Evolution of Geometries with Torsion

Inaugural-Dissertation
zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von
Sebastian Wolfgang Stock
aus Köln

Berichterstatter: Prof. Dr. Uwe Semmelmann

Prof. Dr. George Marinescu

Tag der mündlichen Prüfung:

Kurzzusammenfassug

Wir reduzieren das Einbettungsproblem für $S U(2)$ und $S U(3)$-Strukturen auf das Einbettungsproblem für G_{2}-Strukturen. Der G_{2}-Fall wird mittels Automorphismen des Tangentialbündels untersucht und wir zeigen dass keine nicht-trivialen Langzeitlösungen des Einbettungsproblems existieren. Hitchins Flussgleichung für den G_{2}-Fall lässt sich zu einer Gleichung für die entsprechenden Automorphismen des Tangentialbündels verallgemeinern. Diese verallgemeinerte Flussgleichung beschreibt eine Deformation der Ausgangsstruktur mittels ihrer intrinsischen Torsion. Für reell-analytische Strukturen besitzt diese Flussgleichung stets eine eindeutige reell-analytische Lösung.
Wir erweitern den Kähler-Ricci Fluss auf $S U(n)$-Strukturen und untersuchen wann dieser gegen eine parallele $S U(n)$-Struktur konvergiert. Unser Ansatz ermöglicht zudem eine Erweiterung des Ricci Flusses auf G_{2} und Spin $_{7}$-Strukturen. Für $S U(3)$ Strukturen auf sieben-dimensionalen Mannigfaltigkeiten beschreiben wir eine GrayHervella Klassifikation und definieren damit das G_{2}-Analogon zu Kähler $S U(3)$ Strukturen. Diese G_{2}-Strukturen besitzen eine Faserung, deren Fasern mittels des Ricci-Flusses deformiert werden können. Der faserweise Ricci-Fluss deformiert die ambiente G_{2}-Struktur zu einer Ricci-flachen G_{2}-Struktur.

Abstract

We reduce the embedding problem for hypo $S U(2)$ and $S U(3)$-structures to the embedding problem for hypo G_{2}-structures into parallel Spin(7)-manifolds. The latter will be described in terms of gauge deformations. This description involves the intrinsic torsion of the initial G_{2}-structure and allows us to prove that the evolution equations, for all of the above embedding problems, do not admit non-trivial longtime solutions. For G_{2}-structures we introduce a new flow, which generalizes Hitchin's flow equations. This intrinsic torsion flow admits unique solutions in the real analytic category.

We extend the Kähler-Ricci flow to $S U(n)$-structures and characterize under which conditions this flow converges to a parallel $S U(n)$-structure. This approach also yields an extension of the Ricci flow to G_{2} and Spin $_{7}$-structures. For $S U(3)$ structures in dimension seven we derive the analogue of the Gray-Hervella classification. Based on this classification, we define a type of G_{2}-structure which can be regarded as the seven dimensional analogue of Kähler $S U(3)$-structures. This type of G_{2}-structures allow a fibrewise Ricci flow that converges to a Ricci flat $G_{2 \text {-structure. }}$

Acknowledgement

First and foremost I would like to thank Professor Uwe Semmelmann for his guidance and supervision over the last years. I am also very grateful to Professor McKenzie Wang, who supported my research at McMaster University. Finally, I acknowledge the financial support of the DFG, which enabled me to complete my research.

Table of Contents

Introduction 1
Chapter 1: Deformations of Principal Bundles
1.1. Stability 6
1.2. Gauge Deformations 8
1.3. Intrinsic Torsion 12
1.4. Holonomy 21
Chapter 2: Integral Curves in Fréchet Spaces
2.1. Fréchet Spaces 23
2.2. Real Analyticity 27
2.3. The Cauchy-Kowalevski Theorem 29
Chapter 3: Special Geometries
3.1. $S U(2)$-Structures in Dimension Five 38
3.2. $S U(3)$-Structures in Dimension Six 50
3.3. G_{2}-Structures in Dimension Seven 63
3.4. $S U(3)$-Structures in Dimension Seven 70
3.5. Spin(7)-Structures in Dimension Eight 77
Chapter 4: Embedding Theorems for Special Geometries
4.1. Generalized Cylinders 81
4.2. Evolution Equations 86
4.3. The Hypo Lift 88
4.4. The Model Case $G_{2} \subset \operatorname{Spin}(7)$ 91
4.5. The Nearly Hypo Case 98
Chapter 5: Ricci Flow for G_{2}-Structures
5.1. Kähler Geometry 101
5.2. Cao's Solution of the Calabi Conjecture 107
5.3. An Extension of Cao's Result to $S U(n)$-Structures 108
5.4. Universal Ricci Flow 112
5.5. Fibrewise Ricci Flow 115
Chapter 6: Examples
6.1. G_{2} and $\operatorname{Spin}(7)$-Structures on $T M^{4}$ 122
6.2. $S U(2)$ and $S U(3)$-Structures on $T M^{3}$ 130
6.3. G_{2}-Structures on S^{1}-Bundles over M^{6} 136
6.4. $S U(3)$-Structures on $S^{1} \times S^{1}$-Bundles over M^{4} 138
References 141

Introduction

The Berger-Simons classification [6], [48] of the possible holonomy groups of a Riemannian manifold leads to the question which of the Ricci flat holonomy groups can actually be realized as the holonomy group of a Riemannian metric on a compact manifold. A metric with holonomy group equal to $G \subset O(n)$ induces a G-structure, i.e. a reduction of the frame bundle to the structure group G. Conversely, such a reduction yields a metric with holonomy $G \subset O(n)$ if the reduction is compatible with the Levi-Civita connection of the induced $O(n)$-structure. This compatibility is measured by the intrinsic torsion of the G-structure, which takes values in the G-module

$$
\mathbb{R}^{n *} \otimes \mathfrak{g}^{\perp}
$$

In the $U(n)$ and G_{2}-case, Gray et al. [27], [32] decomposed this G-module into irreducible summands and classified structures according to the irreducible components of their intrinsic torsion. For certain torsion types many explicit examples of structures with the prescribed torsion type are known. For instance, Kähler structures with vanishing first real Chern class can be regarded as certain types of $S U(n)$-structures. Namely, the intrinsic torsion of a $S U(n)$-structure decomposes into a Kähler part and a component measuring the defect of the structure to give a further holonomy reduction to $S U(n) \subset U(n)$. Yau's student H. Cao proves in [17] that the Kähler-Ricci flow can actually be used to deform a Kähler $S U(n)$-structure into a Ricci flat structure. In other words, Cao studies a particular evolution of a geometry with torsion to prove the Calabi conjecture. In this thesis we discuss two approaches to construct manifolds with special holonomy via evolution of geometries with torsion:

I. Hitchin's flow equations

In [37] N. Hitchin introduced certain evolution equations for G_{2} and $S U(3)$ structures on a manifold M, whose solutions are the gradient flow of a certain volume functional. A family of structures, evolving according to Hitchin's flow equations for time $t \in I \subset \mathbb{R}$, yields a parallel structure on the product $I \times M$. In this sense, a solution of the evolution equations embeds the initial structure into a manifold with a parallel structure and is therefore called a solution of the embedding problem for the initial structure.
Hitchin's flow equations were extended in [22] and [28] to $S U(2)$-structures in dimension five. Similar equations are known for embedding $S U(2)$-structures in dimension five and $S U(3)$-structures in dimension six into manifolds with a nearly parallel $S U(3)$ and G_{2}-structure, respectively, cf. [21]. This evolution equations lead to a huge variety of embedding problems for certain geometries.
Solving the embedding problem for a given structure has two different aspects. First
one has to establish the existence of a solution to the flow equations. Secondly, the particular solution has to satisfy certain compatibility conditions to actually define a family of G-structures. In the G_{2}-case no compatibility conditions occur, since the structure is described by a single stable 3 -form. In contrast, the $S U(2)$ and $S U(3)$-case involve various compatibility conditions. Hitchin proves that the $S U(3)$ evolution equations already imply the desired compatibility conditions. A similar result holds for the embedding problem for $S U(3)$-structures into nearly parallel G_{2}-structures, cf. [49].
R. Bryant [11] shows that in the real analytic category, the embedding problem for hypo $S U(3)$ and G_{2}-structures can be solved. Bryant also provided counterexamples in the smooth category. The embedding problem for $S U(2)$-structures in dimension five was solved by D. Conti and S. Salamon in [22], cf. also [21].

II. Ricci flow for $S U(3)$ and G_{2}-structures

Yau's proof [50] of the Calabi conjecture [16] settled the existence of compact manifolds with holonomy equal to $S U(m)$. First mayor progress towards the exceptional cases was achieved by R. Bryant and S. Salamon [13], who established the first complete, but non compact, examples with holonomy equal to G_{2} and $\operatorname{Spin}(7)$. It took until 1996 before D. Joyce [40], [41], [42] proved the existence of compact manifolds with holonomy equal to G_{2} and $\operatorname{Spin}(7)$. Nevertheless, an a priori existence theorem for G_{2} manifolds is still missing today.
Cao's work [17] on the Kähler-Ricci flow motivates the conjecture that a similar flow could deform G_{2}-structures with sufficiently small torsion into parallel structures. Recently there have been various approaches to define the analogue of a Kähler-Ricci flow for the G_{2}-case. Bryant [10] discusses the G_{2}-Laplacian evolution

$$
\dot{\varphi}=\Delta_{\varphi} \varphi
$$

where $\varphi \in \Omega^{3}(M)$ is the structure tensor of the G_{2}-structure. Although this evolution seems to be quite natural, Bryant argues that one would not expect the Laplacian flow to converge for most G_{2}-structures. H. Weiß and F. Witt [51] describe the evolution of a G_{2}-structure under the gradient flow of a Dirichlet energy functional. The authors establish the short-time existence and uniqueness for this gradient flow.
However, it is still unclear what flow and what type of initial structure would be appropriate in the G_{2}-case. The attempt to deform the whole G_{2}-structure under a certain heat flow, seems to be symptomatic for all current approaches. In contrast, the Kähler-Ricci flow only deforms the ambient $U(n)$-structure, leaving the complex structure unchanged. This motivates the conjecture that Hamilton's Ricci flow should also be applicable to certain initial types of G_{2}-structures. A result due to R. Bryant [10], R. Cleyton and S. Ivanov [20] supports this conjecture. The authors prove that closed G_{2}-structures which are Einstein have to be parallel. This
indicates that the difference between a Ricci flat and a parallel G_{2}-structure is less drastic than it seems to be.

III. Methods

In the first and second chapter we develop certain methods to study general deformations of special geometries. Gauge deformations, i.e. automorphisms of the tangent bundle, provide a unifying approach to describe deformations of G-structures. In many cases the structure tensor φ of a given G-structure is stable in the sense that the orbit under the natural action of $G L(n)$ is open. Hence any smooth deformation φ_{t} of the structure tensor stays inside the open orbit and can be described by a family $\left[A_{t}\right] \in G L(n) / G$. Choosing a particular connection on $G L(n) \rightarrow G L(n) / G$, allows a description of the form $\varphi_{t}=A_{t} \varphi$, cf. Theorem 1.6. For a family of metrics g_{t} this is the familiar description $g_{t}=A_{t} g$, where A_{t} is symmetric and positive w.r.t. the initial metric g. Geometrically, the family of gauge deformations A_{t} describes the evolution of the principal G-reduction in vertical direction.
The evolution of the structure tensor $\varphi_{t}=A_{t} \varphi$ can be computed in terms of a G-equivariant map,

$$
\dot{\varphi}_{t}=D_{\varphi_{t}}\left(\dot{A}_{t} A_{t}^{-1}\right)
$$

cf. Lemma 1.16. This allows to translate the evolution equation for the structure tensors into a corresponding equation for the family of gauge deformations. The deformation of the underlying metric of the $G \subset O(n)$ structure is then obtained using polar decomposition to write $A_{t}=P_{t} Q_{t} \in S^{2} \cdot O(n)$. In Theorem 1.19 we compute the change in the intrinsic torsion after deforming the initial structure by a gauge deformation. For a function $f: M \rightarrow \mathbb{R}$ and $A:=f$ id, this yields the well-known formula for conformal changes, cf. [2], [43].

The space of gauge deformations $C^{\infty}(\operatorname{Aut}(T M))$ is an open subset of the Fréchet space $C^{\infty}(\operatorname{End}(T M))$. A solution $c(t)$ of a certain evolution equation can therefore be regarded as an integral curve of a vector field on a Fréchet space. In order for a solution to preserve some initial condition, we study in the second chapter the case where the vector field is tangent to the subspace determined by the initial condition, cf. Proposition 2.3. In contrast to finite dimensional geometry, the integral curve of a vector field tangent to some subspace does not have to stay inside the subspace. In the particular case where the solution can be developed in a power series of the form

$$
c(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} c^{(k)}(0)
$$

we prove in Corollary 2.4 that the solution $c(t)$ actually stays inside the subspace. Hence Corollary 2.4 can be regarded as a conservation law for integral curves in Fréchet spaces.

The condition that the solution can be developed in a power series is quite restrictive. However, the Cauchy-Kowalevski Theorem proves, beyond the existence, that
the integral curves in question satisfy this condition. We translate the local version of the Cauchy-Kowalevski Theorem into a global version Theorem 2.11 for integral curves in Fréchet spaces of the form $C^{\infty}(V)$, where V is a vector bundle over a compact manifold.

IV. Applications

We prove that the embedding problems for $S U(2)$ and $S U(3)$-structures can be reduced to the G_{2}-case, which will be studied in terms of gauge deformations in chapter four. It seems to be coincidence, that in the G_{2}-case, the intrinsic torsion \mathcal{T} takes values in the G_{2}-module $\mathfrak{g l}(7)$ and therefore can be regarded again as an (infinitesimal) gauge deformation. In Proposition 4.12 we show that the intrinsic torsion flow for G_{2}-structures

$$
\dot{A}_{t}=\mathcal{T}_{t} \circ A_{t}
$$

can be regarded as a generalization of Hitchin's flow equation, and hence as a generalization of the $S U(2), S U(3)$ and G_{2}-embedding problem. We describe the evolution of the metric and the intrinsic torsion under the intrinsic torsion flow, cf. Theorem 4.13. As a consequence of the Cheeger-Gromoll Splitting Theorem, we prove in Theorem 4.14 and Corollary 4.15 that there are no nontrivial longtime solutions for the embedding problem. The Cauchy-Kowalevski Theorem and the conservation law Corollary 2.4 allow us to prove that the intrinsic torsion flow preserves certain compatibility conditions, which implies that for any real analytic hypo $S U(2), S U(3)$ and G_{2}-structure on a compact manifold, the embedding problem admits a unique real analytic solution. Moreover, the solution can be described by a family of gauge deformations

$$
A_{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A_{0}^{(k)},
$$

where the series converges in the C^{∞}-topology on $C^{\infty}(\operatorname{End}(T M))$.

In chapter five we define a canonical extension of the Kähler-Ricci flow to $S U(n)$ structures via gauge deformations and characterize in Theorem 5.13 under which conditions this flow converges to a parallel $S U(n)$-structure. In Theorem 5.9 we prove that the canonical extension evolves under an equation that has a striking similarity with the evolution equation of the Kähler-Ricci flow. Below we list the evolution equations for the different types of Ricci flows, using the map D form Lemma 1.16:

Name	Structure Group	Evolution Equation
usual Ricci flow	$O(n)$	$\dot{g}_{t}=D_{g_{t}}\left(\operatorname{Ric}_{t}\right)$
Kähler-Ricci flow	$U(n)$	$\left(\dot{g}_{t}, \dot{\omega}_{t}\right)=D_{\left(g_{t}, \omega_{t}\right)}\left(\operatorname{Ric}_{t}\right)$
(special) Kähler-Ricci flow	$S U(n)$	$\left(\dot{g}_{t}, \dot{\omega}_{t}, \dot{\rho}_{t}\right)=D_{\left(g_{t}, \omega_{t}, \rho_{t}\right)}\left(\operatorname{Ric}_{t}\right)$

This motivates the conjecture that for a given G_{2}-structure φ on M with sufficiently small torsion, the flow

$$
\dot{\varphi}_{t}=D_{\varphi_{t}}\left(\operatorname{Ric}_{t}\right)
$$

should converge to a Ricci-flat G_{2}-structure. Essentially the same flow equation can be considered for Spin_{7}-structures, or more generally, for any $G \subset O(n)$ structures, described by certain structure tensors. We show that the family of metrics, corresponding to a family of structures φ_{t}, evolving according to $\dot{\varphi}_{t}=D_{\varphi_{t}}\left(\operatorname{Ric}_{t}\right)$, satisfies $\dot{g}_{t}=-2$ ric $_{t}$.
Moreover, we prove that all of the above evolution equations can be described in a unified way, using gauge deformations. Namely, a solution $A_{t} \in C^{\infty}(\operatorname{Aut}(T M))$ of

$$
\left\{\begin{array}{l}
\dot{A}_{t}=\operatorname{Ric}_{t} \circ A_{t} \\
A_{0}=\mathrm{id}
\end{array}\right.
$$

yields a solution for all of the above Ricci flows. For instance, $\varphi_{t}:=A_{t} \varphi$ solves $\dot{\varphi}_{t}=D_{\varphi_{t}}\left(\operatorname{Ric}_{t}\right)$, for any initial G_{2}-structure φ on M. We call A_{t} the universal Ricci flow for the initial metric g and prove in Theorem 5.14 that any compact Riemannian manifold admits a unique universal Ricci flow for some time $t \in[0, T)$.
The Spin_{7}-case reveals another advantage of working with families of gauge deformations. In contrast to the G_{2}-case, the orbit of the model tensor is not open in the Spin_{7}-case. Hence it is not obvious that a Spin_{7}-structure Ψ evolving according to $\dot{\Psi}_{t}=D_{\Psi_{t}}\left(\operatorname{Ric}_{t}\right)$ actually defines a whole family of Spin_{7}-structures. Describing the solution via a family of gauge deformation $\Psi_{t}=A_{t} \Psi$ completely circumvents this problem.

