω2 −

2

s
Z3 ∧ Z1 , dZ3 = 2sω3 −

2

s
Z1 ∧ Z2

and dF1 = d(Z1 ∧ Z2 ∧ Z3) = 2s(∗F3).

Now we compute

dω1 = d(
1

2s
dZ1 +

1

s2
Z2 ∧ Z3) =

1

s2
(dZ2 ∧ Z3 − Z2 ∧ dZ3) =

2

s
(ω2 ∧ Z3 − ω3 ∧ Z2)

dω2 =
2

s
(ω3 ∧ Z1 − ω1 ∧ Z3) , dω3 =

2

s
(ω1 ∧ Z2 − ω2 ∧ Z1)

and dF2 =
∑
a
dZa ∧ ωa −

∑
a
Za ∧ dωa = 12s(∗F1) + 2

s (∗F2).

Finally we obtain dω = d(F1 +F2) = 12s(∗F1) + (2s+ 2
s )(∗F2). So dω is a scalar multiple of ∗ω

if and only if 12s = 2s+ 2
s .

As remarked in Section 4, the only known examples of proper nearly parallel G2-structures -
up to now - are the squashed 7-sphere, the Wallach spaces N(k, l) and an Einstein metric on
SO(5)/SO(3) related to the irreducible representation SO(3)→ G2 → SO(7). The importance
of Theorem 5.4 can thus be seen in the light of the following result:
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Theorem 5.5 The nearly parallel G2-structures constructed in Theorem 5.4 are proper.

Proof: Suppose that a constant multiple k of the metric gs on M7 admits an Einstein Sasakian
structure given by the Killing vector field ξ. Denote by < the curvature tensor of (M7, g) and
by <0 the curvature tensor of (M7, kgs). Then we obtain from Lemma 4 of [2], page 78:

gs(<0(X,Y )ξ, Va) = k[gs(Y, ξ)gs(X,Va)− gs(X, ξ)gs(Y, Va)] . (∗)

Choosing X and Y horizontal we obtain

gs(<0(X,Y )ξ, Va) = 0.

On the other hand, comparing the Levi-Civita connection ∇ of the metric g with the Levi-Civita
connection ∇0 of the metric gs we calculate

<0(X,Y )Va = s2<(X,Y )Va + (s2 − 1)∇[X,Y ]V Va = (s2 − 1)∇[X,Y ]V Va, .

Here we applyed the same lemma for Va as Sasakian structure on (M7, g). Consequently, ξ is
perpendicular to all vectors of the form ∇[X,Y ]V Va. It is easy to see that the set of all these
vectors is just the vertical distribution, so ξ is horizontal.
Next, taking X = V1, a = 2 and Y horizontal in the equation (∗), one obtains

gs(<0(V1, Y )ξ, V2) = 0. (∗∗)

The vector [Y, V1] is a horizontal one and we can calculate

<0(V1, Y )V2 = ∇0
V1∇

0
Y V2 −∇0

Y∇0
V1V2 −∇

0
[V1,Y ]V2 =

= s2(∇0
V1∇Y V2 −∇V1∇Y V2) + s2<(V1, Y )V2 = s2(∇0

V1∇Y V2 −∇V1∇Y V2)

by similar arguments. Now ∇Y V2 runs through all horizontal vector fields when Y is horizontal.
Together with (∗∗) we obtain that ξ is perpendicular to all vectors of the form ∇0

V1
Z −∇V1Z.

The relation

∇0
V1Z −∇V1Z = (∇0

V1Z − [Z, V1])− (∇V1Z − [Z, V1]) = (s2 − 1)∇ZV1

shows that ξ is also perpendicular to all horizontal vectors, a contradiction.

Our new examples of nearly parallel G2-structures are all proper. The recent work of C. Boyer,
K. Galicki, B. Mann [7] provides a multitude of new examples of strongly inhomogeneous 7-
manifolds admitting a 3-Sasakian structure. By our previous theorems, they generate the first
examples of strongly inhomogeneous proper nearly parallel G2-structures. However, these ex-
amples arise from a deformation of the 3-Sasakian structure and therefore they live on manifolds
with 3-Sasakian metric.

As K. Galicki pointed out to us, he also proved the result of Theorem 5.4 in a joint paper with
S. Salamon (in preparation).



