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Kurzzusammenfassug

Wir reduzieren das Einbettungsproblem für SU(2) und SU(3)-Strukturen auf das
Einbettungsproblem für G2-Strukturen. Der G2-Fall wird mittels Automorphis-
men des Tangentialbündels untersucht und wir zeigen dass keine nicht-trivialen
Langzeitlösungen des Einbettungsproblems existieren. Hitchins Flussgleichung für
den G2-Fall lässt sich zu einer Gleichung für die entsprechenden Automorphismen
des Tangentialbündels verallgemeinern. Diese verallgemeinerte Flussgleichung be-
schreibt eine Deformation der Ausgangsstruktur mittels ihrer intrinsischen Torsion.
Für reell-analytische Strukturen besitzt diese Flussgleichung stets eine eindeutige
reell-analytische Lösung.
Wir erweitern den Kähler-Ricci Fluss auf SU(n)-Strukturen und untersuchen wann
dieser gegen eine parallele SU(n)-Struktur konvergiert. Unser Ansatz ermöglicht zu-
dem eine Erweiterung des Ricci Flusses auf G2 und Spin7-Strukturen. Für SU(3)-
Strukturen auf sieben-dimensionalen Mannigfaltigkeiten beschreiben wir eine Gray-
Hervella Klassifikation und definieren damit das G2-Analogon zu Kähler SU(3)-
Strukturen. Diese G2-Strukturen besitzen eine Faserung, deren Fasern mittels des
Ricci-Flusses deformiert werden können. Der faserweise Ricci-Fluss deformiert die
ambiente G2-Struktur zu einer Ricci-flachen G2-Struktur.

Abstract

We reduce the embedding problem for hypo SU(2) and SU(3)-structures to the
embedding problem for hypo G2-structures into parallel Spin(7)-manifolds. The
latter will be described in terms of gauge deformations. This description involves
the intrinsic torsion of the initial G2-structure and allows us to prove that the evo-
lution equations, for all of the above embedding problems, do not admit non-trivial
longtime solutions. For G2-structures we introduce a new flow, which generalizes
Hitchin’s flow equations. This intrinsic torsion flow admits unique solutions in the
real analytic category.
We extend the Kähler-Ricci flow to SU(n)-structures and characterize under which
conditions this flow converges to a parallel SU(n)-structure. This approach al-
so yields an extension of the Ricci flow to G2 and Spin7-structures. For SU(3)-
structures in dimension seven we derive the analogue of the Gray-Hervella classi-
fication. Based on this classification, we define a type of G2-structure which can
be regarded as the seven dimensional analogue of Kähler SU(3)-structures. This
type of G2-structures allow a fibrewise Ricci flow that converges to a Ricci flat
G2-structure.
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Introduction

The Berger-Simons classification [6], [48] of the possible holonomy groups of a
Riemannian manifold leads to the question which of the Ricci flat holonomy groups
can actually be realized as the holonomy group of a Riemannian metric on a compact
manifold. A metric with holonomy group equal to G ⊂ O(n) induces a G-structure,
i.e. a reduction of the frame bundle to the structure group G. Conversely, such a
reduction yields a metric with holonomy G ⊂ O(n) if the reduction is compatible
with the Levi-Civita connection of the induced O(n)-structure. This compatibility
is measured by the intrinsic torsion of the G-structure, which takes values in the
G-module

Rn∗ ⊗ g⊥.

In the U(n) and G2-case, Gray et al. [27], [32] decomposed this G-module into
irreducible summands and classified structures according to the irreducible com-
ponents of their intrinsic torsion. For certain torsion types many explicit examples
of structures with the prescribed torsion type are known. For instance, Kähler
structures with vanishing first real Chern class can be regarded as certain types of
SU(n)-structures. Namely, the intrinsic torsion of a SU(n)-structure decomposes
into a Kähler part and a component measuring the defect of the structure to give a
further holonomy reduction to SU(n) ⊂ U(n). Yau’s student H. Cao proves in [17]
that the Kähler-Ricci flow can actually be used to deform a Kähler SU(n)-structure
into a Ricci flat structure. In other words, Cao studies a particular evolution of a
geometry with torsion to prove the Calabi conjecture. In this thesis we discuss two
approaches to construct manifolds with special holonomy via evolution of geome-
tries with torsion:

I. Hitchin’s flow equations

In [37] N. Hitchin introduced certain evolution equations for G2 and SU(3) struc-
tures on a manifold M , whose solutions are the gradient flow of a certain volume
functional. A family of structures, evolving according to Hitchin’s flow equations
for time t ∈ I ⊂ R, yields a parallel structure on the product I×M . In this sense, a
solution of the evolution equations embeds the initial structure into a manifold with
a parallel structure and is therefore called a solution of the embedding problem for
the initial structure.
Hitchin’s flow equations were extended in [22] and [28] to SU(2)-structures in
dimension five. Similar equations are known for embedding SU(2)-structures in di-
mension five and SU(3)-structures in dimension six into manifolds with a nearly
parallel SU(3) and G2-structure, respectively, cf. [21]. This evolution equations
lead to a huge variety of embedding problems for certain geometries.
Solving the embedding problem for a given structure has two different aspects. First
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one has to establish the existence of a solution to the flow equations. Secondly, the
particular solution has to satisfy certain compatibility conditions to actually define
a family of G-structures. In the G2-case no compatibility conditions occur, since
the structure is described by a single stable 3-form. In contrast, the SU(2) and
SU(3)-case involve various compatibility conditions. Hitchin proves that the SU(3)
evolution equations already imply the desired compatibility conditions. A similar
result holds for the embedding problem for SU(3)-structures into nearly parallel
G2-structures, cf. [49].
R. Bryant [11] shows that in the real analytic category, the embedding problem
for hypo SU(3) and G2-structures can be solved. Bryant also provided counter-
examples in the smooth category. The embedding problem for SU(2)-structures in
dimension five was solved by D. Conti and S. Salamon in [22], cf. also [21].

II. Ricci flow for SU(3) and G2-structures

Yau’s proof [50] of the Calabi conjecture [16] settled the existence of compact mani-
folds with holonomy equal to SU(m). First mayor progress towards the exceptional
cases was achieved by R. Bryant and S. Salamon [13], who established the first
complete, but non compact, examples with holonomy equal to G2 and Spin(7). It
took until 1996 before D. Joyce [40], [41], [42] proved the existence of compact ma-
nifolds with holonomy equal to G2 and Spin(7). Nevertheless, an a priori existence
theorem for G2 manifolds is still missing today.
Cao’s work [17] on the Kähler-Ricci flow motivates the conjecture that a similar
flow could deform G2-structures with sufficiently small torsion into parallel struc-
tures. Recently there have been various approaches to define the analogue of a
Kähler-Ricci flow for the G2-case. Bryant [10] discusses the G2-Laplacian evolution

ϕ̇ = ∆ϕϕ,

where ϕ ∈ Ω3(M) is the structure tensor of the G2-structure. Although this evo-
lution seems to be quite natural, Bryant argues that one would not expect the
Laplacian flow to converge for most G2-structures. H. Weiß and F. Witt [51] des-
cribe the evolution of a G2-structure under the gradient flow of a Dirichlet energy
functional. The authors establish the short-time existence and uniqueness for this
gradient flow.
However, it is still unclear what flow and what type of initial structure would be
appropriate in the G2-case. The attempt to deform the whole G2-structure under
a certain heat flow, seems to be symptomatic for all current approaches. In con-
trast, the Kähler-Ricci flow only deforms the ambient U(n)-structure, leaving the
complex structure unchanged. This motivates the conjecture that Hamilton’s Ricci
flow should also be applicable to certain initial types of G2-structures. A result
due to R. Bryant [10], R. Cleyton and S. Ivanov [20] supports this conjecture. The
authors prove that closed G2-structures which are Einstein have to be parallel. This
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indicates that the difference between a Ricci flat and a parallel G2-structure is less
drastic than it seems to be.

III. Methods

In the first and second chapter we develop certain methods to study general defor-
mations of special geometries. Gauge deformations, i.e. automorphisms of the tan-
gent bundle, provide a unifying approach to describe deformations of G-structures.
In many cases the structure tensor ϕ of a given G-structure is stable in the sense
that the orbit under the natural action of GL(n) is open. Hence any smooth defor-
mation ϕt of the structure tensor stays inside the open orbit and can be described by
a family [At] ∈ GL(n)/G. Choosing a particular connection on GL(n) → GL(n)/G,
allows a description of the form ϕt = Atϕ, cf. Theorem 1.6. For a family of metrics
gt this is the familiar description gt = Atg, where At is symmetric and positive
w.r.t. the initial metric g. Geometrically, the family of gauge deformations At des-
cribes the evolution of the principal G-reduction in vertical direction.
The evolution of the structure tensor ϕt = Atϕ can be computed in terms of a
G-equivariant map,

ϕ̇t = Dϕt(ȦtA
−1
t

),

cf. Lemma 1.16. This allows to translate the evolution equation for the structure
tensors into a corresponding equation for the family of gauge deformations. The
deformation of the underlying metric of the G ⊂ O(n) structure is then obtained
using polar decomposition to write At = PtQt ∈ S2 · O(n). In Theorem 1.19 we
compute the change in the intrinsic torsion after deforming the initial structure
by a gauge deformation. For a function f : M → R and A := f id, this yields the
well-known formula for conformal changes, cf. [2], [43].

The space of gauge deformations C∞(Aut(TM)) is an open subset of the Fréchet
space C∞(End(TM)). A solution c(t) of a certain evolution equation can therefore
be regarded as an integral curve of a vector field on a Fréchet space. In order for a
solution to preserve some initial condition, we study in the second chapter the case
where the vector field is tangent to the subspace determined by the initial condition,
cf. Proposition 2.3. In contrast to finite dimensional geometry, the integral curve of
a vector field tangent to some subspace does not have to stay inside the subspace.
In the particular case where the solution can be developed in a power series of the
form

c(t) =
∞�

k=0

tk

k!
c(k)(0),

we prove in Corollary 2.4 that the solution c(t) actually stays inside the subspace.
Hence Corollary 2.4 can be regarded as a conservation law for integral curves in
Fréchet spaces.
The condition that the solution can be developed in a power series is quite restric-
tive. However, the Cauchy-Kowalevski Theorem proves, beyond the existence, that
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the integral curves in question satisfy this condition. We translate the local version
of the Cauchy-Kowalevski Theorem into a global version Theorem 2.11 for integral
curves in Fréchet spaces of the form C∞(V ), where V is a vector bundle over a
compact manifold.

IV. Applications

We prove that the embedding problems for SU(2) and SU(3)-structures can be
reduced to the G2-case, which will be studied in terms of gauge deformations in
chapter four. It seems to be coincidence, that in the G2-case, the intrinsic torsion
T takes values in the G2-module gl(7) and therefore can be regarded again as an
(infinitesimal) gauge deformation. In Proposition 4.12 we show that the intrinsic
torsion flow for G2-structures

Ȧt = Tt ◦At

can be regarded as a generalization of Hitchin’s flow equation, and hence as a
generalization of the SU(2), SU(3) and G2-embedding problem. We describe the
evolution of the metric and the intrinsic torsion under the intrinsic torsion flow,
cf. Theorem 4.13. As a consequence of the Cheeger-Gromoll Splitting Theorem,
we prove in Theorem 4.14 and Corollary 4.15 that there are no nontrivial long-
time solutions for the embedding problem. The Cauchy-Kowalevski Theorem and
the conservation law Corollary 2.4 allow us to prove that the intrinsic torsion flow
preserves certain compatibility conditions, which implies that for any real analytic
hypo SU(2), SU(3) and G2-structure on a compact manifold, the embedding pro-
blem admits a unique real analytic solution. Moreover, the solution can be described
by a family of gauge deformations

At =
∞�

k=0

tk

k!
A(k)

0 ,

where the series converges in the C∞-topology on C∞(End(TM)).

In chapter five we define a canonical extension of the Kähler-Ricci flow to SU(n)-
structures via gauge deformations and characterize in Theorem 5.13 under which
conditions this flow converges to a parallel SU(n)-structure. In Theorem 5.9 we
prove that the canonical extension evolves under an equation that has a striking
similarity with the evolution equation of the Kähler-Ricci flow. Below we list the
evolution equations for the different types of Ricci flows, using the map D form
Lemma 1.16:

Name Structure Group Evolution Equation

usual Ricci flow O(n) ġt = Dgt(Rict)
Kähler-Ricci flow U(n) (ġt, ω̇t) = D(gt,ωt)(Rict)

(special) Kähler-Ricci flow SU(n) (ġt, ω̇t, ρ̇t) = D(gt,ωt,ρt)(Rict)
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This motivates the conjecture that for a given G2-structure ϕ on M with sufficiently
small torsion, the flow

ϕ̇t = Dϕt(Rict)

should converge to a Ricci-flat G2-structure. Essentially the same flow equation
can be considered for Spin7-structures, or more generally, for any G ⊂ O(n) struc-
tures, described by certain structure tensors. We show that the family of metrics,
corresponding to a family of structures ϕt, evolving according to ϕ̇t = Dϕt(Rict),
satisfies ġt = −2rict.
Moreover, we prove that all of the above evolution equations can be described in a
unified way, using gauge deformations. Namely, a solution At ∈ C∞(Aut(TM)) of





Ȧt = Rict ◦At

A0 = id

yields a solution for all of the above Ricci flows. For instance, ϕt := Atϕ solves
ϕ̇t = Dϕt(Rict), for any initial G2-structure ϕ on M . We call At the universal Ricci
flow for the initial metric g and prove in Theorem 5.14 that any compact Rieman-
nian manifold admits a unique universal Ricci flow for some time t ∈ [0, T ).
The Spin7-case reveals another advantage of working with families of gauge defor-
mations. In contrast to the G2-case, the orbit of the model tensor is not open in
the Spin7-case. Hence it is not obvious that a Spin7-structure Ψ evolving according
to Ψ̇t = DΨt(Rict) actually defines a whole family of Spin7-structures. Describing
the solution via a family of gauge deformation Ψt = AtΨ completely circumvents
this problem.

Based on the discussion of SU(3)-structures in chapter three, we define a type of
G2-structure which can be regarded as the seven dimensional analogue of Kähler
SU(3)-structures. This type of G2-structures allow a fibrewise Ricci flow. Using
Cao’s result for Kähler structures in dimension six, we prove in Theorem 5.22 that
the fibrewise Ricci flow converges to a Ricci flat G2-structure.
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1. Deformations of Principal Bundles

In this chapter we study deformations of principal bundles via gauge deformations.
A gauge deformation is an equivariant map A : P → G, where P is some principal
bundle with structure group G. Given such a map and a reduction Q of P to H ⊂ G,
we obtain a new H-reduction by

QA := {qA(q) | q ∈ Q} ⊂ P.

Hence a gauge deformation can be regarded as a vertical deformation of the initial
reduction Q. In contrast, a diffeomorphism of M induces a horizontal deformation
of a reduction Q ⊂ FM , where FM is the frame bundle of some manifold M .
Many reductions can be described by certain tensors. For instance, a family of
metrics gt on M induces a family of O(n)-reductions F gtM ⊂ FM . Using polar
decomposition, one can easily see that such a family of metric can be described by
a family of gauge deformations via gt = Atg, where g := g0 is the initial metric. In
Theorem 1.6 we obtain a generalization of this description for certain families of
tensors.
The compatibility of a given G ⊂ O(n) reduction P ⊂ F gM with the Levi-Civita
connection on F gM is measured by the intrinsic torsion of P ⊂ F gM . Deforming
the initial structure by a gauge deformation effects the intrinsic torsion. In Theo-
rem 1.19 we compute the change in the intrinsic torsion under a general gauge
deformation. Using Theorem 1.6, we obtain in Corollary 1.21 a characterization of
G-structures that can be deformed to torsion-free structures.

Stability

Let π : P → M be a principal G-bundle and � : G → Aut(V ) be a real G-
representation. We identify sections of the associated bundle P×�V with equivariant
maps ϕ : P → V , satisfying

ϕ(pg) = g−1ϕ(p) := �(g−1)ϕ(p),

for all p ∈ P and g ∈ G. A G-structure P ⊂ FM is a reduction of the frame bundle
π : FM → M to a Lie subgroup G ⊂ GL(n). A basis p ∈ FM corresponds to an
isomorphism p : Rn → Tπ(p)M which identifies the standard basis (e1, .., en) of Rn

with the basis p of Tπ(p)M . Hence an element g ∈ GL(n) acts on FM by

pg := p ◦ g : Rn −→ Tπ(p)M,
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making FM into a principal GL(n)-bundle over M .

Definition 1.1. Let π : P → M be a principal G-bundle, � : G → Aut(V ) a
real G-representation, ϕ0 ∈ V and ϕ : P → V equivariant.

(1) ϕ0 is stable if the orbit Gϕ0 := �(G)ϕ0 ⊂ V is open.

(2) ϕ is stable if ϕ(p) ∈ V is stable, for all p ∈ P .

(3) ϕ is of type ϕ0 if ϕ(p) ∈ Gϕ0 ⊂ V , for all p ∈ P .

An equivariant map ϕ : P → V of type ϕ0 ∈ V defines a reduction of P to the
isotropy group IsoG(ϕ0) ⊂ G via

Pϕ := {p ∈ P | ϕ(p) = ϕ0}.

Conversely, given such a reduction Q ⊂ P , we obtain an equivariant map ϕ : P → V

of type ϕ0 by extending the constant map ϕ|Q ≡ ϕ0 equivariantly to a map P → V .

Proposition 1.2. Let P → M be a principal G-bundle, � : G → Aut(V ) a
real G-representation and ϕ0 ∈ V . Then the reductions of P to the isotropy group
IsoG(ϕ0) ⊂ G correspond to equivariant maps ϕ : P → V of type ϕ0.

�

One of the main motivations to study stability in relation with G-structures is the
following

Proposition 1.3. Let P → M be a principal G-bundle over a connected ma-
nifold M , and � : G → Aut(V ) a real G-representation. If ϕ : P → V is stable,
then for any p ∈ P , the map ϕ is already of type ϕ0 := ϕ(p) ∈ V . In particular, ϕ

induces a reduction to the isotropy group of ϕ0.

Proof: Since ϕ is stable,

W0 := {x ∈ M | ∃ p ∈ Px : ϕ(p) = ϕ0} = π(ϕ−1(Gϕ0)) ⊂ M

is open. For x ∈ M \W0 choose some p ∈ Px. Then ϕ1 := ϕ(p) /∈ Gϕ0 and W1 ⊂ M

defines an open set containing x. If W1∩W0 �= ∅, we find p, q ∈ P with π(p) = π(q),
ϕ(p) = ϕ0 and ϕ(q) = ϕ1. Hence q = pg for some g ∈ G and

ϕ1 = ϕ(q) = g−1ϕ(p) = g−1ϕ0 ∈ Gϕ0,
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which contradicts x /∈ W0.
�

A similar result holds for whole families of stable maps.

Proposition 1.4. Suppose P → M is a principal G-bundle over a connected
manifold M , � : G → Aut(V ) is a real G-representation and that {ϕt : P → V }t∈I is
a family of stable tensors, where I ⊂ R is some interval containing zero. If ϕ := ϕt=0

is of type ϕ0 ∈ V , then ϕt is of type ϕ0 ∈ V , for all t ∈ I.

Proof: Since ϕ is of type ϕ0, we find p ∈ P such that ϕ(p) = ϕ0. By Proposition
1.3 we have

0 ∈ J0 := {t ∈ I | ϕt is of type ϕ0} = {t ∈ I | ϕt(p) ∈ Gϕ0}.

Hence J0 = (t �→ ϕt(p))−1(Gϕ0) ⊂ I is open and non-empty. For t ∈ I \ J0 we
have ϕ1 := ϕt(p) /∈ Gϕ0 and J1 ⊂ I is open and contains t. If J0 ∩ J1 �= ∅, we get
Gϕ0 ∩Gϕ1 �= ∅ and hence ϕ1 ∈ Gϕ1 = Gϕ0, in contradiction to t /∈ J0.

�

Gauge Deformations

One way to deform a given G-structure P ⊂ FM is to transform it by an element
F ∈ Diff(M). Namely consider

F∗P := {F∗p | p ∈ P},

where F∗p ∈ FF (π(p))M is defined by (F∗p)ei := F∗(pei). Since F∗(pg) = (F∗p)g,
we see that F∗P ⊂ FM defines again a G-structure. Similarly we can deform P by
an element A ∈ C∞(Aut(TM)),

PA := {pA(p) | p ∈ P},

where pA(P ) ∈ Fπ(p)M is defined by (pA(p))ei := p(A(p)ei). The latter deformation
is a vertical deformation in the sense that π(pA(p)) = π(p), whereas π(F∗p) �= π(p),
for F �= id.

Definition 1.5. Suppose P is a principal G-bundle over M and � : G → Aut(V )
is a real G-representation.
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(1) A gauge deformation is an equivariant map P → G, where G acts on itself
by conjugation. The set of gauge deformations is denoted by

G(P ) := C∞(P ×G G).

(2) An infinitesimal gauge deformation is an equivariant map P → g, where
G acts on g by the adjoint representation. The set of infinitesimal gauge
deformations is denoted by

g(P ) := C∞(P ×Ad g).

(3) Using exp(Ad(g)X) = g exp(X)g−1, for the usual exponential map exp :
g → G, we can define

exp : g(P ) → G(P ) by exp(X)(p) := exp(X(p)).

(4) For A ∈ G(P ) and ϕ : P → V equivariant, we define an equivariant map

�(A)ϕ : P → V by (�(A)ϕ)(p) := �(A(p))ϕ(p).

The following Theorem essentially states that families of H-reductions can be des-
cribed by certain families gauge deformations.

Theorem 1.6. Let π : P → M be a principal G-bundle, � : G → Aut(V ) a
real G-representation, ϕ0 ∈ V with isotropy group H ⊂ G, π : G → G/H the
canonical projection and {ϕt : P → V }t∈I a family of equivariant maps which
are all of type ϕ0. Suppose that g is equipped with some Ad(H)-invariant inner
product and denote by h⊥ the orthogonal complement of h ⊂ g. Denote by Q ⊂ P

the H-reduction induced by ϕ := ϕt=0 and let

h⊥(Q) := {X ∈ g(P ) | X|Q : Q → h⊥}.

(1) There exists a family of gauge deformations At ∈ G(P ), t ∈ I, such that

ϕt = �(At)ϕ and A0 = e

(2) If π ◦ exp : h⊥ → G/H is a covering map, then there exists a family of infinite-
simal gauge deformations Xt ∈ h⊥(Q), t ∈ I, such that

ϕt = �(exp(Xt))ϕ and X0 = 0.

(3) If H and M are compact, then there exists an open subinterval J ⊂ I containing
0 such that the conclusion in (2) holds for J instead of I.

Proof: Fix q ∈ Q = {p ∈ P | ϕ(p) = ϕ0 ∈ V } and define

Ā(q) : I → G/H by Āt(q) := π ◦At(q),

9



where At(q) ∈ G satisfies ϕt(q) = �(At(q))ϕ(q). Note that such an element At(q) ∈
G exists, since ϕt(q) ∈ Gϕ0 = Gϕ(q) is of type ϕ0.

Proof of part (1): The decomposition g = h⊕ h⊥ induces a horizontal distribution
on the principal H-bundle π : G → G/H by

Hg := Rg∗h
⊥.

Hence there exists a unique horizontal lift At(q) of Āt(q) with A0(q) = e. From
π ◦ At(q) = Āt(q) we get ϕt(q) = �(At(q))ϕ(q) and it remains to show that At :
Q → G is H-equivariant, i.e. for all q ∈ Q, h ∈ H and t ∈ I we have to show that

c(t) := At(qh) = h−1At(q)h =: d(t)

holds. The curve c(t) ∈ G is horizontal by definition, whereas the horizontality of
d(t) follows from

ḋ(t) = Ad(h−1)Ȧt(q) ∈ Ad(h−1)RAt(q)∗h
⊥ = Rd(t)Ad(h−1)h⊥ ⊂ Rd(t)h

⊥,

by Ad(H)-invariance. Now

�(d(t))ϕ(qh) = �(h−1)�(At(q))ϕ(q) = �(h−1)ϕt(q) = ϕt(qh)

implies π ◦ d(t) = Āt(qh) = π ◦ c(t) and c(0) = e = d(0) yields c(t) = d(t).

Proof of part (2): If π ◦ exp : h⊥ → G/H is a covering map, we can lift the map
Ā(q) : I → G/H uniquely to a map X(q) : I → h⊥ with X0(q) = 0. Hence

π ◦ exp(Xt(q)) = Āt(q),

which yields ϕt(q) = �(exp(Xt(q)))ϕ(q). It remains to show that Xt : Q → h⊥ is
equivariant, i.e. for all q ∈ Q, h ∈ H and t ∈ I we have to show that

c(t) := Xt(qh) = Ad(h−1)Xt(q) =: d(t)

holds. Since already c(0) = 0 = d(0), it suffices to verify that π ◦ exp ◦c(t) =
π ◦ exp ◦d(t) holds. To see this, observe that

�(exp(Ad(h−1)Xt(q)))ϕ(qh) = �(h−1)�(exp(Xt(q)))�(h)�(h−1)ϕ(q)

= �(h−1)ϕt(q) = ϕt(qh)

implies

π ◦ exp ◦d(t) = π(exp(Ad(h−1)Xt(q))) = Āt(qh) = π ◦ exp ◦c(t).

Proof of part (3): Choose an open neighborhood U ⊂ h⊥ of 0 such that

F := π ◦ exp|U⊂h⊥ : U → F (U)

is a diffeomorphism. Since H is compact, we can choose U to be Ad(H)-invariant.
Now consider

Jq := {t ∈ I | Āt(q) ∈ F (U)}.
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Since Q is compact, if M and H are compact, we can assume that there exists an
open interval J such that 0 ∈ J ⊂ Jq for all q ∈ Q. For t ∈ J define Xt : Q → U ⊂
h⊥ by

Xt(q) := F−1(Āt(q)).

Then X0(q) = 0 and π ◦ exp(Xt(q)) = F ◦ F−1(Āt(q)) implies

ϕt(q) = �(exp(Xt(q)))ϕ(q).

Now we obtain like in part (1) the equation �(exp(Ad(h−1)Xt(q)))ϕ(qh) = ϕt(qh),
which implies π(exp(Ad(h−1)Xt(q))) = Āt(qh) and

F
�
Xt(qh)

�
= Āt(qh) = π(exp(Ad(h−1)Xt(q))) = F

�
Ad(h−1)Xt(q)

�
.

Since Xt(q) ∈ U and U is Ad(H)-invariant, it follows Xt(qh) = Ad(h−1)Xt(q).
�

Example 1.7. Given two Riemannian metrics g and gt on M , we can define a
gauge deformation Bt ∈ C∞(Aut(TM)) by gt = Bt�g. So Bt is symmetric and
positive w.r.t. g and hence there is a unique square root At of B−1

t
w.r.t. g, i.e.

Bt = A−1
t

A−1
t

, where At is again symmetric and positive w.r.t. g. This shows that
any two metrics are gauge equivalent,

gt = Atg.

We can also apply Theorem 1.6 to a family of metrics gt on M and obtain the same
gauge deformation At. Here H := O(n) ⊂ GL(n) =: G and the Ad(O(n))-invariant
inner product on gl(n) is given by �X, Y � := tr(XY T ).

Example 1.8. Suppose I is an almost complex structure on M and consider TM

as a complex vector bundle via iX := IX, for X ∈ TM . A hermitian metric on
(M, I) is a Riemannian metric g which satisfies g(I., I.) = g and hence induces a
2-form ω := g(I., .). Then

h := g − iω

defines a hermitian structure on the complex vector bundle (TM, I), i.e. the map
h : TM×TM → C is C-linear in the first argument and satisfies h(X, Y ) = h(Y, X)
and h(X, X) > 0, for every X �= 0. We regard h as a C-anti-linear isomorphism

h : TM → T ∗M via X �→ h(., X).

Given two hermitian metrics g and gt on (M, I), we define a gauge deformation Bt

by ht(Y, X) = h(Y, BtX). Since

BtI = IBt and h(Y,BtX) = h(BtY,X) and h(BtX, X) > 0, for X �= 0

we can find a unique square root of B−1
t

w.r.t. h, i.e. Bt = A−1
t

A−1
t

and

AtI = IAt and h(Y, AtX) = h(AtY,X) and h(AtX, X) > 0, for X �= 0.
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In particular, we obtain a gauge deformation with

ht = Ath.

Since AtI = IAt, At is hermitian w.r.t. h if and only if it is symmetric w.r.t.
g = Re(h). Ignoring the almost complex structure, we can write gt = �Atg, where
�At is defined like in Example 1.7. So �Atg = Atg and from the symmetry of At

and �At it follows �A2
t

= A2
t
. But since �A2

t
and A2

t
are positive, they have a unique

positive square root and hence �At = At. So the gauge deformation At is precisely
the one that we obtained in Example 1.7, but satisfies in addition AtI = IAt.
We can also apply Theorem 1.6 to a family of hermitian structures ht = gt− iωt on
(M, I) and obtain the same gauge deformation At. Now H := U(n) ⊂ GL(n, C) =:
G and the Ad(U(n))-invariant inner product on gl(n, C) is given by �X, Y � :=
Re(trC(XY ∗)).

Intrinsic Torsion

Given a reduction P ⊂ FM , we have a natural concept of integrability. Name-
ly we may ask whether there exist local sections s = (X1, .., Xn) in P such that
[Xi, Xj ] = 0 holds. Equivalently, we may look for sections in P which are induced
by the basis field of a local chart of M . So integrable GL(n, C)-structures are com-
plex structures on M and integrable Sp(n, R)-structures correspond to symplectic
structures on M .
As soon as we consider reductions to subgroups of O(n), this integrability concept
is to restrictive. In fact, an integrable O(n)-structure would yield a flat metric on
M . From this point of view, curvature is the obstruction to the existence of an
integrable O(n)-structure. To develop a weaker concept of integrability we have to
substitute the reference group GL(n) by O(n). Instead of measuring the compa-
tibility of a given G ⊂ O(n) structure with the GL(n)-structure FM , we have to
measure the compatibility with the metric structure F gM . This compatibility is
measured by the so-called intrinsic torsion of the G-structure P ⊂ F gM .

Definition 1.9. (1) A connection on a principal G-bundle π : P → M is a
1-form Z on P with values in g, such that

Z(Rp∗X) = X and R∗
g
Z = Ad(g−1)Z

for all X ∈ g, g ∈ G and p ∈ P . We say that a connection Z on P reduces to a
principal H-bundle Q ⊂ P if the restriction of Z to TQ takes values in h.
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(2) Given a connection Z on P , we call Hp := ker(Zp) the horizontal distribu-
tion of Z. This distribution is complementary to the vertical space Vp := ker(π∗p),
i.e.

TpP = Hp ⊕ Vp and satisfies Hpg = Rg∗Hp.

Hence there exists for each X ∈ Tπ(p)M a unique

hpX ∈ Hp such that π∗hpX = X.

We call hpX the horizontal lift of X to p ∈ P w.r.t the connection Z. Independent
of any connection, we always have a vertical lift of elements X ∈ g, defined by

vp(X) :=
d

dt

����
t=0

p exp(tX) = Rp∗(X).

(3) The frame bundle π : FM → M admits a Rn-valued 1-form

θ : TpFM → Rn with X �→ p−1π∗X.

Given a connection Z on a principal G-bundle P ⊂ FM , we call

T : P → Λ2Rn∗ ⊗ Rn with T (p)(x, y) := dθ(hp(px), hp(py))

the torsion of Z.

(4) The curvature of a connection Z on a principal G-bundle P → M is the
map

R : P → Λ2Rn∗ ⊗ g with R(p)(x, y) := dZ(hp(px), hp(py)).

Given a connection, we can differentiate tensors in horizontal directions.

Proposition 1.10. Suppose � : G → Aut(V ) is a real G-representation and
π : P → M is a principal G-bundle, equipped with a connection.

(1) For X ∈ C∞(TM) and ϕ : P → V the map

∇Xϕ : P → V with (∇Xϕ)(p) := ϕ∗(hpX)

is again equivariant, i.e. ∇ defines a map

∇ : C∞(TM)× C∞(P ×� V ) → C∞(P ×� V ).

(2) For X ∈ C∞(TM) and A ∈ G(P ) the map

∇XA : P → g with (∇XA)(p) := (LA(p)−1)∗A∗(hpX)
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is again equivariant, i.e. ∇ defines a map

∇ : C∞(TM)×G(P ) → g(P ).

Proof: If we write hpX = ċ(0), for some curve c(t) ∈ P , the first part follows
from

(∇Xϕ)(pg) = ϕ∗(Rg∗hpX) =
d

dt

����
t=0

ϕ(c(t)g) = �(g−1)
d

dt

����
t=0

ϕ(c(t))

= �(g−1)(∇Xϕ)(p).

Similarly for the second part,

(∇XA)(pg) = LA(pg)−1∗A∗(Rg∗hpX) =
d

dt

����
t=0

A(pg)−1A(c(t)g)

=
d

dt

����
t=0

g−1A(p)−1A(c(t))g = Ad(g−1)(∇XA)(p).

�

Note that the above definitions of covariant derivatives are not compatible with the
embedding GL(n) ⊂ gl(n). Namely the covariant derivative of a gauge deformation
A : FM → GL(n) from Proposition 1.10 (2) is not equal to the covariant derivative
of

A : FM → GL(n) ⊂ gl(n)

in the sense of Proposition 1.10 (1).

By definition of the curvature tensor we have R(p)(x, y) = −Z[h(x), h(y)]p and
hence R measures the integrability of the horizontal distribution ker(Z). More ge-
nerally we have

Lemma 1.11. Let Z be a connection on a principal G-bundle π : P → M . Then
for X, Y ∈ C∞(TM) and A,B ∈ g

(1) [h(X), h(Y )]p = hp[X, Y ]π(p) − vp(R(X, Y )(p)),

(2) [v(A), h(X)]p = 0,

(3) [v(A), v(B)]p = vp[A,B].

Proof: The first equation follows from π∗[h(X), h(Y )]p = [X, Y ]π(p) and since
R(X, Y )(p) = dZ(hp(X), hp(Y )) = −Z[h(X), h(Y )]p. The flow Φt(p) := pexp(tA)
of v(A) satisfies Φt∗hp(X) = hΦt(p)(X) and hence

[v(A), h(X)]p = Lvp(A)h(X) =
d

dt

����
t=0

Φ−t∗hΦt(p)(X) = 0,
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which proves the second equation. Finally,

Φ−t∗vΦt(p)(B) =
d

ds

����
s=0

pexp(tA)exp(sB)exp(−tA)

= Rp∗(Adexp(tA)(B)) = Rp∗(et[A,B])

and hence

[v(A), v(B)]p = Rp∗(
d

dt

����
t=0

et[A,B]) = Rp∗([A,B]) = vp[A,B].

�

Given a connection Z on a G-structure P ⊂ FM and an equivariant map ξ : P →
Rn∗ ⊗ g, we obtain a new connection on P by

�Z := Z + ξ ◦ θ.

The corresponding torsion tensors satisfy �T = T + δ ◦ ξ, where

δ : Rn∗ ⊗ gl(n) → Λ2Rn∗ ⊗ Rn is given by (δF )(x, y) := F (x)y − F (y)x.

Since the restriction of δ to Rn∗ ⊗ so(n) is an isomorphism of O(n)-modules, every
O(n)-reduction F gM ⊂ FM admits a unique torsion-free connection; the Levi-
Civita connection Zg of the metric g.

Now let G ⊂ O(n) and consider a G-structure P ⊂ F gM . Decomposing so(n) =
g⊕ g⊥ with respect to the inner product �X, Y � := tr(XY T ) on so(n), we obtain a
corresponding decomposition

Zg

|TP
= Z + Z⊥ ∈ g⊕ g⊥ = so(n).

The 1-form Z takes values in g and defines a connection on P , the so-called charac-
teristic connection of P ⊂ F gM . By construction, Z⊥ measures the defect of the
Levi-Civita connection to reduce to a connection on P ⊂ F gM .

Definition 1.12. The intrinsic torsion τ of a G-structure P ⊂ F gM is the
equivariant map

τ : P −→ Rn∗ ⊗ g⊥ defined by τ(p)(x) := Z⊥(hp(px)),

where hp(px) denotes the horizontal lift w.r.t. the characteristic connection Z on
P . For X ∈ C∞(TM), we denote by τ(X) the corresponding infinitesimal gauge
deformation

τ(X) ∈ C∞(P ×Ad g⊥) ⊂ so(F gM).
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By definition of the intrinsic torsion we have τ ◦ θ = Z⊥. Hence the torsion T of
the characteristic connection Z on P satisfies

T + δ ◦ τ = 0.

Since π∗(hpX−Rp∗τ(X)(p)) = X ◦π(p) and Zg(hpX−Rp∗τ(X)(p)) = Z⊥(hpX)−
τ(X)(p) = 0, we get

hg

p
X = hpX −Rp∗τ(X)(p),

which yields

(∇g

X
Y −∇XY )(p) = Y∗(hg

p
X − hpX) = −Y∗Rp∗τ(X)(p)

= − d

dt

����
t=0

Y (pexp(tτ(X)(p))) = − d

dt

����
t=0

exp(−tτ(X)(p))Y (p)

= (τ(X)Y )(p).

We summarize the above formulas in the following

Lemma 1.13. The intrinsic torsion τ of a G-structure P ⊂ F gM satisfies

(1) Zg = Z + τ ◦ θ,

(2) 0 = T + δ ◦ τ,

(3) hg(X) = h(X)−R∗τ(X),

(4) τ(X)Y = ∇g

X
Y −∇XY.

The intrinsic torsion vanishes if and only if the Levi-Civita connection reduces to
a connection on P ⊂ F gM . The condition τ = 0 is in general very restrictive. De-
composing the G-module Rn∗ ⊗ g⊥ into irreducible submodules, we may consider
structures with intrinsic torsion taking values only in some of these submodules.
This approach yields a rough classification of arbitrary G-structures in terms of
their intrinsic torsion. Many of these classes have a rich geometry, including ex-
amples of Einstein and Ricci-flat manifolds.

Lemma 1.14. Let � : G → Aut(V ) be a real G-representation.

(1) The map

D : V × g → V with Dϕ(X) :=
d

dt

����
t=0

�(exp(tX))ϕ.

is G-equivariant, i.e. D(�(g)ϕ)(Ad(g)X) = �(g)Dϕ(X), for all g ∈ G and X ∈ g.

(2) For fixed ϕ ∈ V with isotropy group H ⊂ G, the map

Dϕ : g → V
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is H-equivariant, i.e. Dϕ(Ad(h)X) = �(h)Dϕ(X), for all h ∈ H and X ∈ g. Moreo-
ver,

ker(Dϕ) = h.