Based on the discussion of $S U(3)$-structures in chapter three, we define a type of G_{2}-structure which can be regarded as the seven dimensional analogue of Kähler $S U(3)$-structures. This type of G_{2}-structures allow a fibrewise Ricci flow. Using Cao's result for Kähler structures in dimension six, we prove in Theorem 5.22 that the fibrewise Ricci flow converges to a Ricci flat G_{2}-structure.

1. Deformations of Principal Bundles

In this chapter we study deformations of principal bundles via gauge deformations. A gauge deformation is an equivariant map $A: P \rightarrow G$, where P is some principal bundle with structure group G. Given such a map and a reduction Q of P to $H \subset G$, we obtain a new H-reduction by

$$
Q A:=\{q A(q) \mid q \in Q\} \subset P
$$

Hence a gauge deformation can be regarded as a vertical deformation of the initial reduction Q. In contrast, a diffeomorphism of M induces a horizontal deformation of a reduction $Q \subset F M$, where $F M$ is the frame bundle of some manifold M.
Many reductions can be described by certain tensors. For instance, a family of metrics g_{t} on M induces a family of $O(n)$-reductions $F^{g_{t}} M \subset F M$. Using polar decomposition, one can easily see that such a family of metric can be described by a family of gauge deformations via $g_{t}=A_{t} g$, where $g:=g_{0}$ is the initial metric. In Theorem 1.6 we obtain a generalization of this description for certain families of tensors.
The compatibility of a given $G \subset O(n)$ reduction $P \subset F^{g} M$ with the Levi-Civita connection on $F^{g} M$ is measured by the intrinsic torsion of $P \subset F^{g} M$. Deforming the initial structure by a gauge deformation effects the intrinsic torsion. In Theorem 1.19 we compute the change in the intrinsic torsion under a general gauge deformation. Using Theorem 1.6, we obtain in Corollary 1.21 a characterization of G-structures that can be deformed to torsion-free structures.

Stability

Let $\pi: P \rightarrow M$ be a principal G-bundle and $\varrho: G \rightarrow \operatorname{Aut}(V)$ be a real G representation. We identify sections of the associated bundle $P \times{ }_{\varrho} V$ with equivariant maps $\varphi: P \rightarrow V$, satisfying

$$
\varphi(p g)=g^{-1} \varphi(p):=\varrho\left(g^{-1}\right) \varphi(p)
$$

for all $p \in P$ and $g \in G$. A G-structure $P \subset F M$ is a reduction of the frame bundle $\pi: F M \rightarrow M$ to a Lie subgroup $G \subset G L(n)$. A basis $p \in F M$ corresponds to an isomorphism $p: \mathbb{R}^{n} \rightarrow T_{\pi(p)} M$ which identifies the standard basis $\left(e_{1}, . ., e_{n}\right)$ of \mathbb{R}^{n} with the basis p of $T_{\pi(p)} M$. Hence an element $g \in G L(n)$ acts on $F M$ by

$$
p g:=p \circ g: \mathbb{R}^{n} \longrightarrow T_{\pi(p)} M
$$

making $F M$ into a principal $G L(n)$-bundle over M.

Definition 1.1. Let $\pi: P \rightarrow M$ be a principal G-bundle, $\varrho: G \rightarrow \operatorname{Aut}(V)$ a real G-representation, $\varphi_{0} \in V$ and $\varphi: P \rightarrow V$ equivariant.
(1) φ_{0} is stable if the orbit $G \varphi_{0}:=\varrho(G) \varphi_{0} \subset V$ is open.
(2) φ is stable if $\varphi(p) \in V$ is stable, for all $p \in P$.
(3) φ is of type φ_{0} if $\varphi(p) \in G \varphi_{0} \subset V$, for all $p \in P$.

An equivariant map $\varphi: P \rightarrow V$ of type $\varphi_{0} \in V$ defines a reduction of P to the isotropy group $\operatorname{Iso}_{G}\left(\varphi_{0}\right) \subset G$ via

$$
P^{\varphi}:=\left\{p \in P \mid \varphi(p)=\varphi_{0}\right\} .
$$

Conversely, given such a reduction $Q \subset P$, we obtain an equivariant map $\varphi: P \rightarrow V$ of type φ_{0} by extending the constant $\operatorname{map} \varphi_{\mid Q} \equiv \varphi_{0}$ equivariantly to a map $P \rightarrow V$.

Proposition 1.2. Let $P \rightarrow M$ be a principal G-bundle, $\varrho: G \rightarrow \operatorname{Aut}(V)$ a real G-representation and $\varphi_{0} \in V$. Then the reductions of P to the isotropy group Iso $_{G}\left(\varphi_{0}\right) \subset G$ correspond to equivariant maps $\varphi: P \rightarrow V$ of type φ_{0}.

One of the main motivations to study stability in relation with G-structures is the following

Proposition 1.3. Let $P \rightarrow M$ be a principal G-bundle over a connected manifold M, and $\varrho: G \rightarrow \operatorname{Aut}(V)$ a real G-representation. If $\varphi: P \rightarrow V$ is stable, then for any $p \in P$, the map φ is already of type $\varphi_{0}:=\varphi(p) \in V$. In particular, φ induces a reduction to the isotropy group of φ_{0}.

Proof: Since φ is stable,

$$
W_{0}:=\left\{x \in M \mid \exists p \in P_{x}: \varphi(p)=\varphi_{0}\right\}=\pi\left(\varphi^{-1}\left(G \varphi_{0}\right)\right) \subset M
$$

is open. For $x \in M \backslash W_{0}$ choose some $p \in P_{x}$. Then $\varphi_{1}:=\varphi(p) \notin G \varphi_{0}$ and $W_{1} \subset M$ defines an open set containing x. If $W_{1} \cap W_{0} \neq \emptyset$, we find $p, q \in P$ with $\pi(p)=\pi(q)$, $\varphi(p)=\varphi_{0}$ and $\varphi(q)=\varphi_{1}$. Hence $q=p g$ for some $g \in G$ and

$$
\varphi_{1}=\varphi(q)=g^{-1} \varphi(p)=g^{-1} \varphi_{0} \in G \varphi_{0},
$$

which contradicts $x \notin W_{0}$.

A similar result holds for whole families of stable maps.

Proposition 1.4. Suppose $P \rightarrow M$ is a principal G-bundle over a connected manifold $M, \varrho: G \rightarrow \operatorname{Aut}(V)$ is a real G-representation and that $\left\{\varphi_{t}: P \rightarrow V\right\}_{t \in I}$ is a family of stable tensors, where $I \subset \mathbb{R}$ is some interval containing zero. If $\varphi:=\varphi_{t=0}$ is of type $\varphi_{0} \in V$, then φ_{t} is of type $\varphi_{0} \in V$, for all $t \in I$.

Proof: Since φ is of type φ_{0}, we find $p \in P$ such that $\varphi(p)=\varphi_{0}$. By Proposition 1.3 we have

$$
0 \in J_{0}:=\left\{t \in I \mid \varphi_{t} \text { is of type } \varphi_{0}\right\}=\left\{t \in I \mid \varphi_{t}(p) \in G \varphi_{0}\right\}
$$

Hence $J_{0}=\left(t \mapsto \varphi_{t}(p)\right)^{-1}\left(G \varphi_{0}\right) \subset I$ is open and non-empty. For $t \in I \backslash J_{0}$ we have $\varphi_{1}:=\varphi_{t}(p) \notin G \varphi_{0}$ and $J_{1} \subset I$ is open and contains t. If $J_{0} \cap J_{1} \neq \emptyset$, we get $G \varphi_{0} \cap G \varphi_{1} \neq \emptyset$ and hence $\varphi_{1} \in G \varphi_{1}=G \varphi_{0}$, in contradiction to $t \notin J_{0}$.

Gauge Deformations

One way to deform a given G-structure $P \subset F M$ is to transform it by an element $F \in \operatorname{Diff}(M)$. Namely consider

$$
F_{*} P:=\left\{F_{*} p \mid p \in P\right\}
$$

where $F_{*} p \in F_{F(\pi(p))} M$ is defined by $\left(F_{*} p\right) e_{i}:=F_{*}\left(p e_{i}\right)$. Since $F_{*}(p g)=\left(F_{*} p\right) g$, we see that $F_{*} P \subset F M$ defines again a G-structure. Similarly we can deform P by an element $A \in C^{\infty}(\operatorname{Aut}(T M))$,

$$
P A:=\{p A(p) \mid p \in P\}
$$

where $p A(P) \in F_{\pi(p)} M$ is defined by $(p A(p)) e_{i}:=p\left(A(p) e_{i}\right)$. The latter deformation is a vertical deformation in the sense that $\pi(p A(p))=\pi(p)$, whereas $\pi\left(F_{*} p\right) \neq \pi(p)$, for $F \neq \mathrm{id}$.

Definition 1.5. Suppose P is a principal G-bundle over M and $\varrho: G \rightarrow \operatorname{Aut}(V)$ is a real G-representation.
(1) A gauge deformation is an equivariant map $P \rightarrow G$, where G acts on itself by conjugation. The set of gauge deformations is denoted by

$$
G(P):=C^{\infty}\left(P \times_{G} G\right)
$$

(2) An infinitesimal gauge deformation is an equivariant map $P \rightarrow \mathfrak{g}$, where G acts on \mathfrak{g} by the adjoint representation. The set of infinitesimal gauge deformations is denoted by

$$
\mathfrak{g}(P):=C^{\infty}\left(P \times_{\mathrm{Ad}} \mathfrak{g}\right)
$$

(3) Using $\exp (\operatorname{Ad}(g) X)=g \exp (X) g^{-1}$, for the usual exponential map exp : $\mathfrak{g} \rightarrow G$, we can define

$$
\exp : \mathfrak{g}(P) \rightarrow G(P) \quad \text { by } \quad \exp (X)(p):=\exp (X(p))
$$

(4) For $A \in G(P)$ and $\varphi: P \rightarrow V$ equivariant, we define an equivariant map

$$
\varrho(A) \varphi: P \rightarrow V \quad \text { by } \quad(\varrho(A) \varphi)(p):=\varrho(A(p)) \varphi(p)
$$

The following Theorem essentially states that families of H-reductions can be described by certain families gauge deformations.

Theorem 1.6. Let $\pi: P \rightarrow M$ be a principal G-bundle, $\varrho: G \rightarrow \operatorname{Aut}(V)$ a real G-representation, $\varphi_{0} \in V$ with isotropy group $H \subset G, \pi: G \rightarrow G / H$ the canonical projection and $\left\{\varphi_{t}: P \rightarrow V\right\}_{t \in I}$ a family of equivariant maps which are all of type φ_{0}. Suppose that \mathfrak{g} is equipped with some $\operatorname{Ad}(H)$-invariant inner product and denote by \mathfrak{h}^{\perp} the orthogonal complement of $\mathfrak{h} \subset \mathfrak{g}$. Denote by $Q \subset P$ the H-reduction induced by $\varphi:=\varphi_{t=0}$ and let

$$
\mathfrak{h}^{\perp}(Q):=\left\{X \in \mathfrak{g}(P) \mid X_{\mid Q}: Q \rightarrow \mathfrak{h}^{\perp}\right\} .
$$

(1) There exists a family of gauge deformations $A_{t} \in G(P), t \in I$, such that

$$
\varphi_{t}=\varrho\left(A_{t}\right) \varphi \quad \text { and } \quad A_{0}=e
$$

(2) If $\pi \circ \exp : \mathfrak{h}^{\perp} \rightarrow G / H$ is a covering map, then there exists a family of infinitesimal gauge deformations $X_{t} \in \mathfrak{h}^{\perp}(Q), t \in I$, such that

$$
\varphi_{t}=\varrho\left(\exp \left(X_{t}\right)\right) \varphi \quad \text { and } \quad X_{0}=0
$$

(3) If H and M are compact, then there exists an open subinterval $J \subset I$ containing 0 such that the conclusion in (2) holds for J instead of I.

Proof: Fix $q \in Q=\left\{p \in P \mid \varphi(p)=\varphi_{0} \in V\right\}$ and define

$$
\bar{A}(q): I \rightarrow G / H \quad \text { by } \quad \bar{A}_{t}(q):=\pi \circ A_{t}(q),
$$

where $A_{t}(q) \in G$ satisfies $\varphi_{t}(q)=\varrho\left(A_{t}(q)\right) \varphi(q)$. Note that such an element $A_{t}(q) \in$ G exists, since $\varphi_{t}(q) \in G \varphi_{0}=G \varphi(q)$ is of type φ_{0}.

Proof of part (1): The decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{h}^{\perp}$ induces a horizontal distribution on the principal H-bundle $\pi: G \rightarrow G / H$ by

$$
H_{g}:=R_{g *} \mathfrak{h}^{\perp} .
$$

Hence there exists a unique horizontal lift $A_{t}(q)$ of $\bar{A}_{t}(q)$ with $A_{0}(q)=e$. From $\pi \circ A_{t}(q)=\bar{A}_{t}(q)$ we get $\varphi_{t}(q)=\varrho\left(A_{t}(q)\right) \varphi(q)$ and it remains to show that A_{t} : $Q \rightarrow G$ is H-equivariant, i.e. for all $q \in Q, h \in H$ and $t \in I$ we have to show that

$$
c(t):=A_{t}(q h)=h^{-1} A_{t}(q) h=: d(t)
$$

holds. The curve $c(t) \in G$ is horizontal by definition, whereas the horizontality of $d(t)$ follows from

$$
\dot{d}(t)=\operatorname{Ad}\left(h^{-1}\right) \dot{A}_{t}(q) \in \operatorname{Ad}\left(h^{-1}\right) R_{A_{t}(q) *} \mathfrak{h}^{\perp}=R_{d(t)} \operatorname{Ad}\left(h^{-1}\right) \mathfrak{h}^{\perp} \subset R_{d(t)} \mathfrak{h}^{\perp}
$$

by $\operatorname{Ad}(H)$-invariance. Now

$$
\varrho(d(t)) \varphi(q h)=\varrho\left(h^{-1}\right) \varrho\left(A_{t}(q)\right) \varphi(q)=\varrho\left(h^{-1}\right) \varphi_{t}(q)=\varphi_{t}(q h)
$$

implies $\pi \circ d(t)=\bar{A}_{t}(q h)=\pi \circ c(t)$ and $c(0)=e=d(0)$ yields $c(t)=d(t)$.

Proof of part (2): If $\pi \circ \exp : \mathfrak{h}^{\perp} \rightarrow G / H$ is a covering map, we can lift the map $\bar{A}(q): I \rightarrow G / H$ uniquely to a map $X(q): I \rightarrow \mathfrak{h}^{\perp}$ with $X_{0}(q)=0$. Hence

$$
\pi \circ \exp \left(X_{t}(q)\right)=\bar{A}_{t}(q),
$$

which yields $\varphi_{t}(q)=\varrho\left(\exp \left(X_{t}(q)\right)\right) \varphi(q)$. It remains to show that $X_{t}: Q \rightarrow \mathfrak{h}^{\perp}$ is equivariant, i.e. for all $q \in Q, h \in H$ and $t \in I$ we have to show that

$$
c(t):=X_{t}(q h)=\operatorname{Ad}\left(h^{-1}\right) X_{t}(q)=: d(t)
$$

holds. Since already $c(0)=0=d(0)$, it suffices to verify that $\pi \circ \exp \circ c(t)=$ $\pi \circ \exp \circ d(t)$ holds. To see this, observe that

$$
\begin{aligned}
\varrho\left(\exp \left(\operatorname{Ad}\left(h^{-1}\right) X_{t}(q)\right)\right) \varphi(q h) & =\varrho\left(h^{-1}\right) \varrho\left(\exp \left(X_{t}(q)\right)\right) \varrho(h) \varrho\left(h^{-1}\right) \varphi(q) \\
& =\varrho\left(h^{-1}\right) \varphi_{t}(q)=\varphi_{t}(q h)
\end{aligned}
$$

implies

$$
\pi \circ \exp \circ d(t)=\pi\left(\exp \left(\operatorname{Ad}\left(h^{-1}\right) X_{t}(q)\right)\right)=\bar{A}_{t}(q h)=\pi \circ \exp \circ c(t)
$$

Proof of part (3): Choose an open neighborhood $U \subset \mathfrak{h}^{\perp}$ of 0 such that

$$
F:=\pi \circ \exp _{\mid U \subset \mathfrak{h}^{\perp}}: U \rightarrow F(U)
$$

is a diffeomorphism. Since H is compact, we can choose U to be $\operatorname{Ad}(H)$-invariant. Now consider

$$
J_{q}:=\left\{t \in I \mid \bar{A}_{t}(q) \in F(U)\right\} .
$$

Since Q is compact, if M and H are compact, we can assume that there exists an open interval J such that $0 \in J \subset J_{q}$ for all $q \in Q$. For $t \in J$ define $X_{t}: Q \rightarrow U \subset$ \mathfrak{h}^{\perp} by

$$
X_{t}(q):=F^{-1}\left(\bar{A}_{t}(q)\right)
$$

Then $X_{0}(q)=0$ and $\pi \circ \exp \left(X_{t}(q)\right)=F \circ F^{-1}\left(\bar{A}_{t}(q)\right)$ implies

$$
\varphi_{t}(q)=\varrho\left(\exp \left(X_{t}(q)\right)\right) \varphi(q)
$$

Now we obtain like in part (1) the equation $\varrho\left(\exp \left(\operatorname{Ad}\left(h^{-1}\right) X_{t}(q)\right)\right) \varphi(q h)=\varphi_{t}(q h)$, which implies $\pi\left(\exp \left(\operatorname{Ad}\left(h^{-1}\right) X_{t}(q)\right)\right)=\bar{A}_{t}(q h)$ and

$$
F\left(X_{t}(q h)\right)=\bar{A}_{t}(q h)=\pi\left(\exp \left(\operatorname{Ad}\left(h^{-1}\right) X_{t}(q)\right)\right)=F\left(\operatorname{Ad}\left(h^{-1}\right) X_{t}(q)\right)
$$

Since $X_{t}(q) \in U$ and U is $\operatorname{Ad}(H)$-invariant, it follows $X_{t}(q h)=\operatorname{Ad}\left(h^{-1}\right) X_{t}(q)$.