17

6 The Automorphism Group of a Nearly Parallel G2-Structure.

We consider a compact, 7-dimensional manifold M7 with a nearly parallel G2-structure and
denote by ω3 its 3-form. Then we have the differential equations

∇Xω3 = −2λ(X y ∗ ω3) , dω3 = −8λ ∗ ω3 , λ 6= 0.

Let X be a vector field preserving the 3-form, i.e.

LXω
3 = d(X yω3) +X ydω3 = d(X yω3)− 8λ(X y ∗ ω3) = 0.

In particular, X is a Killing vector field of the Riemannian metric g and ∇X ∈ Γ(T ⊗ T ) is
anti-symmetric and coincides - up to a multiple - with the exterior derivative of the 1-form X:

∇X =
1

2
dX.

We now calculate the form d(X yω3) using the differential equation for ω3:

d(X yω3)(α, β, γ) = (∇αω3)(X,β, γ)− (∇βω3)(X,α, γ) + (∇γω3)(X,α, β)+

+ω3(∇αX,β, γ)− ω3(∇βX,α, γ) + ω3(∇γX,α, β) =

= 6λ(∗ω3)(X,α, β, γ) + ω3(∇αX,β, γ)− ω3(∇βX;α, γ) + ω3(∇γX,α, β).

The equation d(X yω3)− 8λ(X y ∗ ω3) = 0 becomes:

2λ(X y ∗ ω3)(α, β, γ) = ω3(∇αX,β, γ − ω3(∇βX,α, γ) + ω3(∇γX,α, β) =

=
1

2
{ω3(α ydX, β, γ)− ω3(β ydX,α, γ) + ω3(γ ydX,α, β)}.

We apply now the following easy algebraic observation:

Lemma 6.1 Let η2 be a 2-form and denote by π7(η
2) its Λ2

7-component with respect to the
decomposition Λ2 = Λ2

7 ⊕ Λ2
14. Suppose that π7(η

2) is given by a vector Z, i.e. π7(η
2) = Z yω3.

Then

ω3(α yη2, β, γ)− ω3(β yη2, α, γ) + ω3(γ yη2, α, β) = 3(Z y ∗ ω3)(α, β, γ).

The condition that the vector field X preserves the 3-form becomes equivalent to

2λ(X y ∗ ω3) =
1

2
· 3(Z y ∗ ω3)

where π7(dX) = Z yω3. This implies Z = 4
3 · λ ·X and consequently we have proved

Theorem 6.2 A Killing vector field X preserves a nearly parallel G2-structure ω3 if and only
if

π7(dX) =
4

3
· λ · (X yω3).
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We now use Stokes Theorem as well as the identities given in the Propositions 2.4 and 2.5 in
order to obtain the following relation between the L2-norms | · | of X and the Λ2

14-part π14(dX)
of dX:

Theorem 6.3 Let X be a Killing vector field preserving a nearly parallel G2-structure ω3 on a
closed manifold M7. Then

128

3
λ2|X|2 = |π14(dX)|2.

Proof: We start with the algebraic identity dX ∧ dX ∧ ω3 = 2|π7(dX)|2 − |π14(dX)|2 which is
valid for any 2-form η(= dX). By Stokes Theorem and Propositions 2.4 and 2.5 we obtain

∫
dX ∧ dX ∧ ω3 =

∫
X ∧ dX ∧ dω3 = −8λ

∫
X ∧ dX ∧ (∗ω3)

= −8λ

∫
X ∧ π7(dX) ∧ (∗ω3) = −32

3
λ2
∫
X ∧ (X yω3) ∧ (∗ω3)

= −32λ2
∫
X ∧ (∗X) = −32λ2|X|2.

Therefore we get

2|π7(dX)|2 − |π14(dX)|2 = −32λ2|X|2.

Using the equation, π7(dX) = 4
3 · λ · (X yω3), we have

|π7(dX)|2 =
16

3
λ2|X|2,

and the formula follows immediately.

Consider a component Σ ⊂ M7 of the zero set of X. Since X is a Killing vector field, Σ is a
totally geodesic submanifold of even codimension. Suppose that dim[Σ] = 5. Then at any point
of Σ we obtain that 0 6= dX ∈ Λ2

14 has rank 2 (π7(dX) = 0!). This implies dX ∧ dX = 0. On
the other hand, since dX ∈ Λ2

14 we have dX ∧ dX ∧ω3 = −|dX|2 (see the definition of the space
Λ2
14), a contradiction. This yields the

Corollary 1 Any connected component of the zero set of a Killing vector field X preserving a
nearly parallel G2-structure ω3 has dimension one or three.

