
1. Preliminaries

1.1. Lefschetz–decomposition of forms. Now suppose that (V, 〈·, ·〉) is a 2m–dimensional
Euclidean vector space with compatible almost complex structure J . We fix an orthonormal basis
x1, . . . , xm, y1, . . . , ym of V such that Jxj = yj for all 1 ≤ j ≤ m and set zj := 1/2(xj−iyj) ∈ V C

as well as zj := zj . Note that z1, . . . , zm, z1, . . . , zm is a C–basis of V C.
Now if x1, . . . , xm, y1, . . . , ym is the R–basis dual to x1, . . . , xm, y1, . . . , ym, then zj := xj + iyj

is the C–basis dual to zj while zj := xj − iyj is dual to zj . The 2–form on V given by (v, w) 7→
〈Jv,w〉 corresponds to an element ω in ∧2V ∗. Namely,

ω =
∑

1≤k<`≤m

〈Jxk, x`〉xk ∧ x` + 〈Jxk, y`〉xk ∧ y` + 〈Jyk, y`〉yk ∧ y`

=

m∑
k=1

xk ∧ yk

or in terms of the basis z1, . . . , zm, z1, . . . , zm

ω =
i

4

m∑
k=1

(zk + zk) ∧ (zk − zk) =
i

2

m∑
k=1

zk ∧ zk.

Now define the operator L : ∧k V ∗ → ∧k+2V ∗ by L(α) = ω ∧ α and let Λ: ∧k+2 V ∗ → ∧kV ∗
be its adjoint with respect to the inner product on ∧∗V ∗ induced by 〈·, ·〉. We further define
B : ∧k V ∗ → ∧kV ∗ by B|∧kV ∗ = (m− k)id.

Proposition 1.1. The following identities hold:

[B,Λ] = 2Λ, [B,L] = −2L and [Λ, L] = B.

Thus, ( 0 1
0 0 ) 7→ Λ, ( 0 0

1 0 ) 7→ L, and
(
1 0
0 −1

)
7→ B define a representation of sl(2,R) on ∧∗V ∗.

Proof. We have

[B,Λ]|∧k+2V ∗ = (m− k)Λ|∧k+2V ∗ − (m− k − 2)Λ|∧k+2V ∗ = 2Λ|∧k+2V ∗ .

Similarly, one concludes that [B,L] = −2L. Now let α, β be arbitrary k–forms. We have

〈Λ(L(α)), β〉 = 〈Lα,Lβ〉 =

m∑
k=1

〈ω ∧ α, xk ∧ yk ∧ β〉.

We further compute

〈ω ∧ α, xk ∧ yk ∧ β〉 = 〈(ixk
ω) ∧ α+ ω ∧ ixk

α, yk ∧ β〉

= 〈yk ∧ α+ ω ∧ ixk
α, yk ∧ β〉

= 〈α− yk ∧ iyk
α− xk ∧ ixk

α+ ω ∧ iyk
ixk
α, β〉.

Now note that for η = xi1 ∧ . . . ∧ xir ∧ yj1 ∧ . . . ∧ yjs we have
m∑

k=1

xk ∧ ixk
η + yk ∧ iyk

η = (r + s)η,

and therefore

〈Λ(L(α)), β〉 = (m− k)〈α, β〉+ 〈ω ∧ Λ(α), β〉 = 〈Bα+ L(Λ(α)), β〉.
�

Complex linearly extending the maps Λ, L and B, we hence also obtain a representation of
sl(2,C) on ∧∗CV ∗ := (∧∗V ∗)⊗R C.
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Definition 1.2. A form α ∈ ∧kCV ∗ is called primitive, if Λα = 0. The space of all primitive
k–forms is denoted P k

C , and the space of all real primitive k–forms is denoted P k.

Theorem 1.3 (Lefschetz decomposition).

(1) We have decompositions

∧kV ∗ =
⊕
j≥0

Lj(P k−2j) and ∧kC V ∗ =
⊕
j≥0

Lj(P k−2j
C ).

(2) The primitive space P k
C is trivial for k > m.

(3) The map Lk : ∧m−kC V ∗ → ∧m+k
C V ∗ is an isomorphism for all k ≥ 0.

(4) We have P k
C = {α ∈ ∧kCV ∗ |Lm−k+1α = 0} for all k ≤ m.

Proof. We consider ∧∗CV ∗ as a (finite–dimensional) sl(2,C)–representation. Then

∧∗CV ∗ =
⊕
`≥0

N⊕̀
r=1

W`,r,

where each W`,r ⊆ ∧∗CV ∗ is an irreducible sl(2,C)–subrepresentation of highest weight `. By

construction, ∧m−kC V ∗ is the eigenspace of B for the eigenvalue k, and thus

∧m−kC V ∗ =
⊕
`≥0

N⊕̀
r=1

(W`,r)k

=
⊕
j≥0

Nk+2j⊕
r=1

(Wk+2j,r)k

=
⊕
j≥0

Nk+2j⊕
r=1

Lj((Wk+2j,r)k+2j)

=
⊕
j≥0

Lj
(
P

m−(k+2j)
C

)
.