Example 1.7. Given two Riemannian metrics g and g_{t} on M, we can define a gauge deformation $B_{t} \in C^{\infty}(\operatorname{Aut}(T M))$ by $\left.g_{t}=B_{t}\right\lrcorner g$. So B_{t} is symmetric and positive w.r.t. g and hence there is a unique square root A_{t} of B_{t}^{-1} w.r.t. g, i.e. $B_{t}=A_{t}^{-1} A_{t}^{-1}$, where A_{t} is again symmetric and positive w.r.t. g. This shows that any two metrics are gauge equivalent,

$$
g_{t}=A_{t} g
$$

We can also apply Theorem 1.6 to a family of metrics g_{t} on M and obtain the same gauge deformation A_{t}. Here $H:=O(n) \subset G L(n)=: G$ and the $\operatorname{Ad}(O(n))$-invariant inner product on $\mathfrak{g l}(n)$ is given by $\langle X, Y\rangle:=\operatorname{tr}\left(X Y^{T}\right)$.

Example 1.8. Suppose I is an almost complex structure on M and consider $T M$ as a complex vector bundle via $i X:=I X$, for $X \in T M$. A hermitian metric on (M, I) is a Riemannian metric g which satisfies $g(I ., I)=$.$g and hence induces a$ 2-form $\omega:=g(I .,$.$) . Then$

$$
h:=g-i \omega
$$

defines a hermitian structure on the complex vector bundle ($T M, I$), i.e. the map $h: T M \times T M \rightarrow \mathbb{C}$ is \mathbb{C}-linear in the first argument and satisfies $h(X, Y)=\overline{h(Y, X)}$ and $h(X, X)>0$, for every $X \neq 0$. We regard h as a \mathbb{C}-anti-linear isomorphism

$$
h: T M \rightarrow T^{*} M \quad \text { via } \quad X \mapsto h(., X)
$$

Given two hermitian metrics g and g_{t} on (M, I), we define a gauge deformation B_{t} by $h_{t}(Y, X)=h\left(Y, B_{t} X\right)$. Since

$$
B_{t} I=I B_{t} \quad \text { and } \quad h\left(Y, B_{t} X\right)=h\left(B_{t} Y, X\right) \quad \text { and } \quad h\left(B_{t} X, X\right)>0, \text { for } X \neq 0
$$

we can find a unique square root of B_{t}^{-1} w.r.t. h, i.e. $B_{t}=A_{t}^{-1} A_{t}^{-1}$ and

$$
A_{t} I=I A_{t} \quad \text { and } \quad h\left(Y, A_{t} X\right)=h\left(A_{t} Y, X\right) \quad \text { and } \quad h\left(A_{t} X, X\right)>0, \text { for } X \neq 0
$$

In particular, we obtain a gauge deformation with

$$
h_{t}=A_{t} h
$$

Since $A_{t} I=I A_{t}, A_{t}$ is hermitian w.r.t. h if and only if it is symmetric w.r.t. $g=\operatorname{Re}(h)$. Ignoring the almost complex structure, we can write $g_{t}=\widetilde{A}_{t} g$, where \widetilde{A}_{t} is defined like in Example 1.7. So $\widetilde{A}_{t} g=A_{t} g$ and from the symmetry of A_{t} and \widetilde{A}_{t} it follows $\widetilde{A}_{t}^{2}=A_{t}^{2}$. But since \widetilde{A}_{t}^{2} and A_{t}^{2} are positive, they have a unique positive square root and hence $\widetilde{A}_{t}=A_{t}$. So the gauge deformation A_{t} is precisely the one that we obtained in Example 1.7, but satisfies in addition $A_{t} I=I A_{t}$. We can also apply Theorem 1.6 to a family of hermitian structures $h_{t}=g_{t}-i \omega_{t}$ on (M, I) and obtain the same gauge deformation A_{t}. Now $H:=U(n) \subset G L(n, \mathbb{C})=$: G and the $\operatorname{Ad}(U(n))$-invariant inner product on $\mathfrak{g l}(n, \mathbb{C})$ is given by $\langle X, Y\rangle:=$ $\operatorname{Re}\left(\operatorname{tr}_{\mathbb{C}}\left(X Y^{*}\right)\right)$.

Intrinsic Torsion

Given a reduction $P \subset F M$, we have a natural concept of integrability. Namely we may ask whether there exist local sections $s=\left(X_{1}, . ., X_{n}\right)$ in P such that $\left[X_{i}, X_{j}\right]=0$ holds. Equivalently, we may look for sections in P which are induced by the basis field of a local chart of M. So integrable $G L(n, \mathbb{C})$-structures are complex structures on M and integrable $S p(n, \mathbb{R})$-structures correspond to symplectic structures on M.
As soon as we consider reductions to subgroups of $O(n)$, this integrability concept is to restrictive. In fact, an integrable $O(n)$-structure would yield a flat metric on M. From this point of view, curvature is the obstruction to the existence of an integrable $O(n)$-structure. To develop a weaker concept of integrability we have to substitute the reference group $G L(n)$ by $O(n)$. Instead of measuring the compatibility of a given $G \subset O(n)$ structure with the $G L(n)$-structure $F M$, we have to measure the compatibility with the metric structure $F^{g} M$. This compatibility is measured by the so-called intrinsic torsion of the G-structure $P \subset F^{g} M$.

Definition 1.9. (1) A connection on a principal G-bundle $\pi: P \rightarrow M$ is a 1-form \mathcal{Z} on P with values in \mathfrak{g}, such that

$$
\mathcal{Z}\left(R_{p *} X\right)=X \quad \text { and } \quad R_{g}^{*} \mathcal{Z}=\operatorname{Ad}\left(g^{-1}\right) \mathcal{Z}
$$

for all $X \in \mathfrak{g}, g \in G$ and $p \in P$. We say that a connection \mathcal{Z} on P reduces to a principal H-bundle $Q \subset P$ if the restriction of \mathcal{Z} to $T Q$ takes values in \mathfrak{h}.
(2) Given a connection \mathcal{Z} on P, we call $H_{p}:=\operatorname{ker}\left(\mathcal{Z}_{p}\right)$ the horizontal distribution of \mathcal{Z}. This distribution is complementary to the vertical space $V_{p}:=\operatorname{ker}\left(\pi_{* p}\right)$, i.e.

$$
T_{p} P=H_{p} \oplus V_{p} \quad \text { and satisfies } \quad H_{p g}=R_{g *} H_{p}
$$

Hence there exists for each $X \in T_{\pi(p)} M$ a unique

$$
h_{p} X \in H_{p} \quad \text { such that } \quad \pi_{*} h_{p} X=X .
$$

We call $h_{p} X$ the horizontal lift of X to $p \in P$ w.r.t the connection \mathcal{Z}. Independent of any connection, we always have a vertical lift of elements $X \in \mathfrak{g}$, defined by

$$
v_{p}(X):=\left.\frac{d}{d t}\right|_{t=0} p \exp (t X)=R_{p *}(X)
$$

(3) The frame bundle $\pi: F M \rightarrow M$ admits a \mathbb{R}^{n}-valued 1-form

$$
\theta: T_{p} F M \rightarrow \mathbb{R}^{n} \quad \text { with } \quad X \mapsto p^{-1} \pi_{*} X
$$

Given a connection \mathcal{Z} on a principal G-bundle $P \subset F M$, we call

$$
T: P \rightarrow \Lambda^{2} \mathbb{R}^{n *} \otimes \mathbb{R}^{n} \quad \text { with } \quad T(p)(x, y):=d \theta\left(h_{p}(p x), h_{p}(p y)\right)
$$

the torsion of \mathcal{Z}.
(4) The curvature of a connection \mathcal{Z} on a principal G-bundle $P \rightarrow M$ is the map

$$
R: P \rightarrow \Lambda^{2} \mathbb{R}^{n *} \otimes \mathfrak{g} \quad \text { with } \quad R(p)(x, y):=d \mathcal{Z}\left(h_{p}(p x), h_{p}(p y)\right)
$$

Given a connection, we can differentiate tensors in horizontal directions.

Proposition 1.10. Suppose $\varrho: G \rightarrow \operatorname{Aut}(V)$ is a real G-representation and $\pi: P \rightarrow M$ is a principal G-bundle, equipped with a connection.
(1) For $X \in C^{\infty}(T M)$ and $\varphi: P \rightarrow V$ the map

$$
\nabla_{X} \varphi: P \rightarrow V \quad \text { with } \quad\left(\nabla_{X} \varphi\right)(p):=\varphi_{*}\left(h_{p} X\right)
$$

is again equivariant, i.e. ∇ defines a map

$$
\nabla: C^{\infty}(T M) \times C^{\infty}\left(P \times_{\varrho} V\right) \rightarrow C^{\infty}\left(P \times_{\varrho} V\right)
$$

(2) For $X \in C^{\infty}(T M)$ and $A \in G(P)$ the map

$$
\nabla_{X} A: P \rightarrow \mathfrak{g} \quad \text { with } \quad\left(\nabla_{X} A\right)(p):=\left(L_{A(p)^{-1}}\right)_{*} A_{*}\left(h_{p} X\right)
$$

is again equivariant, i.e. ∇ defines a map

$$
\nabla: C^{\infty}(T M) \times G(P) \rightarrow \mathfrak{g}(P)
$$

Proof: If we write $h_{p} X=\dot{c}(0)$, for some curve $c(t) \in P$, the first part follows from

$$
\begin{aligned}
\left(\nabla_{X} \varphi\right)(p g) & =\varphi_{*}\left(R_{g *} h_{p} X\right)=\left.\frac{d}{d t}\right|_{t=0} \varphi(c(t) g)=\left.\varrho\left(g^{-1}\right) \frac{d}{d t}\right|_{t=0} \varphi(c(t)) \\
& =\varrho\left(g^{-1}\right)\left(\nabla_{X} \varphi\right)(p)
\end{aligned}
$$

Similarly for the second part,

$$
\begin{aligned}
\left(\nabla_{X} A\right)(p g) & =L_{A(p g)^{-1} *} A_{*}\left(R_{g *} h_{p} X\right)=\left.\frac{d}{d t}\right|_{t=0} A(p g)^{-1} A(c(t) g) \\
& =\left.\frac{d}{d t}\right|_{t=0} g^{-1} A(p)^{-1} A(c(t)) g=\operatorname{Ad}\left(g^{-1}\right)\left(\nabla_{X} A\right)(p)
\end{aligned}
$$

Note that the above definitions of covariant derivatives are not compatible with the embedding $G L(n) \subset \mathfrak{g l}(n)$. Namely the covariant derivative of a gauge deformation $A: F M \rightarrow G L(n)$ from Proposition $1.10(2)$ is not equal to the covariant derivative of

$$
A: F M \rightarrow G L(n) \subset \mathfrak{g l}(n)
$$

in the sense of Proposition 1.10 (1).

By definition of the curvature tensor we have $R(p)(x, y)=-\mathcal{Z}[h(x), h(y)]_{p}$ and hence R measures the integrability of the horizontal distribution $\operatorname{ker}(\mathcal{Z})$. More generally we have

Lemma 1.11. Let \mathcal{Z} be a connection on a principal G-bundle $\pi: P \rightarrow M$. Then for $X, Y \in C^{\infty}(T M)$ and $A, B \in \mathfrak{g}$
(1) $[h(X), h(Y)]_{p}=h_{p}[X, Y]_{\pi(p)}-v_{p}(R(X, Y)(p))$,
(2) $[v(A), h(X)]_{p}=0$,
(3) $[v(A), v(B)]_{p}=v_{p}[A, B]$.

Proof: The first equation follows from $\pi_{*}[h(X), h(Y)]_{p}=[X, Y]_{\pi(p)}$ and since $R(X, Y)(p)=d \mathcal{Z}\left(h_{p}(X), h_{p}(Y)\right)=-\mathcal{Z}[h(X), h(Y)]_{p}$. The flow $\Phi_{t}(p):=p \exp (t A)$ of $v(A)$ satisfies $\Phi_{t *} h_{p}(X)=h_{\Phi_{t}(p)}(X)$ and hence

$$
[v(A), h(X)]_{p}=L_{v_{p}(A)} h(X)=\left.\frac{d}{d t}\right|_{t=0} \Phi_{-t *} h_{\Phi_{t}(p)}(X)=0,
$$

which proves the second equation. Finally,

$$
\begin{aligned}
\Phi_{-t *} v_{\Phi_{t}(p)}(B) & =\left.\frac{d}{d s}\right|_{s=0} p \exp (t A) \exp (s B) \exp (-t A) \\
& =R_{p *}\left(\operatorname{Ad}_{\exp (t A)}(B)\right)=R_{p *}\left(e^{t[A, B]}\right)
\end{aligned}
$$

and hence

$$
[v(A), v(B)]_{p}=R_{p *}\left(\left.\frac{d}{d t}\right|_{t=0} e^{t[A, B]}\right)=R_{p *}([A, B])=v_{p}[A, B] .
$$

Given a connection \mathcal{Z} on a G-structure $P \subset F M$ and an equivariant map $\xi: P \rightarrow$ $\mathbb{R}^{n *} \otimes \mathfrak{g}$, we obtain a new connection on P by

$$
\widetilde{\mathcal{Z}}:=\mathcal{Z}+\xi \circ \theta
$$

The corresponding torsion tensors satisfy $\widetilde{T}=T+\delta \circ \xi$, where

$$
\delta: \mathbb{R}^{n *} \otimes \mathfrak{g l}(n) \rightarrow \Lambda^{2} \mathbb{R}^{n *} \otimes \mathbb{R}^{n} \quad \text { is given by } \quad(\delta F)(x, y):=F(x) y-F(y) x
$$

Since the restriction of δ to $\mathbb{R}^{n *} \otimes \mathfrak{s o}(n)$ is an isomorphism of $O(n)$-modules, every $O(n)$-reduction $F^{g} M \subset F M$ admits a unique torsion-free connection; the LeviCivita connection \mathcal{Z}^{g} of the metric g.

Now let $G \subset O(n)$ and consider a G-structure $P \subset F^{g} M$. Decomposing $\mathfrak{s o}(n)=$ $\mathfrak{g} \oplus \mathfrak{g}^{\perp}$ with respect to the inner product $\langle X, Y\rangle:=\operatorname{tr}\left(X Y^{T}\right)$ on $\mathfrak{s o}(n)$, we obtain a corresponding decomposition

$$
\mathcal{Z}_{\mid T P}^{g}=\mathcal{Z}+\mathcal{Z}^{\perp} \in \mathfrak{g} \oplus \mathfrak{g}^{\perp}=\mathfrak{s o}(n)
$$

The 1 -form \mathcal{Z} takes values in \mathfrak{g} and defines a connection on P, the so-called characteristic connection of $P \subset F^{g} M$. By construction, \mathcal{Z}^{\perp} measures the defect of the Levi-Civita connection to reduce to a connection on $P \subset F^{g} M$.

Definition 1.12. The intrinsic torsion τ of a G-structure $P \subset F^{g} M$ is the equivariant map

$$
\tau: P \longrightarrow \mathbb{R}^{n *} \otimes \mathfrak{g}^{\perp} \quad \text { defined by } \quad \tau(p)(x):=\mathcal{Z}^{\perp}\left(h_{p}(p x)\right)
$$

where $h_{p}(p x)$ denotes the horizontal lift w.r.t. the characteristic connection \mathcal{Z} on P. For $X \in C^{\infty}(T M)$, we denote by $\tau(X)$ the corresponding infinitesimal gauge deformation

$$
\tau(X) \in C^{\infty}\left(P \times_{\mathrm{Ad}} \mathfrak{g}^{\perp}\right) \subset \mathfrak{s o}\left(F^{g} M\right)
$$

By definition of the intrinsic torsion we have $\tau \circ \theta=\mathcal{Z}^{\perp}$. Hence the torsion \mathcal{T} of the characteristic connection \mathcal{Z} on P satisfies

$$
\mathcal{T}+\delta \circ \tau=0
$$

Since $\pi_{*}\left(h_{p} X-R_{p *} \tau(X)(p)\right)=X \circ \pi(p)$ and $\mathcal{Z}^{g}\left(h_{p} X-R_{p *} \tau(X)(p)\right)=\mathcal{Z}^{\perp}\left(h_{p} X\right)-$ $\tau(X)(p)=0$, we get

$$
h_{p}^{g} X=h_{p} X-R_{p *} \tau(X)(p),
$$

which yields

$$
\begin{aligned}
\left(\nabla_{X}^{g} Y-\nabla_{X} Y\right)(p) & =Y_{*}\left(h_{p}^{g} X-h_{p} X\right)=-Y_{*} R_{p *} \tau(X)(p) \\
& =-\left.\frac{d}{d t}\right|_{t=0} Y(p \exp (t \tau(X)(p)))=-\left.\frac{d}{d t}\right|_{t=0} \exp (-t \tau(X)(p)) Y(p) \\
& =(\tau(X) Y)(p) .
\end{aligned}
$$

We summarize the above formulas in the following

Lemma 1.13. The intrinsic torsion τ of a G-structure $P \subset F^{g} M$ satisfies
(1) $\mathcal{Z}^{g}=\mathcal{Z}+\tau \circ \theta$,
(2) $0=\mathcal{T}+\delta \circ \tau$,
(3) $h^{g}(X)=h(X)-R_{*} \tau(X)$,
(4) $\tau(X) Y=\nabla_{X}^{g} Y-\nabla_{X} Y$.

The intrinsic torsion vanishes if and only if the Levi-Civita connection reduces to a connection on $P \subset F^{g} M$. The condition $\tau=0$ is in general very restrictive. Decomposing the G-module $\mathbb{R}^{n *} \otimes \mathfrak{g}^{\perp}$ into irreducible submodules, we may consider structures with intrinsic torsion taking values only in some of these submodules. This approach yields a rough classification of arbitrary G-structures in terms of their intrinsic torsion. Many of these classes have a rich geometry, including examples of Einstein and Ricci-flat manifolds.