We investigate now the geometry of the 3-dimensional components of the zero set Σ.

Theorem 6.4 Let Σ3 ⊂M7 be a three-dimensional component of the zero set of a Killing vector
field preserving a nearly parallel G2-structure. Then

(i) the tangent spaces T (Σ3) ⊂ T (M7) are G2-special, i.e. the restriction of ω3 to Σ3 is the
volume form of Σ3.

(ii) Σ3 is a space form of positive sectional curvature K = R
42 .
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Proof: The equation X ydω3 + d(X yω3) = 0 yields at any point m ∈
∑3 and for any three

vectors α, β, γ ∈ Tm(M7) the relation

0 = d(X yω3)(α, β, γ) = ω3(∇αX,β, γ)− ω3(∇βX,α, γ) + ω3(∇γX,α, β).

Let e1, e2, . . . , e7 be a local orthonormal frame in the G2-bundle such that e1(m), e2(m) belong
to the tangent space Tm(Σ3). There exists a frame with the required property since the group
G2 acts transitively on the Grassmannian manifold G2(R

7). With respect to

∇e1X = ∇e2X = 0

we obtain (β = e1, γ = e2) ω3(∇αX, e1, e2) = 0. The vectors ∇αX, α ∈ Tm(M7), gener-
ate the normal space of Tm(Σ3) and, therefore, the latter equation means that the subspace
Tm(Σ3) ⊂ Tm(M7) is of special G2-type (see Proposition 2.6). In particular, the vector e7 is the
third vector tangent to Σ3 at the point m ∈ Σ3. The 2-forms

e2 ∧ e7 + e3 ∧ e5 − e4 ∧ e6 , e1 ∧ e7 + e3 ∧ e6 + e4 ∧ e5 , e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6

are elements of Λ2
7. The curvature tensor < of M7 acts on forms of the type Λ2

7 by the scalar
multiplication by − R

42 (see Section 4). This implies

<(e2 ∧ e7 + e3 ∧ e5 − e4 ∧ e6) = −R
42

(e2 ∧ e7 + e3 ∧ e5 − e4 ∧ e6)

and, finally, R2772 = R
42 because Σ3 is a totally geodesic submanifold (i.e. R3527 = R4627 = 0 for

example). Similarly we obtain R1771 = R1221 = R
42 and, hence, Σ3 is a space form of positive

sectional curvature K = R
42 .

Let H ⊂ G = Aut (M7, ω3) be a subgroup of the connected component G of the automorphism
group of a nearly parallel G2-structure (λ 6= 0) and suppose that for some point m∗ ∈ M7 the
H-orbit N4 = H ·m∗ is a four-dimensional submanifold. Then (∗ω3) is an H-invariant 4-form
on N4, i.e. a constant multiple of the volume form of N4. On the other hand, we have

(−8λ)

∫
N4

(∗ω3) =

∫
N4

dω3 = 0

and, thus, ∗ω3 vanishes on N4. This implies that ω3 vanishes on the normal bundle T⊥(N4).
Using Proposition 2.6 we obtain a local frame e1, e2, . . . , e7 in the G2-bundle over N4 such that
e4, e5, e6, e7 Span the tangent space T (N4) of N4. Moreover, on N4 the formula

ω3|N4 = e5 ∧ e6 ∧ e7

holds, i.e. ω3|N4 is a 3-form on N4 of length one. Denote by ξ the tangent vector field on N4

corresponding to this 3-form under the Hodge operator of N4 (ξ = e4). Then we have

ξ yω3 = 0 , dN4 = ξ ∧ ω3.
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The 3-form ω3 is invariant under the flow of the vector field ξ on N4:

Lξ(ω
3) = ξ ydω3 + d(ξ yω3) = −8λ(ξ y ∗ ω3) + 0 = 0.

We summarize the result in the following

Theorem 6.5 Let N4 = H ·m∗ be a four-dimensional orbit, H ⊂ G = Aut (M7, ω3). Then the
restriction of ω3 to N4 is a 3-form on N4 with length one. Moreover, there exists a vector field
ξ such that

(i) ξ yω3 = 0 , dN4 = ξ ∧ ω3;

(ii) Lξ(ω
3) = 0.