Proof: Part (1) follows from

D(�(g)ϕ)(Ad(g)X) =
d

dt

����
t=0

�(exp(tAd(g)X))�(g)ϕ =
d

dt

����
t=0

�(g exp(tX))ϕ

=
d

dt

����
t=0

�(g)�(exp(tX))ϕ = �(g)Dϕ(X)

and the equivariance in part (2) is a special case of (1).

Since H ⊂ G is closed, H is actually a Lie subgroup and the exponential map of G,
restricted to h ⊂ g, is the exponential map of H. Hence exp(tX) ∈ H, for X ∈ h,
and it follows h ⊂ ker(Dϕ). Conversely, X ∈ ker(Dϕ) satisfies

d

dt

����
t

�(exp(tX))ϕ =
d

ds

����
s=0

�(exp((t + s)X))ϕ =
d

ds

����
s=0

�(exp(tX) exp(sX))ϕ

=
d

ds

����
s=0

�(exp(tX))�(exp(sX))ϕ

= �(exp(tX))Dϕ(X) = 0.

Hence �(exp(tX))ϕ = ϕ, i.e. exp(tX) ∈ H for all t ∈ R, which yields X ∈ h, since
H ⊂ G is closed.

�

Using part (1) of Lemma 1.14, we can make the following

Definition 1.15. Suppose � : G → Aut(V ) is a real G-representation and
π : P → M is a principal G-bundle. We define

D : C∞(P ×� V )× g(P ) → C∞(P ×� V )

by

Dϕ(X) :=
d

dt

����
t=0

�(exp(tX))ϕ.

Lemma 1.16. Let � : G → Aut(V ) be a real G-representation and gt ∈ G and
ϕt ∈ V smooth curves. Then

d

dt

�
�(gt)ϕt

�
= D(�(gt)ϕt)(Rg

−1
t ∗ġt) + �(gt)ϕ̇t

= �(gt)Dϕt(Lg
−1
t ∗ġt) + �(gt)ϕ̇t.

In particular, for At ∈ G ⊂ GL(n) and ϕt := �(At)ϕ

ϕ̇t = Dϕt(ȦtA
−1
t

).
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Proof: The first equation follows from

d

dt

�
�(gt)ϕt

�
=

d

ds

����
s=0

�(gt+s)ϕt+s =
d

ds

����
s=0

�(gt+sg
−1
t

)�(gt)ϕt+s

= �∗(e,�(gt)ϕt)(Rg
−1
t ∗ġt, �(gt)ϕ̇t)

=
d

ds

����
s=0

�(exp(sR
g
−1
t ∗ġt), �(gt)ϕt + s�(gt)ϕ̇t)

=
d

ds

����
s=0

�(exp(sR
g
−1
t ∗ġt))�(gt)ϕt +

d

ds

����
s=0

s�(exp(sR
g
−1
t ∗ġt))�(gt)ϕ̇t

= D(�(gt)ϕt)(Rg
−1
t ∗ġt) + �(gt)ϕ̇t.

Now Lemma 1.14 (1) implies the second equation,

D(�(gt)ϕt)(Rg
−1
t ∗ġt) = D(�(gt)ϕt)(Ad(gt)Lg

−1
t ∗ġt) = �(gt)Dϕt(Lg

−1
t ∗ġt).

�

Proposition 1.17. Suppose P → M is a principal G-bundle over M , equipped
with a connection. Let � : G → Aut(V ) be a real G-representation and ϕ : P → V

equivariant. Then we have for any A ∈ G(P ) and X ∈ C∞(TM)

∇X(�(A)ϕ) = �(A)∇Xϕ + �(A)Dϕ(∇XA).

Proof: From Definition of the covariant derivative in 1.10 and Lemma 1.16 we
obtain for p ∈ P

∇X(�(A)ϕ)(p) = (�(A)ϕ)∗p(hp(X))

=
d

ds

����
s=0

�(A(c(s)))ϕ(c(s)), where ċ(0) = hp(X)

= �(A(p))Dϕ(p)(LA−1(p)∗
d

ds

����
s=0

A(c(s))) + �(A(p))
d

ds

����
s=0

ϕ(c(s))

= �(A(p))Dϕ(p)(∇XA)(p) + �(A(p))(∇Xϕ)(p)

=
�
�(A)Dϕ(∇XA) + �(A)∇Xϕ

�
(p)

�

Proposition 1.18. Let � : GL(n) → Aut(V ) be a real GL(n)-representation
and ϕ0 ∈ V with isotropy group G ⊂ O(n). An equivariant map ϕ : FM → V of
type ϕ0 induces a reduction P ⊂ F gM with intrinsic torsion τ : P → Rn∗ ⊗ g⊥.
Then for X ∈ C∞(TM)

∇g

X
ϕ = Dϕ(τ(X)).

Proof: By Lemma 1.13 we have

hg

p
X = hpX −Rp∗τ(X)(p).
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Since ϕ is constant along the reduction P ⊂ F gM , we have ϕ∗(hpX) = 0. This
yields

(∇g

X
ϕ)(p) = ϕ∗(hg

p
X) = ϕ∗(hpX)− ϕ∗(Rp∗τ(X)(p))

= − d

dt

����
t=0

ϕ(p exp(tτ(X)(p)))

= − d

dt

����
t=0

�(exp(−tτ(X)(p)))ϕ(p)

= Dϕ(τ(X))(p).

�

Theorem 1.19. Let � : GL(n) → Aut(V ) be a real GL(n)-representation, ϕ0 ∈ V

with isotropy group G ⊂ O(n) and ϕ : FM → V an equivariant map of type ϕ0.
Then we have for any gauge deformation A : FM → GL(n) and X ∈ C∞(TM)

∇Ag

X
(�(A)ϕ) = �(A)

�
∇g

X
ϕ + Dϕ

�
∇g

X
A− ξ(X)−Ad(A−1)ξ(X)

��
,

where ξ(X) ∈ C∞(End(TM)) is given by

2g(ξ(X)Y, Z) = g(X, (∇g

Y
B)Z) + g(Y, (∇g

X
B)Z) + g(B−1(∇g

BZ
B−1)X, Y )

and B := AAT w.r.t. the metric g.

Proof: The difference between the Levi-Civita connections is given by an equi-
variant map ξ : FM → Rn∗ ⊗ gl(n) with

hAg

p
X = hg

p
X + Rp∗ξ(X).

This yields

(∇Ag

X
ϕ)(p) = ϕ∗(hg

p
X + Rp∗ξ(X)) = (∇g

X
ϕ)(p) + ϕ∗(Rp∗ξ(X))

= (∇g

X
ϕ)(p)−Dϕ(ξ(X))(p)

and

(∇Ag

X
A)(p) = LA−1(p)∗A∗(hg

p
X + Rp∗ξ(X)) = (∇g

X
A)(p) + LA−1(p)∗A∗(Rp∗ξ(X))

= (∇g

X
A)(p)−Ad(A−1(p))ξ(X).

From Proposition 1.17 we obtain

∇Ag

X
(�(A)ϕ) = �(A)

�
∇Ag

X
ϕ + Dϕ(∇Ag

X
A)

�

= �(A)
�
∇g

X
ϕ−Dϕ(ξ(X)) + Dϕ(∇g

X
A)−Dϕ(Ad(A−1)ξ(X))

�

= �(A)
�
∇g

X
ϕ + Dϕ

�
∇g

X
A− ξ(X)−Ad(A−1)ξ(X)

��
.
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Now we compute for X, Y ∈ C∞(TM)

(∇g

X
Y −∇Ag

X
Y )(p) = Y∗(hg

p
X − hAg

p
X) = −Y∗Rp∗ξ(X) = − d

dt

����
t=0

exp(−tξ(X))Y (p)

= (ξ(X)Y )(p)

and Koszul’s formula yields

2g(∇Ag

X
Y, Z) = 2g(AA−1∇Ag

X
Y, Z) = 2g(A−1∇Ag

X
Y, A−1AAT Z)

= 2(Ag)(∇Ag

X
Y,BZ)

= 2g(∇g

X
Y, Z) + g(X,∇g

Y
Z) + g(Y,∇g

X
Z)

− g(∇g

BZ
B−1X, Y ) + g(B−1Y,∇g

BZ
X)

− g(B−1Y,∇g

X
BZ)− g(B−1X,∇g

Y
BZ).

From Proposition 1.17 we obtain ∇g

X
(BY ) = B∇g

X
Y + B(∇g

X
B)Y and hence

g(B−1Z,∇g

X
BY ) = g(Z,∇g

X
Y ) + g(Z, (∇g

X
B)Y ).

Now

2g(ξ(X)Y, Z) = 2g(∇g

X
Y, Z)− 2g(∇Ag

X
Y,Z)

= g(X, (∇g

Y
B)Z) + g(Y, (∇g

X
B)Z)

+ g(∇g

BZ
B−1X, Y )− g(B−1Y,∇g

BZ
X)

and

g(∇g

BZ
B−1X, Y ) = g(B−1∇g

BZ
X + B−1(∇g

BZ
B−1)X, Y )

= g(∇g

BZ
X, B−1Y ) + g(B−1(∇g

BZ
B−1)X, Y )

yields eventually

2g(ξ(X)Y, Z) = g(X, (∇g

Y
B)Z) + g(Y, (∇g

X
B)Z) + g(B−1(∇g

BZ
B−1)X, Y ).

�

Corollary 1.20. The gauge deformation A : FM → GL(n) from Theorem
1.19 yields a parallel structure ∇AgAϕ = 0 if and only if for all vector fields X ∈
C∞(TM)

τ(X) = prg⊥

�
ξ(X) + Ad(A−1)ξ(X)−∇g

X
A

�
,

where τ is the intrinsic torsion of P ⊂ F gM and the projection is taken w.r.t. P .

Proof: By Proposition 1.18 we have∇g

X
ϕ = Dϕ(τ(X)) and kerDϕ = g by Lemma

1.14. Hence Theorem 1.19 shows that ∇AgAϕ = 0 if and only if

prg⊥

�
τ(X) +∇g

X
A− ξ(X)−Ad(A−1)ξ(X)

�
= 0.
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Since τ(X)(p) ∈ g⊥, for p ∈ P , the corollary follows.
�

Corollary 1.21. A G-structure P ⊂ F gM like in Theorem 1.19 with intrinsic
torsion τ can be deformed to a torsion-free structure if and only if there exists a
solution A ∈ GL(FM) of

τ(X) = prg⊥

�
ξ(X) + Ad(A−1)ξ(X)−∇g

X
A

�
,

where ξ is defined like in Theorem 1.19 and the projection is taken w.r.t. P .

Proof: By Theorem 1.6 (1) any deformation Pt ⊂ FM of the initial structure P

can be described by a family of gauge deformations At and the Corollary follows
from Corollary 1.20.

�

Holonomy

Suppose Z is a connection on a principal G-bundle P over M . Given a piecewise
smooth curve c : [0, 1] → M and a point p ∈ P , there is a unique horizontal lift
cp : [0, 1] → P of c to P such that cp(0) = p. Namely, cp is the integral curve of the
lifted vector field ċ. The parallel translation along c is the map

Zc : Pc(0) → Pc(1) with p �→ cp(1).

For a fixed point p ∈ P consider

Hol(p,Z) := {g ∈ G | pg = Zc(p) for some c : [0, 1] → M with c(0) = c(1) = x}.

By Theorem 4.2 in [45], Hol(p,Z) defines in fact a Lie subgroup of G, called the
holonomy group of the connection Z. Note that changing the reference point p ∈ P

only changes the conjugacy class Hol(p,Z) ⊂ G, as long as M is connected.
The holonomy bundle Q(p) ⊂ P consists of all points in P that can be joined with p

by a horizontal curve. In fibre direction, Q(p) is generated precisely by the action of
Hol(p,Z) and hence gives a Hol(p,Z)-reduction of P . Moreover, the connection Z
on P reduces to Q(p). To see this, consider X ∈ Hq for q ∈ Q(p). Then X = ċq(0) for
the lift of some curve c in M with ċ(0) = π∗X. Since q ∈ Q(p), we have Q(q) = Q(p)
and eventually X = ċq(0) ∈ TqQ(q) = TqQ(p).
On the other hand, consider a reduction Q ⊂ P to a Lie subgroup H of G which
is compatible with the connection on P . Then any horizontal curve stays in Q and
so the holonomy group is a subgroup of H. Hence P admits a reduction to H ⊂ G
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that is compatible with the connection on P if and only if the holonomy group is
contained in H.
Holonomy can be measured in terms of curvature. The curvature tensor R : P →
Λ2Rn∗ ⊗ g satisfies

R(p)(x, y) = dZ(hp(px), hp(py)) = −Z[h(x), h(y)]p.

Moreover we have
[h(x), h(y)]p =

d

dt

����
t=0

Zct(p),

where ct denotes the family of loops in M that corresponds to the family of
quadrangles with vertices {0, tpx, tp(x + y), tpy} in Tπ(p)M . The corresponding 1-
parameter family gt ∈ Hol(p,Z) is then given by Zct(p) = pgt and hence

R(p)(x, y) = −Z(Rp∗ġ(0)) = −ġ(0) ∈ hol(p,Z).

Since Hol(q,Z) = Hol(p,Z) holds for q ∈ Q(p), we get

h := {R(q)(x, y) | x, y ∈ Rn and q ∈ Q(p)} ⊂ hol(p,Z).

One can actually show that h defines a Lie subalgebra of g and hence the distribution
H ⊕ v(h) on Q(p) is integrable by Lemma 1.11. Since the horizontal distribution
is contained in H ⊕ v(h), the holonomy bundle Q(p) is contained in the maximal
integral manifold through p ∈ Q(p). This shows that also hol(p,Z) ⊂ h holds and
proves the Ambrose-Singer Theorem,

hol(p,Z) = {R(q)(x, y) | x, y ∈ Rn and q ∈ Q(p)} ⊂ g.
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2. Integral Curves in Fréchet Spaces

In the previous chapter we described deformations of principal bundles via fami-
lies of gauge deformations At ∈ C∞(Aut(TM)) ⊂ C∞(End(TM)). Since the space
of sections C∞(End(TM)) is a Fréchet space, these type of vector spaces natu-
rally enter the scene when describing deformations of various structures. Indeed,
R. Hamilton makes intensive use of the Nash-Moser inverse function theorem for
Fréchet spaces in his fundamental work [34] on the Ricci flow. Natural deforma-
tions very often arise as the gradient flow of some functional. More generally, we
may consider deformations that evolve under the flow of a certain vector field X

on C∞(Aut(TM)), i.e.
Ȧt = X ◦At.

In contrast to finite dimensional geometry, there does not have to exist even a
short-time solution of the above equation. In the real analytic category, the Cauchy-
Kowalevski Theorem ensures the (local) existence of solutions for certain partial
differential equations. In this chapter we translate the Cauchy-Kowalevski Theorem
into a global version for integral curves in Fréchet spaces of the form C∞(V ), where
V → M is a vector bundle over a compact manifold M , cf. Theorem 2.11.
Beyond the existence, we show that the particular solution can be developed in
a (convergent) power series. This property is the crucial ingredient to prove that
the solutions coming from the Cauchy-Kowalevski Theorem preserve certain initial
conditions. In this sense, Corollary 2.4 can be regarded as a conservation law for
integral curves in Fréchet spaces. The basic idea stems from finite dimensional
geometry: If a vector field X is tangent to some submanifold N , then any integral
curve of X, which lies initially in N , stays in N for all times. Although not true
for arbitrary integral curves, this observation carries over to Fréchet spaces if the
integral curve can be developed in a power series.

Fréchet Spaces

Hamilton [34] gives an introduction to Fréchet manifolds which goes far beyond
of what we require for our purposes. Although Proposition 2.3 and Corollary 2.4
can be generalized to Fréchet manifolds, we focus on Fréchet spaces to keep the
technical efforts at a minimum.
A locally convex topological vector space F is a vector space with a collection of
seminorms, i.e. functions �.�n : F → R, n ∈ N , which satisfy

�f�n ≥ 0, �f + g�n ≤ �f�n + �g�n and �λf�n = |λ|�f�n
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for all f, g ∈ F and scalars λ. Such a family defines a unique topology which is
metrizable if and only if N is countable. In this case the topology is characterized
by the property

lim
k→∞

fk = f ∈ F ⇔ ∀n ∈ N : lim
k→∞

�fk − f�n = 0.

The topology is Hausdorff if and only if
�
∀n ∈ N : �f�n = 0

�
⇒ f = 0.

The space is sequentially complete if every Cauchy sequence converges, where fk is
a Cauchy sequence if it is a Cauchy sequence for every seminorm �.�n. A Fréchet
space is a locally convex topological vector space, which is in addition metrizable,
Hausdorff and complete.

Example 2.1. Suppose F → M is a vector bundle over a compact manifold M .
Then the vector space

F := C∞(F )

of smooth sections of F is a Fréchet space, where the collection of seminorms

�f�n :=
n�

j=0

sup
p∈M

|(∇(j)f)(p)|

can be defined after choosing Riemannian metrics and connections on TM and F ,
cf. [34] Example 1.1.5. The induced topology is the C∞-topology on F .
Given an open subset U ⊂ F , we consider the subset of all sections in F , whose
image lies in U ,

U := {f ∈ F | f(M) ⊂ U}.

For f ∈ U we can find ε > 0 such that

f ∈ B0
ε
(f) := {f̃ ∈ F | �f̃ − f�0 < ε} ⊂ U .

Since B0
ε
(f) ⊂ F is open, U is an open subset of the Fréchet space F .

Smooth maps between Fréchet spaces can be defined as follows: Let U ⊂ F be an
open subset of a Fréchet space F and P : U → E a continuous and nonlinear map
into another Fréchet space E . We say that P is C1 on U if for every f ∈ U and
every v ∈ F the limit

DP (f)v := lim
t→0

1
t
(P (f + tv)− P (f))

exists and the map DP : U ×F → E is continuous. Consequently, we say that P is
Ck on U if P is Ck−1 and the limit

D(k)P (f){v1, .., vk} : =

lim
t→0

1
t

�
D(k−1)P (f + tvn){v1, .., vk−1} −D(k−1)P (f){v1, .., vk−1}

�
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exists for all f ∈ U and v1, .., vk ∈ F , and the map D(k)P : U × F × ..× F → E is
continuous. We call P a smooth map on U if P is Ck for all k ∈ N. We summarize
Corollary 3.3.5 and Theorem 3.6.2 from [34] in the following

Theorem 2.2. (1) If P : U ⊂ F → E is C1 and c(t) ∈ U ⊂ F is a parameterized
C1 curve, then P ◦ c(t) is a parameterized C1 curve and

d

dt
(P ◦ c(t)) = DP (c(t))ċ(t).

(2) If P : U ⊂ F → E is Ck, then for every f ∈ U

D(k)P (f){v1, .., vk}

is completely symmetric and linear separately in v1, .., vk ∈ F .

In the following we will consider curves c(t) ∈ F in a Fréchet space F , which are
integral curves of a vector field that is tangent to some subspace E ⊂ F . In finite
dimension we would expect that any such integral curve with c(0) ∈ E actually
stays in the subspace for all times. This conclusion fails for Fréchet spaces, as was
pointed out to us by Christian Bär: Consider F := C∞[1, 2] and E := {0} ⊂ M.
Then

ct(x) :=





(4πt)− 1

2 exp(−x
2

4t
), for t > 0

0, for t ≤ 0

solves ċt = ∆ct = ∂2ct/∂x2 and hence defines an integral curve of the vector field
X(c) := ∆c. Although X is tangent to E , i.e. X(0) = 0, and c0 = 0 ∈ E , the curve
does not stay in E , since ct �= 0, for t > 0. Note also that t �→ ct(x) is not real
analytic in t = 0.

Proposition 2.3. Suppose E ⊂ F is a closed subspace of the Fréchet space F
and that X : U ⊂ F → F is a smooth map defined on some open subset U ⊂ F .
Let f ∈ F and assume that

X|U∩Ef
: U ∩ Ef → E ,

where Ef := {f}+ E . If a smooth curve c : (−ε, ε) → F satisfies

c(0) ∈ U ∩ Ef and X ◦ c(t) = ċ(t),

where ċ : (−ε, ε) → F is the derivative of c(t) by t, then for all k ≥ 1

c(k)(0) ∈ E ,

where c(k) : (−ε, ε) → F is the kth derivative of c(t) by t.
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Proof: First we prove by induction on k that the kth differential D(k)X of X :
F → F satisfies

(1) D(k)X|U∩Ef×E×..×E : U ∩ Ef × E × ..× E → E .

For k = 0 this is just the assumption X|U∩Ef
: U ∩ Ef → E . For v0 ∈ U ∩ Ef and

v1, .., vk+1 ∈ E we have by definition

D(k+1)X(v0){v1, .., vk+1}

= lim
s→0

1
s

(D(k)X( v0 + svk+1� �� �
∈U∩Ef for s small

){v1, .., vk} −D(k)X(v0){v1, .., vk})

� �� �
∈E by induction hypothesis

and since E is closed, we conclude that (1) holds for k + 1. Next we show that for
k ≥ 0 and any choice of smooth curves t �→ v0(t) ∈ U and t �→ v1(t), .., vk(t) ∈ F

d

dt
D(k)X(v0(t)){v1(t), .., vk(t)} = D(k+1)X(v0(t)){v1(t), .., vk(t), v̇0(t)}

+
k�

j=1

D(k)X(v0(t)){v1(t), .., v̇j(t), .., vk(t)}
(2)

holds. Applying Theorem 2.2 (1) to the map D(k)X : U × F × ..×F → F , we get

d

dt
D(k)X(v0(t)){v1(t), .., vk(t)}

= D(D(k)X)(v0(t), .., vk(t)){v̇0(t), .., v̇k(t)}

= lim
s→0

1
s

�
D(k)X(v0(t) + sv̇0(t)){v1(t) + sv̇1(t), .., vk(t) + sv̇k(t)}

−D(k)X(v0(t)){v1(t), .., vk(t)}
�

and (2) follows, since D(k)X is linear in the arguments in {...}, cf. Theorem 2.2
(2). We will now show by induction on k that c(k)(0) ∈ E holds. For k = 1 we have
ċ(0) = X ◦c(0) ∈ E by assumption. Since ċ(t) = X ◦c(t) = D(0)X(c(t)) and c(t) ∈ U
for sufficiently small t, we can apply (2) to see that c(k+1)(t), again for sufficiently
small t, can be expressed as a linear combination of

D(j)X(c(t)){v1(t), .., vj(t)},

where j ∈ {1, .., k +1} and v1(t), .., vj(t) ∈ {c(l)(t) | 1 ≤ l ≤ k}. Since c(0) ∈ U ∩Ef ,
we get from c(1)(0), .., c(k)(0) ∈ E and (1)

D(j)X(c(0)){v1(0), .., vj(0)} ∈ E ,

and hence c(k+1)(0) ∈ E .
�
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The following corollary can be regarded as a conservation law for integral curves in
Fréchet spaces.

Corollary 2.4. If the curve c : (−ε, ε) → F from Proposition 2.3 satisfies for
all t ∈ (−ε, ε)

c(t) =
∞�

k=0

tk

k!
c(k)(0) ∈ F ,

where the series converges w.r.t. the Fréchet topology in F , then

c(t)− c(0) ∈ E ,

for all t ∈ (−ε, ε).

Proof: From Proposition 2.3 we get c(k)(0) ∈ E for all k ≥ 1 and hence

c(t)− c(0) =
∞�

k=1

tk

k!
c(k)(0) ∈ E ,

since E ⊂ F is closed and the series converges in F .
�

Real Analyticity

A formal power series in X = (X1, .., Xn) with coefficients in R is an expression of
the form

S(X) =
�

p∈Nn

apX
p,

where ap ∈ R and Xp := Xp1
1 · .. · Xpn

n
, for p = (p1, .., pn) ∈ Nn. Given a formal

power series S(X), we define

Γ := {r = (r1, .., rn) | ri ≥ 0 and
�

p∈Nn

|ap| rp < ∞}

and denote by ∆ the interior of Γ, called the domain of convergence of the series.
Hence the series

S(x) =
�

p∈Nn

apx
p

is for every x = (x1, .., xn) ∈ Rn with |x| = (|x1|, .., |xn|) ∈ Γ absolute convergent.
We recall the following result:

Proposition 2.5. Suppose S(X) is a formal power series with domain of con-
vergence ∆. For x̄ = (x̄1, .., x̄n) ∈ Rn with |x̄| ∈ ∆ and r1, .., rn with 0 < ri < |x̄i|,
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define
K := {(x1, .., xn) ∈ Rn | |xi| ≤ ri}.

(1) For any subset P ⊂ Nn, the series

SP (x) :=
�

p∈P

apx
p

converges absolutely for all x ∈ K. In particular, the series S(x) :=
�

p∈Nn apxp

converges absolutely for x ∈ K.
(2) Suppose that PN ⊂ Nn is a family of subsets, N ∈ N, such that limN→∞ PN =
Nn. Then

SN (x) :=
�

p∈PN

apx
p

converges uniformly on K to the function S : K → R, x �→ S(x).

Proof: Since |x̄| ∈ ∆ we can find C > 0 such that

|apx̄
p| ≤ C, for all p ∈ Nn.

Hence for x ∈ K

|apx
p| = |ap x̄p1

1 · .. · x̄pn
n
| |x

p1
1 · .. · xpn

n
|

|x̄p1
1 · .. · x̄pn

n | ≤ C

�
r1

|x̄1|

�p1

· .. ·
�

rn

|x̄n|

�pn

.

Since ri/|x̄i| < 1, we can apply the method of majorants to see that SP (x) converges
absolutely for x ∈ K. To prove uniform convergence consider

sup
x∈K

|S(x)− SN (x)| = sup
x∈K

|
�

p∈Nn\PN

apx
p|

≤ C
�

p∈Nn\PN

�
r1

|x̄1|

�p1

· .. ·
�

rn

|x̄n|

�pn

Given ε > 0, we can choose M large, so that
�∞

pi=M+1

�
ri
|x̄i|

�pi

≤ ε

nCCi
, for i =

1, .., n, where

Ci :=
�

(p1..p̂i..pn)
∈Nn−1

�
r1

|x̄1|

�p1

· .. ·
�� ri

|x̄i|

�p1

· .. ·
�

rn

|x̄n|

�pn

< ∞ (geometric series).

The notation �. indicates that the corresponding factor is omitted. Since limN→∞ PN =
Nn, we can find N = N(M), such that {0, ..,M}n ⊂ PN . Hence

sup
x∈K

|S(x)− SN (x)| ≤ C
�

p∈Nn\{0..M}n

�
r1

|x̄1|

�p1

· .. ·
�

rn

|x̄n|

�pn

≤ C
n�

i=1

∞�

pi=M+1

Ci

�
ri

|x̄i|

�pi

≤ ε.

�
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Definition 2.6. Let U ⊂ Rn open and x0 ∈ U .
(1) A function f : U → R is called real analytic in x0 ∈ U if there exists a formal
power series S with

f(x) = S(x− x0),

for all x in a neighborhood of x0.
(2) A function f : U → R is called real analytic in U if f is real analytic for every
x0 ∈ U .
(3) A function F = (f1, .., fm) : U → Rm is called real analytic in U if each com-
ponent fi : U → R is real analytic in U .

Note that the coefficients of S can be computed in terms of partial derivatives,
which shows that S is uniquely determined by the condition f(x) = S(x − x0).
Moreover we have the following basic properties, cf. [18] p.123:

Lemma 2.7.

(1) If f : U → R is real analytic in x0 ∈ U , then it is differentiable in a
neighborhood of x0 and the derivatives are again real analytic functions
in x0 ∈ U .

(2) If f and g are real analytic in x0, then the product fg is real analytic in x0.

(3) If f : U → R is real analytic, then 1/f is real analytic in all points x ∈ U ,
where f(x) �= 0.

(4) Compositions of real analytic functions are again real analytic.

A manifold M is called real analytic if it admits an atlas with real analytic transi-
tion functions. Similarly to the smooth category one can define real analytic vector
bundles over M .

The Cauchy-Kowalevski Theorem

In this section we will develop a global version of the Cauchy-Kowalevski Theorem,
cf. [12], III. Theorem 2.1:
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Theorem 2.8. Let t be a coordinate on R, x = (xi) be coordinates on Rn,
y = (yj) be coordinates on Rs and let z = (zj

i
) be coordinates on Rns. Let D ⊂

R×Rn×Rs×Rns open, and let G : D → Rs be a real analytic mapping. Let D0 ⊂ Rn

be open and f : D0 → Rs be a real analytic mapping with Jacobian Df(x) ∈ Rns,
i.e. zj

i
(Df(x)) = ∂f j(x)/∂xi, so that {(t0, x, f(x), Df(x)) | x ∈ D0} ⊂ D for some

t0 ∈ R.
Then there exists an open neighborhood D1 ⊂ R × D0 of {t0} × D0 and a real
analytic mapping F : D1 → Rs which satisfies






∂F

∂t
(t, x) = G(t, x, F (t, x), ∂F

∂x
(t, x))

F (t0, x) = f(x) for all x ∈ D0.

F is unique in the sense that any other real analytic solution of the above initial
value problem agrees with F in some neighborhood of {t0} ×D0.

Remark 2.9. Since the solution F = (fi, .., fs) : D1 → Rs from Theorem 2.8 is
real analytic, we can develop each component in a convergent power series around
(t0, x0) = (0, 0) ∈ D1, i.e.

fi(t, x) =
∞�

k=0

� �

p∈Nn

aikpx
p

�
tk =

∞�

k=0

�
1
k!

f (k)
i

(0, x)
�

tk.

Applying Proposition 2.5 (2) with PN := {0, .., N} × Nn shows that

fN

i
(t, x) =

N�

k=0

� �

p∈Nn

aikpx
p

�
tk =

N�

k=0

tk

k!
f (k)

i
(0, x)

converges locally uniformly to the function fi(t, x), for N → ∞. The partial deri-
vatives of a formal power series S(X) are defined by,

∂S

∂Xi

:=
�

p∈Nn

piapX
p1
1 · ..Xpi−1

i
.. ·Xpn

n
.

The formal power series ∂S

∂Xi
has the same domain of convergence ∆ as the formal

power series S. Moreover, the function ∂S

∂Xi
: ∆ → R is the partial derivative

of the function S : ∆ → R w.r.t. xi, cf. Satz 3.2 in [18]. Hence we can apply
again Proposition 2.5 (2) to see that all partial derivatives of the function fN

i
(t, x)

converge locally uniformly to the corresponding partial derivative of fi(t, x). In
summary, the functions

FN (t, x) :=
N�

k=0

tk

k!
F (k)(0, x)

converge, as N →∞, locally in C∞-topology to the solution F (t, x) from Theorem
2.8.
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Definition 2.10. Suppose M is a real analytic manifold and π : V → M is a
rank s real analytic vector bundle. We call a map

X : C∞(V ) → C∞(V )

a real analytic first order differential operator if every point of M has a neigh-
borhood U ⊂ M , which is the domain of a real analytic chart u : U → Rn, and
there exists a real analytic trivialization (π, v) : V|U ∼= U ×Rs, together with a real
analytic function

G : D ⊂ Rn × Rs × Rns → Rs,

such that for every local section c : U ⊂ M → V

v(X ◦ c) = G(u, v ◦ c,
∂ci

∂uj

)

holds, where ci is the ith component of v ◦ c : U → Rs.

We can now prove the following global version of the Cauchy-Kowalevski Theorem,

Theorem 2.11. Suppose π : V → M is a real analytic rank s vector bundle over
a compact real analytic manifold M . Let X : C∞(V ) → C∞(V ) be a real analytic
first order differential operator and let c0 ∈ C∞(V ) be a real analytic section. Then
the initial value problem 




ċ(t) = X ◦ c(t)

c(0) = c0

has a unique real analytic solution c : (−ε, ε) → C∞(V ), i.e. c : (−ε, ε) ×M → V

is real analytic. Moreover, the solution c(t) satisfies

c(t) =
∞�

k=0

tk

k!
c(k)
0 ,

where the series converges in the C∞-topology on C∞(V ).

Proof: First we prove that local sections ct : U ⊂ M → V exist, which solve the
initial value problem locally. Secondly, we show that the compactness of M ensures
the existence of a global solution. Eventually we will use the uniqueness part of the
Cauchy-Kowalevski Theorem to prove the uniqueness statement of the Theorem.

By Definition 2.10 we can find a real analytic chart u : U ⊂ M → Rn and a
trivialization (π, v) : V|U ∼= U×Rs, such that for each local section c : U ⊂ M → V

(1) v(X ◦ c) = G(u, v ◦ c,
∂ci

∂uj

)

holds, where G : D ⊂ Rn × Rs × Rns → Rs is real analytic. The map

f : D0 := u(U) ⊂ Rn → Rs with f(x) := v ◦ c0 ◦ u−1(x)
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is real analytic and hence we can find by the Cauchy-Kowalevski Theorem a real
analytic solution F : (−ε, ε)× �D0 → Rs of






∂F

∂t
(t, x) = G(x, F (t, x), ∂F

∂x
(t, x))

F (t0, x) = f(x) for all x ∈ D0,

where �D0 ⊂ D0 is open. Let �U := u−1( �D0) ⊂ U and define for t ∈ (−ε, ε)

(2) c(t) : �U ⊂ M → V by c(t, p) := v−1
p
◦ F (t, u(p)),

where vp : Vp
∼= Rs is the isomorphism induced by the local trivialization (π, v). By

definition, the map c : (−ε, ε)× �U ⊂ M → V is real analytic and satisfies

(3) c(0, p) = v−1
p
◦ F (0, u(p)) = v−1

p
◦ f(u(p)) = c0(p).

Now we have for i = 1, .., s and j = 1, .., n

∂(vi ◦ ct)
∂uj

(p) =
∂

∂uj

����
p

· (vi ◦ ct) = (u−1
∗

∂

∂xj

����
u(p)

) · (vi ◦ ct)

=
∂

∂xj

����
u(p)

· (vi ◦ ct ◦ u−1) =
∂

∂xj

����
u(p)

· Fi(t, .)

=
∂Fi

∂xj

(t, u(p)).

(4)

Since by definition v ◦ c(t, p) = F (t, u(p)) holds, we get from (1), applied to ct

ċ(t, p) = v−1
p
◦G(u(p), F (t, u(p)),

∂F

∂x
(t, u(p)))

= v−1
p
◦G(u(p), v ◦ ct(p),

∂(vi ◦ ct)
∂uj

(p))

= v−1
p
◦ vp(X ◦ c(t, p)) = X ◦ c(t, p),

i.e. ct is the desired local solution of the initial value problem. Moreover, we get by
Remark 2.9

c(t, p) = v−1
p
◦ F (t, u(p)) = v−1

p

�
lim

N→∞

N�

k=0

tk

k!
F (k)(0, u(p))

�

= lim
N→∞

N�

k=0

tk

k!
v−1

p
◦ F (k)(0, u(p)) = lim

N→∞

N�

k=0

tk

k!
c(k)(0, p),

i.e.

(5) ct =
∞�

k=0

tk

k!
c(k)
0 ,

where the series converges locally in C∞-topology. Suppose now we apply the above
construction to obtain two local sections

c1(t) : U1 ⊂ M → V and c2(t) : U2 ⊂ M → V,
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where t ∈ (−ε, ε), ε := min{ε1, ε2} and U1 ∩U2 �= ∅. Since c1 and c2 both solve the
initial value problem 




ċi(t) = X ◦ ci(t)

ci(0) = c0,

i = 1, 2, we see that c1(0) = c2(0) and ċ1(0) = ċ2(0) on U1 ∩ U2. Differentiating
the equation ċ1(t) = X ◦ c1(t), shows that c(k+1)

1 (t) can be expressed as a linear
combination of

D(j)X(c1(t)){v1(t), .., vj(t)},

where j ∈ {1, .., k + 1} and v1(t), .., vj(t) ∈ {c(l)
1 (t) | 1 ≤ l ≤ k}, cf. the proof of

Proposition 2.3. Now we obtain by induction c(k)
1 (0) = c(k)

2 (0) on U1 ∩ U2, for all
k ∈ N. Hence (5) implies c1(t) = c2(t) on U1 ∩ U2. If M is compact, we can cover
M by finitely many domains U1, .., UN of local sections ci(t) : Ui ⊂ M → V , which
yield a global section c(t) : M → V , where t ∈ (−ε, ε) and ε := min{ε1, .., εN}.
From (4) we get

c(t) =
∞�

k=0

tk

k!
c(k)
0 ,

and since M is compact, the series converges in C∞-topology.

To prove uniqueness, suppose that we have two real analytic solutions c1, c2 :
(−ε, ε) × M → V of the initial value problem. By (1) we have for k = 1, 2 and
x ∈ u(U) ⊂ Rn

v(X ◦ ck(t) ◦ u−1(x)) = G(x, v ◦ ck(t) ◦ u−1(x),
∂cki(t)

∂uj

◦ u−1(x)).

Now Fk(t, x) := v ◦ ck(t) ◦ u−1(x) satisfies

∂Fk

∂t
(t, x) = v ◦ ċk(t) ◦ u−1(x) = v ◦X ◦ ck(t) ◦ u−1(x)

and by (4)

∂cki(t)
∂uj

◦ u−1(x) =
∂(vi ◦ ck(t))

∂uj

(u−1(x)) =
∂Fki

∂xj

(t, x),

for i = 1, .., s and j = 1, .., n. Hence we showed
∂Fk

∂t
(t, x) = G(x, Fk(t, x),

∂Fki

∂xj

(t, x)).

Since F1 and F2 are both real analytic and satisfy

F1(0, x) = v ◦ c1(0) ◦ u−1(x) = v ◦ c0 ◦ u−1(x) = v ◦ c2(0) ◦ u−1(x) = F2(0, x),

the uniqueness part of the Cauchy-Kowalevski Theorem yields F1(t, x) = F2(t, x),
i.e. c1(t) = c2(t).

�
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3. Special Geometries

In this chapter we give a detailed description of various G-structures. Most of this
structures are described by stable forms and we compensate the lack of examples
encountered in the previous section on stability. All subsections are organized in a
similar way. First we describe certain model forms ϕ0 ∈ ΛkRn∗ with isotropy group
G ∈ {SU(2), SU(3), G2,Spin(7)}. Most of this forms turn out to be stable and we
associate to them a volume element ε0. This volume element allows us to define
complementary forms ψ0 ∈ Λn−kRn∗ which satisfy

ϕ0 ∧ ψ0 = ε0.

