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Abstract - We collect our recent results ([5] and [8]) and we get the equivalence of the

three notions of the title under some conditions. We then use this equivalence in order

to prove some consequences about Sasakian manifolds, complex almost contact structures

and complex k-contact structures.

Spineurs de Killing kählériens, structures complexes de contact et
espaces de twisteurs

Résumé - On utilise nos résultats récents ([5] et [8]) pour montrer l’équivalence des trois

notions du titre sous certaines conditions. On obtient ensuite des conséquences sur les

variétés de Sasaki, les structures presque complexes de contact, et les k-structures com-

plexes de contact.

Version Française Abrégée - Soit M une variété kählérienne spinorielle
compacte de dimension complexe impaire m = n/2 et courbure scalaire pos-
itive R. Alors, toute valeur propre λ de l’opérateur de Dirac D satisfait
l’inégalité (cf. [4])

λ2 ≥ m+ 1

4m
inf
M
R.

Dans le cas où l’égalité est satisfaite, M s’appelle une variété-limite et tout

spineur propre Ψ de D correspondant aux valeurs propres ±
√

(m+ 1)R/4m
est un spineur de Killing kählérien, c.à.d. satisfait l’équation différentielle
(cf. [1]):

∇XΨ +
1

n+ 2
X ·DΨ +

1

n+ 2
J(X) · D̄Ψ = 0,

où D̄ est l’opérateur de Dirac tordu par J , dont l’expression dans une base
{ei} orthonormée est D̄ = J(ei) · ∇ei . Dans [8] on démontre:
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Théorème. La seule variété-limite de dimension 8l + 2 est CP4l+1. Les
variétés-limites de dimension 8l+ 6 sont exactement les espaces de twisteurs
des variétés quaternioniennes à courbure scalaire positive.

D’autre part, si M4k est une variété quaternionienne à courbure scalaire
positive, son espace de twisteurs (cf. [9]) admet une métrique de Kähler-
Einstein à courbure scalaire positive et une structure complexe de contact.
Enfin, dans [5] on démontre le résultat suivant:

Théorème. Une variété M8l+6 de Kähler-Einstein à courbure scalaire pos-
itive admettant une structure complexe de contact est spinorielle et possède
un spineur de Killing kählérien.

En utilisant ces deux théorèmes on trouve, parmi d’autres corollaires:

Théorème. Les seules variétés de Kähler-Einstein en dimension complexe
4k + 3, admettant une structure complexe de contact sont les espaces de
twisteurs des variétés quaternioniennes à courbure scalaire positive.

———————————————-

0. Introduction. The notion of a complex contact structure was introduced
in the late 50’s by S. Kobayashi (cf. [6]), in analogy to real contact structures.

In 1982 in [9], S. Salamon investigated quaternionic Kähler manifolds. In
particular, he defined the twistor space over such a manifold as a generaliza-
tion of the classical notion of twistor space over a self-dual 4-manifold.

In 1986, K.D. Kirchberg was led to define Kählerian Killing Spinors,
in order to characterize Kähler spin manifolds of odd complex dimension
admitting the smallest possible eigenvalue of the Dirac operator (cf. [4]).
Some important contributions to this problem are also due to O. Hijazi (cf.
[1]).

The aim of this paper is to collect our recent results (cf. [5] and [8]),
in order to explain the close connection between these three notions and to
derive some corollaries.

1. Previous results. In this section we describe the three notions intro-
duced above, and recall relevant results obtained in each of these directions.

Let M be a compact spin Kähler manifold of odd complex dimension
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m = n/2 and positive scalar curvature R. Then, each eigenvalue λ of the
Dirac operator D satisfies the inequality (cf. [4])

λ2 ≥ m+ 1

4m
inf
M
R.

In the limiting case of this inequality, M is Einstein and any eigenspinor Ψ of

D corresponding to the eigenvalues ±
√

(m+ 1)R/4m is a Kählerian Killing

spinor, i.e., satisfies the following first-order differential equation (cf. [1]):

∇XΨ +
1

n+ 2
X ·DΨ +

1

n+ 2
J(X) · D̄Ψ = 0,

where by D̄ we mean the twisted Dirac operator, given in an orthonormal base
{ei} by D̄ = J(ei) ·∇ei . We call such M a limiting manifold. Conversely, any
compact Kähler manifold admitting Kählerian Killing spinors is a limiting
manifold. The first examples of such manifolds were the complex projective
spaces CP2k+1.