Taking k = m−t, the first identity follows, as the canonical map P t⊗RC→ P t
C is an isomorphism.

Since Lk|(W`,r)k : (W`,r)k → (W`,r)−k is always an isomorphism, the third claim follows. Like-

wise, the map Λt|(W`,r)−t
is an isomorphism, whence Λ is necessarily injective on (W`,r)−t. Since

∧m+t
C V ∗ is the sum of all (W`,r)−t, it thus follows that Pm+t = 0, proving the second assertion.

Finally, note that P k is the sum of all (Wm−k,r)m−k, which is precisely the kernel of Lm−k+1 on
∧kCV ∗, provided that k ≤ m. �

Remark 1.4. If we extend the inner product on ∧∗V complex linearly, then 〈α,ϕ∧β〉 = 〈iϕ]α, β〉
for all α ∈ ∧k+1

C V ∗, β ∈ ∧kCV ∗, and ϕ ∈ ∧1CV ∗, where we also extended ] : V ∗ → V complex
linearly. Since

〈2zk, v〉 = 〈xk + iyk, v〉 = zk(v),

and similarly 2(zk)] = zk, we see that 〈α, β〉 6= 0 for forms α, β of type (p, q) and (r, s) only if
(p, q) = (s, r), that is, if β is of type (q, p).

This observation shows that Λ must map forms of type (p, q) to forms of type (p− 1, q − 1).
In fact, if α is of type (p, q) and β is not of type (q − 1, p− 1), then

〈Λα, β〉 = 〈α,Lβ〉 = 0,
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since L is homogeneous of bidegree (1, 1). Therefore, Λα must be of type (p − 1, q − 1), and so
we have P k

C =
⊕

p+q=k P
p,q, with P p,q = P p+q ∩ ∧p,qV ∗. It follows that

∧p,qV ∗ =
⊕
j≥0

(
Lj(P p+q−2j

C ) ∩ ∧p,qV ∗
)

=
⊕
j≥0

Lj(P p−j,q−j).

1.2. Consequences for Kähler manifolds. Let (M, g, J) be a compact Kähler manifold of
real dimension 2m with fundamental form ω ∈ Ω2(M). The operator L : Ω∗(M) → Ω∗(M),
α 7→ ω ∧ α, coincides, in each fiber, with the operator L defined in the previous section. Let Λ
be the adjoint of L with respect to the inner product on Ω∗(M).

Theorem 1.5 (Hard Lefschetz Theorem). The map Lk : Hm−k(M ;K) → Hm+k(M ;K) is an
isomorphism for every k ≥ 0. Furthermore, there is a decomposition

Hk(M ;K) =
⊕
j≥0

Lj(Hk−2j(M ;K)0),

where H`(M ;K)0 = kerLm−`+1|H`(M ;K) for ` ≤ m and H`(M ;K)0 = 0 for ` > m is the space of
primitive forms. The space of primitive forms further decomposes as

H`(M ;K)0 =
⊕

p+q=`

Hp,q(M ;K)0,

where H`(M ;K)p,q0 = H`(M ;K)0 ∩Hp,q(M ;C).

Proof. Denote by Hk ⊆ Ωk(M ;K) the space of harmonic k–forms with respect to the exterior
derivative d (and the metric g). By the Hodge–Theorem, the map Hk → Hk(M ;K), α 7→ [α],
is an isomorphism. Moreover, since M is Kähler, the Laplacian ∆ commutes with L, and
thus L maps harmonic forms to harmonic forms. Since Lk : Ωm−k(M ;K) → Ωm+k(M ;K) is an
isomorphism by the Lefschetz decomposition (theorem 1.3), so is Lk : Hm−k → Hm+k. Therefore,
we have a commutative diagram

Hm−k

∼=
��

Lk
// Hm+k

∼=
��

Hm−k(M ;K)
Lk
// Hm+k(M ;K),

and since the upper row is an isomorphism, so must be the lower row. This proves the first
statement. For the second statement, we use theorem 1.3 again: we know that

Ωk(M) =
⊕
j≥0

Lj(P k−2j),

where P ` = {α ∈ Ω`(M) |Lm−`+1α = 0} for ` ≤ m and P ` = 0 for ` > m. Since L commutes with
∆, we hence also haveHk =

⊕
j L

j(P k−2j∩Hk−2j), and the isomorphismHk−2j → Hk−2j(M ;K)

takes P k−2j ∩Hk−2 to Hk−2j(M ;K)0. �

Remark 1.6. Note that dimH`(M ;K)0 = dimH`(M ;K)−dimH`−2(M ;K) = b`(M)−b`−2(M).