This equation clearly indicates that the form ψ0 equals the Hodge dual of ϕ0. In fact
these forms coincide in the cases that will be discussed here. The decisive difference
is that we need to know a priori about the existence of a G ⊂ SO(n) structure to
define the Hodge dual of ϕ0. For instance, if a G-structure is described by a pair
of forms, these forms usually have to satisfy certain compatibility conditions to
actually define the desired G ⊂ SO(n) reduction. In contrast, the associated volume
element can be defined solely in terms of the single stable form ϕ0. As a consequence,
no compatibility conditions are involved when defining the complementary form ψ0.
The definition of the associated volumes in the SU(3) and G2-case is due to Hitchin
[37] and we develop the corresponding description for the SU(2)-scenario.
In each of the subsections we develop the analogue of the Gray-Hervella [32] (resp.
Fernández-Gray [27]) classification for the respective structure. In this approach, G-
structures are distinguished by the irreducible components of their intrinsic torsion

τ ∈ Rn∗ ⊗ g⊥.

Although our methods would allow to give a complete list for all possible torsion
types, we only focus on a description of those classes that seem to be relevant for our
work. However, we will take special account of SU(3)-structures. The first reason
is that the description of SU(3)-structures in dimension seven is quite exceptio-
nal compared to the description of SU(n)-structures for n �= 3. This is due to the
fact that the G2-isotropy group of a unit vector equals SU(3). The second reason
for the interest in SU(3)-structures stems from the ambition to find an analogue
of (special) Kähler-structures in dimension seven. Usually Sasakian structures are
considered as the odd-dimensional analogue of Kähler structures. In Theorem 3.46
we expose Sasakian structures as a certain torsion type and describe a generalized
concept of odd-dimensional Kähler structures, cf. Remark 3.48.

34



Throughout the chapter we use the following notation: Let (e1, .., en) be the cano-
nical basis of Rn with dual basis (e1, .., en) and volume element

ε0 := e1 ∧ .. ∧ en = e1..n ∈ ΛnRn∗.

The inner product on Rn is

g0 :=
n�

i=1

ei ⊗ ei

and for X, Y ∈ gl(n)
�X, Y � := tr(XY T )

defines an inner product on gl(n) = End(Rn), where the transpose is defined w.r.t.
g0. We denote by

son = g⊕ g⊥

the decomposition of so(n) into orthogonal subspaces w.r.t. this inner product. For
n = 2m define

ω0 := e12 + .. + e2m−1,2m ∈ Λ2R2m∗

and I0 ∈ End(R2m) by
ω0 = g0(I0., .).

Since I2
0 = −id, we obtain a decomposition of R2m ⊗ C into

T (1,0) := {x− iI0x | x ∈ R2m} = Eig(I0,+i),

T (0,1) := {x + iI0x | x ∈ R2m} = Eig(I0,−i),

and we define

T (1,0)∗ : = {α ∈ Λ1R2m∗ ⊗ C | α(Z) = 0, for all Z ∈ T (0,1)}

= {α− iα ◦ I0 | α ∈ R2m∗},

T (0,1)∗ : = {α ∈ Λ1R2m∗ ⊗ C | α(Z) = 0, for all Z ∈ T (1,0)}

= {α + iα ◦ I0 | α ∈ R2m∗}.

Denote by Λ(p,0), respectively Λ(0,p), the pth exterior power of T (1,0)∗, respectively
T (0,1)∗,

Λ(p,0) := ΛpT (1,0)∗

Λ(0,p) := ΛpT (0,1)∗

and let Λ(p,q) := Λ(p,0) ⊗ Λ(0,q), such that

ΛkR2m∗ ⊗ C =
�

p+q=k

Λ(p,q).

Since e1 + ie2 = e1 − ie1 ◦ I0,

Φ0 := (e1 + ie2) ∧ .. ∧ (e2m−1 + ie2m) ∈ Λ(m,0)

defines a form of type (m, 0). We identify Cm = R2m via z = x + iy = (x, y) and

GL(m, C) = {A ∈ GL(2m) | AI0 = I0A}.
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Under this identification, the hermitian structure h0 : Cm×Cm → C, with h0(z, w) :=
�

zjw̄j , equals
h0 = g0 − iω0.

The canonical action of GL(n) on Rn extends to an action of GL(n) on the space
of tensors on Rn. In the case of forms, this action is compatible with the wedge
product, i.e.

A(ϕ ∧ ψ) = Aϕ ∧Aψ,

for A ∈ GL(n) and ϕ, ψ ∈ Λ∗Rn∗. Moreover,

Aε0 = det(A−1)ε0,

for A ∈ GL(n), and for A ∈ GL(m, C)

AΦ0 = detC(A−1)Φ0.

The isotropy groups of the above model tensors are listed below

IsoGL(n)(ε0) = SL(n), IsoGL(m,C)(Φ0) = SL(n, C),
IsoGL(n)(g0) = O(n), IsoGL(m,C)(h0) = U(m),
IsoGL(2m)(I0) = GL(m, C), IsoGL(2m)(ω0) = Sp(2m, R).

Lemma 3.1. Consider G ⊂ GL(n), acting on ΛkRn∗. For ϕ ∈ ΛkRn∗, the map
Dϕ : g → V from Lemma 1.14 is given by

Dϕ(A) = −
n�

i=1

ei ∧Aei�ϕ

Proof: Define pr : Rn∗ ⊗ Λk−1Rn∗ → ΛkRn∗ by pr(α ⊗ ω) = α ∧ ω. Then for
x1, .., xk ∈ Rn

pr(α⊗ ω)(x1, .., xk) = (α ∧ ω)(x1, .., xk) =
�

|I|=k−1

ω(eI)(α ∧ eI)(xi, .., xk)

=
�

|I|=k−1

k�

j=1

ω(eI)α(xj)(−1)j+1eI(x1, .., �xj , .., xk)

=
k�

j=1

(−1)j+1α(xj)ω(x1, .., �xj , .., xk).

Hence for ϕ ∈ ΛkRn∗ and A ∈ g ⊂ gl(n)
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pr(A�ϕ)(x1, .., xk) =
n�

i=1

pr(ei ⊗Aei�ϕ)

=
n�

i=1

k�

j=1

(−1)j+1ei(xj)ϕ(Aei, x1, .., �xj , .., xk)

=
k�

j=1

(−1)j+1ϕ(Axj , x1, .., �xj , .., xk) =
k�

j=1

ϕ(x1, .., Axj , .., xk)

= −Dϕ(A)(x1, .., xk),

i.e.

Dϕ(A) = −pr(A�ϕ) = −
n�

i=1

ei ∧Aei�ϕ.

�

Proposition 3.2. Let ϕ0 ∈ ΛkRn∗ with isotropy group G ⊂ O(n). An equivari-
ant map ϕ : FM → ΛkRn∗ of type ϕ0 induces a reduction P ⊂ F gM with intrinsic
torsion τ : P → Rn∗ ⊗ g⊥. Then for X ∈ C∞(TM)

Dϕ(τ(X)) = ∇g

X
ϕ = LXϕ + Dϕ(∇gX).

Proof: The first equation is precisely Proposition 1.18. The second equation
follows from Lemma 3.1 and

Dϕ(∇gX) = −
n�

i=1

Ei ∧ (∇g

Ei
X)�ϕ

= −
n�

i=1

Ei ∧∇g

Ei
(X�ϕ) +

n�

i=1

Ei ∧X�(∇g

Ei
ϕ)

= −d(X�ϕ)−X�dϕ +∇g

X
ϕ

= −LXϕ +∇g

X
ϕ.

�

Given two real G-representations V and W , there are canonical isomorphism of
G-modules

(ΛkV )∗ = ΛkV ∗,

Hom(V,W ) = V ∗ ⊗W,

ΛkV ∗ = Λn−kV ⊗ ΛnV ∗.

If V and W have the same dimension n, we define

det : Hom(V,W ) → ΛnV ∗ ⊗ ΛnW
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by
ΛnV ∗ ⊗ ΛnW ⊗ ΛnW ∗ � det(K)⊗ ε = ε ◦K ∈ ΛnV ∗,

where 0 �= ε ∈ ΛnW ∗ and we identified ΛnW⊗ΛnW ∗ = R. This definition is clearly
independent of the choice of ε. For g ∈ G we have

det(gKg−1)⊗ ε = ε ◦ (gKg−1) = g((ε ◦ g) ◦K) = g(detK ⊗ ε ◦ g) = det K ⊗ ε,

i.e. det(gKg−1) = det K = g detK is G-equivariant. In the following sections we
will frequently use the above identifications for V = W = Rn and G ⊂ GL(n).

SU(2)-Structures in Dimension Five

In this section we consider the following model forms on R5:

α0 := e1, ω1 := e23 + e45,

ω2 := e24 − e35, ω3 := e25 + e34,

ρ2 := α0 ∧ ω2 = e124 − e135, ρ3 := α0 ∧ ω3 = e125 + e134

and g0(Ii., .) := ωi, for i = 1, 2, 3. They satisfy certain relations, which can be veri-
fied in a direct computation:

Lemma 3.3. For all x, y ∈ R5 and β ∈ Λ1R5∗

(1) ωi ∧ ωj = 2δije2345.
(2) ω2(x, y)ε0 = −(x�ω1) ∧ (y�ω1) ∧ ρ2.
(3) ω3(x, y)ε0 = −(x�ω1) ∧ (y�ω1) ∧ ρ3.
(4) 2α0(x)ε0 = (x�ρ2) ∧ ρ2.
(5) g0(x, y)ε0 = α0(x)α0(y)ε0 + α0 ∧ ω1 ∧ (x�ω2) ∧ (y�ω3).
(6) β(I1x)ε0 = α0 ∧ β ∧ (x�ω2) ∧ ω3.

(7) ω2(I1x, y) = −ω3(x, y).
(8) ω3(I1x, y) = ω2(x, y).
(9) I2

1 = I2
2 = I2

3 = I1I2I3 = −id, on ker(α0).
(10) β ∧ ω1 = I3β ∧ ω2, for β ∈ Λ1ker(α0)∗.
(11) β ∧ ω3 = −I1β ∧ ω2, for β ∈ Λ1ker(α0)∗.

�

Usually a SU(2)-structure on a five dimensional manifold is described by a quadru-
plet of forms (α, ω1, ω2, ω3) which is of model type (α0, ω1, ω2, ω3). This definition
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of SU(2)-structures can for instance be found in [22], [29]. There is an alternati-
ve to the usual definition, which is justified by the last equation in the next Lemma.

Lemma 3.4.

IsoGL(5)(α0) = {
�

1 0
x A

�
| A ∈ GL(4) and x ∈ R4}.

IsoGL(5)(ω1) = {
�

λ yT

0 A

�
| A ∈ Sp(4, R), y ∈ R4 and λ �= 0}.

IsoGL(5)(α0, ω1, ω2, ω3) =

�
1 0
0 SU(2)

�
.

IsoGL+(5)(ω1, ρ2, ρ3) =

�
1 0
0 SU(2)

�
.

In particular, the forms α0, ω1, ω2 and ω3 are stable.

Proof: Write B ∈ GL(5) as

B =

�
λ yT

x A

�
,

where λ ∈ R, x, y ∈ R4 and A ∈ gl(4). Then α(Be1) = λ and α(Bej) = yT ej , for
j ∈ {2, .., 5}. Hence the stabilizer of the 1-form α0 := e1 ∈ Λ1R5∗ has the above
form.

For B ∈ IsoGL(5)(ω1) and i, j ∈ {2, .., 5} we get ω1(ei, ej) = ω1(Bei, Bej) =
ω1(Aei, Aej), i.e. A ∈ Sp(4, R). This yields

0 = ω1(Be1, Bej) = ω1(λe1 + x, (yT ej)e1 + Aej) = ω1(x,Aej) = ω1(A−1x, ej)

and the non-degeneracy of ω1, as a form on R4, implies x = 0 and proves the second
equation of the lemma.

Now the third equation follows, since ω2 = Re(Φ0) and ω3 = Im(Φ0), where Φ0 =
(e2 + ie3) ∧ (e4 + ie5), and SU(2) = Sp(4, R) ∩ SL(2, C).

To obtain the last equation, we compute for B =

�
λ yT

0 A

�
∈ IsoGL(5)(ω1) ∩

IsoGL+(5)(α0 ∧ ω2) and i, j ∈ {2, .., 5}

ω2(ei, ej) = (α0 ∧ ω2)(e1, ei, ej) = (α0 ∧ ω2)(Be1, Bei, Bej)

= (α0 ∧ ω2)(λe1, (yT ei)e1 + Aei, (yT ej)e1 + Aej)

= (α0 ∧ ω2)(λe1, Aei, Aej)

= λω2(Aei, Aej).

Since the volume element ε0 = e2345 on R4 satisfies

ε0 =
1
2
ω2

1 =
1
2
ω2

2 =
1
2
ω2

3 ,
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we obtain from A ∈ Sp(4, R) = IsoGL(4)(ω1)

det(A)ε0 = A−1ε0 = A−1 1
2
ω2

1 = ε0,

i.e. det(A) = 1. Now A−1ω2 = λ−1ω2 yields

ε0 = A−1 1
2
ω2

1 = λ−2ε0

and since B ∈ GL+(5), we get λ = 1. Similarly we get Aω3 = ω3, which yields
A ∈ SU(2). Now

α0 ∧ ω2 = B−1(α0 ∧ ω2) = B−1α0 ∧B−1ω2

= B−1α0 ∧A−1ω2, since e1�ω2 = 0

= (α0(Be1)e1 +
5�

j=2

α0(Bej)ej) ∧ ω2

= (α0 +
5�

j=2

yje
j) ∧ ω2

yields
�5

j=2 yjej ∧ ω2 = 0, i.e. y = 0.

The stability of α0 follows from

5 = dim(Λ1R∗) = dim(GL(5))− dim(IsoGL(5)(α0)) = 25− 20.

Similarly for ω1,

10 = dim(Λ2R∗) = dim(GL(5))− dim(IsoGL(5)(ω1)) = 25− 15,

and since ω2, ω3 ∈ GL(5)ω1, the Lemma follows.
�

Since the GL+(5) stabilizer of the triple (ω1, ρ2, ρ3) is equal to {1} × SU(2), we
expect that, after fixing an orientation for R5, we can reconstruct the forms α0,
ω2 and ω3 solely from the triple (ω1, ρ2, ρ3). The first step is to reconstruct the
volume element ε0. Then the forms α0, ω2 and ω3, as well as the metric g0 and the
endomorphism I1, can be obtained from the formulas in Lemma 3.3.

Lemma 3.5. After choosing an orientation for V := R5, there is a homomorphism

ε : Λ2V ∗ ⊕ Λ3V ∗ ⊕ Λ3V ∗ → Λ5V ∗ ⊕ iΛ5V ∗

of GL+(5)-modules, such that for the model tensors and the canonical orientation
[ε0] of R5

ε(ω1, ρ2, ρ3) = ε0 ∈ Λ5V ∗ ⊂ Λ5V ∗ ⊕ iΛ5V ∗.
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Proof: Given an orientation [ε+] for V , represented by an element ε+ ∈ Λ5V ∗,
we can define a map

4
√ : Λ5V ∗ ⊗ Λ5V ∗ ⊗ Λ5V ∗ ⊗ Λ5V ∗ → Λ5V ∗ ⊕ iΛ5V ∗

by 4
√

ε1 ⊗ ε2 ⊗ ε3 ⊗ ε4 = 4
√

λ1λ2λ3λ4ε+, where λi ∈ R is defined by εi = λiε+. This
definition is independent of the choice of representative ε+ and for A ∈ GL+(5) we
have

4
�

Aε1 ⊗Aε2 ⊗Aε3 ⊗Aε4 = 4
�

detA−4λ1λ2λ3λ4ε+ = det A−1 4
�

λ1λ2λ3λ4ε+.

Now consider the GL(5)-equivariant map

K : Λ2V ∗ ⊕ Λ3V ∗ ⊕ Λ3V ∗ → (V ∗ ⊗ V )⊗ (V ∗ ⊗ V )⊗ Λ5V ∗ ⊗ Λ5V ∗

defined by

K(ω1, ρ2, ρ3)(x, a, y, b) :=
�
ρ2 ∧ a ∧ b

�
⊗

�
ρ3 ∧ (x�ω1) ∧ (y�ω1)

�
,

where x, y ∈ V and a, b ∈ V ∗. For the model tensors ω1, ρ2, ρ3 let K0 := K(ω1, ρ2, ρ3).
Then

K0(x, a, y, b) =
�

e124 ∧ (a3e
3 + a5e

5) ∧ (b3e
3 + b5e

5)

− e135 ∧ (a2e
2 + a4e

4) ∧ (b2e
2 + b4e

4)
�

⊗
�

e134 ∧ (−x3e
2 + x4e5) ∧ (−y3e

2 + y4e5)

+ e125 ∧ (x2e
3 − x5e

4) ∧ (y2e
3 − y5e

4)
�

=
�

e124 ∧ (a3b5e
35 − a5b3e

35)− e135 ∧ (a2b4e
24 − a4b2e

24)
�

⊗
�

e134 ∧ (−x3y4e
25 + x4y3e

25) + e125 ∧ (−x2y5e
34 + x5y2e

34)
�

=(a5b3 − a3b5 + a2b4 − a4b2)(−x3y4 + x4y3 − x2y5 + x5y2)⊗ ε2
0.

Taking the trace of the first factor V ∗ ⊗ V , we obtain a map

L = tr(K) : Λ2V ∗ ⊕ Λ3V ∗ ⊕ Λ3V ∗ → (V ∗ ⊗ V )⊗ Λ5V ∗ ⊗ Λ5V ∗

and for the model tensors we obtain

L0(y, b) := tr(K0)(y, b) = (−b4y5 + b5y4 − b2y3 + b3y2)⊗ ε2
0,

i.e. L0 = I1 ⊗ ε2
0. Identifying V ∗ ⊗ V = Hom(V, V ), we define

L2 : Λ2V ∗ ⊕ Λ3V ∗ ⊕ Λ3V ∗ → (V ∗ ⊗ V )⊗ (Λ5V ∗)4

and so

L2
0 =

�
0 0
0 −idR4

�
⊗ ε4

0.
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Taking again the trace, we obtain a map

tr(L2) : Λ2V ∗ ⊕ Λ3V ∗ ⊕ Λ3V ∗ → (Λ5V ∗)4

with tr(L2
0) = −4ε4

0. Hence

ε := 4

�
−1

4
tr(L2) : Λ2V ∗ ⊕ Λ3V ∗ ⊕ Λ3V ∗ → Λ5V ∗ ⊕ iΛ5V ∗

is the desired equivariant map.
�

Definition 3.6. Suppose V = R5 is equipped with a fixed orientation. For
(ω1, ρ2, ρ3) ∈ Λ2V ∗ ⊕ Λ3V ∗ ⊕ Λ3V ∗ we call

ε := ε(ω1, ρ2, ρ3) ∈ Λ5V ∗

from Lemma 3.5 the associated volume element. Whenever ε �= 0, we define

2α(x)ε := (x�ρ2) ∧ ρ2,

ω2(x, y)ε := −(x�ω1) ∧ (y�ω1) ∧ ρ2,

ω3(x, y)ε := −(x�ω1) ∧ (y�ω1) ∧ ρ3,

g(x, y)ε := α(x)α(y)ε + α ∧ ω1 ∧ (x�ω2) ∧ (y�ω3),

β(I1x)ε := α ∧ β ∧ (x�ω2) ∧ ω3.

Proposition 3.7. Consider V = R5 with the canonical orientation and

(ω1, ρ2, ρ3) ∈ Λ2V ∗ ⊕ Λ3V ∗ ⊕ Λ3V ∗

with ε �= 0. Then (ω1, ρ2, ρ3) lies in the GL+(5) orbit of the model forms (ω1, ρ2, ρ3)
if and only if the tensors from Definition 3.6 satisfy α ∧ ω2

1 > 0, g(x, x) > 0, for
x �= 0, and

(1) ω1 ∧ ω2 = ω1 ∧ ω3 = ω2 ∧ ω3 = 0,
(2) ω2

1 = ω2
2 = ω2

3 ,
(3) ρ2 = α ∧ ω2 and ρ3 = α ∧ ω3.

In this case, the associated volume is given by 2ε = α ∧ ω2
1 > 0.

Proof: The relations can be easily verified if (ω1, ρ2, ρ3) lies in the GL+(5) orbit
of the model forms. Conversely, condition (1) implies that g from Definition 3.6 is
symmetric

α ∧ ω1 ∧ (x�ω2) ∧ (y�ω3) = x�(α ∧ ω1) ∧ ω2 ∧ (y�ω3)

= −x�(α ∧ ω1) ∧ ω3 ∧ (y�ω2)

= α ∧ ω1 ∧ (y�ω2) ∧ (x�ω3).
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Conditions (1), (2) and (3) also yield

ω2(I1x, y)ε = −α ∧ (y�ω2) ∧ (x�ω2) ∧ ω3

= α ∧ (y�ω2) ∧ ω2 ∧ (x�ω3)

= α ∧ (y�ω1) ∧ ω1 ∧ (x�ω3)

= −α ∧ (y�ω1) ∧ (x�ω1) ∧ ω3

= (x�ω1) ∧ (y�ω1) ∧ α ∧ ω3

= −ω3(x, y)ε.

(4)

and

ω3(I1x, y)ε = −α ∧ (y�ω3) ∧ (x�ω2) ∧ ω3

= −α ∧ (y�ω1) ∧ ω1 ∧ (x�ω2)

= α ∧ (y�ω1) ∧ (x�ω1) ∧ ω2

= −(x�ω1) ∧ (y�ω1) ∧ α ∧ ω2

= ω2(x, y).

(5)

By definition we have α ◦ I1 = 0 and hence

g(I1x, I1y)ε = α ∧ ω1 ∧ (I1x�ω2) ∧ (I1y�ω3)

= −α ∧ ω1 ∧ (x�ω3) ∧ (y�ω2)

= g(y, x)ε− α(x)α(y)ε

= (g(x, y)− α(x)α(y))ε,

(6)

Similarly,

g(I2
1x, y)ε = α ∧ ω1 ∧ (I2

1x�ω2) ∧ (y�ω3)

= −α ∧ ω1 ∧ (x�ω2) ∧ (y�ω3)

= (−g(x, y) + α(x)α(y))ε

(7)

and

ω1(I1x, y)ε = −α ∧ (y�ω1) ∧ (x�ω2) ∧ ω3

= α ∧ ω1 ∧ (y�ω3) ∧ (x�ω2)

= (−g(x, y) + α(x)α(y))ε.

(8)

By (6) and (7) we have I2
1x = −x and g(I1x, I1y) = g(x, y), for x, y ∈ ker(α). Hence

we can find a g-orthonormal basis for ker(α) of the form

(a2, a3 = I1a2, a4, a5 = I1a4).

Since α �= 0 and α ◦ I1 = 0, we have ker(I1) �= {0}. So we can find 0 �= a1 ∈ ker(I1)
with α(a1) = 1, since α(a1) = 0 and (6) would imply 0 = I2

1a1 = −a1. By (4) and
(5) we have x�ω2 = x�ω3 = 0, for x ∈ ker(I1), and so

(a1, a2, a3 = I1a2, a4, a5 = I1a4)
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is a g-orthonormal basis for R5. If we define A ∈ GL(5) by

Aai = ei, for i = 1, .., 5,

we have

Aα = α0, Ag = g0 and AI1A
−1ei = I10ei :=






0 , i = 1

ei+1 , i even

−ei−1 , i odd

From (8) and α ◦ I1 = 0 we get in addition

Aω1 = −
�

i<j

ω1(I2
1A−1ei, A

−1ej)eij =
�

i<j

g(I1A
−1ei, A

−1ej)eij

=
�

i<j

g0(I10ei, ej)eij = e23 + e45,

i.e. ω1 = a23 + a45. In particular,

det(A−1)α ∧ ω2
1 = A(α ∧ ω2

1) = 2ε0 > 0

shows that A ∈ GL+(5) holds, since α ∧ ω2
1 > 0. Equation (4) and (5) imply

(x + iIx)�(ω2 + iω3) = x�ω2 − ix�ω3 + ix�ω3 − x�ω2 = 0,

i.e. ω2 + iω3 ∈ Λ(2,0)ker(α)∗ w.r.t. the almost complex structure I1. So we can find
z ∈ C with

ω2 + iω3 = zΦ,

where Φ = (a2 + ia3) ∧ (a4 + ia5). Since Φ ∧ Φ = 4a2345, we get from (2)

4|z|2a1..5 = α ∧ zΦ ∧ zΦ = α ∧ (ω2
2 + ω2

3) = 2α ∧ ω2
1 = 4|z|2a1..5.

So z ∈ S1 and for

B :=




1 0 0
0 z 0
0 0 1



 ∈ {1} × U(2)

we have BA ∈ GL+(5). Then BAα = Be1 = e1, BAΦ = BΦ0 = z−1Φ0 and hence
BA(ω2 + iω3) = Φ0. This yields

BAρ2 = e124 − e135 and BAρ3 = e125 + e134

and from B ∈ {1} × U(2), we have

BAω1 = B(e23 + e45) = e23 + e45.

The GL+(5)-equivariance of the map ε from Lemma 3.5 yields eventually

2ε(ω1, ρ2, ρ3) = 2(BA)−1ε0 = α ∧ ω2
1 .

�
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From Proposition 1.2, Lemma 3.4 and Proposition 3.7 we obtain

Corollary 3.8. Suppose M is a five dimensional manifold with a fixed orienta-
tion. Then SU(2)-structures on M which are compatible with the given orientation
correspond to triplets of forms

(ω1, ρ2, ρ3) ∈ Ω2(M)⊕ Ω3(M)⊕ Ω3(M)

with ε �= 0, and for which the tensors from Definition 3.6 satisfy α ∧ ω2
1 > 0,

g(X, X) > 0, for X �= 0, and

(1) ω1 ∧ ω2 = ω1 ∧ ω3 = ω2 ∧ ω3 = 0,
(2) ω2

1 = ω2
2 = ω2

3 ,
(3) ρ2 = α ∧ ω2 and ρ3 = α ∧ ω3.

In this case, the associated volume is given by 2ε = α ∧ ω2
1 > 0.

�

We will now describe the Lie algebra of SU(2) and U(2) as subgroups of SO(5).

Lemma 3.9. A = (aij) ∈ so5 is an element of u2 ⊂ so5 if and only if a1j = 0 and

a25 + a34 = 0, a24 − a35 = 0.

Moreover, A ∈ su2 if in addition

a23 + a45 = 0.

Equivalently,

u2 = {A ∈ so5 | Ae1 = 0 and AI1 = I1A},

su2 = {A ∈ so5 | Ae1 = 0 and AIi = IiA, for i = 1, 2, 3}.

The orthogonal complements in so5 are given by

u⊥2 = {
�

0 −xT

x A

�
| x ∈ R4 and A ∈ RI2 ⊕ RI3 = u⊥2 ⊂ so4},

su⊥2 = {
�

0 −xT

x A

�
| x ∈ R4 and A ∈ RI1 ⊕ RI2 ⊕ RI3 = su⊥2 ⊂ so4}.

Proof: Since U(2) = GL(2, C) ∩ SO(4), we have

u(2) = gl(2, C) ∩ so(4) = {A ∈ so(4) | AI1 = I1A},

which can easily be seen to be described by the first two relations. Now A = B+iC ∈
su(2) if trC(A) = 0, i.e. tr(B) = tr(C) = 0. Using the embedding gl(2, C) ⊂ gl(4)
which is induced by I1, we have tr(B) = 1

2 tr(A) = 0, since A is skew-symmetric,
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and tr(C) = a23 + a45, yielding the third relation. The description of su2 follows
from

SL(2, C) = {A ∈ GL(2, C) | A(ω2 + iω3) = ω2 + iω3}

and ωi = g0(Ii., .). For A ∈ so4 we compute

tr(AI1) = −2(a23 + a45),

tr(AI2) = 2(a35 − a24),

tr(AI3) = −2(a25 + a34),

and the Lemma follows.
�

Proposition 3.10. The following decompositions of SU(2)-modules are irredu-
cible:

su⊥2 = RI1 ⊕ RI2 ⊕ RI3,

so4 = su2 ⊕ RI1 ⊕ RI2 ⊕ RI3,

End(R4) =
�
Rid⊕ I1su(2)⊕ I2su(2)⊕ I3su(2)

�
⊕

�
su2 ⊕ RI1 ⊕ RI2 ⊕ RI3).

The SU(2)-module Λ2 := Λ2R4∗ decomposes accordingly into

Λ2 =Λ2
3 ⊕ Rω1 ⊕ Rω2 ⊕ Rω3, where

Λ2
3 = {ω ∈ Λ2 | ω ∧ ωi = 0, for i = 1, 2, 3} ∼= su2.

Proof: The decomposition su⊥2 = RI1 ⊕ RI2 ⊕ RI3 is clearly irreducible. Since
su2, and hence Ijsu2, is irreducible, we see that the decomposition of End(R4) is
SU(2)-irreducible.

�

Lemma 3.11. The maps Dωi : End(R4) → Λ2R4∗, i = 1, 2, 3, define isomorphisms
between certain submodules of End(R4) and Λ2R4∗,

Rid I1su(2) I2su(2) I3su(2) su2 RI1 RI2 RI3

Dω1 Rω1 Λ2
3 0 0 0 0 Rω3 Rω2

Dω2 Rω2 0 Λ2
3 0 0 Rω3 0 Rω1

Dω3 Rω3 0 0 Λ2
3 0 Rω2 Rω1 0

Proof: By Lemma 3.1 we have for A ∈ End(R4)

Dωi(A) = −
5�

i=2

ei ∧Aei�ωi = −2prΛ2(IiA).
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With this formula we can compute Dωi(A), for A ∈ End(R4) in a particular sub-
module, and obtain the above table.

�

Definition 3.12. Let M be a five dimensional oriented manifold equipped with a
SU(2)-structure (ω1, ρ2, ρ3) with intrinsic torsion τ : P → R5∗⊗ su(2)⊥. According
to the decomposition

R5∗ ⊗ su⊥2 = (R5∗ ⊗ R4)⊕ R5∗I1 ⊕ R5∗I2 ⊕ R5∗I3

we decompose τ into a linear map F : TM → ker(α) and three 1-forms η1, η2 and
η3, such that

τ(X) = α⊗ F (X)− F (X)�g ⊗ ξ + η1(X)I1 + η2(X)I2 + η3(X)I3,

where ξ�g := α. Explicitly,

F (X) = τ(X)ξ,

ηi(X) =
1
4
�τ(X), Ii�, since �Ii, Ii� = 4.

Proposition 3.13. Let M be a five dimensional oriented manifold equipped
with a SU(2)-structure (ω1, ρ2, ρ3) with intrinsic torsion τ ∼= F +η1 +η2 +η3. Then

∇gξ = F,

∇gω1 = 2(η3 ⊗ ω2 − η2 ⊗ ω3)− α ∧ (F�ω1),

∇gω2 = 2(η1 ⊗ ω3 − η3 ⊗ ω1)− α ∧ (F�ω2),

∇gω3 = 2(η2 ⊗ ω1 − η1 ⊗ ω2)− α ∧ (F�ω3)

and

dα = 2prΛ2(F ),

dω1 = 2(η3 ∧ ω2 − η2 ∧ ω3)− α ∧Dω1(F ),

dω2 = 2(η1 ∧ ω3 − η3 ∧ ω1)− α ∧Dω2(F ),

dω3 = 2(η2 ∧ ω1 − η1 ∧ ω2)− α ∧Dω3(F ).

Proof: By Proposition 1.18 we have

∇g

X
(α, ω1, ω2, ω3, ρ2, ρ3) = D(α,ω1,ω2,ω3,ρ2,ρ3)(τ(X)).

Since SO(5) acts on each factor of Λ1 ⊕ Λ2 ⊕ Λ2 ⊕ Λ2 ⊕ Λ3 ⊕ Λ3 separately, the
corresponding equation holds for each of the forms α, ω1, ω2, ω3, ρ2 and ρ3. Let
(E1, ..E5) be a local Cayley frame for the SU(2)-structure. Applying Lemma 3.1,
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we find

g(∇g

X
ξ, Y ) = (∇g

X
α)Y = Dα(τ(X))Y = −(

5�

i=1

Ei ∧ τ(X)Ei�α)Y

= −
5�

i=1

α(τ(X)Ei)Ei(Y ) = −α(τ(X)Y ) = g(τ(X)ξ, Y )

= g(F (X), Y ).

Using Ei ∧ (IjEi�ωj) = −Ei ∧ Ei = 0, we get

∇g

X
ω1 = Dω1(τ(X)) = −

5�

i=1

Ei ∧ τ(X)Ei�ω1

= −α ∧ F (X)�ω1 −
5�

i=2

Ei ∧ (η2(X)I2Ei + η3(X)I3Ei)�ω1

= −α ∧ F (X)�ω1 −
5�

i=2

Ei ∧ (η2(X)Ei�ω3 − η3(X)Ei�ω2)

= −α ∧ F (X)�ω1 − 2(η2(X)ω3 − η3(X)ω2),

and similarly the equations for ∇gω2 and ∇gω3. Now

dα =
5�

i=1

Ei ∧∇g

Ei
α =

5�

i=1

Ei ∧ F (Ei)�g = 2prΛ2(F )

and

dω1 =
5�

i=1

Ei ∧∇g

Ei
ω1

= α ∧ (
5�

i=1

Ei ∧ F (Ei)�ω1) + 2
5�

i=1

Ei ∧ (η3(Ei)ω2 − η2(Ei)ω3)

= −α ∧Dω1(F ) + 2(η3 ∧ ω2 − η2 ∧ ω3).

The remaining equations are obtained similarly.
�

By Proposition 3.10 we have the following decomposition into irreducible SU(2)-
modules

R5∗ ⊗ su⊥2 = R5∗ ⊗ (R4 ⊕ RI1 ⊕ RI2 ⊕ RI3)

= R4 ⊕ End(R4)⊕ (R⊕ R4∗)⊕ (R⊕ R4∗)⊕ (R⊕ R4∗)

= R4 ⊕
�
Rid⊕ I1su(2)⊕ I2su(2)⊕ I3su(2)

�

⊕
�
su2 ⊕ RI1 ⊕ RI2 ⊕ RI3)⊕ (R⊕ R4∗)⊕ (R⊕ R4∗)⊕ (R⊕ R4∗)

and hence there are 215 different types of SU(2)-structures in dimension five. We
are only interested in two particular classes of SU(2)-structures:
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Theorem 3.14. Let (ω1, ρ2, ρ3) be a SU(2)-structure on M with intrinsic torsion
τ ∼= F +η1 +η2 +η3 and 0 �= λ ∈ R. Furthermore, decompose ηi = ηi0 +ηi(ξ)α and
F = F0+α⊗F (ξ). In the following table we list different types of SU(2)-structures,
the related torsion types and the corresponding equations for the structure tensors.

Name Torsion Characterization

nearly hypo F0 + 2λI2 ∈ I2su2 ⊕ I3su2 ⊕ su2 ⊕ RI1 dρ2 + 4λω2
1 = 0

η2 = λα, η3 = 0 and 2η10 = I1(F (ξ)�g) dω1 + 6λρ3 = 0
hypo F0 ∈ I2su2 ⊕ I3su2 ⊕ su2 ⊕ RI1 dω1 = dρ2 = dρ3 = 0

η2 = η3 = 0 and 2η10 = I1(F (ξ)�g).

Proof: Since α∧Dω1(F ) = α∧Dω1(F0) and 2prΛ2(F ) = 2prΛ2(F0)+α∧(F (ξ)�g),
we obtain from Proposition 3.13

dω1 = 2(η30 ∧ ω2 − η20 ∧ ω3)− α ∧ (Dω1(F0)− 2η3(ξ)ω2 + 2η2(ξ)ω3),

dρ2 = 2prΛ2(F0) ∧ ω2 − 2α ∧ (η10 ∧ ω3 − η30 ∧ ω1 −
1
2
(F (ξ)�g) ∧ ω2),

dρ3 = 2prΛ2(F0) ∧ ω3 − 2α ∧ (η20 ∧ ω1 − η10 ∧ ω2 −
1
2
(F (ξ)�g) ∧ ω3).

Hypo case: The conditions dω1 = dρ2 = dρ3 = 0 are equivalent to

(1) 0 = η30 ∧ ω2 − η20 ∧ ω3

(2) 0 = Dω1(F0)− 2η3(ξ)ω2 + 2η2(ξ)ω3

(3) 0 = prΛ2(F0) ∧ ω2

(4) 0 = η10 ∧ ω3 − η30 ∧ ω1 −
1
2
(F (ξ)�g) ∧ ω2

(5) 0 = prΛ2(F0) ∧ ω3

(6) 0 = η20 ∧ ω1 − η10 ∧ ω2 −
1
2
(F (ξ)�g) ∧ ω3.

With Lemma 3.3 and Lemma 3.11 we see that the conditions on the torsion com-
ponents yield dω1 = dρ2 = dρ3 = 0. Conversely, equation (3) and (5) imp-
ly prso4

(F0) ∈ su2 ⊕ RI1. Wedging equation (2) with ω2, Lemma 3.11 yields
0 = η3(ξ)ω2

2 , i.e. η3(ξ) = 0. Similarly, wedging (2) with ω3, yields η2(ξ) = 0 and
hence Dω1(F0) = 0, i.e.

F0 ∈ I2su2 ⊕ I3su2 ⊕ su2 ⊕ RI1.

With Lemma 3.3, equation (1) yields 0 = (η30 + I1η20) ∧ ω2 and hence

η30 = −I1η20.

Similarly (4) and (6) become

0 = −I1η10 + I3I1η20 −
1
2
F (ξ)�g,

0 = I3η20 − η10 +
1
2
I1(F (ξ)�g).
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So η20 = η30 = 0 and 2η10 = I1(F (ξ)�g).

Nearly hypo case: The conditions dρ2+4λω2
1 = 0 and dω1+6λρ3 = 0 are equivalent

to (1), (4) and

(7) 0 = prΛ2(F0) ∧ ω2 + 2λω2
1 ,

(8) 0 = Dω1(F0)− 2η3(ξ)ω2 + 2η2(ξ)ω3 − 6λω3.

Hence the conditions on the torsion components imply dρ2 + 4λω2
1 = 0 and dω1 +

6λρ3 = 0. Conversely, we obtain from λ �= 0 equations (5) and (6). From (5) we get
prso4

(F0) ∈ su2⊕RI1⊕RI2 and, wedging (8) with ω2, yields together with Lemma
3.11, η3(ξ) = 0. So

0 = Dω1(F0) + 2η2(ξ)ω3 − 6λω3 = Dω1(F0) + Dω1(3λI2 − η2(ξ)I2),

i.e.
F0 + (3λ− η2(ξ))I2 ∈ I2su2 ⊕ I3su2 ⊕ su2 ⊕ RI1

and hence λ = η2(ξ) by (7). Equations (1), (4) and (6) yield, like in the hypo case,
2η10 = I1(F (ξ)�g) and η20 = η30 = 0.