Lemma 1.14. Let $\varrho: G \rightarrow \operatorname{Aut}(V)$ be a real G-representation.
(1) The map

$$
D: V \times \mathfrak{g} \rightarrow V \quad \text { with } \quad D_{\varphi}(X):=\left.\frac{d}{d t}\right|_{t=0} \varrho(\exp (t X)) \varphi
$$

is G-equivariant, i.e. $D_{(\varrho(g) \varphi)}(\operatorname{Ad}(g) X)=\varrho(g) D_{\varphi}(X)$, for all $g \in G$ and $X \in \mathfrak{g}$.
(2) For fixed $\varphi \in V$ with isotropy group $H \subset G$, the map

$$
D_{\varphi}: \mathfrak{g} \rightarrow V
$$

is H-equivariant, i.e. $D_{\varphi}(\operatorname{Ad}(h) X)=\varrho(h) D_{\varphi}(X)$, for all $h \in H$ and $X \in \mathfrak{g}$. Moreover,

$$
\operatorname{ker}\left(D_{\varphi}\right)=\mathfrak{h}
$$

Proof: Part (1) follows from

$$
\begin{aligned}
D_{(\varrho(g) \varphi)}(\operatorname{Ad}(g) X) & =\left.\frac{d}{d t}\right|_{t=0} \varrho(\exp (t \operatorname{Ad}(g) X)) \varrho(g) \varphi=\left.\frac{d}{d t}\right|_{t=0} \varrho(g \exp (t X)) \varphi \\
& =\left.\frac{d}{d t}\right|_{t=0} \varrho(g) \varrho(\exp (t X)) \varphi=\varrho(g) D_{\varphi}(X)
\end{aligned}
$$

and the equivariance in part (2) is a special case of (1).
Since $H \subset G$ is closed, H is actually a Lie subgroup and the exponential map of G, restricted to $\mathfrak{h} \subset \mathfrak{g}$, is the exponential map of H. Hence $\exp (t X) \in H$, for $X \in \mathfrak{h}$, and it follows $\mathfrak{h} \subset \operatorname{ker}\left(D_{\varphi}\right)$. Conversely, $X \in \operatorname{ker}\left(D_{\varphi}\right)$ satisfies

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t} \varrho(\exp (t X)) \varphi & =\left.\frac{d}{d s}\right|_{s=0} \varrho(\exp ((t+s) X)) \varphi=\left.\frac{d}{d s}\right|_{s=0} \varrho(\exp (t X) \exp (s X)) \varphi \\
& =\left.\frac{d}{d s}\right|_{s=0} \varrho(\exp (t X)) \varrho(\exp (s X)) \varphi \\
& =\varrho(\exp (t X)) D_{\varphi}(X)=0 .
\end{aligned}
$$

Hence $\varrho(\exp (t X)) \varphi=\varphi$, i.e. $\exp (t X) \in H$ for all $t \in \mathbb{R}$, which yields $X \in \mathfrak{h}$, since $H \subset G$ is closed.

Using part (1) of Lemma 1.14, we can make the following

Definition 1.15. Suppose $\varrho: G \rightarrow \operatorname{Aut}(V)$ is a real G-representation and $\pi: P \rightarrow M$ is a principal G-bundle. We define

$$
D: C^{\infty}\left(P \times_{\varrho} V\right) \times \mathfrak{g}(P) \rightarrow C^{\infty}\left(P \times_{\varrho} V\right)
$$

by

$$
D_{\varphi}(X):=\left.\frac{d}{d t}\right|_{t=0} \varrho(\exp (t X)) \varphi
$$

Lemma 1.16. Let $\varrho: G \rightarrow \operatorname{Aut}(V)$ be a real G-representation and $g_{t} \in G$ and $\varphi_{t} \in V$ smooth curves. Then

$$
\begin{aligned}
\frac{d}{d t}\left(\varrho\left(g_{t}\right) \varphi_{t}\right) & =D_{\left(\varrho\left(g_{t}\right) \varphi_{t}\right)}\left(R_{g_{t}^{-1} *} \dot{g}_{t}\right)+\varrho\left(g_{t}\right) \dot{\varphi}_{t} \\
& =\varrho\left(g_{t}\right) D_{\varphi_{t}}\left(L_{g_{t}^{-1} *} \dot{g}_{t}\right)+\varrho\left(g_{t}\right) \dot{\varphi}_{t}
\end{aligned}
$$

In particular, for $A_{t} \in G \subset G L(n)$ and $\varphi_{t}:=\varrho\left(A_{t}\right) \varphi$

$$
\dot{\varphi}_{t}=D_{\varphi_{t}}\left(\dot{A}_{t} A_{t}^{-1}\right)
$$

Proof: The first equation follows from

$$
\begin{aligned}
\frac{d}{d t}\left(\varrho\left(g_{t}\right) \varphi_{t}\right) & =\left.\frac{d}{d s}\right|_{s=0} \varrho\left(g_{t+s}\right) \varphi_{t+s}=\left.\frac{d}{d s}\right|_{s=0} \varrho\left(g_{t+s} g_{t}^{-1}\right) \varrho\left(g_{t}\right) \varphi_{t+s} \\
& =\varrho_{*\left(e, \varrho\left(g_{t}\right) \varphi_{t}\right)}\left(R_{g_{t}^{-1} *} \dot{g}_{t}, \varrho\left(g_{t}\right) \dot{\varphi}_{t}\right) \\
& =\left.\frac{d}{d s}\right|_{s=0} \varrho\left(\exp \left(s R_{g_{t}^{-1} *} \dot{g}_{t}\right), \varrho\left(g_{t}\right) \varphi_{t}+s \varrho\left(g_{t}\right) \dot{\varphi}_{t}\right) \\
& =\left.\frac{d}{d s}\right|_{s=0} \varrho\left(\exp \left(s R_{g_{t}^{-1} *} \dot{g}_{t}\right)\right) \varrho\left(g_{t}\right) \varphi_{t}+\left.\frac{d}{d s}\right|_{s=0} s \varrho\left(\exp \left(s R_{g_{t}^{-1} *} \dot{g}_{t}\right)\right) \varrho\left(g_{t}\right) \dot{\varphi}_{t} \\
& =D_{\left(\varrho\left(g_{t}\right) \varphi_{t}\right)}\left(R_{g_{t}^{-1} *} \dot{g}_{t}\right)+\varrho\left(g_{t}\right) \dot{\varphi}_{t}
\end{aligned}
$$

Now Lemma 1.14 (1) implies the second equation,

$$
D_{\left(\varrho\left(g_{t}\right) \varphi_{t}\right)}\left(R_{g_{t}^{-1} *} \dot{g}_{t}\right)=D_{\left(\varrho\left(g_{t}\right) \varphi_{t}\right)}\left(\operatorname{Ad}\left(g_{t}\right) L_{g_{t}^{-1} *} \dot{g}_{t}\right)=\varrho\left(g_{t}\right) D_{\varphi_{t}}\left(L_{g_{t}^{-1} *} \dot{g}_{t}\right)
$$

Proposition 1.17. Suppose $P \rightarrow M$ is a principal G-bundle over M, equipped with a connection. Let $\varrho: G \rightarrow \operatorname{Aut}(V)$ be a real G-representation and $\varphi: P \rightarrow V$ equivariant. Then we have for any $A \in G(P)$ and $X \in C^{\infty}(T M)$

$$
\nabla_{X}(\varrho(A) \varphi)=\varrho(A) \nabla_{X} \varphi+\varrho(A) D_{\varphi}\left(\nabla_{X} A\right)
$$

Proof: From Definition of the covariant derivative in 1.10 and Lemma 1.16 we obtain for $p \in P$

$$
\begin{aligned}
\nabla_{X}(\varrho(A) \varphi)(p) & =(\varrho(A) \varphi)_{* p}\left(h_{p}(X)\right) \\
& =\left.\frac{d}{d s}\right|_{s=0} \varrho(A(c(s))) \varphi(c(s)), \quad \text { where } \dot{c}(0)=h_{p}(X) \\
& =\varrho(A(p)) D_{\varphi(p)}\left(\left.L_{A^{-1}(p) *} \frac{d}{d s}\right|_{s=0} A(c(s))\right)+\left.\varrho(A(p)) \frac{d}{d s}\right|_{s=0} \varphi(c(s)) \\
& =\varrho(A(p)) D_{\varphi(p)}\left(\nabla_{X} A\right)(p)+\varrho(A(p))\left(\nabla_{X} \varphi\right)(p) \\
& =\left(\varrho(A) D_{\varphi}\left(\nabla_{X} A\right)+\varrho(A) \nabla_{X} \varphi\right)(p)
\end{aligned}
$$

Proposition 1.18. Let $\varrho: G L(n) \rightarrow \operatorname{Aut}(V)$ be a real $G L(n)$-representation and $\varphi_{0} \in V$ with isotropy group $G \subset O(n)$. An equivariant map $\varphi: F M \rightarrow V$ of type φ_{0} induces a reduction $P \subset F^{g} M$ with intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{n *} \otimes \mathfrak{g}^{\perp}$. Then for $X \in C^{\infty}(T M)$

$$
\nabla_{X}^{g} \varphi=D_{\varphi}(\tau(X))
$$

Proof: By Lemma 1.13 we have

$$
h_{p}^{g} X=h_{p} X-R_{p *} \tau(X)(p)
$$

Since φ is constant along the reduction $P \subset F^{g} M$, we have $\varphi_{*}\left(h_{p} X\right)=0$. This yields

$$
\begin{aligned}
\left(\nabla_{X}^{g} \varphi\right)(p) & =\varphi_{*}\left(h_{p}^{g} X\right)=\varphi_{*}\left(h_{p} X\right)-\varphi_{*}\left(R_{p *} \tau(X)(p)\right) \\
& =-\left.\frac{d}{d t}\right|_{t=0} \varphi(p \exp (t \tau(X)(p))) \\
& =-\left.\frac{d}{d t}\right|_{t=0} \varrho(\exp (-t \tau(X)(p))) \varphi(p) \\
& =D_{\varphi}(\tau(X))(p)
\end{aligned}
$$

Theorem 1.19. Let $\varrho: G L(n) \rightarrow \operatorname{Aut}(V)$ be a real $G L(n)$-representation, $\varphi_{0} \in V$ with isotropy group $G \subset O(n)$ and $\varphi: F M \rightarrow V$ an equivariant map of type φ_{0}. Then we have for any gauge deformation $A: F M \rightarrow G L(n)$ and $X \in C^{\infty}(T M)$

$$
\nabla_{X}^{A g}(\varrho(A) \varphi)=\varrho(A)\left(\nabla_{X}^{g} \varphi+D_{\varphi}\left(\nabla_{X}^{g} A-\xi(X)-\operatorname{Ad}\left(A^{-1}\right) \xi(X)\right)\right)
$$

where $\xi(X) \in C^{\infty}(\operatorname{End}(T M))$ is given by

$$
2 g(\xi(X) Y, Z)=g\left(X,\left(\nabla_{Y}^{g} B\right) Z\right)+g\left(Y,\left(\nabla_{X}^{g} B\right) Z\right)+g\left(B^{-1}\left(\nabla_{B Z}^{g} B^{-1}\right) X, Y\right)
$$

and $B:=A A^{T}$ w.r.t. the metric g.

Proof: The difference between the Levi-Civita connections is given by an equivariant $\operatorname{map} \xi: F M \rightarrow \mathbb{R}^{n *} \otimes \mathfrak{g l}(n)$ with

$$
h_{p}^{A g} X=h_{p}^{g} X+R_{p *} \xi(X)
$$

This yields

$$
\begin{aligned}
\left(\nabla_{X}^{A g} \varphi\right)(p) & =\varphi_{*}\left(h_{p}^{g} X+R_{p *} \xi(X)\right)=\left(\nabla_{X}^{g} \varphi\right)(p)+\varphi_{*}\left(R_{p *} \xi(X)\right) \\
& =\left(\nabla_{X}^{g} \varphi\right)(p)-D_{\varphi}(\xi(X))(p)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nabla_{X}^{A g} A\right)(p) & =L_{A^{-1}(p) *} A_{*}\left(h_{p}^{g} X+R_{p *} \xi(X)\right)=\left(\nabla_{X}^{g} A\right)(p)+L_{A^{-1}(p) *} A_{*}\left(R_{p *} \xi(X)\right) \\
& =\left(\nabla_{X}^{g} A\right)(p)-\operatorname{Ad}\left(A^{-1}(p)\right) \xi(X)
\end{aligned}
$$

From Proposition 1.17 we obtain

$$
\begin{aligned}
\nabla_{X}^{A g}(\varrho(A) \varphi) & =\varrho(A)\left(\nabla_{X}^{A g} \varphi+D_{\varphi}\left(\nabla_{X}^{A g} A\right)\right) \\
& =\varrho(A)\left(\nabla_{X}^{g} \varphi-D_{\varphi}(\xi(X))+D_{\varphi}\left(\nabla_{X}^{g} A\right)-D_{\varphi}\left(\operatorname{Ad}\left(A^{-1}\right) \xi(X)\right)\right) \\
& =\varrho(A)\left(\nabla_{X}^{g} \varphi+D_{\varphi}\left(\nabla_{X}^{g} A-\xi(X)-\operatorname{Ad}\left(A^{-1}\right) \xi(X)\right)\right)
\end{aligned}
$$

Now we compute for $X, Y \in C^{\infty}(T M)$

$$
\begin{aligned}
\left(\nabla_{X}^{g} Y-\nabla_{X}^{A g} Y\right)(p) & =Y_{*}\left(h_{p}^{g} X-h_{p}^{A g} X\right)=-Y_{*} R_{p *} \xi(X)=-\left.\frac{d}{d t}\right|_{t=0} \exp (-t \xi(X)) Y(p) \\
& =(\xi(X) Y)(p)
\end{aligned}
$$

and Koszul's formula yields

$$
\begin{aligned}
2 g\left(\nabla_{X}^{A g} Y, Z\right)= & 2 g\left(A A^{-1} \nabla_{X}^{A g} Y, Z\right)=2 g\left(A^{-1} \nabla_{X}^{A g} Y, A^{-1} A A^{T} Z\right) \\
= & 2(A g)\left(\nabla_{X}^{A g} Y, B Z\right) \\
= & 2 g\left(\nabla_{X}^{g} Y, Z\right)+g\left(X, \nabla_{Y}^{g} Z\right)+g\left(Y, \nabla_{X}^{g} Z\right) \\
& -g\left(\nabla_{B Z}^{g} B^{-1} X, Y\right)+g\left(B^{-1} Y, \nabla_{B Z}^{g} X\right) \\
& -g\left(B^{-1} Y, \nabla_{X}^{g} B Z\right)-g\left(B^{-1} X, \nabla_{Y}^{g} B Z\right)
\end{aligned}
$$

From Proposition 1.17 we obtain $\nabla_{X}^{g}(B Y)=B \nabla_{X}^{g} Y+B\left(\nabla_{X}^{g} B\right) Y$ and hence

$$
g\left(B^{-1} Z, \nabla_{X}^{g} B Y\right)=g\left(Z, \nabla_{X}^{g} Y\right)+g\left(Z,\left(\nabla_{X}^{g} B\right) Y\right)
$$

Now

$$
\begin{aligned}
2 g(\xi(X) Y, Z)= & 2 g\left(\nabla_{X}^{g} Y, Z\right)-2 g\left(\nabla_{X}^{A g} Y, Z\right) \\
= & g\left(X,\left(\nabla_{Y}^{g} B\right) Z\right)+g\left(Y,\left(\nabla_{X}^{g} B\right) Z\right) \\
& +g\left(\nabla_{B Z}^{g} B^{-1} X, Y\right)-g\left(B^{-1} Y, \nabla_{B Z}^{g} X\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(\nabla_{B Z}^{g} B^{-1} X, Y\right) & =g\left(B^{-1} \nabla_{B Z}^{g} X+B^{-1}\left(\nabla_{B Z}^{g} B^{-1}\right) X, Y\right) \\
& =g\left(\nabla_{B Z}^{g} X, B^{-1} Y\right)+g\left(B^{-1}\left(\nabla_{B Z}^{g} B^{-1}\right) X, Y\right)
\end{aligned}
$$

yields eventually

$$
2 g(\xi(X) Y, Z)=g\left(X,\left(\nabla_{Y}^{g} B\right) Z\right)+g\left(Y,\left(\nabla_{X}^{g} B\right) Z\right)+g\left(B^{-1}\left(\nabla_{B Z}^{g} B^{-1}\right) X, Y\right)
$$

Corollary 1.20. The gauge deformation $A: F M \rightarrow G L(n)$ from Theorem 1.19 yields a parallel structure $\nabla^{A g} A \varphi=0$ if and only if for all vector fields $X \in$ $C^{\infty}(T M)$

$$
\tau(X)=\operatorname{pr}_{\mathfrak{g}^{\perp}}\left(\xi(X)+\operatorname{Ad}\left(A^{-1}\right) \xi(X)-\nabla_{X}^{g} A\right)
$$

where τ is the intrinsic torsion of $P \subset F^{g} M$ and the projection is taken w.r.t. P.

Proof: By Proposition 1.18 we have $\nabla_{X}^{g} \varphi=D_{\varphi}(\tau(X))$ and $\operatorname{ker} D_{\varphi}=\mathfrak{g}$ by Lemma 1.14. Hence Theorem 1.19 shows that $\nabla^{A g} A \varphi=0$ if and only if

$$
\operatorname{pr}_{\mathfrak{g}^{\perp}}\left(\tau(X)+\nabla_{X}^{g} A-\xi(X)-\operatorname{Ad}\left(A^{-1}\right) \xi(X)\right)=0
$$

Since $\tau(X)(p) \in \mathfrak{g}^{\perp}$, for $p \in P$, the corollary follows.

Corollary 1.21. A G-structure $P \subset F^{g} M$ like in Theorem 1.19 with intrinsic torsion τ can be deformed to a torsion-free structure if and only if there exists a solution $A \in G L(F M)$ of

$$
\tau(X)=\operatorname{pr}_{\mathfrak{g}^{\perp}}\left(\xi(X)+\operatorname{Ad}\left(A^{-1}\right) \xi(X)-\nabla_{X}^{g} A\right)
$$

where ξ is defined like in Theorem 1.19 and the projection is taken w.r.t. P.

