1. Preliminaries

1.1. Lefschetz-decomposition of forms. Now suppose that $(V,\langle\cdot, \cdot\rangle)$ is a $2 m$-dimensional Euclidean vector space with compatible almost complex structure J. We fix an orthonormal basis $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}$ of V such that $J x_{j}=y_{j}$ for all $1 \leq j \leq m$ and set $z_{j}:=1 / 2\left(x_{j}-i y_{j}\right) \in V^{\mathbb{C}}$ as well as $\bar{z}_{j}:=\overline{z_{j}}$. Note that $z_{1}, \ldots, z_{m}, \bar{z}_{1}, \ldots, \bar{z}_{m}$ is a \mathbb{C}-basis of $V^{\mathbb{C}}$.

Now if $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{m}$ is the \mathbb{R}-basis dual to $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{m}$, then $z^{j}:=x^{j}+i y^{j}$ is the \mathbb{C}-basis dual to z_{j} while $\bar{z}^{j}:=x^{j}-i y^{j}$ is dual to \bar{z}_{j}. The 2 -form on V given by $(v, w) \mapsto$ $\langle J v, w\rangle$ corresponds to an element ω in $\wedge^{2} V^{*}$. Namely,

$$
\begin{aligned}
\omega & =\sum_{1 \leq k<\ell \leq m}\left\langle J x^{k}, x^{\ell}\right\rangle x^{k} \wedge x^{\ell}+\left\langle J x^{k}, y^{\ell}\right\rangle x^{k} \wedge y^{\ell}+\left\langle J y^{k}, y^{\ell}\right\rangle y^{k} \wedge y^{\ell} \\
& =\sum_{k=1}^{m} x^{k} \wedge y^{k}
\end{aligned}
$$

or in terms of the basis $z^{1}, \ldots, z^{m}, \bar{z}^{1}, \ldots, \bar{z}^{m}$

$$
\omega=\frac{i}{4} \sum_{k=1}^{m}\left(z^{k}+\bar{z}^{k}\right) \wedge\left(\bar{z}^{k}-z^{k}\right)=\frac{i}{2} \sum_{k=1}^{m} z^{k} \wedge \bar{z}^{k} .
$$

Now define the operator $L: \wedge^{k} V^{*} \rightarrow \wedge^{k+2} V^{*}$ by $L(\alpha)=\omega \wedge \alpha$ and let $\Lambda: \wedge^{k+2} V^{*} \rightarrow \wedge^{k} V^{*}$ be its adjoint with respect to the inner product on $\wedge^{*} V^{*}$ induced by $\langle\cdot, \cdot\rangle$. We further define $B: \wedge^{k} V^{*} \rightarrow \wedge^{k} V^{*}$ by $\left.B\right|_{\wedge^{k} V^{*}}=(m-k)$ id.

Proposition 1.1. The following identities hold:

$$
[B, \Lambda]=2 \Lambda,[B, L]=-2 L \text { and }[\Lambda, L]=B
$$

Thus, $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \mapsto \Lambda,\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \mapsto L$, and $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \mapsto B$ define a representation of $\mathfrak{s l}(2, \mathbb{R})$ on $\wedge^{*} V^{*}$.
Proof. We have

$$
\left.[B, \Lambda]\right|_{\wedge^{k+2} V^{*}}=\left.(m-k) \Lambda\right|_{\wedge^{k+2} V^{*}}-\left.(m-k-2) \Lambda\right|_{\wedge^{k+2} V^{*}}=\left.2 \Lambda\right|_{\wedge^{k+2} V^{*}}
$$

Similarly, one concludes that $[B, L]=-2 L$. Now let α, β be arbitrary k-forms. We have

$$
\langle\Lambda(L(\alpha)), \beta\rangle=\langle L \alpha, L \beta\rangle=\sum_{k=1}^{m}\left\langle\omega \wedge \alpha, x^{k} \wedge y^{k} \wedge \beta\right\rangle
$$

We further compute

$$
\begin{aligned}
\left\langle\omega \wedge \alpha, x^{k} \wedge y^{k} \wedge \beta\right\rangle & =\left\langle\left(i_{x_{k}} \omega\right) \wedge \alpha+\omega \wedge i_{x_{k}} \alpha, y^{k} \wedge \beta\right\rangle \\
& =\left\langle y^{k} \wedge \alpha+\omega \wedge i_{x_{k}} \alpha, y^{k} \wedge \beta\right\rangle \\
& =\left\langle\alpha-y^{k} \wedge i_{y_{k}} \alpha-x^{k} \wedge i_{x_{k}} \alpha+\omega \wedge i_{y_{k}} i_{x_{k}} \alpha, \beta\right\rangle .
\end{aligned}
$$