�

SU(3)-Structures in Dimension Six

In this section we consider the following model forms on R6:

ω0 := e12 + e34 + e56, σ0 := e1234 + e1256 + e3456,

ρ0 := e135 − e245 − e236 − e146, �ρ0 := e136 − e246 + e235 + e145

and g0(I0., .) := ω0. They satisfy certain relations, which can be verified in a direct
computation:

Lemma 3.15. For all x, y ∈ R6 and β ∈ Λ1R6∗

(1) ω0 ∧ ρ0 = ω0 ∧ �ρ0 = 0.
(2) ρ0 ∧ �ρ0 = 4ε0.

(3) 2σ0 = ω2
0 .

(4) ω3
0 = 6ε0.

(5) ρ0 ∧ (x�ρ0) = �ρ0 ∧ (x��ρ0) = −2I0x�ε0.

(6) 2β(I0x)ε0 = ρ0 ∧ (x�ρ0) ∧ β.

(7) 2g0(x, y)ε0 = (x�ρ0) ∧ (y�ρ0) ∧ ω0.

(8) I0�ρ0 = −�ρ0.
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(9) (x�ρ0) ∧ (x�ρ0) = (x��ρ0) ∧ (x��ρ0) = 2x�((x�g) ∧ σ0)

�

Lemma 3.16. After choosing an orientation for V := R6, there are homomor-
phisms

ε : Λ4V ∗ → Λ6V ∗ ⊕ iΛ6V ∗

and
ε : Λ3V ∗ → Λ6V ∗ ⊕ iΛ6V ∗

of GL+(6)-modules, such that for the model tensors and the canonical orientation
[ε0] of R6

ε(σ0) = ε(ρ0) = ε(�ρ0) = ε0.

Proof: Given an orientation, we can define a GL+(6)-equivariant map 2
√

. like in
Lemma 3.5. The wedge product yields a homomorphism of GL(6)-modules

h : Λ4V ∗ = Λ2V ⊗ Λ6V ∗ → Λ6V ⊗ (Λ6V ∗)3 = (Λ6V ∗)2.

Hence

Λ4V ∗ � σ �→ ε(σ) := 2

�
1
6
h(σ) ∈ Λ6V ∗ ⊕ iΛ6V ∗

is GL+(6)-equivariant and for the model tensor we compute

h(σ0) = h(
�

i<j

eij ⊗ eij ∧ σ0) = h((e12 + e34 + e56)⊗ ε0)

= 6e1..6 ⊗ ε3
0,

so ε(σ0) = ε0. Now consider the GL(6)-equivariant map

K : Λ3V ∗ → (V ∗ ⊗ V )⊗ Λ6V ∗

defined by
K(ρ)(x, β) = ρ ∧ (x�ρ) ∧ β,

where x ∈ V and β ∈ V ∗. For the model tensors we obtain by Lemma 3.15

K(ρ0)(x, β) = K(�ρ0)(x, β) = 2β(I0x)ε0.

Hence
K2 : Λ3V ∗ → (V ∗ ⊗ V )⊗ (Λ6V ∗)2

satisfies K2(ρ0) = K2(�ρ0) = −4idV ⊗ ε2
0 and

Λ3V ∗ � ρ �→ ε(ρ) := 2

�
− 1

24
tr(K2) ∈ Λ6V ∗ ⊕ iΛ6V ∗

is the desired map.
�
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Lemma 3.17.

IsoGL+(6)(ρ0) = IsoGL+(6)(�ρ0) = SL(3, C).

IsoGL+(6)(σ0) = Sp(6, R).

IsoGL+(6)(ρ0, σ0) = SU(3).

In particular, the forms ρ0, �ρ0 and σ0 are stable.

Proof: For A ∈ IsoGL+(6)(ρ0) we obtain Aε0 = ε0, by Lemma 3.16. Hence the
formula for I0 from Lemma 3.15 yields AI0A−1 = I0, i.e. A ∈ GL(3, C). Again
by Lemma 3.15 we have �ρ0 = I0�ρ0 and hence A(ρ0 + i�ρ0) = (ρ0 + i�ρ0), yielding
A ∈ SL(3, C). The same arguments hold for �ρ0.

For A ∈ IsoGL+(6)(σ0) Lemma 3.16 gives Aε0 = ε0. Now

σ0 =
�

i<j

eij ⊗ (eij ∧ σ0) = (e12 + e34 + e56)⊗ ε0

yields Aω0 = ω0 and hence IsoGL+(6)(σ0) = Sp(6, R).

The last equation follows form SU(3) = SL(3, C)∩Sp(6, R). To prove stability, we
compute

dim(GL(6)/SL(3, C)) = 36− 16 = dim(Λ3R6∗),

dim(GL(6)/Sp(6, R)) = 36− 21 = dim(Λ2R6∗).

�

Definition 3.18. Suppose V = R6 is equipped with a fixed orientation. For
σ ∈ Λ4V ∗ and ρ ∈ Λ3V ∗ we call ε(σ) and ε(ρ) from Lemma 3.16 the associated
volume elements.
(1) Whenever ε(σ) �= 0, we define

ω :=
1
2
σ(ω∗) ∈ Λ2V ∗,

where ω∗ ∈ Λ2V is defined by σ = ω∗ ⊗ ε(σ) ∈ Λ2V ⊗Λ4V ∗ and σ is considered as
an element σ ∈ Λ2V ∗ ⊗ Λ2V ∗ = Hom(Λ2V,Λ2V ∗).
(2) Whenever ε(ρ) �= 0, we define I(ρ) ∈ End(V ) by

2β(I(ρ)x)ε(ρ) := ρ ∧ (x�ρ) ∧ β

and
�ρ := −I(ρ)�ρ.

(3) Whenever ε(σ) �= 0 and ε(ρ) �= 0, we define

g(x, y) := ω(x, Iy).
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Proposition 3.19. Consider V = R6 with the canonical orientation. For σ ∈
GL+(6)σ0 and ρ ∈ GL+(6)ρ0 we have ε(σ), ε(ρ) > 0 and (σ, ρ) ∈ GL+(6)(σ0, ρ0)
holds if and only if the tensors from Definition 3.18 satisfy g(x, x) > 0, for x �= 0,
and

(1) ω ∧ ρ = 0 and (2) ε(σ) = ε(ρ).

Proof: The above relations are clearly satisfied for (σ, ρ) ∈ GL+(6)(σ0, ρ0). Con-
versely, for A ∈ GL+(6) and σ = Aσ0, Definition 3.18 (1) yields ω(σ) = Aω(σ0) =
Aω0. Hence

σ = Aσ0 =
1
2
(Aω0)2 =

1
2
ω2

and
ε(σ) = Aε0 =

1
3
A(ω0 ∧ σ0) =

1
3
ω ∧ σ.

By definition of g and (1) we have

2g(x, y)ε(ρ) = 2ω(x, Iy)ε = ρ ∧ (y�ρ) ∧ (x�ω)

= ρ ∧ (x�ρ) ∧ (y�ω) = 2g(y, x)ε(ρ).

Hence g is symmetric and defines a metric on V , since g(x, x) > 0, for x �= 0. By
definition of I(ρ) we have for A ∈ GL+(6)

2β(I(Aρ0)x)ε(Aρ0) = Aρ0 ∧ (x�Aρ0) ∧ β = A(ρ0 ∧ (A−1x�ρ0) ∧A−1β)

= 2(A−1β)(I0A
−1x)Aε0 = 2β(AI0A

−1x)ε(Aρ0),

i.e. I(Aρ0) = AI0A−1 and for ρ = Aρ0

ε(ρ) = Aε0 =
1
4
A(ρ0 ∧ �ρ0)

= −1
4
(ρ ∧A(I0�ρ0) = −1

4
(ρ ∧ (I�ρ))

=
1
4
ρ ∧ �ρ.

In particular, we have for ρ ∈ GL+(6)ρ0

I(ρ)2 = −id.

This yields
g(Ix, Iy) = −ω(Ix, y) = g(y, x) = g(x, y)

and hence we can find an orthonormal basis for g of the form

(a1, a2 = Ia1, .., a5, a6 = Ia5).

If we define A ∈ GL(6) by

Aai = ei, for i = 1, .., 6,

we obtain
Aω = ω0 and Ag = g0.
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Hence
Aσ =

1
2
(Aω)2 = σ0

and
det(A−1)ε(σ) = Aε(σ) =

1
3
A(ω ∧ σ) =

1
3
ω0 ∧ σ0 = ε0 > 0

implies A ∈ GL+(6), since ε(σ) > 0. By definition we have �ρ = −I�ρ, and I2 = −id
yields ρ = I��ρ. Hence

(x + iIx)�(ρ + i�ρ) = 0,

i.e. ρ + i�ρ ∈ Λ(3,0)V ∗ w.r.t. the almost complex structure I. So we can find z ∈ C
with

ρ + i�ρ = zΦ,

where Φ := (a1 + ia2) ∧ .. ∧ (a5 + ia6). Now (2) and Φ ∧ Φ = −8ia1..6 imply

8|z|2ε(ρ) = 8|z|2ε(σ) = 8|z|2a1..6 = i|z|2Φ ∧ Φ = i zΦ ∧ zΦ = 2ρ ∧ �ρ = 8ε(ρ),

i.e. |z| = 1. So

B :=




z 0 0
0 1 0
0 0 1



 ∈ U(3)

satisfies BA(ρ + i�ρ) = zBAΦ = zBΦ0 = Φ0 and hence

BAρ = ρ0.

Since B ∈ U(3), we have BAσ = Bσ0 = σ0 and since BA ∈ GL+(6), the proposi-
tion follows.

�

From Proposition 1.2, Lemma 3.17 and Proposition 3.19 we obtain

Corollary 3.20. Suppose M is a six dimensional manifold with a fixed orienta-
tion. Then SU(3)-structures on M , which are compatible with the given orientation,
correspond to forms σ ∈ Ω4(M) and ρ ∈ Ω3(M), of type σ0 and ρ0, respectively,
such that the tensors from Definition 3.18 satisfy g(X, X) > 0, for X �= 0, and

(1) ω ∧ ρ = 0 and (2) ε(σ) = ε(ρ) > 0.

�

We will now describe the Lie algebra of SU(3) and U(3) as subgroups of SO(6).

Lemma 3.21. A = (aij) ∈ so6 is an element of u3 ⊂ so6 if and only if

a35 − a46 = 0, a45 + a36 = 0, a26 − a15 = 0,
a16 + a25 = 0, a13 − a24 = 0, a14 + a23 = 0.
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Moreover, A ∈ su3 if and only if in addition

a12 + a34 + a56 = 0.

Equivalently,

u3 = {A ∈ so(6) | AI0 = I0A},

su3 = {A ∈ so(6) | AI0 = I0A and (A�g0) ∧ σ0 = 0}.

The orthogonal complements in so6 are given by

u⊥3 = {A ∈ so(6) | A�g = x�ρ0, for some x ∈ R6},

su⊥3 = u⊥3 ⊕ RI0.

Proof: Since U(3) = GL(3, C) ∩ SO(6), we have

u(3) = gl(3, C) ∩ so(6) = {A ∈ so(6) | AI0 = I0A},

which can easily be seen to be described by the first six relations. Now A = B+iC ∈
su(3) if trC(A) = 0, i.e. tr(B) = tr(C) = 0. Using the embedding gl(3, C) ⊂ gl(6)
which is induced by I0, we have tr(B) = 1

2 tr(A) = 0, since A is skew-symmetric,
and

tr(C)ε0 = (a12 + a34 + a56)ε0 = (A�g) ∧ σ0,

yielding the last relation. Since for A ∈ u3

ρ0(x,AI0y, I0y) = ρ0(x, I0Ay, I0y) = ρ0(I0Ay, I0y, x)

= −�ρ0(Ay, I0y, x) = ρ0(y, Ay, x)

= −ρ0(x,Ay, y),

we obtain for B ∈ so(6) with B�g = x�ρ0, for some x ∈ R6,

tr(BA) =
�

i=1,3,5

g0(BAei, ei) + g0(BAI0ei, I0ei)

=
�

i=1,3,5

ρ0(x, Aei, ei) + ρ0(x,AI0ei, I0ei)

= 0.

This proves
{A ∈ so(6) | A�g = x�ρ0, for some x ∈ R6} ⊂ u⊥3

and, counting dimensions, we see that those spaces coincide. The description of su⊥3
follows from

tr(I0A) = −a12 − a34 − a56 = 0,

for A ∈ su3.
�

Proposition 3.22. The following decompositions of SU(3)-modules are irredu-
cible:
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su⊥3 = u⊥3 ⊕ RI0

so6 = su3 ⊕ u⊥3 ⊕ RI0

End(R6) =
�
Rid⊕ I0su(3)⊕ S2

12

�
⊕

�
su3 ⊕ u⊥3 ⊕ RI0

�
, where

S2
12 = {A ∈ S2 | I0A + AI0 = 0}.

The above decomposition of End(R6) is actually a decomposition into symmetric
and skew-symmetric endomorphisms, refined by a further decomposition into en-
domorphisms which (anti)commute with I0:

I+
0 I−0

S2(R6) Rid⊕ I0su(3) S2
12

so6 RI0 ⊕ su(3) u⊥3

The SU(3)-modules Λk := ΛkR6∗ decompose into the following irreducible submo-
dules, where the lower index denotes the dimension of the submodule:

Λ1 = Λ1
6

Λ2 = Λ2
1 ⊕ Λ2

6 ⊕ Λ2
8, where

Λ2
1 = Rω0,

Λ2
6 = {x�ρ0 | x ∈ R6},

Λ2
8 = {α ∈ Λ2 | α ∧ ρ0 = 0 and α ∧ σ0 = 0} ∼= su3.

Λ3 = Λ3
1 ⊕ Λ3̂

1 ⊕ Λ3
6 ⊕ Λ3

12, where
Λ3

1 = Rρ0,
Λ3̂

1 = R�ρ0,
Λ3

6 = {α ∧ ω0 | α ∈ Λ1} = {x�σ0 | x ∈ R6},
Λ3

12 = {α ∈ Λ3 | ω0 ∧ α = ρ0 ∧ α = �ρ0 ∧ α = 0}.
Λ4 = Λ4

1 ⊕ Λ4
6 ⊕ Λ4

8, where
Λ4

1 = Rσ0,
Λ4

6 = {∗(x�ρ0) | x ∈ R6} = {α ∧ �ρ0 | α ∈ Λ1} = {α ∧ ρ0 | α ∈ Λ1},
Λ4

8 = {α ∈ Λ4 | ∗α ∧ ρ0 = 0 and ∗ α ∧ σ0 = 0}.
Λ5 = Λ5

6.

Proof: Since SU(3) acts transitively on the unit sphere, we see that Λ1
6, Λ2

6, Λ3
6

and Λ5
6 are irreducible. Since Λ2

8
∼= su3, the irreducibility of Λ2

8 follows. Hence we
see that the decompositions of Λ2 and Λ4 are irreducible, using the Hodge operator.
For the irreducibility of the submodule Λ3

12 see [19] formula (2) and table 1.
The map Dρ0 : End(R6) → Λ3 satisfies ker(Dρ0) = sl(3, C) by Lemma 1.14 and
Lemma 3.17. Hence

S2
12 ∩ ker(Dρ0) = {0}

and, since the decomposition of Λ3 is irreducible, it follows 0 �= Dρ0(S2
12) = Λ3

12. In
particular, S2

12 is irreducible by the irreducibility of Λ3
12. Since also su3 and u⊥3 are
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irreducible, the Proposition follows.
�

Lemma 3.23. The maps Dω0 , Dσ0 , Dρ0 and Dρ0 define isomorphisms between
certain submodules of End(R6) and Λ2R6∗, Λ4R6∗ and Λ3R6∗, respectively:

Rid I0su(3) S2
12 su3 u⊥3 RI0

Dω0 Λ2
1 Λ2

8 0 0 Λ2
6 0

Dσ0 Λ4
1 Λ4

8 0 0 Λ4
6 0

Dρ0 Λ3
1 0 Λ3

12 0 Λ3
6 Λ3̂

1

Dρ0 Λ3̂
1 0 Λ3

12 0 Λ3
6 Λ3

1

Proof: Using Lemma 3.1 we can easily compute the images of Rid and RI0. In
the proof of Lemma 3.22 we have already seen that Dρ0(S2

12) = Λ3
12 holds. The

same argument yields Dρ0(S2
12) = Λ3

12 and by Schur’s Lemma we get Dω0(S2
12) =

0 = Dσ0(S2
12). Now Lemma 1.14 yields

ker(Dω0) = ker(Dσ0) = sp(6, R) and ker(Dρ0) = ker(Dρ0) = sl(3, C).

Since su3 ⊂ sp(6, R) and dim(sp(6, R)) = 21, we get

sp(6, R) = RI0 ⊕ su3 ⊕ S2
12

and, since dim(sl(3, C)) = 16,

sl(3, C) = I0su(3)⊕ su(3).

�

Definition 3.24. Let M be a six dimensional oriented manifold equipped with
a SU(3)-structure (σ, ρ) with intrinsic torsion τ : P → R6∗⊗ su⊥3 . According to the
decomposition

R6∗ ⊗ su⊥3 = (R6∗ ⊗ u⊥3 )⊕ R6∗I0,

we decompose τ into T ∈ C∞(End(TM)) and η ∈ Ω1(M), such that

g(τ(X)Y, Z) = ρ(T (X), Y, Z) + η(X)ω(Y, Z).

If we choose a Cayley frame (E1, .., E6) for the SU(3)-structure and let Ai�g :=
Ei�ρ, then

T (X) =
1
4

6�

i=1

�τ(X), Ai�Ei, since �Ai, Ai� = 4.

η(X) =
1
6
�τ(X), I�, since �I, I� = 6.
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Proposition 3.25. Let M be a six dimensional oriented manifold equipped with
a SU(3)-structure (σ, ρ) with intrinsic torsion τ ∼= T + η. Then

∇gω = −2T ��ρ,

∇gσ = −2(T ��ρ) ∧ ω,

∇gρ = −2T �σ + 3η ⊗ �ρ,

∇g�ρ = −2IT �σ − 3η ⊗ ρ,

dω = 2Dρ(T ),

dσ = 2Dρ(T ) ∧ ω,

dρ = 2Dσ(T ) + 3η ∧ �ρ,

d�ρ = 2Dσ(IT )− 3η ∧ ρ.

Proof: By Proposition 1.18 we have for the intrinsic torsion τ : P → R6∗ ⊗ su⊥3
of the SU(3)-structure

∇g

X
(ω, σ, ρ, �ρ) = D(ω,σ,ρ,ρ)(τ(X)).

Since SO(6) acts on each factor Λ2 × Λ4 × Λ3 × Λ3 separately, the corresponding
equation hold for each of the tensors ω, σ, ρ and �ρ. Let (E1, .., E6) be a local Cayley
frame for the SU(3)-structure. Applying Lemma 3.1, we find

∇g

X
ω = Dω(τ(X)) = −

6�

i=1

Ei ∧ τ(X)Ei�ω = −
6�

i,j=1

g(Iτ(X)Ei, Ej)Eij

= 2
6�

i,j=1

g(τ(X)Ei, IEj)Eij =
6�

i,j=1

(ρ(T (X), Ei, IEj) + η(X)ω(Ei, IEj))Eij

=
6�

i,j=1

ρ(T (X), Ei, IEj)Eij = −
6�

i=1

�ρ(Ej , T (X), Ei)Eij

= −2
�

i<j

�ρ(T (X), Ei, Ej)Eij = −2T (X)��ρ.

Using that 2σ = ω2, the same computation yields

∇g

X
σ = −2(T (X)��ρ) ∧ ω.

Similarly, with Lemma 3.15

∇g

X
ρ = Dρ(τ(X)) = −

6�

i=1

Ei ∧ τ(X)Ei�ρ = −
6�

i,j=1

g(τ(X)Ei, Ej)Ei ∧ Ej�ρ

= −
6�

i,j=1

�
ρ(T (X), Ei, Ej) + η(X)ω(Ei, Ej)

�
Ei ∧ Ej�ρ

= −
6�

j=1

ρ(Ej , T (X), .) ∧ Ej�ρ + 3η(X)�ρ

= −1
2
T (X)�

6�

j=1

(Ej�ρ ∧ Ej�ρ) + 3η(X)�ρ

= −2T (X)�σ + 3η(X)�ρ
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and

∇g

X
�ρ = −

6�

j=1

ρ(Ej , T (X), .) ∧ Ej��ρ− 3η(X)ρ

= −
6�

j=1

�ρ(Ej , IT (X), .) ∧ Ej��ρ− 3η(X)ρ

= −1
2
IT (X)�

6�

j=1

(Ej��ρ ∧ Ej��ρ)− 3η(X)ρ

= −2IT (X)�σ − 3η(X)ρ.

Now the exterior derivatives are

dω =
6�

i=1

Ei ∧∇g

Ei
ω = −2

6�

i=1

Ei ∧ T (Ei)��ρ = 2Dρ(T ).

dσ = 2Dρ(T ) ∧ ω.

dρ =
6�

i=1

Ei ∧∇g

Ei
ρ = 2Dσ(T ) + 3η ∧ �ρ.

d�ρ =
6�

i=1

Ei ∧∇g

Ei
�ρ = 2Dσ(IT )− 3η ∧ ρ.

�

Definition 3.26. The Nijenhuis tensor of an almost complex structure I on M

is defined by

NI(X, Y ) := [X, Y ] + I[IX, Y ] + I[X, IY ]− [IX, IY ].

The Newlander-Nirenberg Theorem states that NI = 0 is actually equivalent to the
integrability of the almost complex structure I.

By Proposition 3.22 we have the following decomposition into irreducible SU(3)-
modules

R6∗ ⊗ su⊥3 = R6∗ ⊗ (u⊥3 ⊕ RI0) = End(R6)⊕ R6∗

=
�
Rid⊕ I0su(3)⊕ S2

12

�
⊕

�
su3 ⊕ u⊥3 ⊕ RI0)⊕ R6∗

and hence there are 27 different types of SU(3)-structures in dimension six. Before
we characterize some of these classes, we need

Lemma 3.27. For A ∈ End(R6) we have

∀x, y ∈ R6 �ρ0(Ax, x, y) = 0 ⇔ ∀x, y ∈ R6 ρ0(Ax, x, y) = 0 ⇔ A = λid+µI0
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Proof: It suffices to prove the second equivalence, since �ρ0(I0., ., .) = ρ0. If A =
λid + µI0, we clearly have

ρ0(Ax, x, y) = λρ0(x, x, y)− µ�ρ0(x, x, y) = 0.

Conversely, suppose that ρ0(Ax, x, y) = 0 holds for all x, y ∈ R6. For y = e1 we
get 0 = (e35 − e46)(Ax, x) and choosing x ∈ {e3, e4, e5, e6} yields 0 = a35 = a53 =
a46 = a64. Repeating this argument for y = e2, .., e6 shows that

A =




A1 0 0
0 A2 0
0 0 A3



 , where Ai :=

�
ai bi

ci di

�
.

Computing

0 = ρ0(A(e1 + e3), e1 + e3, y)

= a1ρ0(e1, e3, y) + c1ρ0(e2, e3, y) + a2ρ0(e3, e1, y) + c2ρ0(e4, e1, y),

for y = e6 and y = e5, yields c1 = c2 and a1 = a2. Similarly we get eventually

A1 = A2 = A3 = A :=

�
a b

c d

�
.

Then

0 = ρ0(A(e1 + e4), e1 + e4, y)

= aρ0(e1, e4, y) + cρ0(e2, e4, y) + bρ0(e3, e1, y) + dρ0(e4, e1, y),

yields λ := a = d, for y = e6, and µ := c = −b, for y = e5.
�

We are interested in the following classes of SU(3)-structures:

Theorem 3.28. Let (σ, ρ) be a SU(3)-structure on M with intrinsic torsion
τ ∼= T + η and 0 �= λ ∈ R. In the following table we list different types of SU(3)-
structures, the related torsion types and the corresponding equations for the struc-
ture tensors.

Name Torsion Characterization

Nearly Hypo IT + 1
8λI ∈ S2 dρ = λσ

η = 0
Hypo IT ∈ S2 dσ = dρ = 0

η = 0
Nearly Parallel IT = λid dω = 6λρ and d�ρ = −4λω2.
(nearly Kähler) η = 0 Equivalently: For all X ∈ TM

(∇g

X
I)X = 0 and dρ = 0.

Parallel T = 0 dω = dρ = d�ρ = 0
(Calabi-Yau) η = 0
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Complex T ∈ S2
12 ⊕ u⊥3 NI = 0

Kähler T = 0 NI = 0 and dω = 0.
Equivalently,
∇gω = 0.

Proof: From Proposition 3.22 and Schur’s Lemma we see that

ker(ω ∧ . : Λ3 → Λ5) = Λ3
1 ⊕ Λ3̂

1 ⊕ Λ3
12.

Now Lemma 3.23 and Proposition 3.25 give

dω = 0 ⇔ T ∈ I0su3 ⊕ su3.

dσ = 0 ⇔ T ∈ Rid⊕ I0su(3)⊕ S2
12 ⊕ su3 ⊕ RI0.

dρ = 0 ⇔ T ∈ S2
12 ⊕ su3 ⊕ u⊥3 ⊕ RI0 and

2Dσ(pru⊥3
(T )) + 3η ∧ �ρ = 0.

d�ρ = 0 ⇔ IT ∈ S2
12 ⊕ su3 ⊕ u⊥3 ⊕ RI0 and

2Dσ(pru⊥3
(IT ))− 3η ∧ ρ = 0.

With this characterizations, and the non-degeneracy of �ρ, the description of hypo
structures and parallel structures follows.

Nearly hypo case: By Proposition 3.25 the condition dρ = λσ holds if and only if

(1) λσ = 2Dσ(T ) + 3η ∧ �ρ.

Since Dσ(id) = −4σ by Lemma 3.1, we see that the condition on the torsion
components imply dρ = λσ. Conversely, λ �= 0 yields dσ = 0 and hence (1) is
equivalent to η = 0 and

T ∈ Rid⊕ S2
12 ⊕ su3 ⊕ RI0

and
λσ = 2Dσ(prRidT ) = 2Dσ(

1
6
tr(T )id) = −4

3
tr(T )σ.

So
S2

12 ⊕ su3 ⊕ RI0 � T − 1
6
tr(T )id = T +

1
8
λid

and since I(S2
12⊕su3⊕RI0) = S2, the description of nearly hypo structures follows.

Complex case: Using that [X, Y ] = ∇g

X
Y −∇g

Y
X and (∇g

X
I)Y = ∇g

X
IY −I(∇g

X
Y ),

we get
NI(X, Y ) = I(∇g

X
I)Y − (∇g

IX
I)Y − I(∇g

Y
I)X + (∇g

IY
I)X.

Since ∇g

X
ω = (∇g

X
I)�g, we get from Proposition 3.25

g((∇g

X
I)Y, Z) = −2(T X��ρ)(Y,Z) = −2�ρ(T X, Y, Z)
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and hence

g(NI(X, Y ), Z) = −g((∇g

X
I)Y, IZ)− g((∇g

IX
I)Y, Z)

+ g((∇g

Y
I)X, IZ) + g((∇g

IY
I)X, Z)

= 2�ρ(T X, Y, IZ) + 2�ρ(T IX, Y, Z)

− 2�ρ(T Y,X, IZ)− 2�ρ(T IY, X,Z)

= 2ρ(T X, Y, Z)− 2ρ(IT IX, Y, Z)

− 2ρ(T Y,X,Z) + 2ρ(IT IY, X,Z)

= 2
�
ρ((T − IT I)X, Y, Z)− ρ((T − IT I)Y, X,Z)

�

= 4
�
ρ(pr

I+(T )X, Y, Z)− ρ(pr
I+(T )Y, X,Z)

�
,

where pr
I+ denotes the projection on the space of endomorphisms which commute

with I. It follows immediately NI = 0, for T ∈ S2
12⊕u⊥3 = I−, cf. Proposition 3.22.

Conversely, NI = 0 yields

0 = g(NI(X, Y ), Y ) = −4ρ(pr
I+(T )Y, X, Y ),

which is by Lemma 3.27 equivalent to pr
I+(T ) = λid + µI, for some functions

λ, µ : M → R. Then NI = 0 yields

0 = λρ(X, Y, Z) + µρ(IX, Y, Z)− λρ(Y,X,Z)− µρ(IY, X,Z)

= λρ(X, Y, Z)− µ�ρ(X, Y, Z)− λρ(Y,X,Z) + µ�ρ(Y, X,Z)

= 2(λρ− µ�ρ)(X, Y, Z),

i.e. λ = µ = 0 and so pr
I+(T ) = 0, i.e. T ∈ S2

12 ⊕ u⊥3 = I−, cf. Proposition 3.22.

Kähler case: This follows immediately from the characterization of NI = 0 and
dω = 0, Proposition 3.25 and the fact that �ρ is non-degenerated.

Nearly Parallel case: The equations dω = 6λρ and d�ρ = −4λω2 translate into

(2) −2Dρ(IT ) = 6λρ,

(3) 2Dσ(IT )− 3η ∧ ρ = −8λσ.

Since Dρ(id) = −3ρ and Dσ(id) = −4σ, the conditions on the torsion imply dω =
6λρ and d�ρ = −4λω2. Conversely, λ �= 0 yields dρ = 0 and dσ = 0, which gives
η = 0 and T ∈ S2

12 ⊕ su3 ⊕ RI0. Hence IT ∈ S2 and (2) yields

IT ∈ Rid⊕ I0su3 and − 2Dρ(prRid(IT )) = 6λρ.

Now (3) gives
IT ∈ Rid and 2Dσ(prRid(IT )) = −8λσ.

Writing IT = f id, for some f : M → R, we get

6λρ = 6fρ and − 8λσ = −8fσ,
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i.e. IT = λid. For the second characterization observe that by Proposition 3.25 and
Lemma 3.27

(∇g

X
I)X = 0 ⇔ �ρ(T X, X, .) = 0 ⇔ T = uid + vI,

for some functions u, v : M → R. Hence it suffices to show that T = uid + vI

and dρ = 0 imply η = 0 and IT = λid, for some constant λ. First observe that
T = uid + vI yields dσ = 0. Next

0 = dρ = −8uσ + 3η ∧ �ρ

gives u = 0 and η = 0. So d�ρ = 8vσ and

0 = dv ∧ σ

shows that dv = 0, i.e. λ := −v is constant and IT = λid.
�

G2-Structures in Dimension Seven

In this section we consider the following model forms on R7:

ϕ0 = e246 − e356 − e347 − e257 + e123 + e145 + e167.

ψ0 = e2345 + e2367 + e4567 − e1247 + e1357 − e1346 − e1256.

They satisfy certain relations, which can be verified in a direct computation:

Lemma 3.29. For all x, y ∈ R7

(1) ϕ0 ∧ ψ0 = 7ε0.

(2) 6g0(x, y)ε0 = (x�ϕ0) ∧ (y�ϕ0) ∧ ϕ0.

(3) (x�ϕ0) ∧ (x�ϕ0) = 2x�((x�g0) ∧ ψ0).
(4) (y�x�ϕ0) ∧ (x�ϕ0) = −(y�g0) ∧ (x�((x�g0) ∧ ψ0))

�

Lemma 3.30. (1) For V := R7 there is a homomorphism

ε : Λ3V ∗ → Λ7V ∗

of GL(7)-modules, such that ε(ϕ0) = ε0.
(2) After choosing an orientation for V , there is a homomorphism

ε : Λ4V ∗ → Λ7V ∗ ⊕ iΛ7V ∗
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of GL+(7)-modules, such that for the model tensor and the canonical orientation
ε(ψ0) = ε0 holds.

Proof: For part (1) consider the GL(7)-equivariant map

K : Λ3V ∗ → Hom(V, V ∗ ⊗ Λ7V ∗) with K(ϕ)(x, y) :=
1
6
x�ϕ ∧ y�ϕ ∧ ϕ.

Since

det(K(ϕ)) ∈ Λ7V ∗ ⊗ Λ7(V ∗ ⊗ Λ7V ∗)

= Λ7V ∗ ⊗ Λ7V ∗ ⊗ (Λ7V ∗)7

= (Λ7V ∗)9,

we get an equivariant map

det(K) : Λ3V ∗ → (Λ7V ∗)9.

Even without a fixed orientation for V we can define

ε : Λ3V ∗ → Λ7V ∗ by ε(ϕ) := 9
�

det(K(ϕ))

and for the model tensor we have by Lemma 3.29

ε(ϕ0) = 9
�

det(g0 ⊗ ε0) = ε0.

For part (2) identify ψ ∈ Λ4V ∗ = Λ3V ⊗Λ7V ∗ and consider the GL(7)-equivariant
map

K : Λ4V ∗ → Hom(V ∗, V ⊗ (Λ7V ∗)2)

with
K(ψ)(α, β) :=

1
6
(α�ψ ∧ β�ψ ∧ ψ) ∈ Λ7V ⊗ (Λ7V ∗)3 = (Λ7V ∗)2.

Since

det(K(ψ)) ∈ Λ7V ⊗ Λ7(V ⊗ (Λ7V ∗)2)

= Λ7V ⊗ Λ7V ⊗ (Λ7V ∗)14

= (Λ7V ∗)12,

we get an equivariant map

det(K) : Λ4V ∗ → (Λ7V ∗)12.

Given an orientation for V , we can define

ε : Λ4V ∗ → Λ7V ∗ ⊕ iΛ7V ∗ by ε(ψ) := 12
�

det(K(ψ)),

cf. Lemma 3.5. For the model tensor ψ0 = ϕ∗0 ⊗ ε0 we compute

K(ψ0)(α, β) = g0(α, β)ε2
0
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and hence ε(ψ0) = 12
�

ε12
0 = ε0.

�

Lemma 3.31.

IsoGL(7)(ϕ0) = G2.

IsoGL+(7)(ψ0) = G2.

In particular, the forms ϕ0 and ψ0 are stable.

Proof: A proof of the first statement can be found in [47], Lemma 11.1. For
the second part observe that Aε0 = ε0 by Lemma 3.30, for A ∈ IsoGL+(7)(ψ0). In
addition, we have seen in the proof of Lemma 3.30 that

K(ψ0)(α, β) = g0(α, β)ε2
0

holds. Hence Ag0 = g0, i.e. A ∈ SO(7). Now observe that ψ0 = ∗0ϕ0, where ∗0 is
the Hodge operator w.r.t. g0 and the canonical orientation for R7. So

∗0ϕ0 = A ∗0 ϕ0 = ∗0Aϕ0

shows that A ∈ IsoGL(7)(ϕ0) = G2. Conversely, A ∈ G2 ⊂ SO(7) satisfies Aψ0 =
∗0Aϕ0 = ψ0. Since dim(G2) = 14, stability follows from

dim(GL(7)/G2) = 49− 14 = dim(Λ3R7∗) = dim(Λ4R7∗).

�

Definition 3.32. Suppose V = R7 is equipped with a fixed orientation. For
ψ ∈ GL+(7)ψ0 ⊂ Λ4V ∗ we call ε(ψ) ∈ Λ7V ∗ from Lemma 3.30 the associated
volume element and define

ϕ = ∗ψψ ∈ Λ3V ∗,

where ∗ψ is the Hodge operator associated to the volume ε(ψ) and the metric given
by K(ψ)(α, β) = g(α, β)ε(ψ)2, cf. Lemma 3.30.

From Proposition 1.2 and Lemma 3.31 we obtain

Corollary 3.33. Suppose M is a seven dimensional manifold with a fixed orien-
tation. Then G2-structures on M , which are compatible with the given orientation,
correspond to forms ψ ∈ Ω4(M) of type ψ0, such that ε(ψ) > 0.

�
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We will now describe the Lie algebra of G2 ⊂ SO(7).

Lemma 3.34. A = (aij) ∈ so7 is an element of g2 ⊂ so7 if and only if

a23 + a45 + a67 = 0, a46 − a57 − a13 = 0, −a56 − a47 + a12 = 0,
−a26 + a37 − a15 = 0, a36 + a27 + a14 = 0, a24 − a35 − a17 = 0,
−a34 − a25 + a16 = 0.

Note that the ith equation corresponds to aklϕikl = 0. The orthogonal complement
in so7 is given by

g⊥2 = {A ∈ so7 | A�g = x�ϕ0, for some x ∈ R7},

Proof: By Lemma 1.14 we have

g2 = ker(Dϕ0 : so7 → Λ3R7∗)

and Lemma 3.1 yields A ∈ g2 if and only if

0 =
7�

i=1

ei ∧Aei�ϕ0 =
7�

i,j=1

aije
i ∧ ej�ϕ0.

This system translates into the seven equations for the coefficients aij . Hence for
A ∈ g2

7�

j=1

ϕ(ei, Aej , ej) = 2
�

j<k

ajkϕ(ei, ek, ej) = 0

and we see that B�g := ei�ϕ0 defines an element B ∈ g⊥2 . Since dim(g⊥2 ) = 7, the
Lemma follows.

�

Proposition 3.35. The following decompositions of G2-modules are irreducible:

so7 = g2 ⊕ g⊥2

End(R7) =
�
Rid⊕ S2

0

�
⊕

�
g2 ⊕ g⊥2 ), where

S2
0 = {A ∈ S2 | tr(A) = 0}.

The G2-modules Λk := ΛkR7∗ decompose into the following irreducible submodules,
where the lower index denotes the dimension of the submodule:

Λ1 = Λ1
7

Λ2 = Λ2
7 ⊕ Λ2

14, where
Λ2

7 = {x�ϕ0 | x ∈ R7},
Λ2

14 = {ω ∈ Λ2 | ψ0 ∧ ω = 0} ∼= g2,
Λ3 = Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27, where
Λ3

1 = Rϕ0,
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Λ3
7 = {x�ψ0 | x ∈ R7},

Λ3
27 = {ω ∈ Λ3 | ϕ0 ∧ ω = 0 and ψ0 ∧ ω = 0},

Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27, where

Λ4
1 = Rψ0,

Λ4
7 = {α ∧ ϕ0 | α ∈ Λ1},

Λ4
27 = {ω ∈ Λ4 | ϕ0 ∧ ω = 0 and ϕ0 ∧ ∗ω = 0},

Λ5 = Λ5
7 ⊕ Λ5

14, where
Λ5

7 = {α ∧ ψ0 | α ∈ Λ1},
Λ5

14 = {ω ∈ Λ5 | ψ0 ∧ ∗0ω = 0},
Λ6 = Λ6

7.