Proof: By Theorem 1.6 (1) any deformation $P_{t} \subset F M$ of the initial structure P can be described by a family of gauge deformations A_{t} and the Corollary follows from Corollary 1.20.

Holonomy

Suppose \mathcal{Z} is a connection on a principal G-bundle P over M. Given a piecewise smooth curve $c:[0,1] \rightarrow M$ and a point $p \in P$, there is a unique horizontal lift $c_{p}:[0,1] \rightarrow P$ of c to P such that $c_{p}(0)=p$. Namely, c_{p} is the integral curve of the lifted vector field \dot{c}. The parallel translation along c is the map

$$
\mathcal{Z}_{c}: P_{c(0)} \rightarrow P_{c(1)} \quad \text { with } \quad p \mapsto c_{p}(1)
$$

For a fixed point $p \in P$ consider

$$
\operatorname{Hol}(p, \mathcal{Z}):=\left\{g \in G \mid p g=\mathcal{Z}_{c}(p) \text { for some } c:[0,1] \rightarrow M \text { with } c(0)=c(1)=x\right\}
$$

By Theorem 4.2 in $[45], \operatorname{Hol}(p, \mathcal{Z})$ defines in fact a Lie subgroup of G, called the holonomy group of the connection \mathcal{Z}. Note that changing the reference point $p \in P$ only changes the conjugacy class $\operatorname{Hol}(p, \mathcal{Z}) \subset G$, as long as M is connected.
The holonomy bundle $Q(p) \subset P$ consists of all points in P that can be joined with p by a horizontal curve. In fibre direction, $Q(p)$ is generated precisely by the action of $\operatorname{Hol}(p, \mathcal{Z})$ and hence gives a $\operatorname{Hol}(p, \mathcal{Z})$-reduction of P. Moreover, the connection \mathcal{Z} on P reduces to $Q(p)$. To see this, consider $X \in H_{q}$ for $q \in Q(p)$. Then $X=\dot{c}_{q}(0)$ for the lift of some curve c in M with $\dot{c}(0)=\pi_{*} X$. Since $q \in Q(p)$, we have $Q(q)=Q(p)$ and eventually $X=\dot{c}_{q}(0) \in T_{q} Q(q)=T_{q} Q(p)$.
On the other hand, consider a reduction $Q \subset P$ to a Lie subgroup H of G which is compatible with the connection on P. Then any horizontal curve stays in Q and so the holonomy group is a subgroup of H. Hence P admits a reduction to $H \subset G$
that is compatible with the connection on P if and only if the holonomy group is contained in H.
Holonomy can be measured in terms of curvature. The curvature tensor $R: P \rightarrow$ $\Lambda^{2} \mathbb{R}^{n *} \otimes \mathfrak{g}$ satisfies

$$
R(p)(x, y)=d \mathcal{Z}\left(h_{p}(p x), h_{p}(p y)\right)=-\mathcal{Z}[h(x), h(y)]_{p} .
$$

Moreover we have

$$
[h(x), h(y)]_{p}=\left.\frac{d}{d t}\right|_{t=0} \mathcal{Z}_{c_{t}}(p)
$$

where c_{t} denotes the family of loops in M that corresponds to the family of quadrangles with vertices $\{0, \operatorname{tpx}, \operatorname{tp}(x+y), t p y\}$ in $T_{\pi(p)} M$. The corresponding 1parameter family $g_{t} \in \operatorname{Hol}(p, \mathcal{Z})$ is then given by $\mathcal{Z}_{c_{t}}(p)=p g_{t}$ and hence

$$
R(p)(x, y)=-\mathcal{Z}\left(R_{p *} \dot{g}(0)\right)=-\dot{g}(0) \in \mathfrak{h o l}(p, \mathcal{Z})
$$

Since $\operatorname{Hol}(q, \mathcal{Z})=\operatorname{Hol}(p, \mathcal{Z})$ holds for $q \in Q(p)$, we get

$$
\mathfrak{h}:=\left\{R(q)(x, y) \mid x, y \in \mathbb{R}^{n} \text { and } q \in Q(p)\right\} \subset \mathfrak{h o l}(p, \mathcal{Z}) .
$$

One can actually show that \mathfrak{h} defines a Lie subalgebra of \mathfrak{g} and hence the distribution $H \oplus v(\mathfrak{h})$ on $Q(p)$ is integrable by Lemma 1.11 . Since the horizontal distribution is contained in $H \oplus v(\mathfrak{h})$, the holonomy bundle $Q(p)$ is contained in the maximal integral manifold through $p \in Q(p)$. This shows that also $\mathfrak{h o l}(p, \mathcal{Z}) \subset \mathfrak{h}$ holds and proves the Ambrose-Singer Theorem,

$$
\mathfrak{h o l}(p, \mathcal{Z})=\left\{R(q)(x, y) \mid x, y \in \mathbb{R}^{n} \text { and } q \in Q(p)\right\} \subset \mathfrak{g} .
$$

2. Integral Curves in Fréchet Spaces

In the previous chapter we described deformations of principal bundles via families of gauge deformations $A_{t} \in C^{\infty}(\operatorname{Aut}(T M)) \subset C^{\infty}(\operatorname{End}(T M))$. Since the space of sections $C^{\infty}(\operatorname{End}(T M))$ is a Fréchet space, these type of vector spaces naturally enter the scene when describing deformations of various structures. Indeed, R. Hamilton makes intensive use of the Nash-Moser inverse function theorem for Fréchet spaces in his fundamental work [34] on the Ricci flow. Natural deformations very often arise as the gradient flow of some functional. More generally, we may consider deformations that evolve under the flow of a certain vector field X on $C^{\infty}(\operatorname{Aut}(T M))$, i.e.

$$
\dot{A}_{t}=X \circ A_{t} .
$$

In contrast to finite dimensional geometry, there does not have to exist even a short-time solution of the above equation. In the real analytic category, the CauchyKowalevski Theorem ensures the (local) existence of solutions for certain partial differential equations. In this chapter we translate the Cauchy-Kowalevski Theorem into a global version for integral curves in Fréchet spaces of the form $C^{\infty}(V)$, where $V \rightarrow M$ is a vector bundle over a compact manifold M, cf. Theorem 2.11.
Beyond the existence, we show that the particular solution can be developed in a (convergent) power series. This property is the crucial ingredient to prove that the solutions coming from the Cauchy-Kowalevski Theorem preserve certain initial conditions. In this sense, Corollary 2.4 can be regarded as a conservation law for integral curves in Fréchet spaces. The basic idea stems from finite dimensional geometry: If a vector field X is tangent to some submanifold N, then any integral curve of X, which lies initially in N, stays in N for all times. Although not true for arbitrary integral curves, this observation carries over to Fréchet spaces if the integral curve can be developed in a power series.

Fréchet Spaces

Hamilton [34] gives an introduction to Fréchet manifolds which goes far beyond of what we require for our purposes. Although Proposition 2.3 and Corollary 2.4 can be generalized to Fréchet manifolds, we focus on Fréchet spaces to keep the technical efforts at a minimum.
A locally convex topological vector space \mathcal{F} is a vector space with a collection of seminorms, i.e. functions $\|\cdot\|_{n}: \mathcal{F} \rightarrow \mathbb{R}, n \in N$, which satisfy

$$
\|f\|_{n} \geq 0, \quad\|f+g\|_{n} \leq\|f\|_{n}+\|g\|_{n} \quad \text { and } \quad\|\lambda f\|_{n}=|\lambda|\|f\|_{n}
$$

for all $f, g \in \mathcal{F}$ and scalars λ. Such a family defines a unique topology which is metrizable if and only if N is countable. In this case the topology is characterized by the property

$$
\lim _{k \rightarrow \infty} f_{k}=f \in \mathcal{F} \quad \Leftrightarrow \quad \forall n \in N: \lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{n}=0
$$

The topology is Hausdorff if and only if

$$
\left(\forall n \in N:\|f\|_{n}=0\right) \quad \Rightarrow \quad f=0 .
$$

The space is sequentially complete if every Cauchy sequence converges, where f_{k} is a Cauchy sequence if it is a Cauchy sequence for every seminorm $\|\cdot\|_{n}$. A Fréchet space is a locally convex topological vector space, which is in addition metrizable, Hausdorff and complete.

Example 2.1. Suppose $F \rightarrow M$ is a vector bundle over a compact manifold M.
Then the vector space

$$
\mathcal{F}:=C^{\infty}(F)
$$

of smooth sections of F is a Fréchet space, where the collection of seminorms

$$
\|f\|_{n}:=\sum_{j=0}^{n} \sup _{p \in M}\left|\left(\nabla^{(j)} f\right)(p)\right|
$$

can be defined after choosing Riemannian metrics and connections on $T M$ and F, cf. [34] Example 1.1.5. The induced topology is the C^{∞}-topology on \mathcal{F}.
Given an open subset $U \subset F$, we consider the subset of all sections in \mathcal{F}, whose image lies in U,

$$
\mathcal{U}:=\{f \in \mathcal{F} \mid f(M) \subset U\} .
$$

For $f \in \mathcal{U}$ we can find $\varepsilon>0$ such that

$$
f \in B_{\varepsilon}^{0}(f):=\left\{\tilde{f} \in \mathcal{F} \mid\|\tilde{f}-f\|_{0}<\varepsilon\right\} \subset \mathcal{U}
$$

Since $B_{\varepsilon}^{0}(f) \subset \mathcal{F}$ is open, \mathcal{U} is an open subset of the Fréchet space \mathcal{F}.

Smooth maps between Fréchet spaces can be defined as follows: Let $U \subset \mathcal{F}$ be an open subset of a Fréchet space \mathcal{F} and $P: \mathcal{U} \rightarrow \mathcal{E}$ a continuous and nonlinear map into another Fréchet space \mathcal{E}. We say that P is C^{1} on \mathcal{U} if for every $f \in \mathcal{U}$ and every $v \in \mathcal{F}$ the limit

$$
D P(f) v:=\lim _{t \rightarrow 0} \frac{1}{t}(P(f+t v)-P(f))
$$

exists and the map $D P: \mathcal{U} \times \mathcal{F} \rightarrow \mathcal{E}$ is continuous. Consequently, we say that P is C^{k} on \mathcal{U} if P is C^{k-1} and the limit $D^{(k)} P(f)\left\{v_{1}, . ., v_{k}\right\}:=$

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(D^{(k-1)} P\left(f+t v_{n}\right)\left\{v_{1}, . ., v_{k-1}\right\}-D^{(k-1)} P(f)\left\{v_{1}, . ., v_{k-1}\right\}\right)
$$

exists for all $f \in \mathcal{U}$ and $v_{1}, . ., v_{k} \in \mathcal{F}$, and the map $D^{(k)} P: \mathcal{U} \times \mathcal{F} \times . . \times \mathcal{F} \rightarrow \mathcal{E}$ is continuous. We call P a smooth map on \mathcal{U} if P is C^{k} for all $k \in \mathbb{N}$. We summarize Corollary 3.3.5 and Theorem 3.6.2 from [34] in the following

THEOREM 2.2. (1) If $P: \mathcal{U} \subset \mathcal{F} \rightarrow \mathcal{E}$ is C^{1} and $c(t) \in \mathcal{U} \subset \mathcal{F}$ is a parameterized C^{1} curve, then $P \circ c(t)$ is a parameterized C^{1} curve and

$$
\frac{d}{d t}(P \circ c(t))=D P(c(t)) \dot{c}(t)
$$

(2) If $P: \mathcal{U} \subset \mathcal{F} \rightarrow \mathcal{E}$ is C^{k}, then for every $f \in \mathcal{U}$

$$
D^{(k)} P(f)\left\{v_{1}, . ., v_{k}\right\}
$$

is completely symmetric and linear separately in $v_{1}, . ., v_{k} \in \mathcal{F}$.

In the following we will consider curves $c(t) \in \mathcal{F}$ in a Fréchet space \mathcal{F}, which are integral curves of a vector field that is tangent to some subspace $\mathcal{E} \subset \mathcal{F}$. In finite dimension we would expect that any such integral curve with $c(0) \in \mathcal{E}$ actually stays in the subspace for all times. This conclusion fails for Fréchet spaces, as was pointed out to us by Christian Bär: Consider $\mathcal{F}:=C^{\infty}[1,2]$ and $\mathcal{E}:=\{0\} \subset \mathcal{M}$. Then

$$
c_{t}(x):= \begin{cases}(4 \pi t)^{-\frac{1}{2}} \exp \left(-\frac{x^{2}}{4 t}\right), & \text { for } t>0 \\ 0, & \text { for } t \leq 0\end{cases}
$$

solves $\dot{c}_{t}=\Delta c_{t}=\partial^{2} c_{t} / \partial x^{2}$ and hence defines an integral curve of the vector field $X(c):=\Delta c$. Although X is tangent to \mathcal{E}, i.e. $X(0)=0$, and $c_{0}=0 \in \mathcal{E}$, the curve does not stay in \mathcal{E}, since $c_{t} \neq 0$, for $t>0$. Note also that $t \mapsto c_{t}(x)$ is not real analytic in $t=0$.

Proposition 2.3. Suppose $\mathcal{E} \subset \mathcal{F}$ is a closed subspace of the Fréchet space \mathcal{F} and that $X: \mathcal{U} \subset \mathcal{F} \rightarrow \mathcal{F}$ is a smooth map defined on some open subset $\mathcal{U} \subset \mathcal{F}$. Let $f \in \mathcal{F}$ and assume that

$$
X_{\mid \mathcal{U} \cap \mathcal{E}_{f}}: \mathcal{U} \cap \mathcal{E}_{f} \rightarrow \mathcal{E}
$$

where $\mathcal{E}_{f}:=\{f\}+\mathcal{E}$. If a smooth curve $c:(-\varepsilon, \varepsilon) \rightarrow \mathcal{F}$ satisfies

$$
c(0) \in \mathcal{U} \cap \mathcal{E}_{f} \quad \text { and } \quad X \circ c(t)=\dot{c}(t)
$$

where $\dot{c}:(-\varepsilon, \varepsilon) \rightarrow \mathcal{F}$ is the derivative of $c(t)$ by t, then for all $k \geq 1$

$$
c^{(k)}(0) \in \mathcal{E}
$$

where $c^{(k)}:(-\varepsilon, \varepsilon) \rightarrow \mathcal{F}$ is the $k^{t h}$ derivative of $c(t)$ by t.

Proof: First we prove by induction on k that the $k^{t h}$ differential $D^{(k)} X$ of X : $\mathcal{F} \rightarrow \mathcal{F}$ satisfies

$$
\begin{equation*}
D^{(k)} X_{\mid \mathcal{U} \cap \mathcal{E}_{f} \times \mathcal{E} \times \ldots \times \mathcal{E}}: \mathcal{U} \cap \mathcal{E}_{f} \times \mathcal{E} \times \ldots \times \mathcal{E} \rightarrow \mathcal{E} \tag{1}
\end{equation*}
$$

For $k=0$ this is just the assumption $X_{\mid \mathcal{U} \cap \mathcal{E}_{f}}: \mathcal{U} \cap \mathcal{E}_{f} \rightarrow \mathcal{E}$. For $v_{0} \in \mathcal{U} \cap \mathcal{E}_{f}$ and $v_{1}, . ., v_{k+1} \in \mathcal{E}$ we have by definition

$$
\begin{aligned}
& D^{(k+1)} X\left(v_{0}\right)\left\{v_{1}, . ., v_{k+1}\right\} \\
= & \lim _{s \rightarrow 0} \frac{1}{s}(D^{(k)} X(\underbrace{v_{0}+s v_{k+1}}_{\in \mathcal{U} \cap \mathcal{E}_{f} \text { for } s \text { small }})\left\{v_{1}, . ., v_{k}\right\}-D^{(k)} X\left(v_{0}\right)\left\{v_{1}, . ., v_{k}\right\})
\end{aligned}
$$

$\in \mathcal{E}$ by induction hypothesis
and since \mathcal{E} is closed, we conclude that (1) holds for $k+1$. Next we show that for $k \geq 0$ and any choice of smooth curves $t \mapsto v_{0}(t) \in \mathcal{U}$ and $t \mapsto v_{1}(t), . ., v_{k}(t) \in \mathcal{F}$

$$
\begin{align*}
\frac{d}{d t} D^{(k)} X\left(v_{0}(t)\right)\left\{v_{1}(t), . ., v_{k}(t)\right\} & =D^{(k+1)} X\left(v_{0}(t)\right)\left\{v_{1}(t), . ., v_{k}(t), \dot{v}_{0}(t)\right\} \\
& +\sum_{j=1}^{k} D^{(k)} X\left(v_{0}(t)\right)\left\{v_{1}(t), . ., \dot{v}_{j}(t), . ., v_{k}(t)\right\} \tag{2}
\end{align*}
$$

holds. Applying Theorem 2.2 (1) to the map $D^{(k)} X: \mathcal{U} \times \mathcal{F} \times . . \times \mathcal{F} \rightarrow \mathcal{F}$, we get

$$
\begin{aligned}
& \frac{d}{d t} D^{(k)} X\left(v_{0}(t)\right)\left\{v_{1}(t), . ., v_{k}(t)\right\} \\
= & D\left(D^{(k)} X\right)\left(v_{0}(t), . ., v_{k}(t)\right)\left\{\dot{v}_{0}(t), . ., \dot{v}_{k}(t)\right\} \\
= & \lim _{s \rightarrow 0} \frac{1}{s}\left(D^{(k)} X\left(v_{0}(t)+s \dot{v}_{0}(t)\right)\left\{v_{1}(t)+s \dot{v}_{1}(t), . ., v_{k}(t)+s \dot{v}_{k}(t)\right\}\right. \\
& \left.\quad-D^{(k)} X\left(v_{0}(t)\right)\left\{v_{1}(t), . ., v_{k}(t)\right\}\right)
\end{aligned}
$$

and (2) follows, since $D^{(k)} X$ is linear in the arguments in $\{\ldots\}$, cf. Theorem 2.2 (2). We will now show by induction on k that $c^{(k)}(0) \in \mathcal{E}$ holds. For $k=1$ we have $\dot{c}(0)=X \circ c(0) \in \mathcal{E}$ by assumption. Since $\dot{c}(t)=X \circ c(t)=D^{(0)} X(c(t))$ and $c(t) \in \mathcal{U}$ for sufficiently small t, we can apply (2) to see that $c^{(k+1)}(t)$, again for sufficiently small t, can be expressed as a linear combination of

$$
D^{(j)} X(c(t))\left\{v_{1}(t), . ., v_{j}(t)\right\}
$$

where $j \in\{1, . ., k+1\}$ and $v_{1}(t), . ., v_{j}(t) \in\left\{c^{(l)}(t) \mid 1 \leq l \leq k\right\}$. Since $c(0) \in \mathcal{U} \cap \mathcal{E}_{f}$, we get from $c^{(1)}(0), . ., c^{(k)}(0) \in \mathcal{E}$ and (1)

$$
D^{(j)} X(c(0))\left\{v_{1}(0), . ., v_{j}(0)\right\} \in \mathcal{E}
$$

and hence $c^{(k+1)}(0) \in \mathcal{E}$.