2. Hodge–Riemann bilinear relations

2.1. The Hodge–Riemann bilinear form on Hermitian vector spaces. Let (V, 〈·, ·〉) be a
2m–dimensional Euclidean vector space with compatible almost complex structure J and funda-
mental form ω. Endow V with the canonical orientation induced by J and let vol ∈ ∧2mV ∗ be
the corresponding volume form, i. e. vol = (x1∧y1)∧. . .∧(xm∧ym), where x1, . . . , xm, y1, . . . , ym

is the basis dual to an orthonormal basis x1, . . . , xm, y1, . . . , ym with Jxk = yk for all k.
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Definition 2.1. The Hodge–Riemann bilinear form Q : ∧kC V ∗ × ∧kCV ∗ → C is defined by

Q(α, β) · vol = (−1)
k(k−1)

2 · α ∧ β ∧ ωm−k.

Remark 2.2. Note that Q is zero when restricted to ∧p,qV ∗ × ∧r,sV ∗, unless (p, q) = (s, r).
Indeed, if α is of type (p, q) and β is of type (r, s), with k = p+ q, then α ∧ β ∧ ωm−k is of type
(p+r+m−k, q+s+m−k) and a multiple of the volume form, which is of type (m,m). Thus, in
order for Q(α, β) to be non–zero, we must have p+ r+m− k = m or equivalently r = k− p = q.
Similarly, one concludes that s = p.

Proposition 2.3. Let α ∈ ∧kCV ∗ be primitive. Then

∗α = (−1)
k(k+1)

2 · 1

(m− k)!
· Lm−kJ∗(α).

Theorem 2.4. Let α ∈ ∧kCV ∗ be a primitive form of type (p, q). Then we have

ip−q ·Q(α, α) = (m− k)!〈α, α〉C > 0,

where 〈γ, β〉C = 〈γ, β〉 is the Hermitian product induced by 〈·, ·〉.

Proof. By definition,

Q(α, α)vol = (−1)
k(k−1)

2 · α ∧ α ∧ ωm−k

= (−1)
k(k−1)

2 · α ∧ Lm−kα

Since α is of type (p, q), we have J∗α = iq−p · α, and thus

Lm−kα = (−1)k(k+1) · (m− k)!

(m− k)!
· ip−qLm−kJ∗α

= (−1)
k(k+1)

2 · (m− k)! · ip−q ∗ α.
Therefore,

Q(α, α) = (−1)k · ip−q · (m− k)! · 〈α, α〉C

and since i2(p−q) = (−1)p+q = (−1)k, the claim follows. �

Example 2.5. We have (∧1,1V ∗) ∩ ∧2V ∗ = Rω ⊕ P 1,1 by the Lefschetz–decomposition. This
decomposition is orthogonal, for if α ∈ P 1,1, then α ∧ ω ∧ ωm−2 = Lm−1α = 0. Moreover, Q is
negative–definite on Rω (since Q(ω, ω)vol = −ωm = −m!vol) and positive–definite on on P 1,1,
since for α ∈ P 1,1 we have α = α, so that Q(α, α) = (m− 2)!〈α, α〉 > 0.

2.2. The intersection form on Kähler manifolds.

Theorem 2.6. Let (M, g, J) be a real 2m–dimensional, compact Kähler manifold with funda-
mental form ω. For all closed k–forms α with [α] ∈ Hp,q(M ;K)0 we have

ip−q · (−1)
k(k−1)

2 ·
∫
M

α ∧ α ∧ ωm−k > 0

Proof. Since the integral only depends on the cohomology class, we may assume α to be harmonic
and primitive. Then

ip−q · (−1)
k(k−1)

2 ·
∫
M

α ∧ α ∧ ωm−k =

∫
M

〈α, α〉Cvol > 0.

�

Remark 2.7. Let (M, g, J) be a 2m–dimensional, compact Kähler manifold.
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(1) Let α, β be closed k–forms of types (p, q) and (r, s), respectively, such that [α], [β] are
primitive. We have already seen, that

Q̃(α, β) := (−1)
k(k−1)

2 ·
∫
M

α ∧ β ∧ ωm−k = 0,

unless β is of type (q, p). Since Q̃(L`α,L`β) = Q̃(α, β), the Hard Lefschetz theorem

implies that Q̃ is non–degenerate on H`(M ;K) for all ` ≥ 0.
(2) If p+ q ≡ 0 mod 2, then p and q have the same parity. Thus, with k = p+ q, we have

ip−q · (−1)
k(k−1)

2 = ip−q+(p+q)(p+q−1) = ip−q−p−q+(p+q)2 = (−1)q,

and hence Q̃ is positive–definite on Hp,q(M ;K)0 with p, q ≡ 0 mod 2, and negative–
definite, if p, q ≡ 1 mod 2.