Proof: The decompositions of Λk into irreducible submodules can be found in
[43], formulae 2.14-2.17 and 2.19-2.24. The map Dϕ0 : End(R7) → Λ3 satisfies
ker(Dϕ0) = g2 by Lemma 1.14 and Lemma 3.31. Hence Rid ∩ ker(Dϕ0) = {0}
and, by irreducibility, Dϕ0(Rid) = Λ3

1. This yields similarly Dϕ0(g⊥2 ) = Λ3
7 and

Dϕ0(S2
0) = Λ3

35. In particular, S2
0 is irreducible by the irreducibility of Λ3

27, which
proves that the above decomposition of End(R7) is irreducible.

�

Lemma 3.36. The maps Dϕ0 : End(R7) → Λ3R7∗ and Dψ0 : End(R7) → Λ4R7∗

define isomorphisms between certain submodules of End(R4) and Λ3R7∗, respec-
tively Λ4R7∗:

Rid S2
0 g2 g⊥2

Dϕ0 Λ3
1 Λ3

27 0 Λ3
7

Dψ0 Λ4
1 Λ4

27 0 Λ4
7

Proof: We proved this already in Lemma 3.35 for Dϕ0 . The proof for Dψ0 is
similar.

�

Definition 3.37. Let M be a seven dimensional oriented manifold equipped
with a G2-structure ψ with intrinsic torsion τ : P → R7∗ ⊗ g⊥2 . We identify τ with
an element T ∈ C∞(End(TM)), such that

g(τ(X)Y,Z) = ϕ(T (X), Y, Z).

If we choose a Cayley frame (E1, .., E7) for the G2-structure and let Ai�g := Ei�ϕ,
then

T (X) =
1
6

7�

i=1

�τ(X), Ai�Ei, since �Ai, Ai� = 6.
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Proposition 3.38. Let M be a seven dimensional oriented manifold equipped
with a G2-structure ψ with intrinsic torsion τ ∼= T . Then

∇gϕ = −3T �ψ,

∇gψ = 3(T �g) ∧ ϕ,

dϕ = 3Dψ(T ),

dψ = 6prΛ2(T ) ∧ ϕ.

Proof: By Proposition 1.18 we have for the intrinsic torsion τ : P → R7∗ ⊗ g⊥2
of the G2-structure

∇g

X
(ϕ, ψ) = D(ϕ,ψ)(τ(X)).

Since SO(7) acts on each factor Λ3×Λ4 separately, the corresponding equation hold
for ϕ and ψ. Let (E1, .., E7) be a local Cayley frame for the G2-structure. Applying
Lemma 3.1 and Lemma 3.29, we find

∇g

X
ϕ = Dϕ(τ(X)) = −

7�

i=1

Ei ∧ τ(X)Ei�ϕ

= −
7�

i,j=1

g(τ(X)Ei, Ej)Ei ∧ Ej�ϕ

= −
7�

i,j=1

ϕ(T (X), Ei, Ej)Ei ∧ Ej�ϕ

= −
7�

j=1

ϕ(Ej , T (X), .) ∧ Ej�ϕ

= −1
2
T (X)�

7�

j=1

Ej�ϕ ∧ Ej�ϕ

= −3T (X)�ψ

and

∇g

X
ψ = −

7�

j=1

ϕ(Ej , T (X), .) ∧ Ej�ψ

= (T (X)�g) ∧ (
7�

j=1

Ej�(Ej ∧ ϕ))

= 3(T (X)�g) ∧ ϕ.

Hence the exterior derivatives are given by

dϕ =
7�

i=1

Ei ∧∇g

Ei
ϕ = −3

7�

i=1

Ei ∧ T (Ei)�ψ

= 3Dψ(T )
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and

dψ =
7�

i=1

Ei ∧∇g

Ei
ψ = 3

7�

i=1

Ei ∧ (T (Ei)�g) ∧ ϕ

= 6prΛ2(T ) ∧ ϕ.

�

By Proposition 3.35 we have the following decomposition into irreducible G2-
modules

R7∗ ⊗ g⊥2 = R7∗ ⊗ R7 = End(R7)

=
�
Rid⊕ S2

0

�
⊕

�
g2 ⊕ g⊥2

�

and hence there are 24 different types of G2-structures in dimension seven. We are
interested in the following classes:

Theorem 3.39. Let ψ be a G2-structure on M with intrinsic torsion τ ∼= T and
0 �= λ ∈ R. In the following table we list different types of G2-structures, the related
torsion types and the corresponding equations for the structure tensors.

Name Torsion Characterization

Hypo T ∈ S2 dψ = 0
Nearly Parallel T = − 1

12λid dϕ = λψ

Parallel T = 0 dψ = dϕ = 0

Proof: By Proposition 3.38 we have dψ = 0 ⇔ prΛ2(T ) ∧ ϕ = 0. Since ϕ ∧ . :
Λ2 → Λ5 is an isomorphism, we actually have

dψ = 0 ⇔ prΛ2(T ) = 0.

With Lemma 3.36 we see that dϕ = λψ is equivalent to

T ∈ Rid⊕ g2 and 3Dψ(prRid) = λψ.

Since Dψ(id) = −4ψ, the condition on the torsion implies dϕ = λψ. Conversely,
λ �= 0 yields T ∈ S2 and hence T = f id, for some function f : M → R. Then
λψ = 3Dψ(f id) = −12fψ shows that

T = − 1
12

λid.

By Proposition 3.38 and Lemma 3.36, dϕ = dψ = 0 is equivalent to prΛ2(T ) = 0
and T ∈ g2, i.e. T = 0.

�
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SU(3)-Structures in Dimension Seven

In this section we consider the following model tensors on R7:

ϕ0 = e246 − e356 − e347 − e257 + e123 + e145 + e167,

ψ0 = e2345 + e2367 + e4567 − e1247 + e1357 − e1346 − e1256,

α0 = e1, ξ0 = e1

and on R6 ∼= ker(α0)

ω0 = ξ0�ϕ0 = e23 + e45 + e67,

σ0 =
1
2
ω2

0 = e2345 + e2367 + e4567,

ρ0 = ϕ0 − α0 ∧ ω0 = e246 − e356 − e347 − e257,

�ρ0 = −ξ0�ψ0 = e247 − e357 + e346 + e256,

as well as g0(I0., .) := ω0. Since the G2-stabilizer of a unit vector in R7 equals SU(3),
the description of SU(3)-structures in dimension seven is much simpler than the
description of SU(2)-structures in dimension five. Namely, Lemma 3.31 yields

Lemma 3.40.

IsoGL(7)(α0, ϕ0) = SU(3).

IsoGL+(7)(α0, ψ0) = SU(3).

�

Proposition 3.41. Consider V = R7 with the canonical orientation and let
ψ ∈ GL+(7)ψ0 and α ∈ Λ1V ∗. Then

(ψ, α) ∈ GL+(7)(ψ0, α0) ⇔ g(α, α) = 1,

where g is the metric induced by ψ.

Proof: The Lemma follows immediately from the fact that the group G2 acts
transitively on S6 ⊂ R7.

�

From Proposition 1.2, Lemma 3.40 and Proposition 3.41 we obtain

Corollary 3.42. Suppose M is a seven dimensional manifold with a fixed
orientation. Then SU(3)-structures on M , which are compatible with the given
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orientation, correspond to pairs of forms (α, ψ) ∈ Ω1(M) × Ω4(M), where ψ is of
type ψ0 with ε(ψ) > 0 and α satisfies g(α, α) = 1, w.r.t. the metric induced by ψ.

�

For a compact seven dimensional manifold M we have χ(M) = 0 and hence M

admits a nowhere vanishing vector field. Hence any G2-structure on M can be re-
duced to a SU(3)-structure by choosing a particular unit vector field.

We will now study the Lie algebra of SU(3) ⊂ SO(7).

Lemma 3.43. A = (aij) ∈ so7 is an element of u3 ⊂ so7 if and only if Ae1 = 0
and

a46 − a57 = 0, a56 + a47 = 0, a37 − a26 = 0,
a27 + a36 = 0, a24 − a35 = 0, a25 + a34 = 0.

Moreover, A ∈ su3 if and only if in addition

a23 + a45 + a67 = 0.

Equivalently,

u3 = {A ∈ so(7) | Ae1 = 0 and AI0 = I0A},

su3 = {A ∈ so(7) | Ae1 = 0 and AI0 = I0A and (A�g0) ∧ σ0 = 0}.

The orthogonal complements in so7 are given by

u⊥3 = {
�

0 −xT

x A

�
| x ∈ R6 and A ∈ u⊥3 ⊂ so6},

su⊥3 = {
�

0 −xT

x A

�
| x ∈ R6 and A ∈ su⊥3 ⊂ so6}.

Proof: The Lemma follows immediately from Lemma 3.21.
�

Definition 3.44. Let M be a seven dimensional oriented manifold equipped
with a SU(3)-structure (ψ, α) with intrinsic torsion τ : P → R7∗ ⊗ su⊥3 . According
to the decomposition

R7∗ ⊗ su⊥3 = (R7∗ ⊗ R6)⊕ (R7∗ ⊗ u⊥3 )⊕ R7∗

we decompose τ into linear maps F, T : TM → ker(α) and a 1-form η, such that

g(τ(X)Y, Z) = α(Y )g(F (X), Z)−α(Z)g(F (X), Y )+ρ(T (X), Y, Z)+η(X)ω(Y,Z).
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If we choose a Cayley frame (E1, .., E7) for the G2-structure and let Ai�g := Ei�ρ,
for i = 2, .., 7, then

F (X) = τ(X)ξ,

T (X) =
1
6

7�

i=2

�τ(X), Ai�Ei, since �Ai, Ai� = 6,

η(X) =
1
6
�τ(X), I�, since �I, I� = 6.

Proposition 3.45. Let M be a seven dimensional oriented manifold equipped
with a SU(3)-structure (ψ, α) with intrinsic torsion τ ∼= F + T + η. Then

∇gα = F�g,

∇gω = −α ∧ F�ω − 2T ��ρ,

∇gσ = −α ∧ (F�σ)− 2(T ��ρ) ∧ ω,

∇gρ = −α ∧ F�ρ− 2T �σ + 3η ⊗ �ρ,

∇g�ρ = −α ∧ F��ρ− 2IT �σ − 3η ⊗ ρ

and

dα = 2prΛ2(F ),

dω = −α ∧Dω(F ) + 2Dρ(T ),

dσ = −α ∧Dσ(F ) + 2Dρ(T ) ∧ ω,

dρ = −α ∧Dρ(F ) + 2Dσ(T ) + 3η ∧ �ρ,

d�ρ = −α ∧Dρ(F ) + 2Dσ(IT )− 3η ∧ ρ.

Proof: By Proposition 1.18 we have for the intrinsic torsion τ : P → R7∗ ⊗ su⊥3
of the SU(3)-structure

∇g

X
(α, ω, σ, ρ, �ρ) = D(α,ω,σ,ρ,ρ)(τ(X)).

Since SO(7) acts on each factor separately, the corresponding equation hold for α,
ω, σ, ρ and �ρ. Let (ξ = E1, .., E7) be a local Cayley frame for the SU(3)-structure.
Applying Lemma 3.1, we find

∇g

X
α = Dα(τ(X)) = −

7�

i=1

α(τ(X)Ei)Ei =
7�

i=2

g(τ(X)ξ, Ei)Ei

=
7�

i=1

g(F (X), Ei)Ei = F (X)�g,
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and, using that g(F (X), ξ) = 0,

∇g

X
ω = Dω(τ(X)) = −

7�

i=1

Ei ∧ τ(X)Ei�ω =
7�

i,j=1

g(τ(X)Ei, IEj)Eij

=
7�

j=2

g(τ(X)ξ, IEj)α ∧ Ej +
7�

i,j=2

g(τ(X)Ei, IEj)Eij

=
7�

j=2

g(F (X), IEj)α ∧ Ej +
7�

i,j=2

(ρ(T (X), Ei, IEj) + η(X)δij)Eij

= −α ∧ F (X)�ω −
7�

i,j=2

�ρ(T (X), Ei, Ej)Eij

= −α ∧ F (X)�ω − 2T (X)��ρ.

The same computation yields

∇g

X
σ = −α ∧ (F (X)�ω) ∧ ω − 2(T (X)��ρ) ∧ ω

and similarly we obtain

∇g

X
ρ = Dρ(τ(X)) = −

7�

i,j=1

g(τ(X)Ei, Ej)Ei ∧ Ej�ρ

= −
7�

j=2

g(τ(X)ξ, Ej)α ∧ Ej�ρ−
7�

i,j=2

g(τ(X)Ei, Ej)Ei ∧ Ej�ρ

= −α ∧ F (X)�ρ−
7�

i,j=2

(ρ(T (X), Ei, Ej) + η(X)ω(Ei, Ej))Ei ∧ Ej�ρ

= −α ∧ F (X)�ρ− 1
2
T (X)�(

7�

j=2

Ej�ρ ∧ Ej�ρ)− η(X)
7�

i=2

Ei ∧ IEi�ρ

= −α ∧ F (X)�ρ− 2T (X)�σ + 3η(X)�ρ

and

∇g

X
�ρ = −α ∧ F (X)��ρ−

7�

i,j=2

(ρ(T (X), Ei, Ej) + η(X)ω(Ei, Ej))Ei ∧ Ej��ρ

= −α ∧ F (X)��ρ− 3η(X)ρ−
7�

i,j=2

�ρ(IT (X), Ei, Ej)Ei ∧ Ej��ρ

= −α ∧ F (X)��ρ− 3η(X)ρ− 1
2
IT (X)�(

7�

j=2

Ej��ρ ∧ Ej��ρ)

= −α ∧ F (X)��ρ− 3η(X)ρ− 2IT (X)�σ.

Now the exterior derivatives are given by

dα =
7�

i=1

Ei ∧∇g

Ei
α = 2prΛ2(F )
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and

dω =
7�

i=1

Ei ∧∇g

Ei
ω =

7�

i=1

Ei ∧ (−α ∧ F (Ei)�ω − 2T (Ei)��ρ)

= −α ∧Dω(F ) + 2Dρ(T ).

Hence dσ = −α ∧Dσ(F ) + 2Dρ(T ) ∧ ω, and similarly

dρ =
7�

i=1

Ei ∧∇g

Ei
ρ =

7�

i=1

Ei ∧ (−α ∧ F (Ei)�ρ− 2T (Ei)�σ + 3η(Ei)�ρ)

= −α ∧Dρ(F ) + 2Dσ(T ) + 3η ∧ �ρ

and

d�ρ =
7�

i=1

Ei ∧∇g

Ei
�ρ =

7�

i=1

Ei ∧ (−α ∧ F (Ei)��ρ− 2IT (Ei)�σ − 3η(Ei)ρ)

= −α ∧Dρ(F ) + 2Dσ(IT )− 3η ∧ ρ.

�

Theorem 3.46. Let (ψ, α) be a SU(3)-structure on M with intrinsic torsion
τ ∼= F + T + η and 0 �= λ ∈ R. In the following table we list different types of
SU(3)-structures, the related torsion types and the corresponding equations for
the structure tensors. For this let

T0 := T|ker(α) ∈ End(ker(α)) and η0 := η|ker(α) ∈ Ω1(ker(α)).

Name Torsion Characterization

Nearly Hypo IT0 + 1
8λI ∈ S2 dρ = λσ on ker(α).

η0 = 0
Hypo IT0 ∈ S2 dσ = dρ = 0 on ker(α).

η0 = 0
Nearly Parallel IT0 = λid dω = 6λρ on ker(α) and
(nearly Kähler) η0 = 0 d�ρ = −4λω2 on ker(α).

Equivalently: For all X ∈ ker(α)
(∇g

X
I)X = 0 and

dρ = 0 on ker(α).
Parallel T0 = 0 dω = dρ = d�ρ = 0 on ker(α).
(Calabi-Yau) η0 = 0
Complex T0 ∈ S2

12 ⊕ u⊥3 NI = 0 on ker(α).
Kähler T0 = 0 NI = 0 and dω = 0 on ker(α).

Equivalently,
∇gω = 0 on ker(α).
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Sasakian T = 0 I = ∇gξ and
F = I (∇g

X
I)Y = g(ξ, Y )X − g(X, Y )ξ,

for all X, Y ∈ TM .

Proof: The equations for the exterior derivatives of the structure tensors from
Proposition 3.45 and Lemma 3.1 give

dρ|ker(α) = 2Dσ(T )|ker(α) + 3(η ∧ �ρ)|ker(α)

= −2
7�

i=1

(Ei ∧ T Ei�σ)|ker(α) + 3η0 ∧ �ρ|ker(α)

= −2
7�

i=2

Ei ∧ T0Ei�σ|ker(α) + 3η0 ∧ �ρ|ker(α), for E1 = α

= 2Dσ|ker(α)(T0) + 3η0 ∧ �ρ|ker(α).

Similarly we obtain formulae for the restriction of dω, dσ and d�ρ to ker(α). The
resulting equations are precisely the equations from the six dimensional case, cf.
Proposition 3.25. For the covariant derivatives we obtain again by Proposition 3.45

(∇gω)|ker(α) = −2T0��ρ|ker(α),

which was required in the proof of Theorem 3.28 to characterize the condition
NI = 0. With this observation, we can reduce all computations to ker(α) and
repeat arguments from the proof of Theorem 3.28.

For the description of Sasakian structures we use Proposition 3.45 to find I =
∇gξ = F and hence

(∇g

X
ω)(Y, Z) = (−α ∧ F (X)�ω − 2T (X)��ρ)(Y, Z)

= (α ∧X�g − 2T (X)��ρ)(Y, Z)

= g(ξ, Y )g(X, Z)− g(ξ, Z)g(X, Y )− 2�ρ(T (X), Y, Z).

Now the characterization follows, since T (X) ∈ ker(α) and �ρ is non degenerated on
ker(α).

�

Remark 3.47. M. Cabrera [14] studies SU(3)-structures on hyper surfaces which
are induced by certain types of ambient G2-structures. The only case where the in-
duced structure is actually Kähler (i.e. of type W5 in the notation of [14]) occurs
in Table 2 of [14]. Cabrera shows that in this case, the ambient G2-structure must
be parallel and the hyper surface has to be totally geodesic. However, Cabrera only
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studies ambient G2-structures which are of one of the four canonical Gray-Hervella
types. A generic SU(3) ⊂ G2 structure with Tker(α) = 0 does not belong to one of
these four types.

Remark 3.48. Sasakian structures in dimension 2n+1 are {1}×U(n) structures
which satisfy the integrability conditions

I = ∇gξ and (∇g

X
I)Y = g(ξ, Y )X − g(X, Y )ξ.

Hence a SU(3)-structure on a seven dimensional manifold satisfies these conditions
if and only if the underlying {1} × U(3) structure is a Sasakian structure, cf. [8].
Sasakian structures are usually considered as the odd-dimensional analogue of Käh-
ler structures. From this point of view, Sasakian structures which are compatible
with a topological G2-structure can be regarded as the analogue of SU(3)-Kähler
structures, i.e. Kähler structures with c1 = 0. By Yau’s proof of the Calabi con-
jecture, such a Kähler structure admits a unique Ricci flat Kähler structure within
its cohomology class. But a Sasakian structure can neither be Ricci flat, nor allow
parallel forms.
Another reason why the term ’analogue’ should be used with caution, is the fact
that it is used with respect to a certain embedding of the {1}×U(n) structure into
an even dimensional space. In the Sasakian case the ambient space is the metric
cone over the odd dimensional manifold M , but different choices for the ambient
space will lead to different notions of what one should call an odd dimensional
’analogue’ of Kähler structures.
To avoid the choice of an ambient space, it seems natural to call a {1} × U(n)
structure Kähler if the U(n)-structure on ker(α) is Kähler, i.e. T = 0 on ker(α).
This notion can be refined by requiring the distributional part F to live in a certain
submodule of

F ∈
�

0 0
R6 End(R6)

�
,

where End(R6) decomposes as an SU(3)-module into

I+ I−

S2(R6) Rid⊕ I0su(3) S2
12

so6 RI0 ⊕ su(3) u⊥3

So the possible notions of ’analogue’ Kähler structures are parameterized by the
distributional part F . Theorem 3.46 states that SU(3)-Sasakian structures are pre-
cisely those types of Kähler structures for which F = I ∈ RI0 and T (ξ) = 0 holds.
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Spin(7)-Structures in Dimension Eight

In this section we consider the following model form on R8:

Ψ0 = ψ0 + e1 ∧ ϕ0

= e3456 + e3478 + e5678 − e2358 + e2468 − e2457 − e2367

+ e1357 − e1467 − e1458 − e1368 + e1234 + e1256 + e1278.

This form satisfies certain relations, which can be verified in a direct computation:

Lemma 3.49. For all x ∈ R8

(1) Ψ0 ∧Ψ0 = 14ε0.

(2) ∗0Ψ0 = Ψ0.

(3) ∗0((x�g0) ∧Ψ0) = x�Ψ0.

(4) ∗0(x�Ψ0 ∧Ψ0) = 7x�g0.

�

The isotropy group of Ψ0 can be identified with the Lie group Spin(7), cf. [47]
Lemma 12.2.

Lemma 3.50.

IsoGL(8)(Ψ0) = Spin(7).

�

Since dim(GL(8)/Spin(7)) = 64−21 < 70 = dim(Λ4R8∗), the form Ψ0 is not stable.
Nevertheless, we have by Proposition 1.2

Corollary 3.51. Spin(7)-structures on an eight dimensional manifold M cor-
respond to forms Ψ ∈ Ω4(M) of type Ψ0.

�

We will now describe the Lie algebra of Spin(7) ⊂ SO(8).
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Lemma 3.52. A = (aij) ∈ so8 is an element of spin7 ⊂ so8 if and only if

a23 + a45 + a67 = 0, a46 − a57 − a13 + a12 = 0,
−a56 − a47 + a12 + a13 = 0, −a26 + a37 − a15 + a14 = 0,
+a36 + a27 + a14 + a15 = 0, a24 − a35 − a17 + a16 = 0,
−a34 − a25 + a16 + a17 = 0.

Note that the ith equation corresponds to aklϕikl + a1i = 0. The orthogonal com-
plement in so8 is given by

spin⊥7 = {A ∈ so8 | A�g = x�ϕ0 + e1 ∧ (x�g0), for some x ∈ R8}.

Proof: By Lemma 1.14 we have

spin7 = ker(DΨ0 : so8 → Λ4R7∗)

and Lemma 3.1 yields A ∈ spin7 if and only if

0 =
8�

i=1

ei ∧Aei�ψ0 =
8�

i,j=1

aije
i ∧ ej�ψ0.

This system translates into the seven equations for the coefficients aij . Hence for
A ∈ spin7 and Bi�g := ei�ϕ0 + e1 ∧ (ei�g)

tr(BiA) =
8�

j=1

(ϕ0(ei, Aej , ej) + aj1δij − ajiδj1)

= 2
�

j<k

ajkϕ0(ei, ek, ej) + ai1 − a1i

= 2a1i − 2a1i = 0

and we see that Bi defines an element Bi ∈ spin⊥7 . Since dim(spin⊥7 ) = 7 and
B1 = 0, the Lemma follows.

�

Proposition 3.53. The following decompositions of Spin(7)-modules are irre-
ducible:

so8 = spin7 ⊕ spin⊥7

End(R8) =
�
Rid⊕ S2

0

�
⊕

�
spin7 ⊕ spin⊥7 ), where

S2
0 = {A ∈ S2 | tr(A) = 0}.

The Spin(7)-modules Λk := ΛkR8∗ decompose into the following irreducible sub-
modules, where the lower index denotes the dimension of the submodule:

Λ1 = Λ1
8
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Λ2 = Λ2
7 ⊕ Λ2

21, where
Λ2

7 = {ω ∈ Λ2 | ∗0(Ψ0 ∧ ω) = 3ω},
Λ2

21 = {ω ∈ Λ2 | ∗0(Ψ0 ∧ ω) = −ω} ∼= spin7,
Λ3 = Λ3

8 ⊕ Λ3
48, where

Λ3
8 = {x�Ψ0 | x ∈ R8},

Λ3
48 = {ω ∈ Λ3 | Ψ0 ∧ ω = 0},

Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ⊕ Λ4

35, where
Λ4

1 = RΨ0,
Λ4

7 = {
�8

i=1 ei ∧Aei�Ψ0 − (Aei�g0) ∧ (ei�Ψ0) | A ∈ spin⊥7 },
Λ4

27 = {ω ∈ Λ4 | ω = ∗0ω, Ψ0 ∧ ω = 0 and Λ4
7 ⊂ ker(ω ∧ .)},

Λ4
35 = {ω ∈ Λ4 | ∗0ω = −ω},

Λ5 = Λ5
8 ⊕ Λ5

48, where
Λ5

8 = {α ∧Ψ0 | α ∈ Λ1},
Λ5

48 = {ω ∈ Λ5 | Ψ0 ∧ ∗0ω = 0},
Λ6 = Λ6

7 ⊕ Λ6
21, where

Λ6
7 = {ω ∈ Λ6 | Ψ0 ∧ ∗0ω = 3ω},

Λ6
21 = {ω ∈ Λ6 | Ψ0 ∧ ∗0ω = −ω},

Λ7 = Λ7
8.

Proof: The decompositions of Λk into irreducible submodules can be found in
[43], formulae 4.7-4.10 and 4.12-4.19. The map DΨ0 : End(R8) → Λ4 satisfies
ker(DΨ0) = spin7 by Lemma 1.14 and Lemma 3.50. Hence Rid ∩ ker(DΨ0) = {0}
and DΨ0(Rid) is a one dimensional submodule of Λ4. By irreducibility, we see that
0 �= DΨ0(Rid) = Λ4

1. This yields similarly DΨ0(spin⊥7 ) = Λ4
7 and DΨ0(S2

0) = Λ4
35.

In particular, S2
0 is irreducible by the irreducibility of Λ4

35, which proves that the
above decomposition of End(R8) is irreducible.

�

Lemma 3.54. The map DΨ0 : End(R8) → Λ4R8∗ defines an isomorphism between
certain submodules of End(R8) and Λ4R8∗:

Rid S2
0 spin7 spin⊥7

DΨ0 Λ4
1 Λ4

35 0 Λ4
7

Proof: We proved this already in Lemma 3.53.
�

Consider the map

fΨ0 : R8∗ ⊗ spin⊥7 → Λ5R8∗ with τ �→
8�

i=1

ei ∧DΨ0(τ(ei)).
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This definition is independent of the choice of g0-orthonormal basis (e1, .., e8) and
hence Lemma 1.14 shows that fΨ0 is Spin(7) ⊂ SO(8) equivariant. From Lemma
3.1 we get

fΨ0(τ) = −
�

i,j,k

τijkeij ∧ ek�Ψ0,

which can be used to show that fΨ0 is injective and hence an isomorphism. Since
Λ5 = Λ5

8 ⊕ Λ5
48, we obtain a corresponding decomposition into irreducible Spin(7)-

modules

R8∗ ⊗ spin⊥7 = W8 ⊕W48

and hence there are 22 different types of Spin(7)-structures in dimension eight:

Theorem 3.55. Let Ψ be a Spin(7)-structure on M with intrinsic torsion τ . In
the following table we list different types of Spin(7)-structures, the related torsion
types and the corresponding equations for the structure tensors.

Name Torsion Characterization

Balanced τ ∈ W48 Θ := ∗(∗dΨ ∧Ψ) = 0
(Lee form)

Locally conformal parallel τ ∈ W8 dΨ = 1
7Θ ∧Ψ

Parallel τ = 0 dΨ = 0

Proof: From Proposition 1.18 we get fΨ(τ) = dΨ and, since fΨ is an isomor-
phism, we have dΨ = 0 ⇔ τ = 0. By Proposition 3.53 we have

τ ∈ W48 ⇔ dΨ ∈ Λ5
48 ⇔ Θ = 0

and similarly
τ ∈ W8 ⇔ dΨ ∈ Λ5

8 ⇔ dΨ = α ∧Ψ,

for some 1-form α. Using Lemma 3.49, we get

Θ = ∗(∗dΨ ∧Ψ) = ∗(ξ�Ψ ∧Ψ) = 7α,

where ξ�g := α.
�
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4. Embedding Theorems for Special Geometries

In [36] N. Hitchin introduces a flow equation for hypo G2-structures on a manifold
M , whose solutions yield parallel Spin(7)-structures on I × M , for some interval
I ⊂ R. In this sense, a solution of the flow equation embeds the initial G2-structure
into a manifold with a parallel Spin(7)-structure and is therefore called a solution
of the embedding problem for the initial structure. Similar equations are known
for embedding SU(2)-structures in dimension five and SU(3)-structures in dimen-
sion six into manifolds with a parallel SU(3) and G2-structure, respectively, cf.
[21],[22],[23],[28],[29]. R. Bryant shows in [11] that in the real analytic category,
the embedding problem for hypo SU(3) and G2-structures can be solved. Bryant
also provided counterexamples in the smooth category. The embedding problem for
SU(2)-structures in dimension five was solved by D. Conti and S. Salamon in [22],
cf. also [21].

In this section we describe a unifying approach to all of the above embedding
problems. We reduce the SU(2) and SU(3) embedding problem to the G2-case,
which will be studied in terms of gauge deformations. Since the structure tensor
ϕ ∈ Ω3(M) of a G2-structure is stable, any smooth deformation ϕt can be described
by a family of gauge deformations At ∈ C∞(Aut(TM)) via ϕt = Atϕ, cf. Theorem
1.6. In the G2-case, the intrinsic torsion T takes values in the G2-module gl(7) and
can therefore be regarded again as an (infinitesimal) gauge deformation. We prove
that the intrinsic torsion flow for G2-structures

Ȧt = Tt ◦At

can be regarded as a generalization of Hitchin’s flow equation, and hence as a ge-
neralization of the SU(2), SU(3) and G2-embedding problem, cf. Proposition 4.12.
In Theorem 4.13 we determine the evolution of the metric and the intrinsic torsion
under the intrinsic torsion flow. Using the Cheeger-Gromoll Splitting Theorem, we
prove in Theorem 4.14 and Corollary 4.15 that there are no nontrivial longtime
solutions for the embedding problem.

Generalized Cylinders

Let ξ be a unit vector field on (M, g), such that dα = 0, where α := ξ�g. On the
integral manifolds i : N �→ M of the distribution ker(α), we denote by gN := i∗g
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the induced metric. Conversely, the collection of metrics on all integral manifolds
determines the ambient metric via

g = α⊗ α + {gN},

where {gN} := pr∗g and pr : TM → ker(α) is the projection pr(X) := X − α(X)ξ.
The Weingarten map

W := ∇gξ

defines a symmetric endomorphism on (M, g) with

(Lξg)(X, Y ) = 2g(WX, Y )

and W (ξ) = 0. This shows that the integral curves of ξ are geodesics on (M, g)
and that W reduces to a symmetric endomorphism WN on each integral manifold
N ⊂ M . We will now express the curvature quantities R, ric and scal on M in
terms of the curvature quantities RN , ricN and scalN on N ⊂ M .

Proposition 4.1. For X, Y, U, V ∈ TpN ⊂ TpM we have

g(R(U,X)Y, V ) = gN (RN (U,X)Y, V )

+ gN (WNU, Y )gN (WNX, V )− gN (WNX, Y )gN (WNU, V )

g(R(ξ, X)Y, ξ) = gN (WNX,WNY )− 1
2
(L2

ξ
g)(X, Y )

g(R(U, ξ)Y, V ) = gN ((∇gN

V
WN )Y, U)− gN ((∇gN

Y
WN )V,U)

ric(X, Y ) = ricN (X, Y )− tr(WN )gN (WNX, Y )

+ 2gN (WNX,WNY )− 1
2
(L2

ξ
g)(X, Y )

ric(ξ, ξ) = tr(W2
N

)− 1
2
trg(L2

ξ
g)

ric(X, ξ) = div(WN )(X)−X · tr(WN )

scal = scalN + 3tr(W2
N

)− tr(WN )2 − trg(L2
ξ
g)

Proof: It suffices to consider vector fields X with LξX = 0, so that∇g

ξ
X = W(X)

and
ξ · g(X, Y ) = 2g(WX, Y ).

The first and third equation can be found in this form in [46], 4.2. Theorem 3 and
4, respectively. From [46] 4.2 Theorem 2 we get the second equation,

R(ξ,X, Y, ξ) = −g(WX,WY )− g((∇g

ξ
W)X, Y )

= −g(WX,WY )− ξ · g(WX, Y ) + g(WX,∇g

ξ
Y ) + g(∇g

ξ
X,WY )

= g(WX,WY )− 1
2
ξ · (ξ · g(X, Y ))

= g(WX,WY )− 1
2
(L2

ξ
g)(X, Y ).
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Now let (ξ, E2, .., En) be a local orthonormal basis with ∇g

X
Ei = 0 at a fixed point.

Then at this point

ric(X, ξ) =
n�

i=2

R(Ei, X, ξ, Ei) = −
n�

i=2

R(Ei, ξ, Ei, X)

=
n�

i=2

−gN ((∇gN

X
WN )Ei, Ei) + gN ((∇gN

Ei
WN )X, Ei)

=
n�

i=2

−X · gN (WNEi, Ei) + div(WN )(X)

= −X · tr(WN ) + div(WN )(X).

The remaining equations are obtained similarly.
�

Lemma 4.2. Suppose ϕ is a k-form on M such that ξ�ϕ = 0. Then ϕ = {ϕN}
and

dϕ = {dϕN}+ α ∧ Lξϕ,

where dϕN denotes the exterior derivative of ϕN on the integral manifold N ⊂ M .

Proof: Fix N0 ⊂ M and choose local coordinates {v2, .., vn} for N0. The flow Φt

of ξ defines a diffeomorphism
Φt : N0 → Nt,

where Nt := Φt(N0) is again an integral manifold of ker(α). For

q ∈ U :=
�

t∈(−ε,ε)

Φt(N0)

exists a unique p ∈ N0 and t ∈ (−ε, ε) such that q = Φt(p). Now we obtain
coordinates on U by

u1(Φt(p)) := t and ui(Φt(p)) := vi(p), for i ≥ 2,

with
∂

∂u1

����
Φt(p)

=
d

ds
u−1(t + s, v(p)) =

d

ds
Φt+s(p) = ξ ◦ Φt(p).

Hence ∂

∂u1
�ϕ = 0 and computing dϕ at p ∈ N0 yields

dϕ(p) =
�

1/∈J

7�

i=2

∂

∂ui

����
p

· ϕ(
∂

∂uJ

)(dui ∧ duJ)(p) +
�

1/∈J

∂

∂u1

����
p

· ϕ(
∂

∂uJ

)(du1 ∧ duJ)(p)

=
�

1/∈J

7�

i=2

∂

∂vi

����
p

· ϕN0(
∂

∂vJ

)(dvi ∧ dvJ)(p) + α(p) ∧
�

1/∈J

ξ|
p
· ϕ(

∂

∂uJ

)duJ(p)

= (dϕN0)(p) + α(p) ∧
�

1/∈J

ξ|
p
· ϕ(

∂

∂uJ

)duJ(p),
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where we used that the flow of ∂

∂ui
stays in N0, for i ≥ 2. Now

Lξdui = dξ�dui = d
∂

∂u1
�dui = 0

gives

Lξϕ = Lξ(
�

1/∈J

ϕ(
∂

∂uJ

)duJ) =
�

1/∈J

ξ · ϕ(
∂

∂uJ

)duJ ,

i.e.
dϕ(p) = (dϕN0)(p) + α(p) ∧ (Lξϕ)(p).

�

Let I ⊂ R be an open interval, {gt}t∈I a family of metrics on N , M := I ×N and
Φt the flow of the vector field ξ := d/dt on M . We extend the family {gt}t∈I to a
(2, 0)-tensor {gt} on M by

ξ�{gt} = 0 and {gt}(Φt∗X, Φt∗Y ) := gt(X, Y ),

for all X, Y ∈ TN ⊂ TM . With this definition,

{ġt}(Φt∗X, Φt∗Y ) = ġt(X, Y ) =
d

dt
gt(X, Y ) =

d

dt
{gt}(Φt∗X, Φt∗Y )

=
d

ds

����
s=0

{gt}(Φt+s∗X, Φt+s∗Y ) =
d

ds

����
s=0

(Φ∗
s
{gt})(Φt∗X, Φt∗Y )

= (Lξ{gt})(Φt∗X, Φt∗Y ),

i.e.
{ġt} = Lξ{gt}.

The Riemannian manifold

M := I ×N with g := dt2 + {gt}

is called a generalized cylinder.

Lemma 4.3. Let M = I×N be a generalized cylinder with metric g = dt2 +{gt}.
Then (M, g) is complete if and only if I = R and (N, gt) is complete, for all t ∈ I.

Proof: We use the Hopf-Rinow Theorem and denote by (M,dg) the metric space
associated to (M, g). If M is complete, we get I = R, since c(t) = (t, p) ∈ M is
a geodesic. To see that (N, gt) is complete, it suffices to show that any closed and
bounded subset is compact. If A ⊂ (N, dgt) is closed and bounded, A is also closed
and bounded as a subset of (M,dg). Hence A ⊂ M is compact and since N ⊂ M is
closed, we see that A ⊂ N is compact.

Conversely, let (tn, pn) be a Cauchy sequence in the metric space (M,dg). Then
tn defines a Cauchy sequence in I = R and hence we can assume that tn → t, as
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n → ∞. Now (t, pn) is still a Cauchy sequence in ({t} ×N, dgt) and hence we can
find a convergent subsequence of (t, pn).

�

The Weingarten mapW := ∇gξ of a generalized cylinder (M, g) = (I×N, dt2+{gt})
induces a family of gt-symmetric endomorphisms Wt on TN by

WtX := pr∗ ◦W ◦ Φt∗X,

where pr : I ×N → N is the canonical projection.

Lemma 4.4. Let gt be a family of metrics on N . Denote by rict the Ricci tensor
of the metric gt and by ric the Ricci tensor of the metric g = dt2 + {gt} on I ×N .
Then

ġt(X, Y ) = 2gt(WtX, Y ),

gt(ẆtX, Y ) = rict(X, Y )− ric(Φt∗X, Φt∗Y )− tr(Wt)gt(WtX, Y ),

for all X, Y ∈ TN .

Proof: For X, Y ∈ TN we compute

ġt(X, Y ) = (Lξ{gt})(Φt∗X, Φt∗Y ) = (Lξg)(Φt∗X, Φt∗Y )

= 2g(WΦt∗X, Φt∗Y ) = 2gt(WtX, Y ).

Similarly, (L2
ξ
g)(Φt∗X, Φt∗Y ) = g̈t(X, Y ) and by Proposition 4.1

ric(Φt∗X, Φt∗Y ) = rict(X, Y )− tr(Wt)gt(WtX, Y )

+ 2gt(WtX,WtY )− 1
2
g̈t(X, Y ).