Now note that for $\eta=x^{i_{1}} \wedge \ldots \wedge x^{i_{r}} \wedge y^{j_{1}} \wedge \ldots \wedge y^{j_{s}}$ we have

$$
\sum_{k=1}^{m} x^{k} \wedge i_{x_{k}} \eta+y^{k} \wedge i_{y_{k}} \eta=(r+s) \eta
$$

and therefore

$$
\langle\Lambda(L(\alpha)), \beta\rangle=(m-k)\langle\alpha, \beta\rangle+\langle\omega \wedge \Lambda(\alpha), \beta\rangle=\langle B \alpha+L(\Lambda(\alpha)), \beta\rangle .
$$

Complex linearly extending the maps Λ, L and B, we hence also obtain a representation of $\mathfrak{s l}(2, \mathbb{C})$ on $\wedge_{\mathbb{C}}^{*} V^{*}:=\left(\wedge^{*} V^{*}\right) \otimes_{\mathbb{R}} \mathbb{C}$.

Definition 1.2. A form $\alpha \in \wedge_{\mathbb{C}}^{k} V^{*}$ is called primitive, if $\Lambda \alpha=0$. The space of all primitive k-forms is denoted $P_{\mathbb{C}}^{k}$, and the space of all real primitive k-forms is denoted P^{k}.

Theorem 1.3 (Lefschetz decomposition).
(1) We have decompositions

$$
\wedge^{k} V^{*}=\bigoplus_{j \geq 0} L^{j}\left(P^{k-2 j}\right) \text { and } \wedge_{\mathbb{C}}^{k} V^{*}=\bigoplus_{j \geq 0} L^{j}\left(P_{\mathbb{C}}^{k-2 j}\right)
$$

(2) The primitive space $P_{\mathbb{C}}^{k}$ is trivial for $k>m$.
(3) The map $L^{k}: \wedge_{\mathbb{C}}^{m-k} V^{*} \rightarrow \wedge_{\mathbb{C}}^{m+k} V^{*}$ is an isomorphism for all $k \geq 0$.
(4) We have $P_{\mathbb{C}}^{k}=\left\{\alpha \in \wedge_{\mathbb{C}}^{k} V^{*} \mid L^{m-k+1} \alpha=0\right\}$ for all $k \leq m$.

Proof. We consider $\wedge_{\mathbb{C}}^{*} V^{*}$ as a (finite-dimensional) $\mathfrak{s l}(2, \mathbb{C})$-representation. Then

$$
\wedge_{\mathbb{C}}^{*} V^{*}=\bigoplus_{\ell \geq 0} \bigoplus_{r=1}^{N_{\ell}} W_{\ell, r}
$$

where each $W_{\ell, r} \subseteq \wedge_{\mathbb{C}}^{*} V^{*}$ is an irreducible $\mathfrak{s l}(2, \mathbb{C})$-subrepresentation of highest weight ℓ. By construction, $\wedge_{\mathbb{C}}^{m-k} V^{*}$ is the eigenspace of B for the eigenvalue k, and thus

$$
\begin{aligned}
\wedge_{\mathbb{C}}^{m-k} V^{*} & =\bigoplus_{\ell \geq 0} \bigoplus_{r=1}^{N_{\ell}}\left(W_{\ell, r}\right)_{k} \\
& =\bigoplus_{j \geq 0} \bigoplus_{r=1}^{N_{k+2 j}}\left(W_{k+2 j, r}\right)_{k} \\
& =\bigoplus_{j \geq 0} \bigoplus_{r=1}^{N_{k+2 j}} L^{j}\left(\left(W_{k+2 j, r}\right)_{k+2 j}\right) \\
& =\bigoplus_{j \geq 0} L^{j}\left(P_{\mathbb{C}}^{m-(k+2 j)}\right) .
\end{aligned}
$$

Taking $k=m-t$, the first identity follows, as the canonical map $P^{t} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow P_{\mathbb{C}}^{t}$ is an isomorphism.
Since $\left.L^{k}\right|_{\left(W_{\ell, r}\right)_{k}}:\left(W_{\ell, r}\right)_{k} \rightarrow\left(W_{\ell, r}\right)_{-k}$ is always an isomorphism, the third claim follows. Likewise, the map $\left.\Lambda^{t}\right|_{\left(W_{\ell, r}\right)_{-t}}$ is an isomorphism, whence Λ is necessarily injective on $\left(W_{\ell, r}\right)_{-t}$. Since $\wedge_{\mathbb{C}}^{m+t} V^{*}$ is the sum of all $\left(W_{\ell, r}\right)_{-t}$, it thus follows that $P^{m+t}=0$, proving the second assertion. Finally, note that P^{k} is the sum of all $\left(W_{m-k, r}\right)_{m-k}$, which is precisely the kernel of L^{m-k+1} on $\wedge_{\mathbb{C}}^{k} V^{*}$, provided that $k \leq m$.

