

Institut für Geometrie und Topologie

Uwe Semmelmann Zimmer: 7.544

Wintersemester 2019/20

Vorlesung: Kähler-Mannigfaltigkeiten Übungsblatt 8

1. Sei (M^{2m},h,J) eine fast-hermitesche Mannigfaltigkeit. Beweisen Sie, dass dann

$$*\alpha = i^{m(m+2)}\alpha$$

für alle Formen α in $\Lambda^{m,0}M$ erfüllt ist.

2. Sei (M,h,J) eine kompakte Kähler Mannigfaltigkeit, mit Kähler-Form ω , und sei $\mathcal K$ die in der Vorlesung definierte Menge von Funktionen auf M. Zeigen Sie, dass dann die Abbildung

$$u \mapsto \omega + i \partial \bar{\partial} u$$

eine Bijektion definiert, von der Menge $\mathcal K$ auf die Menge der Kähler-Metriken, deren Kähler Form in der Kohomologie-Klasse $[\omega]$ liegen.

- **3.** Zeigen Sie, dass das Volumen einer kompakten Kähler-Mannigfaltigkeit nur von der Kohomologie-Klasse der Kähler-Form abhängt.
- **4.** Sei (M^{2m}, h, J) eine kompakte Kähler-Mannigfaltigkeit. Beweisen Sie:

$$\int_{M} \operatorname{scal}_{h} vol_{h} = \frac{4\pi}{(m-1)!} c_{1}(M) \cup [\omega]^{m-1} ,$$

wobei $[\alpha] \cup [\beta] = [\alpha \wedge \beta].$

Die Aufgaben sollen dann in der Übung vom 17. Januar 2020 besprochen werden, zusammen mit den restlichen Aufgaben der letzten Woche.