1. PRELIMINARIES

1.1. Lefschetz—decomposition of forms. Now suppose that (V,(-,-)) is a 2m—dimensional
FEuclidean vector space with compatible almost complex structure J. We fix an orthonormal basis
T1,eeey Ty Y1y - - Ym Of V such that Jz; =y, for all 1 < j < m and set 2; := 1/2(x; —iy;) € VC
as well as z; := Z;. Note that z1,...,2m,21,...,2m is a C-basis of Ve,

Now if z!,...,2™, y',...,y™ is the R-basis dual to z!,..., 2™, y',...,y™, then 27 := x7 +4iy7
is the C-basis dual to z; while 27 := 27 — 4y’ is dual to z;. The 2-form on V given by (v,w)
(Jv,w) corresponds to an element w in A?V*. Namely,

w= Y (Ja* 2" nat + (JaF, a2t Ayt 4 (TYE Oyt Ay
1<k<t<m
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or in terms of the basis z*,...,2™,z",..., 2™
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Now define the operator L: AF V* — AFF2V* by L(a) = w A« and let A: AFF2 V* 5 ARV
be its adjoint with respect to the inner product on A*V* induced by (-,-). We further define
B: AP V* = ARVF by Blaky« = (m — k)id.
Proposition 1.1. The following identities hold:
[B,A] =2A, [B,L] = —2L and [A,L] = B.
Thus, (§§)— A, (98)— L, and (§ ° ) — B define a representation of s[(2, R) on A*V*.
Proof. We have
[B, A]|/\k+2v* = (m — k)A‘/\M—QV* — (m — k — 2)A|/\k+2‘/* = 2A|/\k+2v*.
Similarly, one concludes that [B, L] = —2L. Now let o, 8 be arbitrary k—forms. We have

m

(A(L()), B) = (La, LB) = Y (w A,z Ay A B).

k=1
We further compute
(WA, 2" AyF ABY = ((igw) A+ w Adg o, y* A B)
= (" NatwAhiga,y" AB)
=(a—yF Niga—2" Nigoa+whiyiza,B).
Now note that for n = 2 A... Az® Aylt A... Ays we have
m
> af N+ Ny = (r+ s)n,

k=1
and therefore

(AML(@)), B) = (m = k)(a, B) + (w A A(a), B) = (Ba + L(A(«)), B).
O

Complex linearly extending the maps A, L and B, we hence also obtain a representation of
sl(2,C) on AFV* == (A*V*) @r C.
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Definition 1.2. A form «a € /\(’EV* is called primitive, if Aao = 0. The space of all primitive
k—forms is denoted Pé, and the space of all real primitive k—forms is denoted P*.

Theorem 1.3 (Lefschetz decomposition).

(1) We have decompositions

NV = L/(P*%) and AEV* =D L (PE).
720 720
(2) The primitive space P¥ is trivial for k > m.
(3) The map LF: AZTFV* — AZTFV* is an isomorphism for all k& > 0.
(4) We have Pf = {a € AEV* | L™~ F1q = 0} for all k < m.

Proof. We consider AZV™* as a (finite-dimensional) sl(2, C)-representation. Then

N,
NV = DD Wer
>0 r=1
where each Wy, C AEV* is an irreducible s[(2, C)-subrepresentation of highest weight ¢. By
construction, /\g‘_kV* is the eigenspace of B for the eigenvalue k, and thus

Ny
NIV = @ @(Wén')k

£>0 r=1
Ni2j
= @ @ (Wht2j.r)k
j>0 r=1
Ni42;5
= @ @ LI (Why25,r )kt25)
j>0 r=1
@ (pr ).
Jj=0
Taking k = m—t, the first identity follows, as the canonical map P'®@rC — P{ is an isomorphism.
Since Lk|(WM)k : Wer )k = (Wer)—i is always an isomorphism, the third claim follows. Like-
wise, the map At\(We,,,), , is an isomorphism, whence A is necessarily injective on (W¢,)_¢. Since
Ag+tV* is the sum of all (W), it thus follows that P %! = 0, proving the second assertion.
Finally, note that P* is the sum of all (Wi—k.r)m—k, which is precisely the kernel of L™m=k+1 on
/\@V*, provided that &k < m. O