In particular, the Euler characteristic χ(N4) of N4 vanishes, χ(N4) = 0.

Corollary 2 The isotropy representation G(m)→ GL(Tm(M7)) at any point m ∈ N4 of a four-
dimensional orbit N4 decomposes into a 1-dimensional and two 3-dimensional representations.

Denote by G = Aut (M7, ω3) the connected component of the automorphism group of the nearly
parallel G2-manifold. The isotropy subgroup G(m) of any point m ∈ M7 is a subgroup of G2.
Thus, we obtain

dim(G)− dim(G(m)) ≤ 7, G(m) ⊂ G2.

Theorem 6.6 Let (M7, ω3) be a simply-connected, compact manifold with nearly parallel G2-
structure not isometric to the sphere S7. Then the automorphism group G has dimension ≤ 13.

Proof: First we discuss the case of 15 ≤ dim (G). Then the isotropy subgroup G(m) is a
subgroup of G2 with 8 ≤ dim (G(m)). However, the group G2 contains only two subgroups
satisfying this condition, namely G(m) = SU(3) and G2 (see [12]). If G(m) = G2 for any point
m ∈M7, the Weyl tensor vanishes identically and the space M7 is the sphere S7. Suppose that
there exists a point m ∈ M7 such that G(m) = SU(3). Then the group G acts transitively on
M7. Moreover, G is a simply-connected, compact group of dimension 15 containing a subgroup
isomorphic to SU(3). The classification of compact groups yields that there exists only one group
with these properties, namely G = SU(4). The Riemannian metric on M7 is given by an SU(3)-
invariant scalar product of R7 = C3⊕R1. The family of SU(3)-invariant scalar products depends
on one positive parameter, but only the usual scalar product in R7 defines an Einstein metric
on the homogeneous space M7 = SU(4)/SU(3). Consequently, M7 is isometric to the sphere S7.

Next we study the case of dim (G) = 14. Then 7 ≤ dim (G(m)) for any point m ∈ M7. The
group G2 does not contain a subgroup of dimension 7 (see [12]) and therefore we obtain again
G(m) = SU(3) or G2. The case G(m) = G2 for any point m ∈ M7 is impossible. Suppose
G(m) = SU(3) for some point. Then G is a compact group of dimension 14 containing a sub-
group isomorphic to SU(3). Moreover, G acts on M7 with cohomogeneity one. Since M7 is
simply-connected, there exists a point m0 ∈ M7 such that G(m0) = G. Then G is isomor-
phic to G2. In a neighbourhood of this point the Einstein metrics is a warped product metric



21

dr2 ⊕ f(r)g0, where g0 is a G2-invariant metric on the sphere G2/SU(3) = S6. Since the metric
is regular at the point m0,M

7 is a space of constant sectional curvature (see [4]).

Theorem 6.7 Let (M7, ω3) be a simply-connected, compact manifold with nearly parallel G2-
structure not isometric to the sphere S7. The group SU(3) cannot occur as an isotropy subgroup
G(m) ⊂ Aut (M7, ω3).

Proof: The isotropy group G(m) of an arbitrary point m ∈ M7 is a subgroup of G2. Sup-
pose that it is isomorphic to SU(3) for one point m ∈ M7. The isotropy representation
G(m) → SO(Tm(M7)) is the standard representation of SU(3) in SO(7). The possible di-
mensions of G(m)-invariant subspaces V ⊂ Tm(M7) are 0, 1, 6 and 7. The tangent space
Tm(N) of the orbit N = G ·m = G/G(m) defines a G(m)-invariant subspace. Consequently, we
obtain four possibilities

a) G = G(m) = SU(3),
b) dim (G) = 9 and G(m) = SU(3),
c) dim (G) = 14,
d) dim (G) = 15.