The following corollary can be regarded as a conservation law for integral curves in Fréchet spaces.

Corollary 2.4. If the curve $c:(-\varepsilon, \varepsilon) \rightarrow \mathcal{F}$ from Proposition 2.3 satisfies for all $t \in(-\varepsilon, \varepsilon)$

$$
c(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} c^{(k)}(0) \in \mathcal{F},
$$

where the series converges w.r.t. the Fréchet topology in \mathcal{F}, then

$$
c(t)-c(0) \in \mathcal{E}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Proof: From Proposition 2.3 we get $c^{(k)}(0) \in \mathcal{E}$ for all $k \geq 1$ and hence

$$
c(t)-c(0)=\sum_{k=1}^{\infty} \frac{t^{k}}{k!} c^{(k)}(0) \in \mathcal{E}
$$

since $\mathcal{E} \subset \mathcal{F}$ is closed and the series converges in \mathcal{F}.

Real Analyticity

A formal power series in $X=\left(X_{1}, . ., X_{n}\right)$ with coefficients in \mathbb{R} is an expression of the form

$$
S(X)=\sum_{p \in \mathbb{N}^{n}} a_{p} X^{p}
$$

where $a_{p} \in \mathbb{R}$ and $X^{p}:=X_{1}^{p_{1}} \cdot . . X_{n}^{p_{n}}$, for $p=\left(p_{1}, . ., p_{n}\right) \in \mathbb{N}^{n}$. Given a formal power series $S(X)$, we define

$$
\Gamma:=\left\{r=\left(r_{1}, . ., r_{n}\right) \mid r_{i} \geq 0 \text { and } \sum_{p \in \mathbb{N}^{n}}\left|a_{p}\right| r^{p}<\infty\right\}
$$

and denote by Δ the interior of Γ, called the domain of convergence of the series. Hence the series

$$
S(x)=\sum_{p \in \mathbb{N}^{n}} a_{p} x^{p}
$$

is for every $x=\left(x_{1}, . ., x_{n}\right) \in \mathbb{R}^{n}$ with $|x|=\left(\left|x_{1}\right|, . .,\left|x_{n}\right|\right) \in \Gamma$ absolute convergent. We recall the following result:

Proposition 2.5. Suppose $S(X)$ is a formal power series with domain of convergence Δ. For $\bar{x}=\left(\bar{x}_{1}, . ., \bar{x}_{n}\right) \in \mathbb{R}^{n}$ with $|\bar{x}| \in \Delta$ and $r_{1}, . ., r_{n}$ with $0<r_{i}<\left|\bar{x}_{i}\right|$,
define

$$
K:=\left\{\left(x_{1}, . ., x_{n}\right) \in \mathbb{R}^{n}| | x_{i} \mid \leq r_{i}\right\}
$$

(1) For any subset $P \subset \mathbb{N}^{n}$, the series

$$
S_{P}(x):=\sum_{p \in P} a_{p} x^{p}
$$

converges absolutely for all $x \in K$. In particular, the series $S(x):=\sum_{p \in \mathbb{N}^{n}} a_{p} x^{p}$ converges absolutely for $x \in K$.
(2) Suppose that $P_{N} \subset \mathbb{N}^{n}$ is a family of subsets, $N \in \mathbb{N}$, such that $\lim _{N \rightarrow \infty} P_{N}=$ \mathbb{N}^{n}. Then

$$
S_{N}(x):=\sum_{p \in P_{N}} a_{p} x^{p}
$$

converges uniformly on K to the function $S: K \rightarrow \mathbb{R}, x \mapsto S(x)$.

Proof: Since $|\bar{x}| \in \Delta$ we can find $C>0$ such that

$$
\left|a_{p} \bar{x}^{p}\right| \leq C, \quad \text { for all } p \in \mathbb{N}^{n}
$$

Hence for $x \in K$

$$
\left|a_{p} x^{p}\right|=\left|a_{p} \bar{x}_{1}^{p_{1}} \cdot . . \bar{x}_{n}^{p_{n}}\right| \frac{\left|x_{1}^{p_{1}} \cdot . . x_{n}^{p_{n}}\right|}{\left|\bar{x}_{1}^{p_{1}} \cdot . . \bar{x}_{n}^{p_{n}}\right|} \leq C\left(\frac{r_{1}}{\left|\bar{x}_{1}\right|}\right)^{p_{1}} \cdot . . \cdot\left(\frac{r_{n}}{\left|\bar{x}_{n}\right|}\right)^{p_{n}}
$$

Since $r_{i} /\left|\bar{x}_{i}\right|<1$, we can apply the method of majorants to see that $S_{P}(x)$ converges absolutely for $x \in K$. To prove uniform convergence consider

$$
\begin{aligned}
\sup _{x \in K}\left|S(x)-S_{N}(x)\right| & =\sup _{x \in K}\left|\sum_{p \in \mathbb{N}^{n} \backslash P_{N}} a_{p} x^{p}\right| \\
& \leq C \sum_{p \in \mathbb{N}^{n} \backslash P_{N}}\left(\frac{r_{1}}{\left|\bar{x}_{1}\right|}\right)^{p_{1}} \cdot \ldots \cdot\left(\frac{r_{n}}{\left|\bar{x}_{n}\right|}\right)^{p_{n}}
\end{aligned}
$$

Given $\varepsilon>0$, we can choose M large, so that $\sum_{p_{i}=M+1}^{\infty}\left(\frac{r_{i}}{\left|\overline{x_{i}}\right|}\right)^{p_{i}} \leq \frac{\varepsilon}{n C C_{i}}$, for $i=$ $1, . ., n$, where

$$
C_{i}:=\sum_{\substack{\left(p_{1} . \hat{p}_{i} . . p_{n}\right) \\ \in \mathbb{N}^{n-1}}}\left(\frac{r_{1}}{\left|\bar{x}_{1}\right|}\right)^{p_{1}} \cdot . .{\left.\widehat{\left(\frac{r_{i}}{\left|\bar{x}_{i}\right|}\right.}\right)^{p_{1}} \cdot \ldots \cdot\left(\frac{r_{n}}{\left|\bar{x}_{n}\right|}\right)^{p_{n}}<\infty \quad \text { (geometric series). }}^{p_{n}}
$$

The notation . indicates that the corresponding factor is omitted. Since $\lim _{N \rightarrow \infty} P_{N}=$ \mathbb{N}^{n}, we can find $N=N(M)$, such that $\{0, . ., M\}^{n} \subset P_{N}$. Hence

$$
\begin{aligned}
\sup _{x \in K}\left|S(x)-S_{N}(x)\right| & \leq C \sum_{p \in \mathbb{N}^{n} \backslash\{0 . . M\}^{n}}\left(\frac{r_{1}}{\left|\bar{x}_{1}\right|}\right)^{p_{1}} \cdot . .\left(\frac{r_{n}}{\left|\bar{x}_{n}\right|}\right)^{p_{n}} \\
& \leq C \sum_{i=1}^{n} \sum_{p_{i}=M+1}^{\infty} C_{i}\left(\frac{r_{i}}{\left|\bar{x}_{i}\right|}\right)^{p_{i}} \leq \varepsilon
\end{aligned}
$$

Definition 2.6. Let $U \subset \mathbb{R}^{n}$ open and $x_{0} \in U$.
(1) A function $f: U \rightarrow \mathbb{R}$ is called real analytic in $x_{0} \in U$ if there exists a formal power series S with

$$
f(x)=S\left(x-x_{0}\right),
$$

for all x in a neighborhood of x_{0}.
(2) A function $f: U \rightarrow \mathbb{R}$ is called real analytic in U if f is real analytic for every $x_{0} \in U$.
(3) A function $F=\left(f_{1}, . ., f_{m}\right): U \rightarrow \mathbb{R}^{m}$ is called real analytic in U if each component $f_{i}: U \rightarrow \mathbb{R}$ is real analytic in U.

Note that the coefficients of S can be computed in terms of partial derivatives, which shows that S is uniquely determined by the condition $f(x)=S\left(x-x_{0}\right)$. Moreover we have the following basic properties, cf. [18] p.123:

Lemma 2.7.
(1) If $f: U \rightarrow \mathbb{R}$ is real analytic in $x_{0} \in U$, then it is differentiable in a neighborhood of x_{0} and the derivatives are again real analytic functions in $x_{0} \in U$.
(2) If f and g are real analytic in x_{0}, then the product $f g$ is real analytic in x_{0}.
(3) If $f: U \rightarrow \mathbb{R}$ is real analytic, then $1 / f$ is real analytic in all points $x \in U$, where $f(x) \neq 0$.
(4) Compositions of real analytic functions are again real analytic.

A manifold M is called real analytic if it admits an atlas with real analytic transition functions. Similarly to the smooth category one can define real analytic vector bundles over M.

The Cauchy-Kowalevski Theorem

In this section we will develop a global version of the Cauchy-Kowalevski Theorem, cf. [12], III. Theorem 2.1:

Theorem 2.8. Let t be a coordinate on $\mathbb{R}, x=\left(x_{i}\right)$ be coordinates on \mathbb{R}^{n}, $y=\left(y_{j}\right)$ be coordinates on \mathbb{R}^{s} and let $z=\left(z_{i}^{j}\right)$ be coordinates on $\mathbb{R}^{n s}$. Let $D \subset$ $\mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{s} \times \mathbb{R}^{n s}$ open, and let $G: D \rightarrow \mathbb{R}^{s}$ be a real analytic mapping. Let $D_{0} \subset \mathbb{R}^{n}$ be open and $f: D_{0} \rightarrow \mathbb{R}^{s}$ be a real analytic mapping with Jacobian $D f(x) \in \mathbb{R}^{n s}$, i.e. $z_{i}^{j}(D f(x))=\partial f^{j}(x) / \partial x_{i}$, so that $\left\{\left(t_{0}, x, f(x), D f(x)\right) \mid x \in D_{0}\right\} \subset D$ for some $t_{0} \in \mathbb{R}$.
Then there exists an open neighborhood $D_{1} \subset \mathbb{R} \times D_{0}$ of $\left\{t_{0}\right\} \times D_{0}$ and a real analytic mapping $F: D_{1} \rightarrow \mathbb{R}^{s}$ which satisfies

$$
\left\{\begin{aligned}
\frac{\partial F}{\partial t}(t, x) & =G\left(t, x, F(t, x), \frac{\partial F}{\partial x}(t, x)\right) \\
F\left(t_{0}, x\right) & =f(x) \quad \text { for all } x \in D_{0}
\end{aligned}\right.
$$

F is unique in the sense that any other real analytic solution of the above initial value problem agrees with F in some neighborhood of $\left\{t_{0}\right\} \times D_{0}$.

Remark 2.9. Since the solution $F=\left(f_{i}, . ., f_{s}\right): D_{1} \rightarrow \mathbb{R}^{s}$ from Theorem 2.8 is real analytic, we can develop each component in a convergent power series around $\left(t_{0}, x_{0}\right)=(0,0) \in D_{1}$, i.e.

$$
f_{i}(t, x)=\sum_{k=0}^{\infty}\left(\sum_{p \in \mathbb{N}^{n}} a_{i k p} x^{p}\right) t^{k}=\sum_{k=0}^{\infty}\left(\frac{1}{k!} f_{i}^{(k)}(0, x)\right) t^{k} .
$$

Applying Proposition 2.5 (2) with $P_{N}:=\{0, . ., N\} \times \mathbb{N}^{n}$ shows that

$$
f_{i}^{N}(t, x)=\sum_{k=0}^{N}\left(\sum_{p \in \mathbb{N}^{n}} a_{i k p} x^{p}\right) t^{k}=\sum_{k=0}^{N} \frac{t^{k}}{k!} f_{i}^{(k)}(0, x)
$$

converges locally uniformly to the function $f_{i}(t, x)$, for $N \rightarrow \infty$. The partial derivatives of a formal power series $S(X)$ are defined by,

$$
\frac{\partial S}{\partial X_{i}}:=\sum_{p \in \mathbb{N}^{n}} p_{i} a_{p} X_{1}^{p_{1}} \cdot . . X_{i}^{p_{i}-1} . . \cdot X_{n}^{p_{n}}
$$

The formal power series $\frac{\partial S}{\partial X_{i}}$ has the same domain of convergence Δ as the formal power series S. Moreover, the function $\frac{\partial S}{\partial X_{i}}: \Delta \rightarrow \mathbb{R}$ is the partial derivative of the function $S: \Delta \rightarrow \mathbb{R}$ w.r.t. x_{i}, cf. Satz 3.2 in [18]. Hence we can apply again Proposition $2.5(2)$ to see that all partial derivatives of the function $f_{i}^{N}(t, x)$ converge locally uniformly to the corresponding partial derivative of $f_{i}(t, x)$. In summary, the functions

$$
F_{N}(t, x):=\sum_{k=0}^{N} \frac{t^{k}}{k!} F^{(k)}(0, x)
$$

converge, as $N \rightarrow \infty$, locally in C^{∞}-topology to the solution $F(t, x)$ from Theorem 2.8.

Definition 2.10. Suppose M is a real analytic manifold and $\pi: V \rightarrow M$ is a rank s real analytic vector bundle. We call a map

$$
X: C^{\infty}(V) \rightarrow C^{\infty}(V)
$$

a real analytic first order differential operator if every point of M has a neighborhood $U \subset M$, which is the domain of a real analytic chart $u: U \rightarrow \mathbb{R}^{n}$, and there exists a real analytic trivialization $(\pi, v): V_{\mid U} \cong U \times \mathbb{R}^{s}$, together with a real analytic function

$$
G: D \subset \mathbb{R}^{n} \times \mathbb{R}^{s} \times \mathbb{R}^{n s} \rightarrow \mathbb{R}^{s}
$$

such that for every local section $c: U \subset M \rightarrow V$

$$
v(X \circ c)=G\left(u, v \circ c, \frac{\partial c_{i}}{\partial u_{j}}\right)
$$

holds, where c_{i} is the $i^{t h}$ component of $v \circ c: U \rightarrow \mathbb{R}^{s}$.

We can now prove the following global version of the Cauchy-Kowalevski Theorem,

Theorem 2.11. Suppose $\pi: V \rightarrow M$ is a real analytic rank s vector bundle over a compact real analytic manifold M. Let $X: C^{\infty}(V) \rightarrow C^{\infty}(V)$ be a real analytic first order differential operator and let $c_{0} \in C^{\infty}(V)$ be a real analytic section. Then the initial value problem

$$
\left\{\begin{array}{l}
\dot{c}(t)=X \circ c(t) \\
c(0)=c_{0}
\end{array}\right.
$$

has a unique real analytic solution $c:(-\varepsilon, \varepsilon) \rightarrow C^{\infty}(V)$, i.e. $c:(-\varepsilon, \varepsilon) \times M \rightarrow V$ is real analytic. Moreover, the solution $c(t)$ satisfies

$$
c(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} c_{0}^{(k)},
$$

where the series converges in the C^{∞}-topology on $C^{\infty}(V)$.

Proof: First we prove that local sections $c_{t}: U \subset M \rightarrow V$ exist, which solve the initial value problem locally. Secondly, we show that the compactness of M ensures the existence of a global solution. Eventually we will use the uniqueness part of the Cauchy-Kowalevski Theorem to prove the uniqueness statement of the Theorem.