Now the second equation follows from
1
2
g̈t(X, Y ) =

1
2

d

dt
ġt(X, Y ) =

d

dt
gt(WtX, Y )

= ġt(WtX, Y ) + gt(ẆtX, Y )

= 2gt(WtX,WtY ) + gt(ẆtX, Y ).

�

Like for a family of metrics, we can lift a family of forms {ϕt}t∈I on N to a single
form {ϕt} on M = I ×N with Lξ{ϕt} = {ϕ̇t}. Hence Lemma 4.2 translates into

Lemma 4.5.
d{ϕt} = {dϕt}+ dt ∧ {ϕ̇t}.

�
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Evolution Equations

For notational reasons we define

Gk :=






SU(2) for k = 5.

SU(3) for k = 6.

G2 for k = 7.

Spin(7) for k = 8.

The inclusions Gk ⊂ Gk+1, obtained by regarding Gk as the isotropy group of a
unit vector under the natural action of Gk+1, allow us to lift any Gk structure on
Mk to a Gk+1 structure on R ×Mk. More generally, we can lift whole families of
structures on Mk, parameterized by t ∈ I, to a structure on

Mk+1 := I ×Mk.

In order for the resulting structure to be (nearly) parallel, the underlying family
has to be (nearly) hypo and must evolve according to certain evolution equations.
In fact, (nearly) hypo structures are precisely those type of structures which are
induced on hypersurfaces by (nearly) parallel structures on the ambient space.

For instance, a family of G2-structures ψt on M7 defines a 4-form Ψ := {ψt}+ dt∧
{ϕt} of model tensor type Ψ0, and hence a Spin(7)-structure on M8 := I × M7.
For notational simplicity we will suppress the bracket notation and call

Ψ := ψt + dt ∧ ϕt

the lift of ψt to I ×M7. With Lemma 4.5 we get

d8Ψ = d7ψt + dt ∧ ψ̇t − dt ∧ d7ϕt = d7ψt + dt ∧ (ψ̇t − d7ϕt),

where d7, d8 denotes the exterior derivative on M7, M8, respectively. Hence the
Spin(7)-structure is parallel if and only if d7ψt = 0 and ψ̇t = dϕt. The second equa-
tion can be regarded as an evolution equation for the initial structure ϕ := ϕt=0.
If the initial structure is hypo, the evolution equation guarantees that the hypo
condition d7ψt = 0 is preserved in time. In the following Proposition we list the
lifting maps for the SU(2), SU(3) and G2-case, the (nearly) hypo condition for the
initial structure and the evolution equations to obtain (nearly) parallel structures
on I ×Mk.

Proposition 4.6. Let Mk be a manifold of dimension k ∈ {5, 6, 7}, equipped
with a family of Gk-structures. Then the lift in the following table defines a Gk+1-
structure on Mk+1 := I ×Mk.
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k Lift Initial Condition Evolution

5 ω := ω1 + dt ∧ α 0 = dω1 + 6λρ3 ω̇1 = dα + 6λω2

σ := 1
2ω2

1 + dt ∧ α ∧ ω1 0 = dρ2 + 4λω2
1 ρ̇2 = dω3 − 8λα ∧ ω1

ρ := −ρ3 + dt ∧ ω2 0 = dρ3 ρ̇3 = −dω2

�ρ := ρ2 + dt ∧ ω3

6 ϕ := ρ + dt ∧ ω 0 = dρ− λσ ρ̇ = dω − λ�ρ
ψ := σ − dt ∧ �ρ 0 = dσ σ̇ = −d�ρ

7 Ψ := ψ + dt ∧ ϕ 0 = dψ ψ̇ = dϕ

(1) The structure on Mk+1 is parallel if and only if the initial structure is hypo
(i.e. λ = 0) and evolves according to the evolution equations from the table.

(2) The structure on Mk+1 is nearly parallel if and only if the initial structure
is nearly hypo (i.e. λ �= 0) and evolves according to the evolution equations from
the table.

(3) The metric of the Gk+1-structure on I ×Mk is given by

g = dt2 + gt,

where gt is the family of metrics induced by the family of Gk-structures on Mk.

Proof: Choosing a Cayley frame (E2(t), .., Ek(t)) for the family of Gk-structures,
we obtain a Cayley frame for the lift by

(
d

dt
, E2(t), .., Ek(t)).

This proves that the lift actually defines a Gk+1-structure and that the metric is
given by the formula in (3). Since we already proved the case k = 7, we only have
to consider the cases k = 5 and k = 6:

k=5: By Lemma 4.5 we have

dω = dω1 + dt ∧ (ω̇1 − dα),

dρ = −dρ3 − dt ∧ (ρ̇3 + dω2),

d�ρ = dρ2 + dt ∧ (ρ̇2 − dω3),

and we see that the SU(3)-structure is parallel, i.e. dω = dρ = d�ρ = 0, if and
only if the whole family of SU(2)-structures is hypo and satisfies the evolution
equations from the table with λ = 0. Since the evolution equations preserve the
hypo condition, it suffices to require the initial SU(2)-structure to be hypo. The
SU(3)-structure is nearly parallel if and only if

dω = 6λρ = −6λρ3 + 6λdt ∧ ω2 and d�ρ = −4λω2 = −4λω2
1 − 8λdt ∧ α ∧ ω1,
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for some λ �= 0. Hence it suffices to show that the evolution equations preserve
0 = dω1 + 6λρ3 and 0 = dρ2 + 4λω2

1 . This follows from

d

dt
(dω1 + 6λρ3) = 6λdω2 − 6λω2 = 0

and, using ω1 ∧ ω2 = 0,
d

dt
(dρ2 + 4λω2

1) = −8λd(α ∧ ω1) + 8λ(ω1 ∧ dα) = 8λα ∧ dω1 = −64λ2α ∧ ρ3 = 0.

k=6: By Lemma 4.5 we have

dϕ = dρ + dt ∧ (ρ̇− dω),

dψ = dσ + dt ∧ (σ̇ + d�ρ).

Hence the G2-structure is parallel, i.e. dϕ = dψ = 0, if and only if the whole family
of SU(3)-structures is hypo and satisfies the evolution equations from the table
with λ = 0. Since the evolution equations preserve the hypo condition, it suffices to
require the initial SU(3)-structure to be hypo. The G2-structure is nearly parallel
if and only if

dϕ = λψ = λσ − λdt ∧ �ρ,

for some λ �= 0. Since the evolution equations imply
d

dt
(dρ− λσ) = −λd�ρ + λd�ρ = 0,

the Proposition follows.
�

Definition 4.7. Let Mk be a manifold of dimension k ∈ {5, 6, 7}, equipped with
a (nearly) hypo Gk-structure. A family of Gk-structures which solves the evolution
equations from Proposition 4.6 and equals the initial structure at t = 0 is called a
solution of the embedding problem for the initial Gk-structure.

The Hypo Lift

The lift from Proposition 4.6 does not preserve the hypo condition. This motivates

Definition 4.8. Let Mk be a manifold of dimension k ∈ {5, 6}, equipped with
a Gk-structure. We call

88



k = 5 k = 6

ω := ω3 + dθ ∧ α ϕ := −�ρ + dθ ∧ ω

σ := 1
2ω2

3 + dθ ∧ ρ3 ψ := σ − dθ ∧ ρ

ρ := ρ2 − dθ ∧ ω1

�ρ := −α ∧ ω1 − dθ ∧ ω2

the hypo lift of the Gk-structure to S1 ×Mk. Conversely, given a Gk+1-structure
on a manifold Mk+1 of dimension k+1, we obtain a Gk-structure on every oriented
hypersurface i : Mk �→ Mk+1 by

k = 5 k = 6

ω1 := −i∗( ∂

∂θ
�ρ) ρ := −i∗( ∂

∂θ
�ψ)

ρ2 := i∗ρ σ := i∗ψ

ρ3 := i∗( ∂

∂θ
�σ)

where ∂

∂θ
is a global vector field along i : Mk �→ Mk+1, which is orthonormal to

Mk. We call the Gk-structure the structure induced by the Gk+1-structure and ∂

∂θ
.

Note that we just applied the lifts from Proposition 4.6 to the structures

(α, ω3,−ω1,−ω2) = A(α, ω1, ω2, ω3),

respectively,
(ω,−�ρ, ρ) = I(ω, ρ, �ρ),

where A ∈ GL+(5) is defines by

A(e1, .., e5) := (e1, e3, e4, e2, e5).

Lemma 4.9. The hypo lift maps hypo structures to hypo structures.

Proof: In the SU(2)-case, we obtain dρ = 0 if dω1 = dρ2 = 0. The compatibility
condition ω2

3 = ω2
1 and dρ3 = 0 imply dσ = 0. For a hypo SU(3)-structure we

obtain immediately dψ = dσ + dθ ∧ dρ = 0.
�

We will now study the compatibility of the hypo lift with the evolution equations
from Proposition 4.6.
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Lemma 4.10. (1) Suppose ψ is a family of G2-structures on M7 = S1×M6 which
is the hypo lift of some family of SU(3)-structure (ρ, σ) on M6. Then

ψ̇ = dϕ ⇔
�

ρ̇ = dω

σ̇ = −d�ρ

(2) Suppose (ρ, σ) is a family of SU(3)-structures on M6 = S1 ×M5 which is the
hypo lift of some family of SU(2)-structure (ω1, ρ2, ρ3) on M5. Then

ρ̇ = dω

σ̇ = −d�ρ

�
⇔






ω̇1 = dα

ρ̇2 = dω3

ρ̇3 = −dω2

( 1
2ω2

3)· = d(α ∧ ω1)

Proof: By assumption we have ψ = σ − dθ ∧ ρ and ϕ = −�ρ + dθ ∧ ω. Hence

ψ̇ = σ̇ − dθ ∧ ρ̇ and dϕ = −d�ρ− dθ ∧ dω

and part (1) follows. Similarly for part (2),

ω = ω3 + dθ ∧ α, σ = 1
2ω2

3 + dθ ∧ ρ3,

ρ = ρ2 − dθ ∧ ω1, �ρ = −α ∧ ω1 − dθ ∧ ω2

gives

ρ̇ = ρ̇2 − dθ ∧ ω̇1,

dω = dω3 − dθ ∧ dα,

and

σ̇ = (
1
2
ω2

3)· + dθ ∧ ρ̇3,

−d�ρ = d(α ∧ ω1)− dθ ∧ dω2.

�

Lemma 4.11. Let ψ be a G2-structure on M7 with metric g.
(1) If M7 = S1 ×M6, then ψ is the hypo lift of some SU(3)-structure on M6 if
and only if

L ∂
∂θ

ψ = 0,
∂

∂θ
⊥gTM6 and g(

∂

∂θ
,

∂

∂θ
) = 1.

(2) If M7 = S1
2 ×S1

1 ×M5, then ψ is the hypo lift of some SU(2)-structure on M5

if and only if

L ∂
∂θi

ψ = 0,
∂

∂θi

⊥gTM5 and g(
∂

∂θi

,
∂

∂θj

) = δij ,

for i, j = 1, 2.
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Proof: If ψ is the hypo lift of some SU(2) or SU(3)-structure, we get L ∂
∂θi

ψ = 0
and the orthogonality condition on the S1-directions. Conversely, we define forms
σ and ρ on M7 by

ψ =
∂

∂θ
�(dθ ∧ ψ)

� �� �
=:σ

+dθ ∧ (
∂

∂θ
�ψ)

� �� �
=:−ρ

.

Since ∂

∂θ
is orthonormal to M6 and G2 acts transitively on S6, we can find a Caley

frame for which σ and ρ are of type σ0 and ρ0. Hence (σ, ρ) defines a SU(3)-structure
on each hypersurface {eiθ} ×M6. Since

0 = L ∂
∂θ

σ − dθ ∧ L ∂
∂θ

ρ

implies L ∂
∂θ

σ = L ∂
∂θ

ρ = 0, we see that σ and ρ are actually constant along the flow
of ∂

∂θ
. Part (2) of the Lemma follows similarly, using that G2 acts transitively on

pairs of orthonormal vectors.
�

The Model Case G2 ⊂ Spin(7)

Lemma 4.10 and 4.11 motivate the conjecture that the embedding problem for hypo
SU(2) and SU(3)-structures might be reduced to the embedding problem for G2-
structures. The reduction to the G2 case has the advantage that no compatibility
conditions are involved. To solve the embedding problem for hypo structures we
consequently focus on studying the evolution equation

ψ̇t = dϕt

on a compact seven dimensional manifold M7. Motivated by Theorem 1.6 we try
to find a solution of the form

ψt := Atψ,

where ψ is the initial hypo G2-structure and At ∈ C∞(Aut(TM)) is a family of
gauge deformations with A0 = id. First we translate the above evolution equation
into an equation for the family of gauge deformations.

Proposition 4.12. Suppose ψt = Atψ is a family of G2-structures on M7,
described by a family of gauge deformations At ∈ C∞(Aut(TM7)). If Tt = T (Atψ)
is the torsion endomorphism of ψt, then

ψ̇t = dϕt ⇔ Dψt(Ȧt ◦A−1
t

) = 3Dψt(Tt).
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Proof: By Lemma 1.16 and Proposition 3.38 we have

ψ̇t = Dψt(Ȧt ◦A−1
t

) and dϕt = 3Dψt(Tt)

and the Proposition follows.
�

We can now compute the evolution of the metric and the torsion endomorphism.

Theorem 4.13. Let ψt be a family of hypo G2-structures on M7, which evolves
under the flow ψ̇t = dϕt. Then the evolution of the underlying metric gt and the
torsion endomorphism Tt are given by

ġt(X, Y ) = −6gt(TtX, Y ),

ṪtX = −1
3
RictX + 3tr(Tt)TtX,

where Rict = Ric(gt) is the Ricci tensor of the metric gt.

Proof: By Theorem 1.6 we can describe the evolution by a family of gauge
deformations ψt = Atψ and Proposition 4.12 yields Dψt(Ȧt ◦ A−1

t
) = 3Dψt(Tt).

Since the evolution ψ̇t = dϕt preserves the hypo condition dψt = 0, or equivalently
Tt ∈ S2 w.r.t. gt, we get from Lemma 3.36

pr
S2(Ȧt ◦A−1

t
) = 3Tt.

Now Lemma 1.16 gives

ġt(X, Y ) = Dgt(Ȧt ◦A−1
t

)(X, Y ) = −2gt(pr
S2(Ȧt ◦A−1

t
)X, Y ) = −6gt(TtX, Y ).

By Lemma 4.4 we see that Wt = −3Tt and hence

−3gt(ṪtX, Y ) = rict(X, Y )− 9tr(Tt)gt(TtX, Y ),

where we used that the metric g = dt2 + gt on I ×M7 has holonomy contained in
Spin(7) and hence is Ricci flat.

�

The following theorem shows that the flow will not produce complete metrics with
special holonomy. In particular we can not expect to obtain periodic solutions which
would lead to compact manifolds with special holonomy. In fact, the observation is
that the length of the existence interval could be characteristic for the type of the
initial structure.

Theorem 4.14. Suppose ψ is a hypo G2-structures on a compact manifold M7.
Then the flow ψ̇t = dϕt is defined for all times t ∈ R if and only if the initial
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structure is already parallel.

Proof: The metric on the product M8 := R × M7 has holonomy contained in
Spin(7) and hence is Ricci flat. Since g = dt2 + gt, the first factor actually defines
a line and M8 is complete by Lemma 4.3. Now we can apply the Cheeger-Gromoll
Splitting Theorem and see that M8 splits as a Riemannian product. Note that the
line, i.e. the first factor of M8, is actually the one dimensional factor that splits
off in the decomposition as a Riemannian product, cf. Lemma 6.86 in [7]. Hence
gt = g0 is constant and Theorem 4.13 yields Tt = 0.

�

In Lemma 4.10 (1) we showed that a longtime solution of the SU(3) embedding
problem would yield a longtime solution for the G2 embedding problem. Combining
part (1) and (2) of Lemma 4.10, shows that a longtime solution of the SU(2)
embedding problem would also yield a longtime solution for the G2 embedding
problem if in addition the equation ( 1

2ω2
3)· = d(α ∧ ω1) is satisfied. If the initial

SU(2)-structure is hypo, we have dω1 = 0, for all times t. So

(
1
2
ω2

3)· = (
1
2
ω2

1)· = ω1 ∧ ω̇1 = ω1 ∧ dα = d(α ∧ ω1)

and we obtain the following SU(2) and SU(3)-analogue of Theorem 4.14.

Corollary 4.15. There are no non-trivial longtime solutions for the hypo SU(2)
and SU(3) embedding problem on compact manifolds.

�

In the nearly hypo case we can give a similar argument to show that there are no
non-trivial longtime solutions of the embedding problem. Namely such a solution
would yield a complete metric on the non-compact manifold R ×M with positive
Ricci curvature, which contradicts Myer’s Theorem.

In view of Proposition 4.12, the following theorem yields solutions of the G2 em-
bedding problem.

Theorem 4.16. Let ψ be a real analytic hypo G2-structure on the compact
manifold M7. Then the intrinsic torsion flow





Ȧt = 3Tt ◦At

A0 = id
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has a unique real analytic solution A : (−ε, ε) × M → End(TM). Moreover, the
solution At is of the form

At =
∞�

k=0

tk

k!
A(k)

0 ,

where the series converges in the C∞-topology on C∞(End(TM)).

Proof: To apply Theorem 2.11 we have to show that the map

X : C∞(Aut(TM)) → C∞(End(TM)) with X ◦A := 3T (Aϕ) ◦A

is a real analytic first order differential operator in the sense of Definition 2.10. For
this choose local coordinates u : U ⊂ M → R7, for which ϕ is real analytic. These
coordinates induce a local trivialization (π, v) of the bundle π : End(TM) → M via

v(A) := {akl}k,l=1..7, where A =
7�

k,l=1

aklduk ⊗
∂

∂ul

∈ End(TM).

For a fixed local section A =
�

aklduk ⊗ ∂

∂ul
: U → Aut(TM) write

X ◦A = 3T (Aϕ) ◦A =
7�

a,b=1

fabdua ⊗
∂

∂ub

.

Now it suffices to find an expression

(1) fab = Gab(u, akl,
∂akl

∂uj

)

for the coefficients fab : U → R, where Gab : D ⊂ R7 × R49 × R343 → R is real
analytic. The formula

∇AgAϕ = −3T (Aϕ)�(Aψ)

from Proposition 3.38 shows that the intrinsic torsion is a first order invariant of the
G2-structure and hence we can find an expression of the form (1) that is actually
polynomial in akl and ∂akl

∂uj
, and real analytic in u, since the initial structure is real

analytic.
�

Lemma 4.17. Suppose ψ is a G2-structure on M and F ∈ Diff(M). Then the
intrinsic torsion satisfies

T (F ∗ψ) = F ∗T (ψ) = F−1
∗ T (ψ)F∗.

Proof: By Koszul’s formula we have

F∗(∇F
∗
g

X
Y ) = ∇g

F∗X
F∗Y.
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Hence we get

(∇F
∗
g

X
F ∗ψ)(X1, X2, X3, X4)

= X · (F ∗ψ)(X1, X2, X3, X4)

− (F ∗ψ)(∇F
∗
g

X
X1, X2, X3, X4)− (F ∗ψ)(X1,∇F

∗
g

X
X2, X3, X4)

− (F ∗ψ)(X1, X2,∇F
∗
g

X
X3, X4)− (F ∗ψ)(X1, X2, X3,∇F

∗
g

X
X4)

= F∗X · ψ(F∗X1, F∗X2, F∗X3, F∗X4)

− ψ(∇g

F∗X
F∗X1, F∗X2, F∗X3, F∗X4)− ψ(F∗X1,∇g

F∗X
F∗X2, F∗X3, F∗X4)

− ψ(F∗X1, F∗X2,∇g

F∗X
F∗X3, F∗X4)− ψ(F∗X1, F∗X2, F∗X3,∇g

F∗X
F∗X4)

= (∇g

F∗X
ψ)(F∗X1, F∗X2, F∗X3, F∗X4)

= F ∗(∇g

F∗X
ψ)(X1, X2, X3, X4).

From Proposition 3.38 we know that ∇g

X
ψ = 3(T (ψ)�g) ∧ ϕ holds, which gives

3(T (F ∗ψ)X�F ∗g) ∧ F ∗ϕ = ∇F
∗
g

X
(F ∗ψ) = F ∗(∇g

F∗X
ψ)

= 3F ∗((T (ψ)F∗X�g) ∧ ϕ)

= 3(F−1
∗ T (ψ)F∗X�F ∗g) ∧ F ∗ϕ

and the Lemma follows from the non-degeneracy of F ∗ϕ.
�

Lemma 4.18. Suppose ψ is a G2-structure on M7 = S1 × ..× S1 ×M7−k, which
is the hypo lift of some SU(4 − k)-structure on M7−k. Then the Ricci tensor Ric
of the metric g = g(ψ) satisfies for each S1-direction ∂

∂θ

L ∂
∂θ

Ric = Ric
∂

∂θ
= dθ ◦ Ric = 0.

The intrinsic torsion T satisfies

L ∂
∂θ
T = T ∂

∂θ
= 0

and dθ ◦ T = 0 if the structure is hypo.

Proof: If ψ is the hypo lift of some structure on M7−k, then g = dθ2
1 + ..+ dθ2

k
+

g7−k, for some metric g7−k on M7−k. Hence the Ricci tensor satisfies Ric ∂

∂θ
= 0,

dθ ◦ Ric = g(
∂

∂θ
,Ric) = g(Ric

∂

∂θ
, .) = 0

and

L d
dθ

Ric =
d

ds

����
s=0

Φ∗
s
Ric(g) =

d

ds

����
s=0

Ric(Φ∗
s
g) =

d

ds

����
s=0

Ric(g) = 0.

From Proposition 3.2 and L ∂
∂θ

ϕ = ∇g ∂

∂θ
= 0, we get τ( ∂

∂θ
) = 0, i.e. T ∂

∂θ
= 0.

Lemma 4.17 and L ∂
∂θ

ϕ = 0 imply L ∂
∂θ
T = 0. If the structure is hypo, i.e. T is
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symmetric, we get in addition

dθ ◦ T = g(
∂

∂θ
, T ) = g(T ∂

∂θ
, .) = 0.

�

Lemma 4.19. Suppose ψ is a G2-structure on M7 = S1× ..×S1×M7−k, which is
the hypo lift of some SU(4−k)-structure on M7−k. If A ∈ C∞(Aut(TM)) satisfies

A
∂

∂θi

=
∂

∂θi

, dθi ◦A = dθi and L ∂
∂θi

A = 0,

then Aψ is still the hypo lift of some SU(4− k)-structure.

Proof: By Lemma 4.11 we have L ∂
∂θi

(Aψ) = 0 and

(Ag)(
∂

∂θi

, X) = g(
∂

∂θi

, A−1X) = dθi(A−1X) = dθi(X) = g(
∂

∂θi

, X).

Now the Lemma follows from Lemma 4.11.
�

We can now state the main result of this section.

Theorem 4.20. Suppose ψ is a real analytic hypo G2-structure on M = S1 ×
..×S1×M7−k, which is the hypo lift of some SU(4− k)-structure on M7−k. Then
the solution At of the intrinsic torsion flow from Theorem 4.16 satisfies

At

∂

∂θi

=
∂

∂θi

, dθi ◦At = dθi and L ∂
∂θi

At = 0.

In particular, Atψ is the hypo lift of some family of SU(4−k)-structures on M7−k.

Proof: We apply Corollary 2.4 with the following dictionary,

(1) F := C∞(End(TM))× C∞(End(TM))

(2) U := C∞(Aut(TM))× C∞(End(TM))

(3) E := {(B, T ) ∈ F | 0 = L ∂
∂θi

B = L ∂
∂θi

T and

0 = B ∂

∂θi
= T ∂

∂θi
= dθi(B) = dθi(T )}

(4) X : U → F is defined w.r.t. the initial metric g,

X|(A,T ) :=
�
3T ◦A,− 1

3Ric(Ag) + 3tr(T )T
�
.

(5) c(t) := (At, Tt).

Note that U ⊂ F is open by Example 2.1. X is smooth and E ⊂ F is closed, since
differential operators are smooth by Example 3.6.6. in [34]. By Proposition 4.12,
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Theorem 4.13 and the definition of At, the curve c(t) is an integral curve of the
vector field X. From Lemma 4.18 we get c(0) = (id, T0) ∈ Ef , where f := (id, 0) ∈ F .
Now it suffices to show that X is tangent to U ∩ Ef , i.e.

X|U∩Ef
: U ∩ Ef → E .

For (A = id + B, T ) ∈ U ∩ Ef we have

A
∂

∂θi

=
∂

∂θi

, dθi ◦A = dθi and L ∂
∂θi

A = 0.

By Lemma 4.19 we see that Aψ is still the hypo lift of some SU(4 − k)-structure
and Lemma 4.18 yields

L ∂
∂θi

Ric(Ag) = Ric(Ag)
∂

∂θi

= dθi ◦ Ric(Ag) = 0.

Now we can easily verify that X(A, T ) ∈ E ,

• L ∂
∂θi

(T ◦A) = 0 and L ∂
∂θi

(− 1
3Ric(Ag) + 3tr(T )T ) = 0,

• T ◦A ∂

∂θi
= 0 and (− 1

3Ric(Ag) + 3tr(T )T ) ∂

∂θi
= 0,

• dθi(T ◦A) = 0 and dθi(− 1
3Ric(Ag) + 3tr(T )T ) = 0

and the Theorem follows.
�

Remark 4.21. The property L ∂
∂θ

At = 0 from Theorem 4.16 is a consequence
of the diffeomorphism invariance of the evolution equation Ȧt = 3Tt ◦ At. In fact,
Lemma 4.17 shows that Bt := Φ∗

s
At also solves Ȧt = 3Tt ◦ At, where Φs is the

flow of ∂

∂θ
. Since Φs is real analytic, the uniqueness part of Theorem 4.16 yields

At = Φ∗
s
At, i.e. L ∂

∂θ
At = 0.

We can now solve the embedding problem for real analytic hypo SU(4−k)-structures
on M7−k by reducing it to the embedding problem for real analytic hypo G2-
structures on M = S1 × .. × S1 × M7−k. Namely, the hypo lift of the initial
SU(4− k)-structure yields a real analytic hypo G2-structures on M . Theorem 4.16
yields a solution At of the intrinsic torsion flow. By Theorem 4.20 the family of
G2-structures ψt = Atψ is still the hypo lift of some family of SU(4−k)-structures.
Now Lemma 4.10 proves that the family of SU(4 − k)-structures is a solution of
the embedding problem.

Corollary 4.22. For any real analytic hypo SU(2), SU(3) and G2-structure on
a compact manifold, the embedding problem admits a unique real analytic solution.

97



Moreover, the solution can be described by a family of gauge deformations

At =
∞�

k=0

tk

k!
A(k)

0 ,

where the series converges in the C∞-topology on C∞(End(TM)).

An alternative to solve the G2-embedding problem is to apply the Cauchy Kowa-
levski Theorem 2.11 directly to the initial value problem ψ̇t = dϕt with ψ0 = ψ. To
obtain a solution for the SU(2) and SU(3) embedding problem, it suffices to prove
that the family of metrics gt = g(ψt) leaves S1-directions orthonormal, cf. Lemma
4.11. With Lemma 3.29 this condition can be translated into

∂

∂θ
�ϕt ∧X�ϕt ∧ ϕt =

6
7
dθ(X)ϕt ∧ ψt.

But this condition is nonlinear and hence we can not apply Corollary 2.4, which
was tailor-made to prove that certain linear conditions are preserved. Considering
instead the system 4.13 allows us to express the requirement on the S1-directions
in terms of the linear condition Tt

∂

∂θ
= 0.

The Nearly Hypo Case

In this section we study the embedding problem for nearly hypo SU(2) and SU(3)-
structures. Like in the hypo case, one would expect that the nearly hypo evolution
equations for SU(3)-structures correspond under the hypo lift to the nearly hypo
evolution equations for SU(2)-structures. A direct computation shows that this is
not the case, which is due to the particular coefficients in the SU(2) evolution equa-
tions, coming from the nearly Kähler condition. Due to this deficit we will treat
both scenarios separately, starting with the SU(3)-case.

Theorem 4.23. For any real analytic nearly hypo SU(3)-structure (σ, ρ) on a
compact manifold, the embedding problem admits a unique real analytic solution.
Moreover, the solution is of the form

σt =
∞�

k=0

tk

k!
σ(k)

0 and ρt =
∞�

k=0

tk

k!
ρ(k)
0 ,

where the series converge in the C∞-topology.
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Proof: We can apply the Cauchy-Kowalevski Theorem 2.11 directly to the SU(3)-
evolution equations from Proposition 4.6. To see this, note that the components of
the tensors ω and �ρ can be computed as polynomials in the components of σ and
ρ, and that in local coordinates, the exterior derivative can be expressed as poly-
nomials in the directional derivatives. Now Theorem 2.5 from [49] shows that the
evolution equations already guarantee the SU(3)-compatibility conditions.

�

Similarly, we can apply the Cauchy-Kowalevski Theorem 2.11 directly to the SU(2)-
evolution equations from Proposition 4.6 and obtain

Theorem 4.24. For any real analytic nearly hypo SU(2)-structure (ω1, ρ2, ρ3)
on a compact manifold, the evolution equations

ω̇1 = dα + 6λω2,

ρ̇2 = dω3 − 8λα ∧ ω1,

ρ̇3 = −dω2

admit a unique real analytic solution. Moreover, the solution is of the form

ω1(t) =
∞�

k=0

tk

k!
ω(k)

1 (0) and ρ2/3(t) =
∞�

k=0

tk

k!
ρ(k)
2/3(0),

where the series converge in the C∞-topology.

To solve the embedding problem for nearly hypo SU(2)-structures one has to show
that the family of tensors from Theorem 4.24 actually defines a family of SU(2)-
structures, i.e. (ω1, ρ2, ρ3) has to satisfy the compatibility conditions from Pro-
position 3.7. Since this conditions are nonlinear, we can not apply Corollary 2.4.
Nevertheless, one might ask whether there is an analogue of Theorem 2.5 [49] for
the SU(2)-case. The main difference between the SU(2) and SU(3)-case is that
a reduction to SL(3, C) in dimension six can be described by a single 3-form ρ

and hence involves no compatibility conditions. In dimension five, reductions to
SL(2, C) correspond to triples (α, ω2, ω3) which have to satisfy certain compatibili-
ty conditions. Another SU(3)-specific ingredient in the proof of Theorem 2.5 [49] is
that ω∧ρ = 0 is actually equivalent to ω∧ �ρ = 0. Therefore we can not expect that
the evolution equations in the SU(2)-case imply all of the desired compatibility
conditions.
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5. Ricci flow for G2-Structures

By Yau’s proof of the Calabi conjecture, every Kähler structure (ω, g) on a complex
manifold (M, I) with c1 = 0, admits a unique Ricci flat Kähler structure (�ω, �g) with
[�ω] = [ω]. The restricted holonomy group of a Ricci flat Kähler structure is contai-
ned in SU(n) and hence the Calabi-Yau theorem can be regarded as an existence
result for manifolds with special holonomy. Cao [17] gave an alternative proof of the
Calabi conjecture, using Hamilton’s Ricci flow. We use gauge deformations to ex-
tend the Kähler-Ricci flow to a deformation of SU(3)-structures and characterize in
Theorem 5.13 the conditions for the flow to converge to a parallel SU(3)-structure.
Today a Calabi-Yau theorem is still missing for the G2-case. The only result in this
direction is a theorem due to Joyce, which is tailor made to prove the existence
of parallel G2-structures on certain resolutions of T 7/Γ, cf. [39] Thm. 11.6.1 and
Chap. 12.
The condition c1 = 0 is equivalent to the existence of a (topological) SU(n)-
reduction of the Kähler structure. From this point of view, the candidates to apply
the Calabi-Yau Theorem in dimension six are SU(3)-structures with intrinsic torsi-
on τ ∼= η, i.e. the Kähler part T of the intrinsic torsion vanishes, cf. Theorem 3.28.
This observation suggests that for G2-structures the condition c1 = 0 is already
encoded in the topological reduction to the structure group G2. So the actual task
at hand is to find the analogue of Kähler SU(3)-structures for the G2-case. Joyce
calls Kähler SU(3)-structures almost Calabi-Yau structures, cf. [38] Def. 8.4.3. His
proposal for a G2-analogue are almost G2-structures, satisfying dϕ = 0, cf. [38]
Def. 12.3.3. In our opinion, this is a disputable choice, since by Lemma 3.36 and
Proposition 3.38 we have

dϕ = 0 ⇔ T ∈ g2,

whereas for the SU(3)-case the Kähler condition becomes T = 0. The proof of
Theorem 3.28 actually shows that

dω = dρ = 0 ⇔ T ∈ su3 and η = 0,

which should therefore be regarded as the SU(3)-analogue of dϕ = 0. A second
glance at the intrinsic torsion shows that it is difficult to exhibit a Fernández-Gray
class of G2-structures that corresponds to Kähler SU(3)-structures. The reason for
this is that the structure tensor ϕ of a G2-structure contains information about the
Kähler form ω, but as well about the complex volume element ρ. This is manifested
in the formula ϕ = ρ + dθ ∧ ω and suggests that it is not advisable to translate
dω = 0 or NI = 0 into conditions like dϕ = 0 or dψ = 0.
Another reason why G2-structures with dϕ = 0 are inappropriate candidates for
Kähler G2-structures is a result due to Bryant, Cleyton and Ivanov. Namely, any
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Ricci flat G2-structures with dϕ = 0 is already parallel. In contrast, Ricci flat Käh-
ler structures have only restricted holonomy contained in SU(3). All this assures
the suspicion that non of the Fernández-Gray types is a an appropriate candidate.
Instead of searching a Kähler G2-analogue, one can more generally ask for Kähler
structures in dimension seven. In chapter four we already discussed that Sasakian
structures are at least not a natural choice for Kähler structures in odd dimension.
Sasakian G2-structures are even less suitable as Kähler G2-structures, since they do
not allow parallel tensors or Ricci flat metrics. The only remaining candidates are
Kähler SU(3)-structures from Theorem 3.46, which do not belong to a particular
Fernández-Gray type.
In this chapter we find a unifying description for the Ricci flow, the Kähler-Ricci
flow and the extension of the Kähler-Ricci flow to SU(n)-structures. This descripti-
on extends naturally to G2 and Spin7-structures and allows us to define a universal
Ricci flow. We prove existence and uniqueness of this flow. Another result is the
description of a fibrewise Kähler-Ricci flow, whose limit metrics can be resembled
to a Ricci flat metric on the ambient sevenfold.

Kähler Geometry

Let (M, I) be a 2n-dimensional manifold, equipped with an almost complex struc-
ture I. If we extend I to an endomorphism of the complexified tangent bundle
TM ⊗ C, we obtain a decomposition of TM ⊗ C into eigenspaces of I:

T (1,0)M := {X − iIX | X ∈ TM} = Eig(I, i),

T (0,1)M := {X + iIX | X ∈ TM} = Eig(I,−i).

Moreover, we define

T (1,0)∗M : = {α ∈ Λ1T ∗M ⊗ C | α(Z) = 0, for all Z ∈ T (0,1)M}

= {α− iα ◦ I | α ∈ Λ1T ∗M},

T (0,1)∗M : = {α ∈ Λ1T ∗M ⊗ C | α(Z) = 0, for all Z ∈ T (1,0)M}

= {α + iα ◦ I | α ∈ Λ1T ∗M}.

Note that if we consider I as an endomorphism of T ∗M via

Iα := −α ◦ I,

we have T (1,0)∗M = Eig(I,−i) and T (0,1)∗M = Eig(I, i). Denote by Λ(p,0), respec-
tively Λ(0,p), the pth exterior power of T (1,0)∗M , respectively T (0,1)∗M ,

Λ(p,0) := ΛpT (1,0)∗M and Λ(0,p) := ΛpT (0,1)∗M
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and let Λ(p,q) := Λ(p,0) ⊗ Λ(0,q), such that

ΛkT ∗M ⊗ C =
�

p+q=k

Λ(p,q).

Sections of Λ(p,q) are called (p, q)-forms and the bundle

K := Λ(n,0)

is called the canonical line bundle of (M, I).

We now turn to the case where the almost complex structure is integrable, i.e.
NI = 0. By the Newlander-Nirenberg theorem, the condition NI = 0 is equivalent
to the existence of an atlas of complex charts with holomorphic transition functions.
Given such a chart z = x + iy : U → Cn, defined on some open domain U ⊂ M , we
define:

g
jk̄

:= g(
∂

∂zj

,
∂

∂z̄k

),

where

Zj :=
∂

∂zj

:=
1
2
(

∂

∂xj

− i
∂

∂yj

) ∈ T (1,0)M,

Z̄j :=
∂

∂z̄j

:=
1
2
(

∂

∂xj

+ i
∂

∂yj

) ∈ T (0,1)M,

since
I

∂

∂xj

=
∂

∂yj

and I
∂

∂yj

= − ∂

∂xj

.

NI = 0 is also equivalent to the condition that the exterior derivative defines a map

d : C∞(Λ(p,q)M) → C∞(Λ(p+1,q)M ⊕ Λ(p,q+1)M),

for all 0 ≤ p, q ≤ n. The projection onto the (p + 1, q) (resp. (p, q + 1)) component
defines operators ∂ (resp. ∂̄) such that

d = ∂ + ∂̄.

Moreover, we define the operator

dc := i(∂̄ − ∂),

which is actually a real operator, i.e. dcα is a real (k +1)-form if α is a real k-form.
The following formulas are an easy consequence of d2 = 0 and the above definitions,

∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0,

(dc)2 = ddc + dcd = 0,

∂ =
1
2
(d + idc), ∂̄ =

1
2
(d− idc) and ddc = 2i∂∂̄.
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Note also that for f : M → R always

Idf = I(∂f + ∂̄f) = −i∂f + i∂̄f = dcf

holds.

Lemma 5.1. Let η be any 1-form on the complex manifold (M, I). Then dcη = 0
if and only if d(Iη) = 0. In particular, dc-closed 1-forms are locally dc-exact.

Proof: Write η = η10+η01 according to the decomposition Λ1T ∗M = Λ(1,0)T ∗M⊕
Λ(0,1)T ∗M . Then dcη = i(∂̄ − ∂)η = 0 if and only if

(1) ∂η10 = ∂̄η01 = ∂η01 − ∂̄η10 = 0.

Since Iη = −iη10 + iη01, we see that dIη = (∂ + ∂̄)Iη = 0 is also equivalent to (1)
and the first part of the Lemma follows. Now for dcη = 0, we have by the Poincaré
Lemma Iη = du, for some local function u : U ⊂ M → R. Hence

η = −Idu = dc(−u).