Remark 1.4. If we extend the inner product on $\wedge^{*} V$ complex linearly, then $\langle\alpha, \varphi \wedge \beta\rangle=\left\langle i_{\varphi^{\sharp}} \alpha, \beta\right\rangle$ for all $\alpha \in \wedge_{\mathbb{C}}^{k+1} V^{*}, \beta \in \wedge_{\mathbb{C}}^{k} V^{*}$, and $\varphi \in \wedge_{\mathbb{C}}^{1} V^{*}$, where we also extended $\sharp: V^{*} \rightarrow V$ complex linearly. Since

$$
\left\langle 2 \bar{z}_{k}, v\right\rangle=\left\langle x_{k}+i y_{k}, v\right\rangle=z^{k}(v),
$$

and similarly $2\left(z_{k}\right)^{\sharp}=\bar{z}_{k}$, we see that $\langle\alpha, \beta\rangle \neq 0$ for forms α, β of type (p, q) and (r, s) only if $(p, q)=(s, r)$, that is, if β is of type (q, p).

This observation shows that Λ must map forms of type (p, q) to forms of type $(p-1, q-1)$. In fact, if α is of type (p, q) and β is not of type $(q-1, p-1)$, then

$$
\langle\Lambda \alpha, \beta\rangle=\langle\alpha, L \beta\rangle=0
$$

since L is homogeneous of bidegree $(1,1)$. Therefore, $\Lambda \alpha$ must be of type ($p-1, q-1$), and so we have $P_{\mathbb{C}}^{k}=\bigoplus_{p+q=k} P^{p, q}$, with $P^{p, q}=P^{p+q} \cap \wedge^{p, q} V^{*}$. It follows that

$$
\wedge^{p, q} V^{*}=\bigoplus_{j \geq 0}\left(L^{j}\left(P_{\mathbb{C}}^{p+q-2 j}\right) \cap \wedge^{p, q} V^{*}\right)=\bigoplus_{j \geq 0} L^{j}\left(P^{p-j, q-j}\right)
$$

1.2. Consequences for Kähler manifolds. Let (M, g, J) be a compact Kähler manifold of real dimension $2 m$ with fundamental form $\omega \in \Omega^{2}(M)$. The operator $L: \Omega^{*}(M) \rightarrow \Omega^{*}(M)$, $\alpha \mapsto \omega \wedge \alpha$, coincides, in each fiber, with the operator L defined in the previous section. Let Λ be the adjoint of L with respect to the inner product on $\Omega^{*}(M)$.

Theorem 1.5 (Hard Lefschetz Theorem). The map $L^{k}: H^{m-k}(M ; \mathbb{K}) \rightarrow H^{m+k}(M ; \mathbb{K})$ is an isomorphism for every $k \geq 0$. Furthermore, there is a decomposition

$$
H^{k}(M ; \mathbb{K})=\bigoplus_{j \geq 0} L^{j}\left(H^{k-2 j}(M ; \mathbb{K})_{0}\right),
$$

where $H^{\ell}(M ; \mathbb{K})_{0}=\left.\operatorname{ker} L^{m-\ell+1}\right|_{H^{\ell}(M ; \mathbb{K})}$ for $\ell \leq m$ and $H^{\ell}(M ; \mathbb{K})_{0}=0$ for $\ell>m$ is the space of primitive forms. The space of primitive forms further decomposes as

$$
H^{\ell}(M ; \mathbb{K})_{0}=\bigoplus_{p+q=\ell} H^{p, q}(M ; \mathbb{K})_{0}
$$