In case dim (G) = 14 or 15, M7 is isometric to the sphere S7. If dim (G) = 9, the automorphism
group G is (locally) isomorphic to G = SU(3) × U(1). Denote by X the Killing vector field
corresponding to the U(1)-action. Suppose that X has a zero point m∗ and consider the orbit
N through m∗. Then X vanishes at every point of N and therefore by Theorem 4, N is a 1-
or 3-dimensional submanifold. The group SU(3) acts on N as a group of isometries and we
obtain an isomomorphism SU(3) → Iso(N). The compact group Iso(N) is isomorphic to U(1)
(in case dim (N) = 1) or to SO(4) (in case dim (N) = 3). Since any two- or four-dimensional
real representation of the group SU(3) is trivial, we conclude that G acts trivially on N . Hence,
G is a 9-dimensional subgroup of G2, a contradiction. Consequently, the Killing vector field X
corresponding to the U(1)-action has constant length 1. Next we prove that the U(1)-action on
M7 is a free action. Indeed, for any point m∗ the isotropy subgroup G(m∗) of G = SU(3)×U(1)
has the dimension bounded by dim (G)− 7 = 2 ≤ dim (G(m∗)). In case dim (G(m∗)) = 2, the
group G acts transitively on M7 and then the isotropy group G(m) = SU(3) cannot occur.
Hence, G(m∗) = G1 × Zp ⊂ SU(3) × U(1) is a group of dimension at least 3. There are only
two possibilities: G1 = SU(2) or G1 = SU(3). In both cases we get a Zp-action preserving the
orientation on the 6-dimensional sphere S6 = G2/SU(3) commuting with the usual SU(3)-action
on S6. This means that the group Zp is trivial, i.e. the action of U(1) is free. This U(1)-action
on M7 defines a compact 6-dimensional manifold K6 = M7/U(1) as well as a principal bundle
π : M7 → K6. Since M7 is an Einstein space of positive scalar curvature, K6 is an Einstein
space of positive scalar curvature, too. The group SU(3) acts as a group of isometries on K6

and the isotropy subgroups of this action are SU(2) or SU(3). Hence K6 is isometric to the
projective space CP3. Moreover, the 2-form dX is a horizontal 2-form
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(X ydX)(Y ) = dX(X,Y ) = X〈X,Y 〉 − Y 〈X,X, 〉 − 〈X, [X,Y ]〉 =

= 〈∇XX,Y 〉+ 〈X,∇YX〉 = 0,

i.e. X is a connection in the principal U(1)-fibre bundle π : M7 → K6 with curvature form dX.
Finally it turns out that M7 is the 7-dimensional sphere.
It remains to discuss the case of dim (G) = 8. In this case, the group G coincides with G(m) =
SU(3) and acts on M7 with cohomogeneity two. The subgroups of SU(3) and their dimensions
are

SO(3) 3

S(U(2)× U(1)) 4

SU(2) 3

U(1)× U(1) 2

U(1) 1

The orbit G/G(m∗) for any point m∗ ∈M7 is therefore either a point or at least a 4-dimensional
submanifold. The group G(m∗) = S(U(2) × U(1)) cannot occur since the Euler characteristic
of G/G(m∗) = SU(3)/S(U(2) × U(1)) = CP2 is not zero (Theorem 6.5). On the other hand,
near the point m ∈ M7 all orbits are of type SU(3)/SU(2). Since the set of all principal
orbits of the G-action is dense, the type of the principal orbit is G(m∗) = SU(2). Conse-
quently, we see that G = SU(3) acts on M7 with two orbit types only. There is a finite set
γ1, · · · , γk of closed geodesics in M7 such that G(mi) = SU(3) (mi ∈ γi) and any other orbit
is of type SU(3)/SU(2) = S5. There exists only one geodesic γ. Indeed, Y = M7/SU(3) is a
2-dimensional manifold with k boundary components and

M7 − {γ1, · · · , γk} −→ Int (Y )

is an S5-fibration. On the other hand, we have

0 = π1(M
7) = π1(M

7 − {γ1, · · · , γk}) = π1(Int (Y ))

and Y = D2 has only one boundary component. Consequently, M7 is a 7-dimensional Einstein
manifold with isometry group SU(3) and the principal orbits are of type SU(3)/SU(2); there
exists only one exceptional orbit - the fixed point set of SU(3). It turns out that M7 is isometric
to the standard 7-dimensional sphere S7 (M7 is topologically the sphere and the metric is an
SU(3)-invariant Einstein metric with respect to the usual action of SU(3) ⊂ SO(6) ⊂ SO(8)
see [3]).