�

A proof of the next lemma can for instance be found in [3].

Lemma 5.2. Let (M, I) be a complex manifold and ω a real (1, 1)-form on M .

(i) ω is closed, if and only if each point in M has an open neighborhood U ,
such that

ω|U = i∂∂̄u,

for some real function u : U → R.

(ii) Suppose that M is compact. Then ω is exact, if and only if

ω = i∂∂̄u

for some real function u : M → R.

For a compact Kähler manifold M , the equation ∂∂̄u = 0 implies that u is constant.
Hence the second part of Lemma 5.2 states that the Kähler metrics on a compact
complex manifold (M, I), within a fixed Kähler class, are parameterized by smooth
real valued functions on M .

From ∇gI = 0, we see that the curvature operator of a Kähler structure satisfies

R(X, Y )IZ = IR(X, Y )Z,
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and hence
R(IX, IY, Z, U) = R(X, Y, Z, U) = R(X, Y, IZ, IU),

for all X, Y, Z, U ∈ C∞(TM). Then the Ricci tensor ric(X, Y ) =
�2n

j=1 R(Ei, X, Y, Ei)
satisfies

ric(IX, IY ) = ric(X, Y ) and Ric ◦ I = I ◦ Ric,

which shows that
�(X, Y ) := ric(IX, Y )

defines a 2-form on M , which is called the Ricci form of the Kähler structure.

Proposition 5.3. Let (g, ω, I) be a Kähler structure on M with Ricci form �.
In local coordinates z : U → Cn we have

� = −i∂∂̄ln det(g
jk̄

) and ric = −∂∂̄ln det(g
jk̄

).

Moreover, d� = 0 and [�/2π] = c1(TM) equals the first real Chern class of M .

Proof: ∇gI = 0 implies
∇g

Zj
Z̄k = ∇g

Z̄j
Zk = 0

and the unmixed Christoffel symbols are defined by

∇g

Zj
Zk =

�

l

Γl

jk
Zl and ∇g

Z̄j
Z̄k =

�

l̄

Γl̄

j̄k̄
Z̄l.

Since

R
jk̄l

= R(Zj , Z̄k, Zl) = −∇g

Z̄k
∇g

Zj
Zl = −

�

s

� ∂

∂z̄k

· Γs

lj

�
Zs,

we have

(1) Rj

jk̄l
= − ∂

∂z̄k

· Γj

lj
.

Writing G := (g
jk̄

), we compute

∂

∂zj

ln det(G) = tr(
∂G

∂zj

G−1)

and
� ∂G

∂zj

G−1
�
kl

=
�

r

(Zj · gkr̄)G−1
rl

=
�

r

g(∇g

Zj
Zk, Z̄r)G−1

rl
=

�

r,s

Γs

jk
GsrG

−1
rl

= Γl

jk
,

i.e.

(2)
∂

∂zj

ln det(G) =
�

l

Γl

jl
.

Putting together (1) and (2) we obtain

ric
jk̄

= ric
k̄j

=
�

l

Rl

lk̄j
= −

�

l

∂

∂z̄k

· Γl

jl
= − ∂

∂z̄k

∂

∂zj

ln det(G).(3)
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Since ric(I., I.) = ric, we see that ricjk = ric
j̄k̄

= 0 and hence

� = i
�

jk

ric
jk̄

dzj ∧ dz̄k

= −i
�

jk

∂

∂z̄k

∂

∂zj

ln det(G)dzj ∧ dz̄k

= i∂̄∂ln det(G)

= −i∂∂̄ln det(G).

The identities for the operators ∂ and ∂̄ show that in particular d� = 0 holds. Since
tr(A + iB) = itr(B), for an element A + iB ∈ u(n), we obtain for the curvature,
regarded as a u(n) valued 2-form,

tr(R(X, Y )) = i
n�

j=1

g(R(X, Y )Ej , IEj).

Now the first Bianchi identity gives

�(X, Y ) = ric(IX, Y ) =
n�

j=1

g(R(Ej , IX)Y, Ej) + g(R(IEj , IX)Y, IEj)

=
n�

j=1

g(R(Ej , IX)IY, IEj)− g(R(IEj , IX)IY, Ej)

=
n�

j=1

g(R(IX, Ej)IEj , IY ) + g(R(IEj , IX)Ej , IY )

= −
n�

j=1

g(R(Ej , IEj)IX, IY ) = −
n�

j=1

g(R(Ej , IEj)X, Y )

= −
n�

j=1

g(R(X, Y )Ej , IEj) = itr(R(X, Y ))

and hence
c1(TM) = [

i

2π
tr(R)] = [

1
2π

�].

�

Proposition 5.4. Let (g, ω, I) be a Kähler structure on M with canonical bundle
K. The curvature of the Levi-Civita connection on K satisfies

R(X, Y )Φ = i�(X, Y )Φ,

for all sections Φ ∈ C∞(K) and vector fields X, Y ∈ C∞(TM). In particular,

c1(K) = [
i

2π
i�] = [− 1

2π
�].
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Proof: The Levi-Civita connection induces a connection on ΛnT ∗M ⊗ C and,
since ∇gI = 0, a connection on K ⊂ ΛnT ∗M ⊗ C. The curvature R of the Levi-
Civita connection on ΛkT ∗M ⊗ C acts by derivation, i.e.

R(X, Y )ω =
d

dt

����
t=0

exp(tR(X, Y ))ω,

for ω ∈ C∞(ΛkT ∗M ⊗ C). Hence we get for a complex volume form Φ ∈ C∞(K)

R(X, Y )Φ =
d

dt

����
t=0

exp(tR(X, Y ))Φ

=
d

dt

����
t=0

detC(exp(−tR(X, Y ))Φ

= −tr(R(X, Y ))Φ

= i�(X, Y )Φ,

as we have seen in the proof of Proposition 5.3.
�

Proposition 5.5. Suppose (g, ω, I) is a Kähler structure on M with Ricci form
� and first real Chern class c1(TM). Then

(i) c1(TM) = 0 ⇔ [�] = 0 ⇔ (g, ω, I) is a Kähler SU(n)-structure

(ii) ric = 0 ⇔ � = 0 ⇔ Hol0(g) ⊂ SU(n)

Proof: By Proposition 5.3 and 5.4, we have c1(TM) = 0 ⇔ c1(K) ⇔ [�] = 0.
Since the first Chern class is a complete invariant for complex line bundles, i.e. the
first Chern class c1 ∈ H2(M ; Z) classifies the line bundle up to isomorphism, we see
that c1(K) = 0 is equivalent to the existence of a global section Φ = ρ+i�ρ ∈ C∞(K)
of unit length. Such a section corresponds to a further reduction of the Kähler
structure to a (topological) SU(n)-structure.
For the second equivalence in (ii) recall that i� is the curvature of K by Proposition
5.4 and that the vanishing of the curvature is equivalent to the existence of local
parallel sections in K. This can be seen as follows: Fix p ∈ M and an element
Φ0 ∈ Kp of unit length. For U ⊂ M open and simply connected, we define a local
section Φ : U → K as follows: For q ∈ U choose a curve c : [0, 1] → M with c(0) = p

and c(1) = q. Parallel translation of Φ0 ∈ Kp along c gives an element

Φ(q) ∈ Kq.

Since ric = 0, the canonical bundle has Hol0 = {1} by Proposition 5.3 and the
Ambrose-Singer Theorem. Therefore Φ(q) ∈ Kq is independent of the choice of c

and we obtain a well-defined section Φ : U → K, which is of unit length and par-
allel.

�
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Cao’s Solution of the Calabi Conjecture

Let (g, ω) be a Kähler structure on a compact complex manifold (M, I) with Ricci
form � and first real Chern class c1(TM). Hamilton shows in [35] that the initial
metric can be evolved under the Ricci flow ġt = −2rict for a short time t ∈ [0, T ).
Hamilton [35] also mentions that the solution of the Ricci flow actually yields a who-
le family of Kähler metrics {gt} on (M, I). In order to prove the Calabi-Conjecture,
Cao [17] considers the following Kähler-Ricci flow on the complex manifold (M, I)

ġt = −2rict − 2T (I., .),

ω̇t = −2�t + 2T,
(1)

where T is a real (1, 1)-form such that [T/2π] = c1(TM) = [�/2π]. By Lemma 5.2
(ii) we can find f : M → R such that

(2) T − � = i∂∂̄f.

To solve (1), we try to find a solution of the form

(3) gt := g − i∂∂̄ut(I., .),

or equivalently,

(4) ωt := ω + i∂∂̄ut,

where ut : M → R is a smooth family of functions on M . Note that 2i∂∂̄ut = ddcut

is actually a real (1,1)-form and that ωt − ω is exact, i.e. [ωt] = [ω]. In local
coordinates we have

(5) �t := −i∂∂̄ln det(gt(
∂

∂zj

,
∂

∂z̄k

))

and we see that ω̇t = −2�t + 2T becomes

∂∂̄u̇t = 2∂∂̄ln det(g
jk̄

+
∂

∂zj

· ∂

∂z̄k

· ut)− 2∂∂̄ln det(g
jk̄

) + 2∂∂̄f.

Equivalently, by the maximum principle,

(6) u̇t = 2ln det(g
jk̄

+
∂

∂zj

· ∂

∂z̄k

· ut)− 2ln det(g
jk̄

) + 2f.

So (1) can be reduced to the scalar equation (6), which is actually a complex
Monge-Amperé equation. Cao studies this equation in [17] and his main result can
be summarized in the following

Theorem 5.6. Suppose (g, ω) is a Kähler structure on the complex manifold
(M, I) and that T/2π is a closed real (1, 1)-form which represents the first real
Chern class c1(TM) of M . Then the solution of

ġt = −2rict − 2T (I., .)
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exists for all times t ∈ [0,∞). As t → ∞, the solution gt converges in the C∞-
topology to a Kähler metric g∞ within the same Kähler class as the initial metric.
Moreover, ġt converges in the C∞-topology to zero.

Remark 5.7. Since gt converges in C∞-topology to the metric g∞, the Ricci
tensor rict = ric(gt) converges to the Ricci tensor of the metric g∞. Taking the
limit of ġt = −2rict− 2T (I., .), we conclude that the Ricci form of the metric g∞ is
equal to T . Hence Cao’s Theorem can be used to prove the existence statement of
the Calabi conjecture.

An Extension of Cao’s Result to SU(n)-Structures

From Proposition 5.5 we know that Kähler SU(n)-structures are precisely the Käh-
ler structures with vanishing first Chern class. In this case Cao’s Theorem yields
a Ricci flat Kähler metric. On the other hand, Proposition 5.5 also tells us that
Ricci flat Kähler structures are precisely the Kähler structures with local holonomy
contained in SU(n). This brings up the question whether the Ricci flow for U(n)-
structures in Theorem 5.6 can be extended to a deformation of SU(n) structures,
such that the limit structure has holonomy contained in SU(n). In the following
we will discuss an approach to extend the Kähler-Ricci flow to SU(n) structures.

Definition 5.8. (i) Suppose that (gt, ωt) is the solution of the Kähler-Ricci flow
on (M, I) with initial data (g, ω). By Example 1.8 we can find a gauge deformation
At which is symmetric and positive w.r.t. g and satisfies

(gt, ωt, I) = At(g, ω, I).

We call At the corresponding gauge deformation for the Ricci flow (gt, ωt, I).

(ii) If the initial structure is a Kähler SU(n)-structure (g, ω, ρ), we obtain a 1-
parameter family of Kähler SU(n)-structures by

ρt := Atρ.

We call (gt, ωt, ρt) the canonical extension of the Kähler-Ricci flow to the SU(n)-
Kähler structure (g, ω, ρ). From AtI = IAt and ρ ∈ Λ(3,0) w.r.t. I, we get

ρt = Atρ = detC(A−1
t

)ρ,

where detC(A−1
t

) ∈ R, since At is hermitian.
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An alternative to the canonical extension of the Kähler-Ricci flow is motivated by
the following observation: Since

Dω(Ric) = −
2n�

i=1

Ei ∧ Ric(Ei)�ω = −2prΛ2(I ◦ Ric) = −2�,

the evolution equation ω̇t = −2�t can be reformulated as

ω̇t = Dωt(Rict).

Similarly, Dgt(Rict) = −2rict gives

ġt = Dgt(Rict).

Hence any initial SU(3)-Kähler structure (g, ω, ρ) should evolve according to

(ġt, ω̇t, ρ̇t) = (Dgt(Rict), Dωt(Rict), Dρt(Rict)) =: D(gt,ωt,ρt)(Rict)

and indeed we have

Theorem 5.9. The canonical extension (gt, ωt, ρt) of the Kähler-Ricci flow to
SU(3)-structures satisfies

(ġt, ω̇t, ρ̇t) = D(gt,ωt,ρt)(Rict).

Proof: We have already seen that the equations ġt = Dgt(Rict) and ω̇t =
Dωt(Rict) hold for the canonical extension (gt, ωt, ρt) = At(g, ω, ρ) of the Kähler-
Ricci flow. By Lemma 1.14, Lemma 1.16 and Lemma 3.23 we have

ġt = Dgt(Rict) ⇔ Dgt(ȦtA
−1
t

) = Dgt(Rict)

⇔ pr
S2(ȦtA

−1
t

) = Rict,

ω̇t = Dωt(Rict) ⇔ Dωt(ȦtA
−1
t

) = Dωt(Rict)

⇔ pru⊥3
(ȦtA

−1
t

) = 0 and prRid⊕I0su3
(ȦtA

−1
t

) = prRid⊕I0su3
(Rict),

where all projections are taken w.r.t. the structure (gt, ωt, ρt). Similarly, the equa-
tion ρ̇t = Dρt(Rict) is equivalent to

(1) pru⊥3 ⊕RI0
(ȦtA

−1
t

) = 0 and prRid⊕S
2
12

(ȦtA
−1
t

) = prRid⊕S
2
12

(Rict).

By Example 1.8 we have AtI = IAt and AT

t
= At w.r.t. the initial metric g. Since

the complex structure is preserved, we get

prRI0
(ȦtA

−1
t

) = �ȦtA
−1
t

, I�t = −tr(ȦtA
−1
t

I) = −tr((ȦtA
−1
t

I)T )

= tr(IA−1
t

Ȧt) = tr(A−1
t

IȦt) = tr(ȦtA
−1
t

I)

= −prRI0
(ȦtA

−1
t

).

So prRI0
(ȦtA

−1
t

) = 0 and since already pr
S2(ȦtA

−1
t

) = Rict and pru⊥3
(ȦtA

−1
t

) = 0
holds, the evolution equation ρ̇t = Dρt(Rict) follows from (1).

�
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Lemma 5.10. Let At be the gauge deformation corresponding to the Ricci flow
(gt, ωt) on (M, I). Then for local holomorphic coordinates z on M

detC(gt(
∂

∂zj

,
∂

∂z̄k

)) = detC(A−2
t

) detC(g(
∂

∂zj

,
∂

∂z̄k

)).

Proof: First observe that

αt,k := gt(.,
∂

∂z̄k

) =
1
2

�
gt(.,

∂

∂xk

)− igt(.,
∂

∂xk

) ◦ I

�
∈ T ∗(1,0)M

and that for Φt := αt,1 ∧ .. ∧ αt,n ∈ Λ(n,0)T ∗M

Φt(
∂

∂z1
, ..,

∂

∂zn

) = detC(αt,k(
∂

∂zj

)) = detC(gt(
∂

∂zj

,
∂

∂z̄k

))

holds. From gt = Atg and At ∈ S2 w.r.t. g, we get

αt,k = g(A−1
t

., A−1
t

∂

∂z̄k

) = g(A−2
t

.,
∂

∂z̄k

) = A2
t
αk,

i.e. Φt = A2
t
Φ = detC(A−2

t
)Φ and hence

detC(gt(
∂

∂zj

,
∂

∂z̄k

)) = detC(A−2
t

)Φ(
∂

∂z1
, ..,

∂

∂zn

) = detC(A−2
t

)detC(g(
∂

∂zj

,
∂

∂z̄k

)).

�

Lemma 5.11. Let At be the gauge deformation corresponding to the Ricci flow
(gt, ωt) on (M, I). Then the Ricci form �t of the metric gt satisfies

�− �t = ddcln detC(A−1
t

).

Proof: By Proposition 5.3 and Lemma 5.10 we have in local coordinates

�t = −i∂∂̄ln detC(g
t,jk̄

)

= −i∂∂̄ln
�

detC(A−2
t

) detC(g
jk̄

)
�

= −2i∂∂̄ln (detC(A−1
t

))− i∂∂̄ln detC(g
jk̄

)

= −ddcln detC(A−1
t

) + �.

�

Lemma 5.12. Suppose (g, ω, ρ) is a Kähler SU(3)-structure on (M, I) with int-
rinsic torsion η, cf. Definition 3.24. Then the Ricci form satisfies

� = −3dη.

Proof: The Lemma is a special case of Lemma 3.3 in [15]. The Kähler condition
ξ = 0 (in the notation of [15]) yields Ric = −3dη̂, where η̂ ∼= −η in our notation,
since the intrinsic torsion is defined in [15] by ∇̄ = ∇ + η + ξ, where ∇̄ is the
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covariant derivative of the characteristic SU(3)-connection and ∇ is the Levi-Civita
connection. Since Cabrera and Swann use the opposite sign convention for the
curvature tensor, we obtain in our notation

�(X, Y ) = ric(IX, Y ) = −ric(X, IY ) = 3dη(X, I2Y ) = −3dη(X, Y ).

�

We can now describe the condition under which the canonical extension of the
Kähler-Ricci flow yields a parallel SU(3) structure:

Theorem 5.13. Suppose (g, ω, ρ) is a SU(3)-Kähler structure on (M, I) with
intrinsic torsion η, cf. Definition 3.24. Then the canonical extension of the Kähler-
Ricci flow converges to a parallel SU(3)-structure on M if and only if dcη = 0.

Proof: By Cao’s Theorem the Kähler-Ricci flow converges to a Ricci flat Kähler
structure (g∞, ω∞) on (M, I). If A∞ denotes the corresponding gauge deformation,
we have

ρ∞ = detC(A−1
∞ )ρ.

The SU(3)-structure is parallel if and only if dρ∞ = 0 holds. By Proposition 3.25
we have

dρ∞ = d(detC(A−1
∞ )) ∧ ρ + detC(A−1

∞ )dρ

= d(detC(A−1
∞ )) ∧ ρ + 3detC(A−1

∞ )η ∧ �ρ

= d(detC(A−1
∞ )) ∧ ρ− 3detC(A−1

∞ )Iη ∧ ρ.

From the non-degeneracy of ρ we see that dρ∞ = 0 is equivalent to

0 = d(detC(A−1
∞ ))− 3detC(A−1

∞ )Iη

⇔ 0 = dc(detC(A−1
∞ )) + 3detC(A−1

∞ )η

⇔ 0 = dcln(detC(A−1
∞ )) + 3η.

(1)

So dρ∞ = 0 implies dcη = 0. If conversely dcη = 0 holds, we can find by the Poincaré
Lemma 5.1 a local function u : U ⊂ M → R such that η = dcu. By construction,
the metric g∞ is Ricci flat and hence we obtain form Lemma 5.11

� = ddcln detC(A−1
∞ ).

By Lemma 5.12 we have � = −3dη and so

ddcu = dη = −1
3
� = −1

3
ddcln detC(A−1

∞ ).

Hence −3u = ln detC(A−1
∞ ) + c, for some constant c ∈ R. So −3η = −3dcu =

dcln detC(A−1
∞ ), which yields (1).

�
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Universal Ricci Flow

In the previous section we have seen that the Ricci flow for O(n) and U(n)-
structures, as well as the canonical extension to SU(n)-structures, can be described
in a unified way, using the map from Lemma 1.14:

O(n) : ġt = Dgt(Rict)
U(n) : (ġt, ω̇t) = D(gt,ωt)(Rict)
SU(n) : (ġt, ω̇t, ρ̇t) = D(gt,ωt,ρt)(Rict)

This motivates the conjecture that for a given G2-structure ϕ on M with sufficiently
small torsion, the flow

(1) ϕ̇t = Dϕt(Rict)

should converge to a Ricci-flat G2-structure. Similar flow equations can be conside-
red for Spin7-structures, or more generally, for any G ⊂ O(n) structures, described
by certain structure tensors. Like in the proof of Theorem 4.13, we see that the
metric of the underlying structure evolves according to the Ricci flow ġt = −2rict.
In contrast to the G2-case, the orbit of the model tensor is not open in the Spin7-
case. Hence it is not obvious that a Spin7-structure evolving according to (1) ac-
tually defines a whole family of Spin7-structures. To avoid this problem, we can
translate the above flow equation into an equation for a corresponding family of
gauge deformations. By Lemma 1.16 we have Dϕt(ȦtA

−1
t

) = ϕ̇t, for ϕt = Atϕ.
Hence a solution of Ȧt = Rict ◦At yields a solution ϕt = Atϕ of (1).

Theorem 5.14. Let (M, g) be a compact Riemannian manifold. Then there exists
a unique solution At ∈ C∞(Aut(TM)), t ∈ [0, T ), of the initial value problem





Ȧt = Rict ◦At

A0 = id

Proof: Since M is compact we can find a solution gt, t ∈ [0, T ), of the usual Ricci
flow

(1) ġt = −2rict with gt=0 = g0.

Given an orthonormal basis p = (E1, .., En) for g, we can solve the linear ODE

(2) Ėi(t) = Rict ◦ Ei(t) with Ei(0) = Ei,

for i = 1, .., n and t ∈ [0, T ). From (1) and (2) we get

d

dt

�
gt(Ei(t), Ej(t))

�
= −2rict(Ei(t), Ej(t)) + rict(Ei(t), Ej(t)) + rict(Ei(t), Ej(t))

= 0,
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i.e. pt := (E1(t), .., En(t)) is actually an orthonormal basis w.r.t. the metric gt.
Modifying the initial basis p by an element B ∈ O(n) yields a new basis pB given
by

Ẽi := pBei =
n�

j=1

bijEj .

Hence Ẽi(t) :=
�

n

j=1 bijEj(t) satisfies Ẽi(0) = Ẽi and

d

dt
Ẽi =

n�

j=1

bijRict ◦ Ei(t) = Rict ◦ Ẽi(t).

Since the solution of (2) is unique, we get

(3) (pB)t = ptB,

for all B ∈ O(n). For t ∈ [0, T ) define

At : F gM → Aut(Rn) by At(p) := p−1 ◦ pt.

Equation (3) shows that At is equivariant,

At(pB) = (pB)−1 ◦ pt ◦B = B−1 ◦ p−1 ◦ pt ◦B = B−1At(p)

and hence corresponds to an element At ∈ Aut(TM), given by

AtEi = Ei(t).

Now

(Atg0)(Ei(t), Ej(t)) = g0(A−1
t

Ei(t), A−1
t

Ej(t))

= g0(Ei, Ej)

= gt(Ei(t), Ej(t))

shows that

(4) Atg0 = gt

holds. From (3) we get Rict = Ric(gt) = Ric(Atg0) and (2) becomes

Ėi(t) = Ric(Atg0) ◦ Ei(t) ⇔ ȦtEi = Ric(Atg0) ◦AtEi,

i.e. Ȧt = Ric(Atg0) ◦At.
�

Definition 5.15. Let (M, g) be a compact Riemannian manifold of dimension
n and let At be the unique solution of





Ȧt = Rict ◦At

A0 = id

from Theorem 5.14.
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(1) We call At the universal Ricci flow for (M, g).

(2) If n = 7 and g = g(ϕ), where ϕ is a G2-structure on M , then we call
ϕt := Atϕ the Ricci flow for ϕ.

(3) If n = 8 and g = g(Ψ), where Ψ is a Spin7-structure on M , then we call
Ψt := AtΨ the Ricci flow for Ψ.

Note that the Ricci flow satisfies by Lemma 1.16

G2 : ϕ̇t = Dϕt(Rict),
Spin7 : Ψ̇t = DΨt(Rict).

In contrast to the usual Ricci flow equation, the equation Ȧt = Rict ◦ At is not
invariant under the full diffeomorphism group of M . Nevertheless, Ȧt = Rict ◦At is
invariant under the group Isom(M, g) and hence any isometry of the initial metric
is preserved under the flow.

Remark 5.16. We proved in Theorem 5.9 that the canonical extension of the
Kähler-Ricci flow already satisfies the evolution equation

(ġt, ω̇t, ρ̇t) = D(gt,ωt,ρt)(Rict).

This brings up the question whether the Ricci flow for a metric g, coming from
some G2-structure ϕ on M , can be extended canonically to a solution ϕt of

ϕ̇t = Dϕt(Rict).

Like in the SU(3)-case we can write gt = Atg for the solution of the Ricci flow.
Here At is symmetric and positive w.r.t. the initial metric g. Then the canonical
extension of the Ricci flow to the whole G2-structure would be ϕt := Atϕ. However,
the proof of Theorem 5.9 does not carry over to the G2-case. One critical ingredient
in the proof of Theorem 5.9 was the fact that the corresponding gauge deformation
preserves the complex structure. This property stems from the assumption that
the initial structure is actually Kähler. For a generic G2-structure, the family of
gauge deformations At, describing the Ricci flow, do not necessarily contain enough
symmetries to reproduce the proof of Theorem 5.9.
As a consequence, a G2-structure for which the Ricci flow converges to a Ricci flat
G2-structure, should have the property that the canonical extension yields a solu-
tion of ϕ̇t = Dϕt(Rict).
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Fibrewise Ricci Flow

Given a SU(3) structure (α, ϕ) on a compact seven dimensional manifold M with
dα = 0, we obtain a fibration of M into compact integral manifolds of ker(α). On a
fixed integral manifold i : N �→ M , the G2-structure ϕ induces a SU(3)-structure
by

gN := i∗g, ωN := i∗ω and ρN := i∗ρ.

Conversely, the collection of metrics {gN} on all integral manifolds N ⊂ M deter-
mines the metric on M by

g = {gN}+ α⊗ α.

Similarly we have

ω = {ωN} and ϕ = {ρN}+ α ∧ {ωN}.

In this section we will evolve the induced SU(3)-structures under the Ricci flow
and resemble the evolved structures to a SU(3)-structure on M . To obtain again a
smooth structure on M , we need the following Lemma, which states that the Ricci
flow depends smoothly on the initial metric.

Lemma 5.17. Let M be a compact manifold and gs a smooth 1-parameter family
of metrics on M . Denote by gs(t) the unique solution of






d

dt
gs(t) = −2ric(gs(t))

gs(0) = gs,

for t ∈ [0, Ts) and Ts := T (gs) > 0. Then gs(t) depends smoothly on s.

Proof: Let F be the vector bundle over M , whose fibres consist out of symmetric
bilinear maps TpM × TpM → R and denote by U ⊂ F the subset of positive
symmetric bilinear maps. Then

U := C∞(M × [0, 1], U) ⊂ C∞(M × [0, 1], F ) =: F

is an open subset of the Fréchet space F , cf. Example 2.1. Hamilton applies the
Nash-Moser inverse function theorem to the operator

E : U ⊂ F → F × C∞(M,F )

f �→ (
df

dt
− E(f), f|{t=0}),

where E(f) := −2ric(f), cf. the proof of Theorem 5.1, p.263 in [35]. The Nash-
Moser inverse function theorem states that E is locally invertible and each (local)
inverse is a smooth tame map, cf. [35] III Theorem 1.1.1. Now the solution for the
Ricci flow with initial data f(0) ∈ C∞(M,F ) is given by f := E−1(0, f(0)), where
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E−1 is the local inverse of E , defined in some neighborhood of (0, f(0)). Since E−1

is smooth, we see that a smooth variation s �→ fs(0) of the initial value yields a
solution fs := E−1(0, fs(0)) that depends smoothly on s.

�

On a fixed (compact) integral manifold N ⊂ M we can evolve the metric gN under
the Ricci flow for some time t ∈ [0, TN ) ⊂ R. Since M is compact, we can find
0 < T ≤ ∞ such that the Ricci flow exists on each integral manifold for at least
time T . Lemma 5.17 can be used to show that the solutions of the Ricci flow on
each integral manifold can be resembled to a smooth tensor on M .

Lemma 5.18. Suppose that the Ricci flow gN (t) exists on each integral manifold
N ⊂ M for at least time t ∈ [0, T ), 0 < T ≤ ∞.
(1) The tensor

gt := {gN (t)}+ α⊗ α

defines a family of smooth metrics on M .

(2) Let AN (t) be the gauge deformation from Example 1.7 such that gN (t) =
AN (t)gN . Then

At := {AN (t)}+ α⊗ ξ

is smooth and satisfies gt = Atg.

Proof: We first prove the smoothness of gt: Fix an integral manifold N ⊂ M and
let Ns := Φs(N), where Φs is the flow of ξ. Extending X, Y ∈ C∞(TN) under the
flow Φs via

X̃
���
(s,p)

:= Φs∗ X|
p

and Ỹ
���
(s,p)

:= Φs∗ Y |
p

yields smooth local vector fields on M . We will show that

M � (s, p) �−→ {gN (t)}(X̃
���
(s,p)

, Ỹ
���
(s,p)

) ∈ R

is smooth. To see this, observe that

gs(t) := Φ∗
s
gNs(t)

defines a family of metrics on N which satisfies





d

dt
gs(t) = −2ric(gs(t))

gs(0) = Φ∗
s
gNs .

So

(s, p) �−→ {gN (t)}(X̃
���
(s,p)

, Ỹ
���
(s,p)

) = gNs(t)(Φs∗ X|
p
,Φs∗ Y |

p
) = gs(t)(X|

p
, Y |

p
)
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is smooth in s by Lemma 5.17, and smooth in p, since gs(t) is a smooth metric on
N . Choosing local coordinates like in the proof of Lemma 4.2, we see that {gN (t)}
is smooth, which implies the smoothness of gt.

Now we prove that At is smooth: Since At is symmetric w.r.t. g, we have

A−1
t
◦A−1

t
= g−1 ◦ (Atg) = g−1 ◦ gt : TM → TM.

Now A−2
t

is smooth, since g−1 : T ∗M → TM is smooth by assumption and gt :
TM → T ∗M is smooth as we have just seen. Since A−2

t
is positive w.r.t. g, we see

that At = exp(− 1
2 ln(A−2

t
)) is smooth, where the logarithm is defined w.r.t. g. Since

clearly
gt = {AN (t)gN}+ α⊗ α = At({gN}+ α⊗ α) = Atg

holds, the Lemma follows.
�

Similar to Definition 5.8, the gauge deformations AN (t) from Example 1.7 can be
used to define a whole family of SU(3)-structures on each integral manifold N ⊂ M :

gN (t) = AN (t)gN , ωN (t) := AN (t)ωN and ρN (t) := AN (t)ρN .

This families can again be resembled to a family of G2-structures on M :

Proposition 5.19. For any t ∈ [0, T ),

ϕt := {ρN (t)}+ α ∧ {ωN (t)}

defines a G2-structure on M with metric gt = {gN (t)} + α ⊗ α and dual ψt =
{σN (t)} − α ∧ {�ρN (t)}.

Proof: From Lemma 5.18 we see that

At = {AN (t)}+ α⊗ ξ ∈ C∞(Aut(TM))

for any t ∈ [0, T ). Hence

ϕt = Atϕ = At({ρN}+ α ∧ {ωN})

= At{ρN}+ α ∧At{ωN}

= {AN (t)ρN}+ α ∧ {AN (t)ωN}

= {ρN (t)}+ α ∧ {ωN (t)}

defines a G2-structure with metric gt = Atg = {gN (t)} + α ⊗ α and dual ψt =
Atψ = {σN (t)} − α ∧ {�ρN (t)}.

�

We now turn to the case where the initial structure (α, ψ) is Kähler, i.e. the induced
SU(3)-structures on each integral manifold are Kähler, cf. Theorem 3.46. In this
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case the Kähler-Ricci flow on N can be described by a gauge deformation AN (t)
with

(gN (t), ωN (t), I) = AN (t)(gN , ωN , I).

Note that AN (t) is actually the same gauge deformation used in Lemma 5.18 and
Proposition 5.19, but satisfies in addition AN (t)IN = INAN (t), cf. Example 1.8.

Remark 5.20. If the initial structure (α, ψ) is Kähler, Cao’s theorem states that
the Ricci flow converges on each integral manifold N to a Ricci flat metric g∞

N
in

C∞-topology. In Lemma 5.18 we have seen that for finite time t, the metrics gN (t)
can be resembled to a metric gt on the ambient space M . The convergency of gN (t)
in C∞-topology would still guarantee the smoothness of g∞ in fibre direction, but
it seems difficult to ensure the smoothness of the limit metric g∞ transverse to the
fibres.

Definition 5.21. Let ϕ be a G2-structure on M and ξ a unit vector field with
dual α := ξ�g and flow Φs. We say that the vector field ξ is a Kähler field for the
G2-structure ϕ if

(1) dα = 0 and ∇g(ξ�ϕ) = 0 on ker(α).

(2) For all integral manifolds N ⊂ M of ker(α)

[ωN ] = [Φ∗
s
ωNs ] and IN = Φ∗

s
INs ,

where Ns := Φs(N).

Note that Theorem 3.46 ensures that the induced SU(3)-structures on the integral
manifolds are Kähler. Hence dωN = 0 and condition (2) states that the flow of the
vector field ξ preserves the cohomology class and the complex structure.

The next result is essentially due to the uniqueness part of the Calabi-Yau theorem
and solves in particular the problem encountered in Remark 5.20.

Theorem 5.22. Suppose ξ is a Kähler vector field for the G2-structure ϕ. Then
the Ricci flow limit metrics and Kähler forms satisfy

gN (∞) = Φ∗
s
gNs(∞) and ωN (∞) = Φ∗

s
ωNs(∞),

for each integral manifold N ⊂ M . In particular, g∞ = α⊗ α + {gN (∞)} defines a
smooth metric on M with

Lξg∞ = 0 and ∇g∞ξ = 0.
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So the fibrewise Ricci flow tightens the fibres N ⊂ M :
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................................................................................................................................................................................................................................................

✲
Ricci flow

fibrewise

t = 0 t =∞

Proof: On a fixed integral manifold N ⊂ M we have the Kähler structure

(gN (∞), ωN (∞), IN )

obtained by the Ricci flow and the Kähler structure

(Φ∗
s
gNs(∞),Φ∗

s
ωNs(∞),Φ∗

s
INs = IN ).

By Cao’s theorem both structures are Ricci flat,

Ric(Φ∗
s
gNs(∞)) = Φ∗

s
Ric(gNs(∞)) = 0.

Since the Ricci flow and the flow of ξ preserve cohomology classes, we get

[ωN (∞)] = [ωN ] = [Φ∗
s
ωNs ] = Φ∗

s
[ωNs ] = Φ∗

s
[ωNs(∞)] = [Φ∗

s
ωNs(∞)].

Then the uniqueness part of the Calabi-Yau theorem states that the two structures
coincide. For the smoothness of g∞ choose local vector fields X, Y ∈ C∞(TN) and
extend them to local vector fields on M by

X̃
���
(s,p)

:= Φs∗ X|
p

and Ỹ
���
(s,p)

:= Φs∗ Y |
p
.

Now observe that

{gN (∞)}(X̃
���
(s,p)

, Ỹ
���
(s,p)

) = gNs(∞)(Φs∗ X|
p
,Φs∗ Y |

p
) = gN (∞)(X|

p
, Y |

p
)

is constant and hence smooth in s. Let pr : TM → ker(α) be the map X �→
X − α(X)ξ. Then Lξα = 0 yields for X ∈ TpM

pr(Φs∗X) = Φs∗X − α(Φs∗X) ξ|Φs(p) = Φs∗X − α(X)Φs∗ ξ|
p

= Φs∗(prX).
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Hence for X, Y ∈ TpM

Φ∗
s
{gN (∞)}(X, Y ) = gNs(∞)(pr(Φs∗X),pr(Φs∗Y )) = gNs(∞)(Φs∗(prX),Φs∗(prY ))

= (Φ∞
s

gNs)(prX, prY ) = {Φ∞
s

gNs}(X, Y )

= {gN (∞)}(X, Y ),

i.e. Lξ{gN (∞)} = 0 and so Lξg∞ = 0. Since also d(ξ�g∞) = dα = 0, it follows
∇g∞ξ = 0.

�

Corollary 5.23. The metric obtained by fibrewise Ricci flow in Theorem 5.22
is Ricci flat,

Ric(g∞) = 0.

Proof: By Cao’s theorem, the metrics gN (∞) on the fibres are Ricci flat. Hence
Proposition 4.1 with g∞ = α ⊗ α + {gN (∞)} and W∞ = Lξg∞ = 0 yields
Ric(g∞) = 0.

�

The fibrewise Ricci flow can be extended to a deformation of the ambient G2-
structure ϕ. For this choose a gauge deformation A∞ like in Example 1.7 such that
g∞ = A∞g, where g = g(ϕ) is the initial metric and g∞ is the metric obtained by
fibrewise Ricci flow from Theorem 5.22. Then we have

Corollary 5.24. Suppose ξ is a Kähler vector field for the G2-structure ϕ on
M . Then the fibrewise Ricci flow yields a Ricci flat G2-structure ϕ∞ := A∞ϕ on M .

Corollary 5.25. The metric obtained by fibrewise Ricci flow in Theorem 5.22
satisfies

Hol0(g∞) ⊂ {1} × SU(3) ⊂ G2.

In particular, the full holonomy group Hol(g∞) is always a proper subgroup of G2.

Proof: Since ∇g∞ξ = 0, we get from the DeRham splitting theorem

Hol0(g∞) = {1} ×Hol0(gN (∞)).

By Proposition 5.5, the restricted holonomy of the integral manifold N ⊂ M is con-
tained in SU(3) and the first part of the corollary follows. Since the restricted ho-
lonomy group is the identity component of the full holonomy group, Hol(g∞) = G2

would imply Hol0(g∞) = G2, which is impossible as we have just seen.
�
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Corollary 5.26. Suppose ξ is a Kähler vector field for the G2-structure ϕ on
M . Then the fundamental group of M is infinite.

Proof: Let (M̂, ĝ∞) be the universal cover of (M, g∞). By Corollary 5.25 we have

Hol(ĝ∞) = Hol0(g∞) ⊂ {1} × SU(3) ⊂ G2.

If π1 were finite, the universal cover would be compact. But a compact manifold
with holonomy contained in G2 and finite fundamental group has holonomy group
equal to G2, cf. [39] Prop. 10.2.2.

