

Institut für Geometrie und Topologie

Uwe Semmelmann Zimmer: 7.544

Wintersemester 2019/20

Vorlesung: Kähler-Mannigfaltigkeiten Übungsblatt 2

- 1. Zeigen Sie, dass das tautologische Geradenbündel auf dem komplex projektiven Raum keine nicht-trivialen holomorphen Schnitte besitzt.
- 2. Sei H das zum tautologischen Geradenbündel duale Geradenbündel, das sogenannte Hyperebenenbündel. Finden Sie eine lokale Trivialisierung und bestimmen Sie die Dimension des Raumes der holomorphen Schnitte von H.
- **3.** Sei (M,J) eine komplexe Mannigfaltigkeit mit einer parallelen komplexen Struktur J (bzgl. des Levi-Civita Zusammenhangs einer Riemannschen Metrik). Beweisen Sie, dass dann ein Vektorfeld X genau dann reell-holomorph ist, wenn für alle Vektorfelder Y eine der folgenden beiden Gleichung erfüllt ist:

$$\nabla_{JY}X = J \nabla_Y X$$
 oder $\nabla^{10}X_{01} = 0$,

dabei ist X_{01} die Projektion des reellen Vektorfeldes X auf $T^{01}M$ und ∇^{10} die Projektion des Levi-Civita Zusammenhangs auf $\Omega(T^*M\otimes TM)$.

4. Zeigen Sie, dass eine hermitesche Struktur auf einem komplexen Vektorbündel E einen Isomorphismus des dualen Bündels E^* und des konjugierten Bündels \bar{E} definiert.

Die Aufgaben sollen dann in der Übung vom 15. November 2019 besprochen werden.