Corollary 3 Let (M7, ω3) be a simply-connected, compact manifold with nearly parallel G2-
structure not isometric to the sphere S7. Then

(i) the dimension of the automorphism G = Aut (M7, ω3) has dimension ≤ 13.

(ii) any isotropy subgroup G(m) has dimension ≤ 6.
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7 Nearly Parallel G2-Structures with Large Symmetry Group.

In this section we will classify all seven-dimensional compact, simply-connected manifolds with
a nearly parallel G2-structure and symmetry group of dimension at least 10. This classification
includes in particular the classification of compact, simply-connected homogeneous nearly par-
allel G2-structures.

Let (M7, g) be a compact, simply-connected 7-dimensional nearly parallel G2-manifold different
from the sphere S7. Let G be the connected component of the automorphism group of the
G2-structure. We already know that

dim (G) ≤ 13 and dim (G(m)) ≤ 6 for any point m ∈M7

holds. We will discuss the spaces case by case depending on the dimension of the group G.

1. case: dim (G) = 13.

In this case the dimension of the isotropy group G(m) is 6 for any point m ∈ M7 and the
group G acts transitively on M7 = G/G(m). There exists only one connected six-dimensional
subgroup of the group G2 (see [12]), namely the isotropy group of the exceptional orbit of the
G2-action on the Grassmannian manifold G3(R7) (see Proposition 2.6). The Lie algebra of this
subgroup is defined by the relations:

ω12 + ω34 + ω56 = 0 , ω17 + ω36 + ω45 = 0 , ω27 + ω35 − ω46 = 0

ω13 = ω14 = ω15 = ω16 = ω23 = ω24 = ω25 = ω26 = ω37 = ω47 = ω57 = ω67 = 0

and the subgroup is isomorphic to G(m) = SO(4) = [SU(2) × SU(2)]/{±1}. Denote by G∗

and G∗(m) the 2-fold covering of the group G respectively of the group G(m). Then G∗ is
a compact, simply-connected 13-dimensional Lie group containing a subgroup isomorphic to
G∗(m) = Sp (1) × Sp (1). Using the classification of simple Lie groups we deduce that G∗ is
isomorphic to G∗ = Sp (2)× Sp(1). Consequently, the homogeneous Einstein manifold M7 is of
type M7 = [Sp (2)×Sp (1)]/[Sp (1)×Sp (1)] and therefore M7 is isometric either to the standard
sphere S7 or to the squashed sphere S7

squas.

2. case: dim (G) = 12.

In this case the dimension of any isotropy group G(m) is bounded by 5 ≤ dim (G(m)) ≤ 6. Since
the group G2 does not contain a subgroup of dimension 5 we obtain that any isotropy group
G(m) has dimension 6, i.e. any isotropy group is a 6-dimensional subgroup of G2 containing the
group SO(4) described above:

SO(4) ⊂ G(m) ⊂ G2.
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It is a matter of fact that such a subgroup of G2 coincides with SO(4). Indeed, consider the
covering G2/SO(4)→ G2/G(m). Any deck transformation g ∈ G2 is homotopic to the identity
map and therefore its Lefschetz number coincides with the Euler characteristic χ(G2/SO(4)) > 0,
a contradiction. Consequently, the group G acts on M7 with one orbit type only and M7 is the
total space of a fibration over S1 with the fibre F = G/SO(4). On the other hand, the exact
homotopy sequence of this fibration yields

· · · → π1(F )→ π1(M
7) = 1→ π(S1) = ZZ → π0(F ) = 1,

a contradiction. Finally we see that the case dim (G) = 12 is impossible.

3. case: dim (G) = 11.

In this case the dimension of any isotropy group G(m) is bounded by 4 ≤ dim (G(m)) ≤ 6.

Suppose that dim (G(m)) = 4 for one point m ∈M7. Then G acts transitively, M7 = G/G(m),
and the isotropy group G(m) ⊂ G2 is connected. Using the list of all connected subgroups of
the exceptional group G2 (see [12]) we obtain two possibilities:

a) G(m) is the subgroup [SU(2) × U(1)]/{±1} of SU(3). This is in fact the group SU(3) ∩
SO(4) and its Lie algebra is given by the equations:

ω12 + ω34 + ω56 = 0 , ω36 + ω45 = 0 , ω35 − ω46 = 0

ω13 = ω14 = ω15 = ω16 = ω17 = ω23 = ω24 = ω25 = ω26 = ω27 = 0

ω37 = ω47 = ω57 = ω67 = 0.