Remark 1.4. If we extend the inner product on A*V complex linearly, then (o, 9 AB) = (i v, B)

for all a € /\(’[“:HV*7 B € /\({“:V*7 and ¢ € ALV*, where we also extended f: V* — V complex
linearly. Since

(2Zk,v) = (x1 + iyp, v) = 25 (v),

and similarly 2(z;)* = Z, we see that (a, 3) # 0 for forms «a, 3 of type (p,q) and (r,s) only if
(p,q) = (s,7), that is, if 8 is of type (¢, p).

This observation shows that A must map forms of type (p, ¢) to forms of type (p — 1,q — 1).
In fact, if « is of type (p,q) and S is not of type (¢ — 1,p — 1), then

(Aa, ) = (o, LB) =0,
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since L is homogeneous of bidegree (1,1). Therefore, Ao must be of type (p — 1,¢ — 1), and so

we have Pf = D, g—i PP% with P17 = PPTan APAYV* Tt follows that

APAY* — @(Lj(p(gﬂ—%) NAPIV*) = @Lj(ppijqu).
Jj=0 Jj=0
1.2. Consequences for Kahler manifolds. Let (M, g,J) be a compact K&hler manifold of
real dimension 2m with fundamental form w € Q2*(M). The operator L: Q*(M) — Q*(M),
o — w A a, coincides, in each fiber, with the operator L defined in the previous section. Let A
be the adjoint of L with respect to the inner product on Q*(M).

Theorem 1.5 (Hard Lefschetz Theorem). The map L*: H™ *(M;K) — H™*(M;K) is an
isomorphism for every k > 0. Furthermore, there is a decomposition

H*(M;K) = @ L (HY % (M;K),),
j=0
where H*(M;K)q = ker Lm,—12+1|H[(M;K) for ¢ < m and H*(M;K)o = 0 for £ > m is the space of
primitive forms. The space of primitive forms further decomposes as
HY(M;K)o = @ H"(M;K),,
pt+q=¢

where H*(M;K)b? = HY(M; K)o N HP9(M;C).

Proof. Denote by H* C QF(M;K) the space of harmonic k-forms with respect to the exterior
derivative d (and the metric g). By the Hodge-Theorem, the map H* — H*(M;K), a — [a],
is an isomorphism. Moreover, since M is Kéhler, the Laplacian A commutes with L, and
thus L maps harmonic forms to harmonic forms. Since L¥F: Qm=*(M;K) — Q™ +F(M;K) is an

isomorphism by the Lefschetz decomposition (theorem 1.3), so is L¥: H™ % — H™**_ Therefore,
we have a commutative diagram

L” Hm+k

L* i

H™ F(M;K) ——= H™*(M;K),

and since the upper row is an isomorphism, so must be the lower row. This proves the first
statement. For the second statement, we use theorem 1.3 again: we know that

@-(01) = D L (PH),
>0
where P! = {a € QY(M) | L™ **'a = 0} for £ < m and P’ = 0 for £ > m. Since L commutes with
A, we hence also have #* = @ L7 (P*~2/N#H*~7), and the isomorphism H* =% — H*~2/(M;K)
takes P*=21 N HE=2 to H*=2(M;K)o. O

Remark 1.6. Note that dim H*(M; K)o = dim H*(M; K)—dim H*~2(M;K) = by(M)—by_o(M).