�
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6. Examples

In this chapter we describe classes of manifolds, admitting certain types of SU(2),
SU(3) and G2-structures. Typically this manifolds are the total space of some bund-
le over a base manifold that carries an additional structure. In quite a few cases
the structure is real analytic and can be embedded into a space with a parallel
structure. We do not describe any explicit solutions for the embedding problems,
but some can for instance be found in [9],[24],[25].
Of special interest is a new construction of R. Albuquerque [1]. Albuquerque con-
structs a G2-structure on the unit tangent bundle T 1M4. This structure is hypo
if and only if the underlying metric on M4 is Einstein. We extend Albuquerque’s
approach to construct a family of Spin(7)-structures Ψλ on TM4 \ {0} and show
that this structure is balanced if and only if the underlying metric is Einstein with
ric = λg.

G2 and Spin(7)-Structures on TM4

Given an oriented four dimensional manifold (M, g), we describe a construction due
to Albuquerque [1], which yields a G2-structure on the unit tangent bundle T 1M .
It turns out that the Einstein condition for M is encoded in the Lee form Θ of the
G2-structure. Although the Lee form corresponds in general only to the vectorial
part g⊥2 of the intrinsic torsion, the vanishing of Θ implies in this particular case
that the G2-structure is actually hypo, i.e. the g⊥2 ⊕ g2 component of the intrinsic
torsion vanishes. Let εM be the induced volume form on (M, g) and π : TM → M

be the tangent bundle. For every u ∈ TM , the Levi-Civita connection induces a
splitting

TuTM = Vu ⊕Hu

of the tangent space of TM into a vertical space Vu = ker(π∗u) and a horizontal
space Hu = π∗Tπ(u)M . In particular, we may consider the vertical and horizontal
lift of X ∈ Tπ(u)M to u ∈ TM , denoted respectively by

vu(X) ∈ Vu ⊂ TuTM and hu(X) ∈ Hu ⊂ TuTM.

The connection map

K : TuTM → Tπ(u)M is now given by K(X) := Ju(Xv),
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where Ju : Vu → Tπ(u)M is the inverse of the vertical lift vu. The Sasakian metric
on TM is defined via

�g(X, Y ) := g(KX, KY ) + g(π∗X, π∗Y ).

It is well known that the curvature tensor of the Levi-Civita connection on M mea-
sures the integrability of the horizontal distribution. More generally we have by
Lemma 2 in [26]

Lemma 6.1. Let R be the Riemannian curvature tensor of the Levi-Civita connec-
tion ∇g on M . For any vector fields X, Y on M and u ∈ TM we have

(i) [h(X), h(Y )]u = hu([X, Y ])− vu(R(X, Y )u),
(ii) [v(X), v(Y )]u = 0,
(iii) [h(X), v(Y )]u = vu(∇g

X
Y ).

�

In order to establish a G2-structure on the unit tangent bundle T 1M , we make the
following

Definition 6.2. (i) For notational reasons we introduce the map

r : TM \ {0} → R by u �→
�

g(u, u) = �u�.

(ii) The map
θ : TuTM → Vu with X �→ vu(π∗X)

rotates the horizontal onto the vertical space and annihilates vertical vectors. As a
map θ : TTM → TTM , we may ask for the adjoint of θ with respect to �g and find

θT = h ◦K,

i.e. for X ∈ TuTM we have θT (X) = hu(KX). Hence θT ◦θ = idH and θ◦θT = idV .
(iii) The decomposition TTM = TM ⊕ TM equips TM with a natural symplectic
structure ω. In terms of the map θ, we have

ω(X, Y ) := �g(IX, Y ),

where
I := θT − θ

satisfies I2 = −id. It is well known that ω is actually a closed 2-form on TM .
(iv) The �g-gradient of r is given by

Nv : TM \ {0} → V with u �→ 1
r(u)

vu(u).
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Using the map I from (iii), we may define the horizontal counterpart of Nv by

Nh : TM \ {0} → H, u �→ INv(u) =
1

r(u)
hu(u).

We denote the dual 1-forms of Nv and Nh respectively by

µv(X) := �g(Nv, X) and µh(X) := �g(Nh, X).

Note that Nv is the outer normal vector field on each sphere bundle T rM ⊂ TM ,
for r > 0.
(v) The volume element εM on M lifts to a volume element K∗εM on the vertical
distribution and a volume element π∗εM on the horizontal distribution. Contracting
this pull-backs, we obtain forms

α(X, Y, Z) := εM (KNv,KX,KY,KZ),

β(X, Y, Z) := εM (π∗Nh, π∗X, π∗Y, π∗Z),

for X, Y, Z ∈ TuTM . Define additional 3-forms on TM by

ρ(X, Y, Z) := α(X, Y, Z)− α(θX, θY, Z)− α(θY, θZ,X)− α(θZ, θX, Y ),

�ρ(X, Y, Z) := α(θX, Y, Z) + α(θY, Z, X) + α(θZ,X, Y )− β(X, Y, Z).

(vi) In the following we construct a local frame field (E1, .., E8) on TM \{0}. First
we have two globally defined vector fields on TM \ {0}

E1 := Nv and E2 := IE1 = Nh.

The remaining vector fields will be defined only locally. Choose a local positive
orthonormal basis {e1, .., e4} of TM and denote by v(ei) the vertical lift to V ⊂
TTM , i = 1, .., 4. For 0 �= u ∈ TM we write λi(u) := g(u, ei) ∈ R, such that
u =

�
λi(u)ei holds. This yields

E1(u) = Nv(u) =
1

r(u)
vu(u) =

1
r(u)

�

i

λi(u)vu(ei).

Now we define an orthonormal basis E1, E3, E5, E7 for V by

E3(u) :=
1

r(u)
(−λ2(u)vu(e1) + λ1(u)vu(e2)− λ4(u)vu(e3) + λ3(u)vu(e4)),

E5(u) :=
1

r(u)
(−λ3(u)vu(e1) + λ4(u)vu(e2) + λ1(u)vu(e3)− λ2(u)vu(e4)),

E7(u) :=
1

r(u)
(−λ4(u)vu(e1)− λ3(u)vu(e2) + λ2(u)vu(e3) + λ1(u)vu(e4)),

and complete it to an orthonormal basis for TTM via

E4 = IE3, E6 = IE5, E8 = IE7.

In particular, we may choose e1, .., e4 ∈ TpM such that e1 = u

�u� holds, for a fixed
u ∈ TpM \ {0}. This yields

E2i(u) = hu(ei) and E2i−1(u) = vu(ei).
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By choosing local normal coordinates around p, we may extend e1, .., e4 via parallel
translation to a local basis field. Then

(∇g

ei
ej)p = 0 and hence [ei, ej ]p = 0

hold at p. We refer to the corresponding basis field (E1, .., E8) as an adapted frame
at u.

Lemma 6.3. In terms of the dual basis (E1, .., E8) of (E1, .., E8), the forms from
Definition 6.2 are locally given by

(1) ω = E12 + E34 + E56 + E78,
(2) α = E357,
(3) β = E468,
(4) ρ = E357 − E368 − E467 − E458 ,
(5) �ρ = E367 + E358 + E457 − E468,

(6) µv = E1 and µh = E2.

�

Definition 6.4. From the previous Lemma we see immediately that the restric-
tion of the forms

ϕ := ρ + µh ∧ ω and ψ :=
1
2
ω2 − µv ∧ µh ∧ ω − µh ∧ �ρ

to T 1M defines a G2-structure on T 1M . Moreover, we obtain a Spin(7)-structure
on TM \ {0} via

Ψ := ψ + µv ∧ ϕ =
1
2
ω2 − µh ∧ �ρ + µv ∧ ρ.

To study the type of structure that is induced by the forms ϕ and Ψ, we compute
the exterior derivative of the dual 1-forms Ek of an adapted frame at u.

Lemma 6.5. For the horizontal 1-forms we have at u

dE2 =
1
r
(E34 + E56 + E78),

dE4 =
1
r
(E23 + E58 + E67),

dE6 =
1
r
(E25 − E38 − E47),

dE8 =
1
r
(E27 + E36 + E45).

The analogue for the vertical forms involves the curvature R of (M, g). Let

Ω2k−1 : = R121kE24 + R131kE26 + R141kE28

+ R231kE46 + R241kE48 + R341kE68,
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then we have at u

dE1 = 0,

dE3 = rΩ3 +
1
r
E13 +

2
r
E57,

dE5 = rΩ5 +
1
r
E15 − 2

r
E37,

dE7 = rΩ7 +
1
r
E17 +

2
r
E35.

Proof: First note that dEk(Ei, Ej) = −Ek[Ei, Ej ] holds. For Ek horizontal we
find the following:
(i) By integrability of the vertical distribution we get immediately dEk(Ei, Ej) = 0,
for Ei, Ej vertical.
(ii) Suppose Ei, Ej are both horizontal. Recall that λj(u) = g(u, ej) holds by
Definition 6.2 (vi). By construction of the local vector fields ej , we see that λj is
invariant under parallel transport, which yields

(1) hu(ei) · λj = 0.

Similarly, r is invariant under parallel transport, hence hu(ei)·r = 0. Now extending
the Lie-bracket [Ei, Ej ] by using the linear combination for Ei, Ej from Definition
6.2 (vi), we obtain essentially summands of the form [h(ei), h(ej)]u = hu([ei, ej ])−
vu(R(ei, ej)u) = −vu(R(ei, ej)u). Here we used Lemma 6.1 and that [ei, ej ] = 0 at
p := π(u). Then the horizontality of Ek yields again dEk(Ei, Ej) = 0.
(iii) Now let Ei be horizontal and Ej be vertical. First observe that

vu(el) · λk =
d

dt

����
t=0

g(u + tel, ek) = δlk

holds. Since u = r(u)e1, we get

vu(el) · r =
d

dt

����
t=0

�
g(u + tel, u + tel) = δ1l,

yielding

(2) vu(el) ·
λk

r
=

1
r
(δlk − δ1lδ1k).

Using (2) and Lemma 6.1 together with (∇g

ei
ej)p = 0, we computes at u,

[E1, E2] = 0, [E1, E4] = 0, [E1, E6] = 0, [E1, E8] = 0,
[E2, E3] = − 1

r
E4, [E2, E5] = − 1

r
E6, [E2, E7] = − 1

r
E8, [E3, E4] = − 1

r
E2,

[E3, E6] = − 1
r
E8, [E3, E8] = 1

r
E6, [E4, E5] = − 1

r
E8, [E4, E7] = 1

r
E6,

[E5, E6] = − 1
r
E2, [E5, E8] = − 1

r
E4, [E6, E7] = − 1

r
E4, [E7, E8] = − 1

r
E2,

and obtain the above formulas for the horizontal forms.

Now consider the case where Ek is vertical.
(iv) Applying Lemma 6.1 we get for horizontal E2i(u) = hu(ei) and E2j(u) =

126



hu(ej)

dE2k−1(E2i(u), E2j(u)) = hu(ei) · E2k−1(h(ej))− hu(ej) · E2k−1(h(ei))

− E2k−1[h(ei), h(ej)]u

= −E2k−1[h(ei), h(ej)]u = E2k−1vu(R(ei, ej)u)

= r(u)Rij1k,

where we used that E2k−1(u) = vu(ek) and u = r(u)e1.
(v) The mixed terms are

dEk(E2i(u), E2j−1(u)) = dEk(hu(ei), vu(ej))

= hu(ei) · Ek(v(ej))− vu(ej) · Ek(hei)− Ek[h(ei), v(ej)]u

= 0,

since Ek(v(ej)) is horizontally constant by (1), Ek(hei) = 0 and [h(ei), v(ej)]u = 0
by Lemma 6.1.
(vi) Vertical terms can be computed by formula (2) and

dE2k−1(E2i−1(u), E2j−1(u)) = vu(ei) · E2k−1(v(ej))− vu(ej) · E2k−1(v(ei)).

The values for dE2k−1(E2i−1(u), E2j−1(u)) are listed in the following table:

E2i−1 E2j−1 dE1 dE3 dE5 dE7

E1 E3 0 1
r(u) 0 0

E1 E5 0 0 1
r(u) 0

E1 E7 0 0 0 1
r(u)

E3 E5 0 0 0 2
r(u)

E3 E7 0 0 −2
r(u) 0

E5 E7 0 2
r(u) 0 0

Now we can easily verify the above formulas for the vertical forms.
�

Corollary 6.6. In an adapted frame we compute at u ∈ TM \ {0}

dµv = 0, moreover µv = dr.

dω = 0,

dρ = r(Ω3 ∧ E57 − Ω5 ∧ E37 + Ω7 ∧ E35) + rric11µ
h ∧ β

+
2
r
µv ∧ α− 2

r
µh ∧ β +

1
r
µv ∧ ρ− 2

r
µh ∧ �ρ,

d�ρ =
1
r
µh ∧ (ρ− α) +

2
r
µv ∧ (�ρ + β) +

3
r
µh ∧ α

+ r(ric12E
3 + ric13E

5 + ric14E
7) ∧ β + rµh ∧ Ω,
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where

Ω := R1212(E467 + E458) + R1213(E348 − E568) + R1214(E678 − E346)

+ R1313(E368 + E467) + R1314(E456 − E478) + R1414(E368 + E458),

and ric is the Ricci tensor of (M, g). Moreover, the Lee form of the Spin(7)-structure
is given by

Θ := ∗(∗dΨ ∧Ψ) = 2r(ric11E
1 + ric12E

3 + ric13E
5 + ric14E

7).

Proof: The equation µv = dr is easily verified, and implies dµv = 0, which
corresponds to dE1 = 0 in Lemma 6.5. The formula for dE2 may be rewritten as
dµh = 1

r
(ω − µv ∧ µh), which yields

dω = dr ∧ dµh − µv ∧ dµh = 0.

The formulas for dρ, d�ρ and Θ are verified in a direct computation, using Lemma
6.5 and the local form for ρ, �ρ and Ψ from Lemma 6.3.

�

In particular we found an interpretation of Ricci flatness in terms of special geome-
tries. Namely, the vanishing of the Lee form Θ yields ric1i = 0 for any orthonormal
basis {e1, .., e4}, and hence ric = 0. Therefore the Spin(7)-structure from Definition
6.4 on TM \ {0} is balanced, i.e. Θ = 0, if and only if (M, g) is Ricci flat.

We can modify this result to give a characterization of Einstein manifolds (M, g)
with arbitrary Einstein constant λ ∈ R. First observe that changing the Cayley
frame to Ei(λ) = e−

λ
4 r

2
Ei, corresponds to changing the structure tensors and

Hodge operator into

Ψλ = eλr
2
Ψ, �gλ = e

λ
2 r

2
�g and ∗λ = e

7λ
4 r

2
∗ .

Then dΨλ = 2λreλr
2
µv ∧ Ψ + eλr

2
dΨ = eλr

2
(2λrµv ∧ ψ + dΨ) and ∗λdΨλ =

e
11λ
4 r

2
( 2λ

7 rϕ + ∗dΨ), since ψ ∧ ϕ = 7E2345678. Now the Lee form satisfies

Θλ = ∗λ(∗λdΨλ ∧Ψλ) = e
11λ
2 r

2
(
2λ

7
r ∗ (ϕ ∧ ψ) + ∗(∗dΨ ∧Ψ))

= e
11λ
2 r

2
(−2λrµv + Θ)

= 2re
11λ
2 r

2
(−λµv + ric11E

1 + ric12E
3 + ric13E

5 + ric14E
7)

and we proved:

Theorem 6.7. (M, g) is Einstein with ric = λg if and only if the Lee form of the
Spin(7)-structure Ψλ := eλr

2
Ψ on TM \ {0} vanishes. In particular, (M, g) is Ricci

flat if and only if the Lee form of Ψ vanishes.

�
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For the rest of this section we will study the induced G2-structure ϕ on the unit
tangent bundle i : T 1M ⊂ TM . Since ψ = i∗Ψ, the Lee form of the G2 structure is
given by Corollary 6.6 by the formula

θ := ∗(∗dψ ∧ ψ) = i∗Θ = 2(ric12E
3 + ric13E

5 + ric14E
7).

Hence the G2-structure has vanishing Lee form if and only if (M, g) is Einstein.
Surprisingly, θ = 0 automatically implies the vanishing of the g2-component of the
intrinsic torsion. In fact we get from Corollary 6.6 and since dω = 0 and dµh∧�ρ = 0

dψ = d(
1
2
i∗ω2 − µh ∧ �ρ) = −dµh ∧ �ρ + µh ∧ d�ρ

= µh ∧ (ric12E
3 + ric13E

5 + ric14E
7) ∧ β

=
1
2
µh ∧ θ ∧ β.

Therefore (M, g) is Einstein if and only if the G2-structure is hypo. Computing

dϕ = dρ + dµh ∧ i∗ω = dρ + i∗ω2

= Ω3 ∧ E57 − Ω5 ∧ E37 + Ω7 ∧ E35 + ric11µ
h ∧ β

− 2µh ∧ β − 2µh ∧ �ρ + i∗ω2

= Ω3 ∧ E57 − Ω5 ∧ E37 + Ω7 ∧ E35 + (ric11 − 2)µh ∧ β + 2ψ,

shows that neither dϕ = 0 nor dϕ = λψ is possible. The Rid-component of the
G2-structure corresponds to dϕ ∧ ϕ. To see this, observe that dϕ = 3Dψ(T ) by
Proposition 3.38 and that the Rid-component is mapped to Λ4

1, which is identified
via ϕ ∧ . : Λ4 → Λ7 with Λ7 by Schur’s Lemma. Now The first Bianchi identity
yields

dϕ ∧ ϕ = (Ω3 ∧ E57 − Ω5 ∧ E37 + Ω7 ∧ E35) ∧ ϕ + (ric11 + 12)E234567

= (R1221 + R1331 + R1441 + R3421 + R4231 + R2341 + ric11 + 12)E234567

= 2(ric11 + 6)E234567.

In summary we have, cf. [1] Thm. 3.3,

Theorem 6.8. The G2-structure ϕ on T 1M with intrinsic torsion T satisfies

ϕ is hypo ⇔ T ∈ Rid⊕ S2
0

⇔ T ∈ Rid⊕ S2
0 ⊕ g2

⇔ (M, g) is Einstein.

Moreover, T ∈ S2
0 if and only if (M, g) is Einstein with λ = −6. The structure is

never parallel or nearly parallel.

�
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If (M, g) is Einstein, then there exists an atlas for M with real analytic transition
functions, so that the metric g is real analytic in each chart, cf. Theorem 5.26 in
[7]. Hence any adapted frame from Definition 6.2 (vi) is real analytic, which pro-
ves that the hypo G2-structure ϕ on T 1M is real analytic. Now Corollary 4.22 yields

Theorem 6.9. Every compact Einstein manifold (M4, g) admits a parallel Spin(7)-
structure on I × T 1M4, for some interval I ⊂ R.

�

SU(2) and SU(3)-Structures on TM3

In this section we will describe a construction which yields certain SU(2)-structures
on T 1M and SU(3)-structures on TM \ {0}, where (M, g) is a 3-dimensional Rie-
mannian manifold with tangent bundle π : TM → M . Like in the previous section,
the Einstein condition for (M, g) is encoded in certain torsion components of the
structures. Since M is 3-dimensional, the Einstein condition is of course much more
restrictive than in the 4-dimensional case. The tensors K, �g, θ, I, ω, r, µv, µh, Nv

and Nv are defined like in Definition 6.2 from the previous section.

Definition 6.10. Let εM be the induced volume form on (M, g). We define the
following forms on TM \ {0}:

β2(X, Y ) := εM (KNv,KX,KY ),

β3(X, Y ) := εM (π∗Nh, π∗X, π∗Y ),

ω2 := β2 − β3,

ω3(X, Y ) := β2(θX, Y )− β2(θY, X),

ρ := µv ∧ ω2 − µh ∧ ω3,

�ρ := µv ∧ ω3 + µh ∧ ω2.

Moreover, we define forms on i : T 1M �→ TM by

ω1 := i∗ω.

α := µh.

Definition 6.11. For a given basis field {e1, e2, e3} on U ⊂ M , we wish to
associate a basis field on the open subset

Ũ := {u ∈ π−1(U) | λ2
1 + λ2

2 �= 0, where u = λ1e1 + λ2e2 + λ3e3} ⊂ TM \ {0}.
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For u ∈ Ũ with u =
�

λiei, let

E1(u) :=
1

r(u)
�
λ1vu(e1) + λ2vu(e2) + λ3vu(e3)

�
,

E3(u) :=
1�

λ2
1 + λ2

2

�
− λ2vu(e1) + λ1vu(e2)

�
,

E5(u) :=
1

r(u)
�

λ2
1 + λ2

2

�
− λ1λ3vu(e1)− λ2λ3vu(e2) + (λ2

1 + λ2
2)vu(e3)

�
.

Then E1, E3 and E5 are orthonormal and we obtain an orthonormal basis field via

E2 := IE1, E4 := IE3 and E6 := IE5.

Note also that E1(u) = 1
r(u)vu(u) = Nv(u) and E2(u) = INv(u) = Nh(u) holds.

In particular, we may choose e1, e2, e3 ∈ TpM such that e1 = u

�u� holds, for a fixed
vector u �= 0. This yields

E2i(u) = hu(ei) and E2i−1(u) = vu(ei).

By choosing local normal coordinates around p, we may extend e1, e2, e3 via parallel
translation to a local basis field. Then

(∇g

ei
ej)p = 0 and hence [ei, ej ]p = 0

hold at p. We refer to the corresponding basis field (E1, .., E6) as an adapted frame
at u.

The following Lemma can be easily verified:

Lemma 6.12. In terms of the dual basis (E1, .., E6) of (E1, .., E6), the forms from
Definition 6.2 and 6.10 are locally given by

(1) ω = E12 + E34 + E56,
(2) β2 = E35,
(3) β3 = E46,
(4) α = E2,
(5) ω1 = E34 + E56,
(6) ω2 = E35 − E46,
(7) ω3 = E36 + E45,
(8) ρ = E135 − E146 − E245 − E236,
(9) �ρ = E145 + E136 + E235 − E246.

�

Definition 6.13. From the previous Lemma we see immediately that the re-
striction of (α, ω1, ω2, ω3) to T 1M defines a SU(2)-structure on T 1M . Moreover,
(ω, ρ) defines a SU(3)-structure on TM \ {0}.
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To study the type of these structures, we have to compute the analogue of Lemma
6.5:

Lemma 6.14. Fix u ∈ TM \ {0} and let E1, .., E6 be an adapted frame at u with
dual frame E1, .., E6. Then the following formulas hold at u:

dE2 =
1
r
(E34 + E56),

dE4 =
1
r
E23,

dE6 =
1
r
E25.

The exterior derivative of the vertical forms involves the curvature R of (M, g). Let

Ω2k−1 := R121kE24 + R131kE26 + R231kE46,

then we have at u

dE1 = 0,

dE3 = rΩ3 +
1
r
E13,

dE5 = rΩ5 +
1
r
E15.

Proof: The proof is completely analogue to the proof of Lemma 6.5. We use
dEk(Ei, Ej) = −Ek[Ei, Ej ] and

hu(ei) · r = hu(ei) · λj = 0,

vu(ei) · r = δ1i and vu(ei) · λj = δij ,

which imply

vu(ei) ·
λa

r
=

1
r
(δia − δ1iδ1a),

vu(ei) ·
λa�

λ2
1 + λ2

2

=
1
r
(δia − δ1iδ1a),

vu(ei) ·
λaλb

r
�

λ2
1 + λ2

2

=
1
r
(δiaδ1b + δibδ1a − 2δ1aδ1bδ1i).

Now we obtain

[E1, E2] = 0, [E1, E4] = 0, [E1, E6] = 0,

[E2, E3] = − 1
r
E4, [E2, E5] = − 1

r
E6, [E3, E4] = − 1

r
E2,

[E3, E6] = 0, [E4, E5] = 0, [E5, E6] = − 1
r
E2,

which yields the desired formula for dE2k. To compute dE2k−1, observe that

dE2k−1(E2i−1, E2j) = 0
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and by Lemma 6.1

dE2k−1(E2i(u), E2j(u)) = dE2k−1(hu(ei), hu(ej))

= hu(ei) · E2k−1(h(ej))− hu(ej) · E2k−1(h(ei))

− E2k−1[h(ei), h(ej)]u

= −E2k−1[h(ei), h(ej)]u

= E2k−1(vu(R(ei, ej)u)

= r(u)Rij1k.

Using

dE2k−1(E2i−1(u), E2j−1(u)) = dE2k−1(vu(ei), vu(ej))

= vu(ei) · E2k−1(v(ej))− vu(ej) · E2k−1(v(ei))

− E2k−1[v(ei), v(ej)]u

= vu(ei) · E2k−1(v(ej))− vu(ej) · E2k−1(v(ei)),

we compute

E2i−1 E2j−1 dE1 dE3 dE5

E1 E3 0 1
r(u) 0

E1 E5 0 0 1
r(u)

E3 E5 0 0 0

and obtain the above formulas for the vertical forms.
�

We can now compute the exterior derivatives of the forms from Definition 6.10.

Proposition 6.15. Let E1, .., E6 be an adapted frame at u ∈ TM \ {0} and let

Ω2k−1 := R121kE24 + R131kE26 + R231kE46,

where R is the curvature tensor of g. If ric denotes the Ricci tensor of R, then the
following formulas hold at u:
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dµv = 0,

dα =
1
r
ω1,

dω = 0,

dω1 =
1
r
µv ∧ ω1,

dω2 = r(Ω3 ∧ E5 − E3 ∧ Ω5)−
1
r
α ∧ ω3 +

2
r
µv ∧ β2,

dω3 = −rric11α ∧ β3 +
2
r
α ∧ β2 +

1
r
µv ∧ ω3,

d(α ∧ ω2) = −rα ∧ (Ω3 ∧ E5 − E3 ∧ Ω5) +
2
r
µv ∧ α ∧ β2,

d(α ∧ ω3) =
1
r
µv ∧ α ∧ ω3,

dρ = rµv ∧ (E3 ∧ Ω5 − E5 ∧ Ω3),

d�ρ = rric11µ
v ∧ α ∧ β3 − rα ∧ (Ω3 ∧ E5 − E3 ∧ Ω5).

Proof: The first three equations follow immediately from Lemma 6.14, since

dω = −µv∧dE2+d(E34+E56) = −µv∧dE2+d(rdE2) = −µv∧dE2+µv∧dE2 = 0.

For the other equations we compute dω1 = dr ∧ dα = 1
r
µv ∧ ω1,

dω2 = d(E35 − E46)

= rΩ3 ∧ E5 +
1
r
E135 − E3 ∧ (rΩ5 +

1
r
E15)− 1

r
E236 +

1
r
E425

= r(Ω3 ∧ E5 − E3 ∧ Ω5)−
1
r
α ∧ ω3 +

2
r
µv ∧ β2

and

dω3 = d(E36 + E45)

= (rΩ3 +
1
r
E13) ∧ E6 − 1

r
E325 +

1
r
E235 − E4 ∧ (rΩ5 +

1
r
E15)

= r(Ω3 ∧ E6 − E4 ∧ Ω5) +
2
r
α ∧ β2 +

1
r
µv ∧ ω3

= −rric11α ∧ β3 +
2
r
α ∧ β2 +

1
r
µv ∧ ω3.

Since ω1∧ω2 = ω1∧ω3 = 0, we get d(α∧ω2) = −α∧dω2 and d(α∧ω3) = −α∧dω3

and hence the seventh and eighth equation. Eventually,

ρ = µv ∧ ω2 − µh ∧ ω3 and �ρ = µv ∧ ω3 + µh ∧ ω2

yield

dρ = −µv ∧ dω2 − d(α ∧ ω3)

= −rµv ∧ (Ω3 ∧ E5 − E3 ∧ Ω5) +
1
r
µv ∧ α ∧ ω3 −

1
r
µv ∧ α ∧ ω3

= rµv ∧ (E3 ∧ Ω5 − E5 ∧ Ω3)
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and

d�ρ = −µv ∧ dω3 + d(α ∧ ω2)

= rric11µ
v ∧ α ∧ β3 −

2
r
µv ∧ α ∧ β2 − rα ∧ (Ω3 ∧ E5 − E3 ∧ Ω5) +

2
r
µv ∧ α ∧ β2

= rric11µ
v ∧ α ∧ β3 − rα ∧ (Ω3 ∧ E5 − E3 ∧ Ω5).

�

We can now study the SU(3)-structure (ω, ρ) on TM \ {0} from Definition 6.13.
Since always dω = 0 holds, the intrinsic torsion satisfies by Lemma 3.23 and Pro-
position 3.25

T ∈ I0su(3)⊕ su(3).

From the proof of Theorem 3.28 we see that

T ∈ su(3) and η = 0 ⇔ dρ = 0,

T ∈ I0su(3) and η = 0 ⇔ d�ρ = 0.

By Proposition 6.15 we have

dρ = rµv ∧ (E3 ∧ Ω5 − E5 ∧ Ω3)

= r(R1231E
1234 + R1331E

1236 −R3213E
1346

+ R1221E
1245 −R1321E

1256 + R2312E
1456)

and hence dρ = 0 is equivalent to ric = 0. Similarly,

d�ρ = rric11µ
v ∧ α ∧ β3 − rα ∧ (Ω3 ∧ E5 − E3 ∧ Ω5)

= r(ric11E
1246 + R2312E

2456 −R3213E
2346)

= 0

is equivalent to ric = 0. Hence we showed

Corollary 6.16. The SU(3)-structure on TM \ {0} from Definition 6.13 is
always of type T ∈ I0su(3)⊕ su(3) and

T ∈ su(3), η = 0 ⇔ T ∈ I0su(3), η = 0 ⇔ T = 0, η = 0 ⇔ R = 0,

where R is the curvature tensor of (M, g).

�

Now consider the SU(2)-structure (α, ω1, ω2, ω3) on T 1M from Definition 6.13. By
Proposition 6.15

dω1 = 0 and d(α ∧ ω3) = 0
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always hold and

dω2 = Ω3 ∧ E5 − E3 ∧ Ω5 − α ∧ ω3

= −R1221E
245 + R1321E

256 −R2312E
456

−R1231E
234 −R1331E

236 + R3213E
346

− E236 − E245.

Hence the equation dω2 = λ(α ∧ ω3) = λ(E236 + E245), for some constant λ, is
equivalent to ric = −2(1 + λ)g. Moreover,

d(α ∧ ω2) = −α ∧ (Ω3 ∧ E5 − E3 ∧ Ω5)

= R2312E
2456 −R3213E

2346 = 0

is equivalent to ric12 = ric13 = 0, i.e. (M, g) being Einstein. Note also that

dω3 = −ric11α ∧ β3 + 2α ∧ β2 �= 0,

i.e. the structure is never parallel.

Corollary 6.17. The SU(2)-structure on T 1M from Definition 6.13 always
satisfies dω1 = 0 and d(α ∧ ω3) = 0. Moreover,

d(α ∧ ω2) = 0 ⇔ (M, g) is Einstein.

dω2 = λ(α ∧ ω3) ⇔ (M, g) is Einstein with ric = −2(1 + λ)g.

The structure is never parallel.

�

G2-Structures on S1
-Bundles over M6

Let (M6, g, ω, I) be a Kähler manifold with canonical S1-bundle

π : K ⊂ Λ(3,0)T ∗M6 → M6.

In this section we define a G2-structure on the total space K. Our approach is
motivated by Example 1, p.84 from [5]. In addition to the result from [5], we study
the possible torsion types and show that the G2-structure is always hypo and hence
a candidate to solve the corresponding embedding problem.
The connection 1-form Zg on K, induced by the Levi-Civita connection, is a u1 = iR
valued 1-form and satisfies by Proposition 5.4

dZg = iπ∗�,
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where � is the Ricci form of g. We denote by ξ the vertical lift of i ∈ u1, i.e.

ξΦ = RΦ∗i,

for all Φ ∈ K. Then we obtain a metric ḡ on K by

ḡ(ξ, ξ) := 1, ḡ(ξ, hgX) := 0 and ḡ(hgX, hgY ) := g(X, Y ),

where X, Y ∈ TM6 and hg denotes the horizontal lift to K w.r.t. the connection
Zg. Since Zg(ξ) = i, the dual α := ξ�ḡ of ξ is given by

α = −iZg.

The Kähler form pulls back to a 2-form

ω̄ := π∗ω

on K and we set
σ̄ :=

1
2
ω̄2.

There are tautological 3-forms on K, defined by

ρ(U, V,W ) := Re(Φ)(π∗U, π∗V, π∗W ),

�ρ(U, V,W ) := Im(Φ)(π∗U, π∗V, π∗W ),

for U, V,W ∈ TΦK. Lifting a Cayley frame for the Kähler structure on M6 to K

and extending the lift by the vector field ξ, yields a Caley frame for the G2-structure

Definition 6.18.

ϕ := ρ + α ∧ ω̄,

ψ := σ̄ − α ∧ �ρ.

Note that the metric of this structure is just g(ϕ) = ḡ. To compute the torsion type
of this structure we need to compute the exterior derivatives of the tensors ρ and
�ρ. Using

dρ(U0, .., U3) =
3�

k=0

(−1)kUk · (ρ(U1, .., Ûk, .., U3))

+
�

0≤k,l≤3

(−1)k+lρ([Uk, Ul], U1, .., Ûk, .., Ûl, .., U3),

together with Lemma 1.11 and ξ�ρ = 0, we get

Lemma 6.19.

dρ = iZg ∧ �ρ = −α ∧ �ρ,

d�ρ = −iZg ∧ ρ = α ∧ ρ.

�
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The Kähler condition yields

dω̄ = dσ̄ = 0 and dα = π∗�.

Hence we compute

dψ = −π∗� ∧ �ρ + α ∧ α ∧ ρ

= −π∗� ∧ �ρ.

Since π∗� is a (1, 1) form w.r.t. the pullback of I to the horizontal distribution
on K, and ρ + i�ρ is a (3, 0) form, we see that on the six-dimensional horizontal
distribution the (4, 1) form π∗� ∧ (ρ + i�ρ) vanishes. Since the Ricci form π∗� is a
real form, we obtain

π∗� ∧ ρ = π∗� ∧ �ρ = 0

and, in particular, dψ = 0. Now

dϕ = −α ∧ �ρ + π∗� ∧ ω̄

shows that dϕ �= 0 and we compute

dϕ = λψ

⇔ − α ∧ �ρ + π∗(� ∧ ω) = λσ̄ − λα ∧ �ρ

⇔ (λ− 1)α ∧ �ρ + π∗(� ∧ ω − 1
2
λω2) = 0

⇔ λ = 1 and � ∧ ω =
1
2
ω2.

By Schur’s Lemma, ω∧ : Λ2T ∗M6 → Λ4T ∗M6 defines an isomorphism. Hence
dϕ = λψ is equivalent to λ = 1 and � = 1

2ω. In summary we have, cf. [5] Example
1, p.84:

Theorem 6.20. The G2-structure ϕ on K from Definition 6.18 is always hypo,
but never parallel. The structure is nearly parallel with dϕ = ψ if and only if the
underlying Kähler structure is Einstein with ric = 1

2g.

�

SU(3)-Structures on S1 × S1
-Bundles over M4

Let (M4, g, ω, I) be a Kähler manifold with canonical S1-bundle

πK : K ⊂ Λ(2,0)T ∗M4 → M4.
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The connection 1-form Zg on K, induced by the Levi-Civita connection, is a u1 = iR
valued 1-form and satisfies by Proposition 5.4

dZg = iπ∗
K

�,

where � is the Ricci form of g. More generally, every closed 2-form �P on M4 such
that

[
�P

2π
] ∈ H2(M4; Z),

corresponds, up to isomorphism, to a S1-bundle πP : P → M4, together with a
connection 1-form ZP , such that

dZP = iπ∗
P

�P

holds, cf. [44]. Given such a form �P , we define a SU(3)-structure on the total space
of π : K�P → M4, where

K�P := {(Φ,Ψ) | πK(Φ) = πP (Ψ)}

is the fibre product of K and P . Like in the previous section we have tautological
2-forms on K, given by

ω2(U, V ) := Re(Φ)(π∗U, π∗V ),

ω3(U, V ) := Im(Φ)(π∗U, π∗V ),

for U, V ∈ TΦK, which satisfy

dω2 = iZg ∧ ω3,

dω3 = −iZg ∧ ω2.

We denote by ξ, ξP the vertical lift of (i, 0), (0, i) ∈ u1 × u1 to K, P , respectively.
Then we obtain a metric ḡ on K�P by

ḡ(ξ, ξ) := ḡ(ξP , ξP ) := 1

ḡ(ξ, ξP ) := 0,

ḡ(ξ, hX) := ḡ(ξP , hX) := 0,

ḡ(hX, hY ) := g(X, Y ),

where X, Y ∈ TM4 and h denotes the horizontal lift to K�P w.r.t. the connection
(Zg,ZP ). Then the dual 1-forms for ξ and ξP satisfy

α := ξ�ḡ = −iZg and αP := ξP �ḡ = −iZP ,

where we consider Zg and ZP as forms on K�P via the pull back under the
canonical projections K�P → K, P . Hence the pull back of the tautological forms
ω2 and ω3 to K�P satisfy

dω2 = −α ∧ ω3,

dω3 = α ∧ ω2
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and for the exterior derivatives of α and αP we obtain

dα = π∗� and dαP = π∗�P .

We can easily find a Cayley frame to prove that

Definition 6.21.

ω̄ := αP ∧ α + ω3,

ρ := αP ∧ π∗ω − α ∧ ω2,

�ρ := αP ∧ ω2 + α ∧ π∗ω,

defines a SU(3)-structure on K�P . Since π∗�(P ) is a (1, 1) form w.r.t. the pullback
of I to the horizontal distribution on K�P , and ω2+iω3 is a (2, 0) form, we see that
on the four dimensional horizontal distribution the (3, 1) form π∗�(P ) ∧ (ω2 + iω3)
vanishes. Since the Ricci form π∗� is a real form, we obtain

π∗�(P ) ∧ ω2 = π∗�(P ) ∧ ω3 = 0.

Then
dω̄ = π∗�P ∧ α− αP ∧ π∗� + α ∧ ω2 �= 0

shows that the structure is never parallel, but satisfies

dω̄ ∧ ω̄ = 0,

since ω2 ∧ ω3 = 0. The Kähler condition dω = 0 yields

dρ = π∗(�P ∧ ω)− π∗� ∧ ω2 = π∗(�P ∧ ω).

Hence the structure is hypo if �P ∧ω = 0. In contrast to the G2-case, the structure
turns out to be never nearly Kähler. In summary we have

Theorem 6.22. The SU(3)-structure on K�P from Definition 6.21 always sa-
tisfies dω̄ ∧ ω̄ = 0. Moreover, the structure is hypo if in addition �P ∧ ω = 0 holds.
The structure is never parallel or nearly parallel.

�
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