where $H^{\ell}(M ; \mathbb{K})_{0}^{p, q}=H^{\ell}(M ; \mathbb{K})_{0} \cap H^{p, q}(M ; \mathbb{C})$.
Proof. Denote by $\mathcal{H}^{k} \subseteq \Omega^{k}(M ; \mathbb{K})$ the space of harmonic k-forms with respect to the exterior derivative d (and the metric g). By the Hodge-Theorem, the map $\mathcal{H}^{k} \rightarrow H^{k}(M ; \mathbb{K}), \alpha \mapsto[\alpha]$, is an isomorphism. Moreover, since M is Kähler, the Laplacian Δ commutes with L, and thus L maps harmonic forms to harmonic forms. Since $L^{k}: \Omega^{m-k}(M ; \mathbb{K}) \rightarrow \Omega^{m+k}(M ; \mathbb{K})$ is an isomorphism by the Lefschetz decomposition (theorem 1.3), so is $L^{k}: \mathcal{H}^{m-k} \rightarrow \mathcal{H}^{m+k}$. Therefore, we have a commutative diagram

and since the upper row is an isomorphism, so must be the lower row. This proves the first statement. For the second statement, we use theorem 1.3 again: we know that

$$
\Omega^{k}(M)=\bigoplus_{j \geq 0} L^{j}\left(P^{k-2 j}\right)
$$

where $P^{\ell}=\left\{\alpha \in \Omega^{\ell}(M) \mid L^{m-\ell+1} \alpha=0\right\}$ for $\ell \leq m$ and $P^{\ell}=0$ for $\ell>m$. Since L commutes with Δ, we hence also have $\mathcal{H}^{k}=\bigoplus_{j} L^{j}\left(P^{k-2 j} \cap \mathcal{H}^{k-2 j}\right)$, and the isomorphism $\mathcal{H}^{k-2 j} \rightarrow H^{k-2 j}(M ; \mathbb{K})$ takes $P^{k-2 j} \cap \mathcal{H}^{k-2}$ to $H^{k-2 j}(M ; \mathbb{K})_{0}$.
Remark 1.6. Note that $\operatorname{dim} H^{\ell}(M ; \mathbb{K})_{0}=\operatorname{dim} H^{\ell}(M ; \mathbb{K})-\operatorname{dim} H^{\ell-2}(M ; \mathbb{K})=b_{\ell}(M)-b_{\ell-2}(M)$.

2. Hodge-Riemann bilinear Relations

2.1. The Hodge-Riemann bilinear form on Hermitian vector spaces. Let $(V,\langle\cdot, \cdot\rangle)$ be a $2 m$-dimensional Euclidean vector space with compatible almost complex structure J and fundamental form ω. Endow V with the canonical orientation induced by J and let vol $\in \wedge^{2 m} V^{*}$ be the corresponding volume form, i. e. vol $=\left(x^{1} \wedge y^{1}\right) \wedge \ldots \wedge\left(x^{m} \wedge y^{m}\right)$, where $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{m}$ is the basis dual to an orthonormal basis $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}$ with $J x_{k}=y_{k}$ for all k.

Definition 2.1. The Hodge-Riemann bilinear form $Q: \wedge_{\mathbb{C}}^{k} V^{*} \times \wedge_{\mathbb{C}}^{k} V^{*} \rightarrow \mathbb{C}$ is defined by

$$
Q(\alpha, \beta) \cdot \mathrm{vol}=(-1)^{\frac{k(k-1)}{2}} \cdot \alpha \wedge \beta \wedge \omega^{m-k}
$$

Remark 2.2. Note that Q is zero when restricted to $\wedge^{p, q} V^{*} \times \wedge^{r, s} V^{*}$, unless $(p, q)=(s, r)$. Indeed, if α is of type (p, q) and β is of type (r, s), with $k=p+q$, then $\alpha \wedge \beta \wedge \omega^{m-k}$ is of type $(p+r+m-k, q+s+m-k)$ and a multiple of the volume form, which is of type (m, m). Thus, in order for $Q(\alpha, \beta)$ to be non-zero, we must have $p+r+m-k=m$ or equivalently $r=k-p=q$. Similarly, one concludes that $s=p$.
Proposition 2.3. Let $\alpha \in \wedge_{\mathbb{C}}^{k} V^{*}$ be primitive. Then

$$
* \alpha=(-1)^{\frac{k(k+1)}{2}} \cdot \frac{1}{(m-k)!} \cdot L^{m-k} J^{*}(\alpha) .
$$