Using complex contact structures it is possible to construct other mani-
folds admitting Kählerian Killing spinors. We will shortly describe the con-
struction of [5].

Definition 1 (cf.[6]) Let M2m be a complex manifold of complex dimension
m = 2k+1. A complex contact structure is a family C = {(Ui, ωi)} satisfying
the following conditions:

(i) {Ui} is an open covering of M .

(ii) ωi is a holomorphic 1-form on Ui.

(iii) ωi ∧ (∂ωi)
k ∈ Γ(Λm,0M) is different from zero at every point of Ui.

(iv) ωi = fijωj in Ui∩Uj , where fij is a holomorphic function on Ui∩Uj.

Let C = {(Ui, ωi)} be a complex contact structure. Then there exists an as-
sociated holomorphic line subbundle LC ⊂ Λ1,0(M) with transition functions
{f−1ij } and local sections ωi. From condition (iii) immediately follows the

isomorphism Lk+1
C
∼= K, where K = Λm,0(M) denotes the canonical bundle
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of M . If we assume k to be an odd integer then M admits a canonical spin
structure. It is given by the isomorphism

L
k+1
2
C

∼= K
1
2 ∼= S0. (1)

Here S0 is the subbundle of the spinor bundle S which is defined as the
eigenspace of Ω for the eigenvalue −im, where the Kähler form Ω is consid-
ered as endomorphism of S. We construct now a section ΨC of the spinor
bundle which is associated to the contact structure C. For doing so we fix
(U, ω) ∈ C and define ΨC over the open set U by

ΨC |U := |Ψω|−2 η̄ω · Ψω , (2)

where Ψω ∈ Γ(S0 |U) is the local section in S0 corresponding to ω⊗
k+1
2 under

the identification (1) and ηω := ω ∧ (∂ω)
k−1
2 . From the condition (iv) it

follows that the spinor ΨC is globally defined. We have the following

Proposition 1 (cf. [5]) Let (M, g, J) be a compact Kähler-Einstein manifold
of complex dimension m = 2k+ 1 with k odd, and let C be a complex contact
structure on M . Then the spinor ΨC associated with C satisfies the equation

D2 ΨC =
m+ 1

4m
R ΨC,

where R is the scalar curvature of (M, g). In particular, the spinors

Ψ±C := λ1ΨC ±DΨC are Kählerian Killing spinors, where λ1 =
√

m+1
4m

R.

A class of manifolds satisfying the assumptions of Proposition 1 are the
twistor spaces of quaternionic Kähler manifolds introduced by S. Salamon
(cf. [9]).

A quaternionic Kähler manifold is defined to be a 4n-dimensional ori-
ented Riemannian manifold whose restricted holonomy group is contained in
the subgroup Sp(n)Sp(1) ⊂ SO(4n) (n ≥ 2). Salamon’s idea is to construct
over each such manifold M a natural CP1– bundle Z, admitting a Kähler
metric such that the bundle projection is a Riemannian submersion. He
called this bundle the twistor space of M .
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Proposition 2 (cf.[9]) Let M4k be a quaternionic Kähler manifold with pos-
itive scalar curvature. Then its twistor space Z admits a Kähler Einstein
metric of positive scalar curvature and a complex contact structure. More-
over, Z is spin for odd k and Z is spin for even k iff Z = CP2k+1.

From Propositions 1 and 2 we obtain that all the twistor spaces of quater-
nionic Kähler manifolds M4k (k ≡ 1(2)) with positive scalar curvature admits
Kählerian Killing spinors, i.e. they are limiting manifolds.

The only explicitly known manifolds of this kind are the following three
families:

• Sp(k + 1)/Sp(k)× U(1) ∼= CP2k+1,

• SU(k + 2)/S(U(k)× U(1)× U(1)),

• SO(k + 4)/S(O(k)×O(3)×O(2)).

and the 15–dimensional exceptional space F4/Sp(3)U(1).

It is now interesting to see that each such limiting manifold (i.e. each
spin Kähler manifold of odd complex dimension and positive scalar curvature
admitting Kählerian Killing spinors) has to be a twistor space. This is due
to the following classification result:

Proposition 3 (cf. [8]) The limiting manifolds of complex dimension 4l+ 3
are exactly the twistor spaces associated to quaternionic Kähler manifolds of
positive scalar curvature. The only limiting manifold of complex dimension
4l + 1 is CP4l+1.