The representation of G(m) in R7 splits into a 1-, 2- and 4-dimensional invariant subspace,

R7 = E1 ⊕ E2 ⊕ E4

where E2 = Span (e1, e2), E
4 = Span (e3, e4, e5, e6) and E1 = Span (e7).

b) G(m) is the subgroup [U(1)× SU(2)]/{±1} of SO(4) = [SU(2)× SU(2)]/{±1}. The Lie
algebra of this group is given by the equations:

ω13 = ω14 = ω15 = ω16 = ω23 = ω24 = ω25 = ω26 = ω37 = ω47 = ω57 = ω67 = 0.

ω12 + ω34 + ω56 = 0,

ω17 + ω36 + ω45 = 0 , ω36 = ω45 , ω27 + ω35 − ω46 = 0 , ω35 = −ω46.

The representation of G(m) in R7 splits into a 3- and 4-dimensional invariant subspace,

R7 = F 3 ⊕ F 4

where F 3 = Span (e1, e2, e7) and F 4 = Span (e3, e4, e5, e6).
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First we consider the case that π1(G) is a finite group. Denote by G∗ its universal covering and
lift the isotropy subgroup to G∗(m) = Sp (1)×U (1). Then G∗ is a simply-connected Lie group
of dimension 11 containing the two-dimensional torus T 2 ⊂ Sp(1) × U(1). Moreover, since the
Euler characteristic of M7 = G∗/G∗(m) vanishes we conclude that the rank of G∗ is greater or
equal to 3,

rank (G∗) ≥ 3 , dim (G∗) = 11 , π1(G
∗) = 1.

The classification of all compact Lie groups yields that G∗ is isomorphic to SU(3)× SU(2). In
case a) the isotropy group G(m) is contained in SU(3) and consequently the space M7 admits
two real Killing spinors (the G2-structure is of type 2). On the other hand, the automorphism
group of the G2-structure of the manifold M(3, 2) with two Killing spinors described in Sec-
tion 4 is isomorphic to SU(3) × SU(2), this group acts transitively on M7 and the isotropy
representation coincides with the representation of G(m) in case a). Hence, in case a) M7 is
isometric to M(3, 2). In a similar way we can handle the case b). The manifold N(1, 1) admits
a G2-structure of type 1 (not the 3-Sasakian metric!, see Sections 4 and 5) and the automor-
phism group of this G2-structure coincides obviously with the isometry group SU(3) × SU(2).
A calculation of the isotropy representation yields that in coincides with the representation of
case b) and consequently M7 is isometric to N(1, 1).

Suppose now that π1(G) is not a finite group. The exact homotopy sequence

. . .→ π2(M
7)→ π1(G(m)) = Z→ π1(G)→ 1

yields that π1(G(m)) = π1(G) = Z. Consider a finite covering G∗ of G such that G∗ splits into
G∗ = U(1)×G1, where G1 is a simply-connected group of dimension 10. Then G1 is isomorphic
to Spin (5). The decomposition G∗ = U(1) × Spin(5) defines a Killing vector field X on M7

invariant with respect to the action of Spin (5). Consequently, X has a constant length. In
particular, at the point m ∈ M7 the isotropy group G(m) preserves the vector X(m), i.e. the
group G(m) is of type G(m) = SU(3) ∩ SO(4) and the isotropy representation splits into

Tm(M7) = E1 ⊕ E2 ⊕ E4.

On the other hand, the embedding Φ : G∗(m) = U(1) × Spin (3) → U(1) × Spin (5) = G∗ is
given by two injective homomorphisms

i : Spin (3)→ Spin (5) , j : U(1)→ U(1)

(π1(G
∗/G∗(m)) = 1!) and by one homomorphism k : U(1)→ Spin (5),

Φ(z, g) = (j(z), k(z) · i(g)).