2. HODGE—RIEMANN BILINEAR RELATIONS

2.1. The Hodge—Riemann bilinear form on Hermitian vector spaces. Let (V,{(-,)) be a
2m—dimensional Euclidean vector space with compatible almost complex structure J and funda-
mental form w. Endow V with the canonical orientation induced by .J and let vol € A2™V* be
the corresponding volume form, i. e. vol = (z' Ay )A...A(z™Ay™), where z!, ... 2™ yt ... y™
is the basis dual to an orthonormal basis z1,..., Tm, Y1,-- -, Ym With Jxi = y; for all k.



Definition 2.1. The Hodge—Riemann bilinear form Q: /\(’E V* x /\éV* — C is defined by

Q(a, B) - vol = (=1)"=

Remark 2.2. Note that @ is zero when restricted to AP2V* x A™V* unless (p,q) = (s,7).
Indeed, if « is of type (p,q) and 3 is of type (r,s), with k = p+ ¢, then a A B A w™* is of type
(p+r+m—k,q+s+m—k) and a multiple of the volume form, which is of type (m, m). Thus, in
order for Q(«, 8) to be non-zero, we must have p+r+m —k = m or equivalently r = k —p = q.
Similarly, one concludes that s = p.

caABAWTTF

Proposition 2.3. Let a € /\f:V* be primitive. Then

k(k+1) 1
2

e LRI (a).

xa = (—1)

Theorem 2.4. Let o € /\ZEV* be a primitive form of type (p,q). Then we have
P71 Qla,@) = (m — k), a)¢c > 0,

where (v, 8)c = (v, ) is the Hermitian product induced by (-, ).
Proof. By definition,

k(k—1

)
Qa,a@)yvol = (=1)" 2z ~aAaAw™*
= (-1 Lan LG
Since « is of type (p, q), we have J*& = 9P - @, and thus

Lm—ka — (_1)k(k+1) . EZ : :i: 'ip_qu_kJ*a

= ()" (m— k)P s
Therefore,
Qa,a) = (1% -iP~% . (m — k) - (a,a)¢
and since i2(P~9) = (—1)P*9 = (=1)*, the claim follows. O

Example 2.5. We have (AbV*) N A2V* = Rw @ P! by the Lefschetz—decomposition. This
decomposition is orthogonal, for if a € P!, then a Aw Aw™ 2 = L™ 'a = 0. Moreover, Q is
negative—definite on Rw (since Q(w,w)vol = —w™ = —m/!vol) and positive-definite on on P!,
since for o € P11 we have @ = a, so that Q(a,a) = (m — 2)/{a, a) > 0.

2.2. The intersection form on Kahler manifolds.

Theorem 2.6. Let (M, g, J) be a real 2m—dimensional, compact Kahler manifold with funda-
mental form w. For all closed k—forms a with [a] € HP9(M;K)y we have

-p—q k(k—1) _ m—k
P (=) - | ahTAw >0
M

Proof. Since the integral only depends on the cohomology class, we may assume « to be harmonic

and primitive. Then
/ aNaAw™ k= / (o, a)yevol > 0.
M M

Remark 2.7. Let (M, g,J) be a 2m—dimensional, compact Kéhler manifold.

ip_q ) (_1) k(kQ—l)
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(1) Let «, B be closed k—forms of types (p,q) and (r, s), respectively, such that [a], [3] are
primitive. We have already seen, that

Q(OZ,B) = (—1) ./Ma AB Awmk — 0,

unless 3 is of type (¢,p). Since Q(L e, L'B) = Q(a,f8), the Hard Lefschetz theorem
implies that @ is non-degenerate on H*(M;K) for all £ > 0.
(2) If p+ ¢ =0 mod 2, then p and ¢ have the same parity. Thus, with k = p + ¢, we have

. (71) k(k—1)

k(k—1)
2

— jpmat(ta)(pta=1) _ jp—a—p—at(p+a)® _ (1)1,

and hence Q is positive—definite on HP?(M;K)q with p,¢ = 0 mod 2, and negative—
definite, if p,q = 1 mod 2.