Theorem 2.4. Let $\alpha \in \wedge_{\mathbb{C}}^{k} V^{*}$ be a primitive form of type (p, q). Then we have

$$
i^{p-q} \cdot Q(\alpha, \bar{\alpha})=(m-k)!\langle\alpha, \alpha\rangle_{\mathbb{C}}>0
$$

where $\langle\gamma, \beta\rangle_{\mathbb{C}}=\langle\gamma, \bar{\beta}\rangle$ is the Hermitian product induced by $\langle\cdot, \cdot\rangle$.
Proof. By definition,

$$
\begin{aligned}
Q(\alpha, \bar{\alpha}) \mathrm{vol} & =(-1)^{\frac{k(k-1)}{2}} \cdot \alpha \wedge \bar{\alpha} \wedge \omega^{m-k} \\
& =(-1)^{\frac{k(k-1)}{2}} \cdot \alpha \wedge L^{m-k} \bar{\alpha}
\end{aligned}
$$

Since α is of type (p, q), we have $J^{*} \bar{\alpha}=i^{q-p} \cdot \bar{\alpha}$, and thus

$$
\begin{aligned}
L^{m-k} \bar{\alpha} & =(-1)^{k(k+1)} \cdot \frac{(m-k)!}{(m-k)!} \cdot i^{p-q} L^{m-k} J^{*} \bar{\alpha} \\
& =(-1)^{\frac{k(k+1)}{2}} \cdot(m-k)!\cdot i^{p-q} * \bar{\alpha} .
\end{aligned}
$$

Therefore,

$$
Q(\alpha, \bar{\alpha})=(-1)^{k} \cdot i^{p-q} \cdot(m-k)!\cdot\langle\alpha, \alpha\rangle_{\mathbb{C}}
$$

and since $i^{2(p-q)}=(-1)^{p+q}=(-1)^{k}$, the claim follows.
Example 2.5. We have $\left(\wedge^{1,1} V^{*}\right) \cap \wedge^{2} V^{*}=\mathbb{R} \omega \oplus P^{1,1}$ by the Lefschetz-decomposition. This decomposition is orthogonal, for if $\alpha \in P^{1,1}$, then $\alpha \wedge \omega \wedge \omega^{m-2}=L^{m-1} \alpha=0$. Moreover, Q is negative-definite on $\mathbb{R} \omega$ (since $Q(\omega, \omega) \mathrm{vol}=-\omega^{m}=-m!\mathrm{vol}$) and positive-definite on on $P^{1,1}$, since for $\alpha \in P^{1,1}$ we have $\bar{\alpha}=\alpha$, so that $Q(\alpha, \alpha)=(m-2)!\langle\alpha, \alpha\rangle>0$.

2.2. The intersection form on Kähler manifolds.

Theorem 2.6. Let (M, g, J) be a real $2 m$-dimensional, compact Kähler manifold with fundamental form ω. For all closed k-forms α with $[\alpha] \in H^{p, q}(M ; \mathbb{K})_{0}$ we have

$$
i^{p-q} \cdot(-1)^{\frac{k(k-1)}{2}} \cdot \int_{M} \alpha \wedge \bar{\alpha} \wedge \omega^{m-k}>0
$$

Proof. Since the integral only depends on the cohomology class, we may assume α to be harmonic and primitive. Then

$$
i^{p-q} \cdot(-1)^{\frac{k(k-1)}{2}} \cdot \int_{M} \alpha \wedge \bar{\alpha} \wedge \omega^{m-k}=\int_{M}\langle\alpha, \alpha\rangle_{\mathbb{C}} \mathrm{vol}>0
$$

Remark 2.7. Let (M, g, J) be a $2 m$-dimensional, compact Kähler manifold.
(1) Let α, β be closed k-forms of types (p, q) and (r, s), respectively, such that $[\alpha],[\beta]$ are primitive. We have already seen, that

$$
\tilde{Q}(\alpha, \beta):=(-1)^{\frac{k(k-1)}{2}} \cdot \int_{M} \alpha \wedge \beta \wedge \omega^{m-k}=0
$$

unless β is of type (q, p). Since $\tilde{Q}\left(L^{\ell} \alpha, L^{\ell} \beta\right)=\tilde{Q}(\alpha, \beta)$, the Hard Lefschetz theorem implies that \tilde{Q} is non-degenerate on $H^{\ell}(M ; \mathbb{K})$ for all $\ell \geq 0$.
(2) If $p+q \equiv 0 \bmod 2$, then p and q have the same parity. Thus, with $k=p+q$, we have

$$
i^{p-q} \cdot(-1)^{\frac{k(k-1)}{2}}=i^{p-q+(p+q)(p+q-1)}=i^{p-q-p-q+(p+q)^{2}}=(-1)^{q}
$$

and hence \tilde{Q} is positive-definite on $H^{p, q}(M ; \mathbb{K})_{0}$ with $p, q \equiv 0 \bmod 2$, and negativedefinite, if $p, q \equiv 1 \bmod 2$.