By Definition 2.10 we can find a real analytic chart $u: U \subset M \rightarrow \mathbb{R}^{n}$ and a trivialization $(\pi, v): V_{\mid U} \cong U \times \mathbb{R}^{s}$, such that for each local section $c: U \subset M \rightarrow V$

$$
\begin{equation*}
v(X \circ c)=G\left(u, v \circ c, \frac{\partial c_{i}}{\partial u_{j}}\right) \tag{1}
\end{equation*}
$$

holds, where $G: D \subset \mathbb{R}^{n} \times \mathbb{R}^{s} \times \mathbb{R}^{n s} \rightarrow \mathbb{R}^{s}$ is real analytic. The map

$$
f: D_{0}:=u(U) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{s} \quad \text { with } \quad f(x):=v \circ c_{0} \circ u^{-1}(x)
$$

is real analytic and hence we can find by the Cauchy-Kowalevski Theorem a real analytic solution $F:(-\varepsilon, \varepsilon) \times \widetilde{D}_{0} \rightarrow \mathbb{R}^{s}$ of

$$
\left\{\begin{aligned}
\frac{\partial F}{\partial t}(t, x) & =G\left(x, F(t, x), \frac{\partial F}{\partial x}(t, x)\right) \\
F\left(t_{0}, x\right) & =f(x) \quad \text { for all } x \in D_{0}
\end{aligned}\right.
$$

where $\widetilde{D}_{0} \subset D_{0}$ is open. Let $\widetilde{U}:=u^{-1}\left(\widetilde{D}_{0}\right) \subset U$ and define for $t \in(-\varepsilon, \varepsilon)$

$$
\begin{equation*}
c(t): \widetilde{U} \subset M \rightarrow V \quad \text { by } \quad c(t, p):=v_{p}^{-1} \circ F(t, u(p)) \tag{2}
\end{equation*}
$$

where $v_{p}: V_{p} \cong \mathbb{R}^{s}$ is the isomorphism induced by the local trivialization (π, v). By definition, the map $c:(-\varepsilon, \varepsilon) \times \widetilde{U} \subset M \rightarrow V$ is real analytic and satisfies

$$
\begin{equation*}
c(0, p)=v_{p}^{-1} \circ F(0, u(p))=v_{p}^{-1} \circ f(u(p))=c_{0}(p) . \tag{3}
\end{equation*}
$$

Now we have for $i=1, . ., s$ and $j=1, . ., n$

$$
\begin{align*}
\frac{\partial\left(v_{i} \circ c_{t}\right)}{\partial u_{j}}(p) & =\left.\frac{\partial}{\partial u_{j}}\right|_{p} \cdot\left(v_{i} \circ c_{t}\right)=\left(\left.u_{*}^{-1} \frac{\partial}{\partial x_{j}}\right|_{u(p)}\right) \cdot\left(v_{i} \circ c_{t}\right) \\
& =\left.\frac{\partial}{\partial x_{j}}\right|_{u(p)} \cdot\left(v_{i} \circ c_{t} \circ u^{-1}\right)=\left.\frac{\partial}{\partial x_{j}}\right|_{u(p)} \cdot F_{i}(t, .) \tag{4}\\
& =\frac{\partial F_{i}}{\partial x_{j}}(t, u(p)) .
\end{align*}
$$

Since by definition $v \circ c(t, p)=F(t, u(p))$ holds, we get from (1), applied to c_{t}

$$
\begin{aligned}
\dot{c}(t, p) & =v_{p}^{-1} \circ G\left(u(p), F(t, u(p)), \frac{\partial F}{\partial x}(t, u(p))\right) \\
& =v_{p}^{-1} \circ G\left(u(p), v \circ c_{t}(p), \frac{\partial\left(v_{i} \circ c_{t}\right)}{\partial u_{j}}(p)\right) \\
& =v_{p}^{-1} \circ v_{p}(X \circ c(t, p))=X \circ c(t, p)
\end{aligned}
$$

i.e. c_{t} is the desired local solution of the initial value problem. Moreover, we get by Remark 2.9

$$
\begin{aligned}
c(t, p) & =v_{p}^{-1} \circ F(t, u(p))=v_{p}^{-1}\left(\lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{t^{k}}{k!} F^{(k)}(0, u(p))\right) \\
& =\lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{t^{k}}{k!} v_{p}^{-1} \circ F^{(k)}(0, u(p))=\lim _{N \rightarrow \infty} \sum_{k=0}^{N} \frac{t^{k}}{k!} c^{(k)}(0, p),
\end{aligned}
$$

i.e.

$$
\begin{equation*}
c_{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} c_{0}^{(k)} \tag{5}
\end{equation*}
$$

where the series converges locally in C^{∞}-topology. Suppose now we apply the above construction to obtain two local sections

$$
c_{1}(t): U_{1} \subset M \rightarrow V \quad \text { and } \quad c_{2}(t): U_{2} \subset M \rightarrow V,
$$

where $t \in(-\varepsilon, \varepsilon), \varepsilon:=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ and $U_{1} \cap U_{2} \neq \emptyset$. Since c_{1} and c_{2} both solve the initial value problem

$$
\left\{\begin{array}{l}
\dot{c}_{i}(t)=X \circ c_{i}(t) \\
c_{i}(0)=c_{0}
\end{array}\right.
$$

$i=1,2$, we see that $c_{1}(0)=c_{2}(0)$ and $\dot{c}_{1}(0)=\dot{c}_{2}(0)$ on $U_{1} \cap U_{2}$. Differentiating the equation $\dot{c}_{1}(t)=X \circ c_{1}(t)$, shows that $c_{1}^{(k+1)}(t)$ can be expressed as a linear combination of

$$
D^{(j)} X\left(c_{1}(t)\right)\left\{v_{1}(t), . ., v_{j}(t)\right\}
$$

where $j \in\{1, . ., k+1\}$ and $v_{1}(t), . ., v_{j}(t) \in\left\{c_{1}^{(l)}(t) \mid 1 \leq l \leq k\right\}$, cf. the proof of Proposition 2.3. Now we obtain by induction $c_{1}^{(k)}(0)=c_{2}^{(k)}(0)$ on $U_{1} \cap U_{2}$, for all $k \in \mathbb{N}$. Hence (5) implies $c_{1}(t)=c_{2}(t)$ on $U_{1} \cap U_{2}$. If M is compact, we can cover M by finitely many domains $U_{1}, . ., U_{N}$ of local sections $c_{i}(t): U_{i} \subset M \rightarrow V$, which yield a global section $c(t): M \rightarrow V$, where $t \in(-\varepsilon, \varepsilon)$ and $\varepsilon:=\min \left\{\varepsilon_{1}, . ., \varepsilon_{N}\right\}$. From (4) we get

$$
c(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} c_{0}^{(k)},
$$

and since M is compact, the series converges in C^{∞}-topology.
To prove uniqueness, suppose that we have two real analytic solutions c_{1}, c_{2} : $(-\varepsilon, \varepsilon) \times M \rightarrow V$ of the initial value problem. By (1) we have for $k=1,2$ and $x \in u(U) \subset \mathbb{R}^{n}$

$$
v\left(X \circ c_{k}(t) \circ u^{-1}(x)\right)=G\left(x, v \circ c_{k}(t) \circ u^{-1}(x), \frac{\partial c_{k i}(t)}{\partial u_{j}} \circ u^{-1}(x)\right) .
$$

Now $F_{k}(t, x):=v \circ c_{k}(t) \circ u^{-1}(x)$ satisfies

$$
\frac{\partial F_{k}}{\partial t}(t, x)=v \circ \dot{c}_{k}(t) \circ u^{-1}(x)=v \circ X \circ c_{k}(t) \circ u^{-1}(x)
$$

and by (4)

$$
\frac{\partial c_{k i}(t)}{\partial u_{j}} \circ u^{-1}(x)=\frac{\partial\left(v_{i} \circ c_{k}(t)\right)}{\partial u_{j}}\left(u^{-1}(x)\right)=\frac{\partial F_{k i}}{\partial x_{j}}(t, x),
$$

for $i=1, . ., s$ and $j=1, . ., n$. Hence we showed

$$
\frac{\partial F_{k}}{\partial t}(t, x)=G\left(x, F_{k}(t, x), \frac{\partial F_{k i}}{\partial x_{j}}(t, x)\right)
$$

Since F_{1} and F_{2} are both real analytic and satisfy

$$
F_{1}(0, x)=v \circ c_{1}(0) \circ u^{-1}(x)=v \circ c_{0} \circ u^{-1}(x)=v \circ c_{2}(0) \circ u^{-1}(x)=F_{2}(0, x)
$$

the uniqueness part of the Cauchy-Kowalevski Theorem yields $F_{1}(t, x)=F_{2}(t, x)$, i.e. $c_{1}(t)=c_{2}(t)$.

3. Special Geometries

In this chapter we give a detailed description of various G-structures. Most of this structures are described by stable forms and we compensate the lack of examples encountered in the previous section on stability. All subsections are organized in a similar way. First we describe certain model forms $\varphi_{0} \in \Lambda^{k} \mathbb{R}^{n *}$ with isotropy group $G \in\left\{S U(2), S U(3), G_{2}, \operatorname{Spin}(7)\right\}$. Most of this forms turn out to be stable and we associate to them a volume element ε_{0}. This volume element allows us to define complementary forms $\psi_{0} \in \Lambda^{n-k} \mathbb{R}^{n *}$ which satisfy

$$
\varphi_{0} \wedge \psi_{0}=\varepsilon_{0}
$$

This equation clearly indicates that the form ψ_{0} equals the Hodge dual of φ_{0}. In fact these forms coincide in the cases that will be discussed here. The decisive difference is that we need to know a priori about the existence of a $G \subset S O(n)$ structure to define the Hodge dual of φ_{0}. For instance, if a G-structure is described by a pair of forms, these forms usually have to satisfy certain compatibility conditions to actually define the desired $G \subset S O(n)$ reduction. In contrast, the associated volume element can be defined solely in terms of the single stable form φ_{0}. As a consequence, no compatibility conditions are involved when defining the complementary form ψ_{0}. The definition of the associated volumes in the $S U(3)$ and G_{2}-case is due to Hitchin [37] and we develop the corresponding description for the $S U(2)$-scenario. In each of the subsections we develop the analogue of the Gray-Hervella [32] (resp. Fernández-Gray [27]) classification for the respective structure. In this approach, G structures are distinguished by the irreducible components of their intrinsic torsion

$$
\tau \in \mathbb{R}^{n *} \otimes \mathfrak{g}^{\perp}
$$

Although our methods would allow to give a complete list for all possible torsion types, we only focus on a description of those classes that seem to be relevant for our work. However, we will take special account of $S U(3)$-structures. The first reason is that the description of $S U(3)$-structures in dimension seven is quite exceptional compared to the description of $S U(n)$-structures for $n \neq 3$. This is due to the fact that the G_{2}-isotropy group of a unit vector equals $S U(3)$. The second reason for the interest in $S U(3)$-structures stems from the ambition to find an analogue of (special) Kähler-structures in dimension seven. Usually Sasakian structures are considered as the odd-dimensional analogue of Kähler structures. In Theorem 3.46 we expose Sasakian structures as a certain torsion type and describe a generalized concept of odd-dimensional Kähler structures, cf. Remark 3.48.

Throughout the chapter we use the following notation: Let $\left(e_{1}, . ., e_{n}\right)$ be the canonical basis of \mathbb{R}^{n} with dual basis $\left(e^{1}, . ., e^{n}\right)$ and volume element

$$
\varepsilon_{0}:=e^{1} \wedge . . \wedge e^{n}=e^{1 . . n} \in \Lambda^{n} \mathbb{R}^{n *}
$$

The inner product on \mathbb{R}^{n} is

$$
g_{0}:=\sum_{i=1}^{n} e^{i} \otimes e^{i}
$$

and for $X, Y \in \mathfrak{g l}(n)$

$$
\langle X, Y\rangle:=\operatorname{tr}\left(X Y^{T}\right)
$$

defines an inner product on $\mathfrak{g l}(n)=\operatorname{End}\left(\mathbb{R}^{n}\right)$, where the transpose is defined w.r.t. g_{0}. We denote by

$$
\mathfrak{s o}_{n}=\mathfrak{g} \oplus \mathfrak{g}^{\perp}
$$

the decomposition of $\mathfrak{s o}(n)$ into orthogonal subspaces w.r.t. this inner product. For $n=2 m$ define

$$
\omega_{0}:=e^{12}+. .+e^{2 m-1,2 m} \in \Lambda^{2} \mathbb{R}^{2 m *}
$$

and $I_{0} \in \operatorname{End}\left(\mathbb{R}^{2 m}\right)$ by

$$
\omega_{0}=g_{0}\left(I_{0} ., .\right) .
$$

Since $I_{0}^{2}=$-id, we obtain a decomposition of $\mathbb{R}^{2 m} \otimes \mathbb{C}$ into

$$
\begin{aligned}
& T^{(1,0)}:=\left\{x-i I_{0} x \mid x \in \mathbb{R}^{2 m}\right\}=\operatorname{Eig}\left(I_{0},+i\right), \\
& T^{(0,1)}:=\left\{x+i I_{0} x \mid x \in \mathbb{R}^{2 m}\right\}=\operatorname{Eig}\left(I_{0},-i\right),
\end{aligned}
$$

and we define

$$
\begin{aligned}
T^{(1,0) *} & :=\left\{\alpha \in \Lambda^{1} \mathbb{R}^{2 m *} \otimes \mathbb{C} \mid \alpha(Z)=0, \text { for all } Z \in T^{(0,1)}\right\} \\
& =\left\{\alpha-i \alpha \circ I_{0} \mid \alpha \in \mathbb{R}^{2 m *}\right\}, \\
T^{(0,1) *} & :=\left\{\alpha \in \Lambda^{1} \mathbb{R}^{2 m *} \otimes \mathbb{C} \mid \alpha(Z)=0, \text { for all } Z \in T^{(1,0)}\right\} \\
& =\left\{\alpha+i \alpha \circ I_{0} \mid \alpha \in \mathbb{R}^{2 m *}\right\} .
\end{aligned}
$$

Denote by $\Lambda^{(p, 0)}$, respectively $\Lambda^{(0, p)}$, the $p^{t h}$ exterior power of $T^{(1,0) *}$, respectively $T^{(0,1) *}$,

$$
\begin{aligned}
& \Lambda^{(p, 0)}:=\Lambda^{p} T^{(1,0) *} \\
& \Lambda^{(0, p)}:=\Lambda^{p} T^{(0,1) *}
\end{aligned}
$$

and let $\Lambda^{(p, q)}:=\Lambda^{(p, 0)} \otimes \Lambda^{(0, q)}$, such that

$$
\Lambda^{k} \mathbb{R}^{2 m *} \otimes \mathbb{C}=\bigoplus_{p+q=k} \Lambda^{(p, q)}
$$

Since $e^{1}+i e^{2}=e^{1}-i e^{1} \circ I_{0}$,

$$
\Phi_{0}:=\left(e^{1}+i e^{2}\right) \wedge . . \wedge\left(e^{2 m-1}+i e^{2 m}\right) \in \Lambda^{(m, 0)}
$$

defines a form of type $(m, 0)$. We identify $\mathbb{C}^{m}=\mathbb{R}^{2 m}$ via $z=x+i y=(x, y)$ and

$$
G L(m, \mathbb{C})=\left\{A \in G L(2 m) \mid A I_{0}=I_{0} A\right\}
$$

Under this identification, the hermitian structure $h_{0}: \mathbb{C}^{m} \times \mathbb{C}^{m} \rightarrow \mathbb{C}$, with $h_{0}(z, w):=$ $\sum z_{j} \bar{w}_{j}$, equals

$$
h_{0}=g_{0}-i \omega_{0} .
$$

The canonical action of $G L(n)$ on \mathbb{R}^{n} extends to an action of $G L(n)$ on the space of tensors on \mathbb{R}^{n}. In the case of forms, this action is compatible with the wedge product, i.e.

$$
A(\varphi \wedge \psi)=A \varphi \wedge A \psi
$$

for $A \in G L(n)$ and $\varphi, \psi \in \Lambda^{*} \mathbb{R}^{n *}$. Moreover,

$$
A \varepsilon_{0}=\operatorname{det}\left(A^{-1}\right) \varepsilon_{0}
$$

for $A \in G L(n)$, and for $A \in G L(m, \mathbb{C})$

$$
A \Phi_{0}=\operatorname{det}_{\mathbb{C}}\left(A^{-1}\right) \Phi_{0}
$$

The isotropy groups of the above model tensors are listed below

$$
\begin{array}{ll}
\operatorname{Iso}_{G L(n)}\left(\varepsilon_{0}\right)=S L(n), & \operatorname{Iso}_{G L(m, \mathbb{C})}\left(\Phi_{0}\right)=S L(n, \mathbb{C}) \\
\operatorname{Iso}_{G L(n)}\left(g_{0}\right)=O(n), & \operatorname{Iso}_{G L(m, \mathbb{C})}\left(h_{0}\right)=U(m) \\
\operatorname{Iso}_{G L(2 m)}\left(I_{0}\right)=G L(m, \mathbb{C}), & \operatorname{Iso}_{G L(2 m)}\left(\omega_{0}\right)=\operatorname{Sp}(2 m, \mathbb{R})
\end{array}
$$

Lemma 3.1. Consider $G \subset G L(n)$, acting on $\Lambda^{k} \mathbb{R}^{n *}$. For $\varphi \in \Lambda^{k} \mathbb{R}^{n *}$, the map $D_{\varphi}: \mathfrak{g} \rightarrow V$ from Lemma 1.14 is given by

$$
\left.D_{\varphi}(A)=-\sum_{i=1}^{n} e^{i} \wedge A e_{i}\right\lrcorner \varphi
$$

Proof: Define pr : $\mathbb{R}^{n *} \otimes \Lambda^{k-1} \mathbb{R}^{n *} \rightarrow \Lambda^{k} \mathbb{R}^{n *}$ by $\operatorname{pr}(\alpha \otimes \omega)=\alpha \wedge \omega$. Then for $x_{1}, . ., x_{k} \in \mathbb{R}^{n}$

$$
\begin{aligned}
\operatorname{pr}(\alpha \otimes \omega)\left(x_{1}, . ., x_{k}\right) & =(\alpha \wedge \omega)\left(x_{1}, . ., x_{k}\right)=\sum_{|I|=k-1} \omega\left(e_{I}\right)\left(\alpha \wedge e^{I}\right)\left(x_{i}, . ., x_{k}\right) \\
& =\sum_{|I|=k-1} \sum_{j=1}^{k} \omega\left(e_{I}\right) \alpha\left(x_{j}\right)(-1)^{j+1} e^{I}\left(x_{1}, . ., \widehat{x}_{j}, . ., x_{k}\right) \\
& =\sum_{j=1}^{k}(-1)^{j+1} \alpha\left(x_{j}\right) \omega\left(x_{1}, . ., \widehat{x}_{j}, . ., x_{k}\right) .
\end{aligned}
$$

Hence for $\varphi \in \Lambda^{k} \mathbb{R}^{n *}$ and $A \in \mathfrak{g} \subset \mathfrak{g l}(n)$

$$
\begin{aligned}
\operatorname{pr}(A\lrcorner \varphi)\left(x_{1}, . ., x_{k}\right) & \left.=\sum_{i=1}^{n} \operatorname{pr}\left(e^{i} \otimes A e_{i}\right\lrcorner \varphi\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{k}(-1)^{j+1} e^{i}\left(x_{j}\right) \varphi\left(A e_{i}, x_{1}, . ., \widehat{x}_{j}, . ., x_{k}\right) \\
& =\sum_{j=1}^{k}(-1)^{j+1} \varphi\left(A x_{j}, x_{1}, . ., \widehat{x}_{j}, . ., x_{k}\right)=\sum_{j=1}^{k} \varphi\left(x_{1}, . ., A x_{j}, . ., x_{k}\right) \\
& =-D_{\varphi}(A)\left(x_{1}, . ., x_{k}\right)
\end{aligned}
$$

i.e.