The idea of the proof is the following. Take a limiting manifold M and con-
sider a maximal root of the canonical line bundle with some hermitian metric.
The associated principal U(1)-bundle over M , say PM , with a carefully cho-
sen metric, is spin, and any spinor on M induces a projectable spinor on PM .
Moreover, a Kählerian Killing spinor induces a projectable real Killing spinor
on PM . This forces PM to admits a regular Sasakian 3-structure and M to
be the twistor space over the quotient of PM by the Sasakian 3-structure.

The last part of the proposition follows from the fact that the only spin
twistor space of complex dimension 4l+1 is CP4l+1.
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2. The results. Combining the above propositions we have

Theorem 4 Let M be a compact spin Kähler manifold of positive scalar
curvature and complex dimension 4l + 3. Then the following statements are
equivalent:

(i) M admits Kählerian Killing spinors;

(ii) M is Kähler-Einstein and admits a complex contact structure;

(iii) M is the twistor space of some quaternionic Kähler manifold of
positive scalar curvature.

As an immediate corollary we have the following result:

Corollary 4.1 If M is a Kähler-Einstein manifold of positive scalar curva-
ture and complex dimension 4l+3 which admits a complex contact structure,
then M is the twistor space of some quaternionic Kähler manifold of positive
scalar curvature.

This important result was obtained recently and using completely different
methods by C. LeBrun (cf. [7]). He proves the same statement but without
the restriction on the dimension. The interest of our proof lies in the unex-
pected appearance of the Dirac operator. As a less obvious corollary we have
the following

Corollary 4.2 Let M be a Riemannian manifold of real dimension n =
8l + 7, admitting a Sasakian 3-structure which is regular in one direction.
Then it is regular in all directions.

Proof. Let V be the Killing vector field in the regular direction. We denote
by N the quotient of M by the S1-action in the direction of V . Regularity
just means that N is a manifold. Now a simple calculation (cf. [2]) shows
that N is a Kähler–Einstein manifold admitting a complex contact structure.

Corollary 4.1 yields that N is the twistor space of some quaternionic
Kähler manifold Q, of positive scalar curvature. Using [2] once again, we
see that the 2-distribution given by the two other Killing vector fields of
the Sasakian 3-structure, projects on the 2-distribution Θ which gives the
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complex contact structure on N . So the quotient of M by the Sasakian 3-
structure is diffeomorphic to the space of leaves of Θ, which is exactly the
manifold Q. Thus our Sasakian 3-structure is regular.

Remark 1 Corollary 4.2 is also true for n = 8l + 3. We just have to use
the result of C. LeBrun ([7]) instead of Corollary 4.1 in the above proof.
Actually, as recently pointed out to us by K. Galicki, Corollary 4.2 is a result
of S. Tanno [10].

In [3] S. Ishihara and M. Konishi introduced the concept of complex almost
contact structures. These are the hermitian manifolds of odd complex dimen-
sion 2n+ 1 whose structure group can be reduced to U(1) × (Sp(n) ⊗ U(1))
(the tensor product here means semi-direct product). They proved that each
such manifold under an additional normality condition admits a Kähler–
Einstein metric and also a complex contact structure. In [2] they also
showed the existence of a normal complex almost contact structure on the
S1–quotient of a 3–Sasakian space which is regular in one direction. From
Theorem 4 we then have

Corollary 4.3 Let M be a complete Hermitian manifold with a complex
almost contact structure. Then the structure is normal iff M is the twistor
space of some quaternionic Kähler manifold of positive scalar curvature.

To give a last application of Theorem 4 we consider a generalization of com-
plex contact structures. For this let C = {Ui, ωi} be a family of (local)
r–forms which again satisfies conditions (i) – (iv) of Definition 1, where (iii)
has to be changed into:

(iii)′ ωi ∧ (∂ωi)
s ∈ Γ(Λm,0M |Ui

) is different from zero at each point of Ui.

Here s = m−r
r+1

must be an integer. Such a family was called a complex
r–contact structure in [5]. If s is an odd integer then M again admits a
canonical spin structure. In this situation it is once more possible to construct
a Kählerian Killing spinor ψC (similar to (2)). Theorem 4 then implies

Proposition 5 Let (M2m, g, J) be a compact Kähler–Einstein manifold with
positive scalar curvature which admits a complex r–contact structure such that
s = (m−r)/(r+1) is an odd integer. Then M is a complex contact manifold.
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