Therefore the isotropy representation of the space G∗/Φ(G∗(m)) considered only as an Spin (3)-
representation is isomorphic to the isotropy representation of the space Spin (5)/i(Spin (3)).
There are only two injective homomorphisms i1, i2 : Spin (3)→ Spin (5). The first of them i1 is
related to the 5-dimensional irreducible representation of SO(3) and i2 is the usual inclusion of
SO(3) into SO(5). In case of i1 we obtain that the isotropy representation of the homogeneous
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space is irreducible and in case of i2 we obtain the isotropy representation of the Stiefel manifold
V5,2 which splits into the irreducible subspaces E1 ⊕ E3 ⊕ E3. This contradicts the mentioned
decomposition of Tm(M7) and finally the case G∗ = U(1)× Spin (5) is not possible.

We discuss now the case that any isotropy group G(m) is a 6-dimensional group, i.e. G(m) =
SO(4) ⊂ G2. Since dim (G) = 11, any orbit N = G/G(m) ⊂ M7 has dimension 5 and its
tangents space Tm(N) ⊂ Tm(M7) defines a G(m) = SO(4)-invariant subspace of Tm(M7) = R7.
The representation of the group SO(4) ⊂ G2 ⊂ SO(7) splits into two SO(4)-irreducible parts,
namely R7 = F 3 ⊕ F 4 where F 3 = Span (e1, e2, e7) and F 4 = Span (e3, e4, e5, e6), a contradic-
tion. Consequently, this case is impossible.

4. case: dim(G) = 10.

In this case the dimension of any group G(m) is bounded by 3 ≤ dim(G(m)) ≤ 6.

Suppose that dim(G(m)) = 3 for one point m ∈M7. Then G acts transitively, M7 = G/G(m),
and the isotropy group G(m) ⊂ G2 is connected. Using the list of all connected subgroups of
the exceptional group G2 (see [12]) we obtain four possibilities. In any case, G(m) is isomorphic
to SO(3) or to SU(2). Since π1(M

7) = 1 we obtain π(G) = π1(G(m)) = 0 or Z2. Consider
the universal coverings G∗ and G∗(m) = Spin (3). Then G∗ is a simply-connected Lie group of
dimension 10. Moreover, since the Euler characteristic of M7 = G/G∗(m) vanishes we conclude
that the rank of G∗ is greater or equal to2,

rank (G∗) ≥ 2 , dim (G∗) = 10 , π1(G
∗) = 1.

The classification of all compact Lie groups yields that G∗ is isomorphic to Spin (5) and the
manifold M7 is isometric to the Stiefel manifold V5,2 or to the spaces SO(5)/SO(3) described
in Section 4.

Suppose now that the isotropy group G(m) is a four-dimensional subgroup for one point m ∈
M7. Then G(m) is one of the two subgroups of G2 considered in the discussion of the case
dim(G) = 11. In particular, G(m) is a connected subgroup. The orbit G ·m through m is a
6-dimensional manifold, but only the group G(m) = SU(3)∩SO(4) ⊂ G2 has a 6-dimensional in-
variant subspace. Consequently, G/G(m) is the principal orbit of the G-action on M7 and there
are no other orbits of dimension 6. But exceptional orbits do not exist at all. Indeed, since SU(3)
cannot occur as an isotropy subgroup, an exceptional orbit must be of type O4 = G/SO(4).
However, the isotropy representation of SO(4) is F 3 ⊕F 4, a contradiction to the Corollary 2 in
Section 6. Finally the G-action defines a fibration M7 →M7/G = S1 and the exact homotopy
sequence yields that M7 cannot be simply-connected.

It remains to discuss the situation where any orbit is a four-dimensional manifold and every
isotropy group G(m) coincides with SO(4). In this situation we can apply the same argument
as before and we obtain again a contradiction to Corollary 2.
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In particular we proved the following

Theorem 7.1 Any compact nearly parallel G2-manifold with automorphism group of dimension
dim (G) ≥ 10 is homogeneous.

Probably there exist non-homogeneous nearly parallel G2-manifolds admitting an automorphism
group of dimension 9, 8, · · · . However, explicit non-homogeneous examples with a 9- or 8-
dimensional automorphism group up to now are not known.
On the other hand, using similar arguments as before one can finish the classification of compact,
homogeneous nearly parallel G2-manifolds. It turns out that in case dim(G) ≤ 9 the space is
isometric to Q(1, 1, 1) or to one of the manifolds N(k, l).

Theorem 7.2 Any compact, simply-connected, homogeneous nearly parallel G2-manifold is one
of the spaces described in the three tables of Section 4.
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