$$
\left.\left.D_{\varphi}(A)=-\operatorname{pr}(A\lrcorner \varphi\right)=-\sum_{i=1}^{n} e^{i} \wedge A e_{i}\right\lrcorner \varphi
$$

Proposition 3.2. Let $\varphi_{0} \in \Lambda^{k} \mathbb{R}^{n *}$ with isotropy group $G \subset O(n)$. An equivariant map $\varphi: F M \rightarrow \Lambda^{k} \mathbb{R}^{n *}$ of type φ_{0} induces a reduction $P \subset F^{g} M$ with intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{n *} \otimes \mathfrak{g}^{\perp}$. Then for $X \in C^{\infty}(T M)$

$$
D_{\varphi}(\tau(X))=\nabla_{X}^{g} \varphi=L_{X} \varphi+D_{\varphi}\left(\nabla^{g} X\right)
$$

Proof: The first equation is precisely Proposition 1.18. The second equation follows from Lemma 3.1 and

$$
\begin{aligned}
D_{\varphi}\left(\nabla^{g} X\right) & \left.=-\sum_{i=1}^{n} E^{i} \wedge\left(\nabla_{E_{i}}^{g} X\right)\right\lrcorner \varphi \\
& \left.\left.=-\sum_{i=1}^{n} E^{i} \wedge \nabla_{E_{i}}^{g}(X\lrcorner \varphi\right)+\sum_{i=1}^{n} E^{i} \wedge X\right\lrcorner\left(\nabla_{E_{i}}^{g} \varphi\right) \\
& =-d(X\lrcorner \varphi)-X\lrcorner d \varphi+\nabla_{X}^{g} \varphi \\
& =-L_{X} \varphi+\nabla_{X}^{g} \varphi
\end{aligned}
$$

Given two real G-representations V and W, there are canonical isomorphism of G-modules

$$
\begin{aligned}
\left(\Lambda^{k} V\right)^{*} & =\Lambda^{k} V^{*} \\
\operatorname{Hom}(V, W) & =V^{*} \otimes W \\
\Lambda^{k} V^{*} & =\Lambda^{n-k} V \otimes \Lambda^{n} V^{*} .
\end{aligned}
$$

If V and W have the same dimension n, we define

$$
\operatorname{det}: \operatorname{Hom}(V, W) \rightarrow \Lambda^{n} V^{*} \otimes \Lambda^{n} W
$$

by

$$
\Lambda^{n} V^{*} \otimes \Lambda^{n} W \otimes \Lambda^{n} W^{*} \ni \operatorname{det}(K) \otimes \varepsilon=\varepsilon \circ K \in \Lambda^{n} V^{*}
$$

where $0 \neq \varepsilon \in \Lambda^{n} W^{*}$ and we identified $\Lambda^{n} W \otimes \Lambda^{n} W^{*}=\mathbb{R}$. This definition is clearly independent of the choice of ε. For $g \in G$ we have

$$
\operatorname{det}\left(g K g^{-1}\right) \otimes \varepsilon=\varepsilon \circ\left(g K g^{-1}\right)=g((\varepsilon \circ g) \circ K)=g(\operatorname{det} K \otimes \varepsilon \circ g)=\operatorname{det} K \otimes \varepsilon
$$

i.e. $\operatorname{det}\left(g K g^{-1}\right)=\operatorname{det} K=g \operatorname{det} K$ is G-equivariant. In the following sections we will frequently use the above identifications for $V=W=\mathbb{R}^{n}$ and $G \subset G L(n)$.

$S U(2)$-Structures in Dimension Five

In this section we consider the following model forms on \mathbb{R}^{5} :

$$
\begin{array}{ll}
\alpha_{0}:=e^{1}, & \omega_{1}:=e^{23}+e^{45} \\
\omega_{2}:=e^{24}-e^{35}, & \omega_{3}:=e^{25}+e^{34}, \\
\rho_{2}:=\alpha_{0} \wedge \omega_{2}=e^{124}-e^{135}, & \rho_{3}:=\alpha_{0} \wedge \omega_{3}=e^{125}+e^{134}
\end{array}
$$

and $g_{0}\left(I_{i} .,.\right):=\omega_{i}$, for $i=1,2,3$. They satisfy certain relations, which can be verified in a direct computation:

Lemma 3.3. For all $x, y \in \mathbb{R}^{5}$ and $\beta \in \Lambda^{1} \mathbb{R}^{5 *}$
(1) $\omega_{i} \wedge \omega_{j}=2 \delta_{i j} e^{2345}$.
(2) $\left.\left.\omega_{2}(x, y) \varepsilon_{0}=-(x\lrcorner \omega_{1}\right) \wedge(y\lrcorner \omega_{1}\right) \wedge \rho_{2}$.
(3) $\left.\left.\omega_{3}(x, y) \varepsilon_{0}=-(x\lrcorner \omega_{1}\right) \wedge(y\lrcorner \omega_{1}\right) \wedge \rho_{3}$.
(4) $\left.2 \alpha_{0}(x) \varepsilon_{0}=(x\lrcorner \rho_{2}\right) \wedge \rho_{2}$.
(5) $\left.\left.g_{0}(x, y) \varepsilon_{0}=\alpha_{0}(x) \alpha_{0}(y) \varepsilon_{0}+\alpha_{0} \wedge \omega_{1} \wedge(x\lrcorner \omega_{2}\right) \wedge(y\lrcorner \omega_{3}\right)$.
(6) $\left.\beta\left(I_{1} x\right) \varepsilon_{0}=\alpha_{0} \wedge \beta \wedge(x\lrcorner \omega_{2}\right) \wedge \omega_{3}$.
(7) $\omega_{2}\left(I_{1} x, y\right)=-\omega_{3}(x, y)$.
(8) $\omega_{3}\left(I_{1} x, y\right)=\omega_{2}(x, y)$.
(9) $I_{1}^{2}=I_{2}^{2}=I_{3}^{2}=I_{1} I_{2} I_{3}=-\mathrm{id}$, on $\operatorname{ker}\left(\alpha_{0}\right)$.
(10) $\beta \wedge \omega_{1}=I_{3} \beta \wedge \omega_{2}$, for $\beta \in \Lambda^{1} \operatorname{ker}\left(\alpha_{0}\right)^{*}$.
(11) $\beta \wedge \omega_{3}=-I_{1} \beta \wedge \omega_{2}$, for $\beta \in \Lambda^{1} \operatorname{ker}\left(\alpha_{0}\right)^{*}$.

Usually a $S U(2)$-structure on a five dimensional manifold is described by a quadruplet of forms $\left(\alpha, \omega_{1}, \omega_{2}, \omega_{3}\right)$ which is of model type $\left(\alpha_{0}, \omega_{1}, \omega_{2}, \omega_{3}\right)$. This definition
of $S U(2)$-structures can for instance be found in [22], [29]. There is an alternative to the usual definition, which is justified by the last equation in the next Lemma.

Lemma 3.4.

$$
\begin{aligned}
\operatorname{Iso}_{G L(5)}\left(\alpha_{0}\right) & =\left\{\left.\left(\begin{array}{cc}
1 & 0 \\
x & A
\end{array}\right) \right\rvert\, A \in G L(4) \text { and } x \in \mathbb{R}^{4}\right\} . \\
\operatorname{Iso}_{G L(5)}\left(\omega_{1}\right) & =\left\{\left.\left(\begin{array}{cc}
\lambda & y^{T} \\
0 & A
\end{array}\right) \right\rvert\, A \in \operatorname{Sp}(4, \mathbb{R}), y \in \mathbb{R}^{4} \text { and } \lambda \neq 0\right\} . \\
\operatorname{Iso}_{G L(5)}\left(\alpha_{0}, \omega_{1}, \omega_{2}, \omega_{3}\right) & =\left(\begin{array}{cc}
1 & 0 \\
0 & S U(2)
\end{array}\right) . \\
\operatorname{Iso}_{G L^{+}(5)}\left(\omega_{1}, \rho_{2}, \rho_{3}\right) & =\left(\begin{array}{cc}
1 & 0 \\
0 & S U(2)
\end{array}\right) .
\end{aligned}
$$

In particular, the forms $\alpha_{0}, \omega_{1}, \omega_{2}$ and ω_{3} are stable.

Proof: Write $B \in G L(5)$ as

$$
B=\left(\begin{array}{cc}
\lambda & y^{T} \\
x & A
\end{array}\right)
$$

where $\lambda \in \mathbb{R}, x, y \in \mathbb{R}^{4}$ and $A \in \mathfrak{g l}(4)$. Then $\alpha\left(B e_{1}\right)=\lambda$ and $\alpha\left(B e_{j}\right)=y^{T} e_{j}$, for $j \in\{2, . ., 5\}$. Hence the stabilizer of the 1 -form $\alpha_{0}:=e^{1} \in \Lambda^{1} \mathbb{R}^{5 *}$ has the above form.

For $B \in \operatorname{Iso}_{G L(5)}\left(\omega_{1}\right)$ and $i, j \in\{2, . ., 5\}$ we get $\omega_{1}\left(e_{i}, e_{j}\right)=\omega_{1}\left(B e_{i}, B e_{j}\right)=$ $\omega_{1}\left(A e_{i}, A e_{j}\right)$, i.e. $A \in \operatorname{Sp}(4, \mathbb{R})$. This yields

$$
0=\omega_{1}\left(B e_{1}, B e_{j}\right)=\omega_{1}\left(\lambda e_{1}+x,\left(y^{T} e_{j}\right) e_{1}+A e_{j}\right)=\omega_{1}\left(x, A e_{j}\right)=\omega_{1}\left(A^{-1} x, e_{j}\right)
$$

and the non-degeneracy of ω_{1}, as a form on \mathbb{R}^{4}, implies $x=0$ and proves the second equation of the lemma.

Now the third equation follows, since $\omega_{2}=\operatorname{Re}\left(\Phi_{0}\right)$ and $\omega_{3}=\operatorname{Im}\left(\Phi_{0}\right)$, where $\Phi_{0}=$ $\left(e^{2}+i e^{3}\right) \wedge\left(e^{4}+i e^{5}\right)$, and $S U(2)=\operatorname{Sp}(4, \mathbb{R}) \cap S L(2, \mathbb{C})$.

To obtain the last equation, we compute for $B=\left(\begin{array}{cc}\lambda & y^{T} \\ 0 & A\end{array}\right) \in \operatorname{Iso}_{G L(5)}\left(\omega_{1}\right) \cap$ $\operatorname{Iso}_{G L^{+}(5)}\left(\alpha_{0} \wedge \omega_{2}\right)$ and $i, j \in\{2, . ., 5\}$

$$
\begin{aligned}
\omega_{2}\left(e_{i}, e_{j}\right) & =\left(\alpha_{0} \wedge \omega_{2}\right)\left(e_{1}, e_{i}, e_{j}\right)=\left(\alpha_{0} \wedge \omega_{2}\right)\left(B e_{1}, B e_{i}, B e_{j}\right) \\
& =\left(\alpha_{0} \wedge \omega_{2}\right)\left(\lambda e_{1},\left(y^{T} e_{i}\right) e_{1}+A e_{i},\left(y^{T} e_{j}\right) e_{1}+A e_{j}\right) \\
& =\left(\alpha_{0} \wedge \omega_{2}\right)\left(\lambda e_{1}, A e_{i}, A e_{j}\right) \\
& =\lambda \omega_{2}\left(A e_{i}, A e_{j}\right) .
\end{aligned}
$$

Since the volume element $\varepsilon_{0}=e^{2345}$ on \mathbb{R}^{4} satisfies

$$
\varepsilon_{0}=\frac{1}{2} \omega_{1}^{2}=\frac{1}{2} \omega_{2}^{2}=\frac{1}{2} \omega_{3}^{2},
$$

we obtain from $A \in \operatorname{Sp}(4, \mathbb{R})=\operatorname{Iso}_{G L(4)}\left(\omega_{1}\right)$

$$
\operatorname{det}(A) \varepsilon_{0}=A^{-1} \varepsilon_{0}=A^{-1} \frac{1}{2} \omega_{1}^{2}=\varepsilon_{0}
$$

i.e. $\operatorname{det}(A)=1$. Now $A^{-1} \omega_{2}=\lambda^{-1} \omega_{2}$ yields

$$
\varepsilon_{0}=A^{-1} \frac{1}{2} \omega_{1}^{2}=\lambda^{-2} \varepsilon_{0}
$$

and since $B \in G L^{+}(5)$, we get $\lambda=1$. Similarly we get $A \omega_{3}=\omega_{3}$, which yields $A \in S U(2)$. Now

$$
\begin{aligned}
\alpha_{0} \wedge \omega_{2} & =B^{-1}\left(\alpha_{0} \wedge \omega_{2}\right)=B^{-1} \alpha_{0} \wedge B^{-1} \omega_{2} \\
& \left.=B^{-1} \alpha_{0} \wedge A^{-1} \omega_{2}, \quad \text { since } e_{1}\right\lrcorner \omega_{2}=0 \\
& =\left(\alpha_{0}\left(B e_{1}\right) e^{1}+\sum_{j=2}^{5} \alpha_{0}\left(B e_{j}\right) e^{j}\right) \wedge \omega_{2} \\
& =\left(\alpha_{0}+\sum_{j=2}^{5} y_{j} e^{j}\right) \wedge \omega_{2}
\end{aligned}
$$

yields $\sum_{j=2}^{5} y_{j} e^{j} \wedge \omega_{2}=0$, i.e. $y=0$.

The stability of α_{0} follows from

$$
5=\operatorname{dim}\left(\Lambda^{1} \mathbb{R}^{*}\right)=\operatorname{dim}(G L(5))-\operatorname{dim}\left(\operatorname{Iso}_{G L(5)}\left(\alpha_{0}\right)\right)=25-20
$$

Similarly for ω_{1},

$$
10=\operatorname{dim}\left(\Lambda^{2} \mathbb{R}^{*}\right)=\operatorname{dim}(G L(5))-\operatorname{dim}\left(\operatorname{Iso}_{G L(5)}\left(\omega_{1}\right)\right)=25-15
$$

and since $\omega_{2}, \omega_{3} \in G L(5) \omega_{1}$, the Lemma follows.

Since the $G L^{+}(5)$ stabilizer of the triple $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ is equal to $\{1\} \times S U(2)$, we expect that, after fixing an orientation for \mathbb{R}^{5}, we can reconstruct the forms α_{0}, ω_{2} and ω_{3} solely from the triple $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$. The first step is to reconstruct the volume element ε_{0}. Then the forms α_{0}, ω_{2} and ω_{3}, as well as the metric g_{0} and the endomorphism I_{1}, can be obtained from the formulas in Lemma 3.3.

Lemma 3.5. After choosing an orientation for $V:=\mathbb{R}^{5}$, there is a homomorphism

$$
\varepsilon: \Lambda^{2} V^{*} \oplus \Lambda^{3} V^{*} \oplus \Lambda^{3} V^{*} \rightarrow \Lambda^{5} V^{*} \oplus i \Lambda^{5} V^{*}
$$

of $G L^{+}(5)$-modules, such that for the model tensors and the canonical orientation $\left[\varepsilon_{0}\right]$ of \mathbb{R}^{5}

$$
\varepsilon\left(\omega_{1}, \rho_{2}, \rho_{3}\right)=\varepsilon_{0} \in \Lambda^{5} V^{*} \subset \Lambda^{5} V^{*} \oplus i \Lambda^{5} V^{*}
$$

Proof: Given an orientation $\left[\varepsilon_{+}\right]$for V, represented by an element $\varepsilon_{+} \in \Lambda^{5} V^{*}$, we can define a map

$$
\sqrt[4]{-}: \Lambda^{5} V^{*} \otimes \Lambda^{5} V^{*} \otimes \Lambda^{5} V^{*} \otimes \Lambda^{5} V^{*} \rightarrow \Lambda^{5} V^{*} \oplus i \Lambda^{5} V^{*}
$$

by $\sqrt[4]{\varepsilon_{1} \otimes \varepsilon_{2} \otimes \varepsilon_{3} \otimes \varepsilon_{4}}=\sqrt[4]{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}} \varepsilon_{+}$, where $\lambda_{i} \in \mathbb{R}$ is defined by $\varepsilon_{i}=\lambda_{i} \varepsilon_{+}$. This definition is independent of the choice of representative ε_{+}and for $A \in G L^{+}(5)$ we have

$$
\sqrt[4]{A \varepsilon_{1} \otimes A \varepsilon_{2} \otimes A \varepsilon_{3} \otimes A \varepsilon_{4}}=\sqrt[4]{\operatorname{det} A^{-4} \lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}} \varepsilon_{+}=\operatorname{det} A^{-1} \sqrt[4]{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}} \varepsilon_{+}
$$

Now consider the $G L(5)$-equivariant map

$$
K: \Lambda^{2} V^{*} \oplus \Lambda^{3} V^{*} \oplus \Lambda^{3} V^{*} \rightarrow\left(V^{*} \otimes V\right) \otimes\left(V^{*} \otimes V\right) \otimes \Lambda^{5} V^{*} \otimes \Lambda^{5} V^{*}
$$

defined by

$$
\left.\left.K\left(\omega_{1}, \rho_{2}, \rho_{3}\right)(x, a, y, b):=\left(\rho_{2} \wedge a \wedge b\right) \otimes\left(\rho_{3} \wedge(x\lrcorner \omega_{1}\right) \wedge(y\lrcorner \omega_{1}\right)\right)
$$

where $x, y \in V$ and $a, b \in V^{*}$. For the model tensors $\omega_{1}, \rho_{2}, \rho_{3}$ let $K_{0}:=K\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$. Then

$$
\begin{aligned}
K_{0}(x, a, y, b)= & \left(e^{124} \wedge\left(a_{3} e^{3}+a_{5} e^{5}\right) \wedge\left(b_{3} e^{3}+b_{5} e^{5}\right)\right. \\
& \left.-e^{135} \wedge\left(a_{2} e^{2}+a_{4} e^{4}\right) \wedge\left(b_{2} e^{2}+b_{4} e^{4}\right)\right) \\
& \otimes\left(e^{134} \wedge\left(-x_{3} e^{2}+x_{4} e_{5}\right) \wedge\left(-y_{3} e^{2}+y_{4} e_{5}\right)\right. \\
& \left.+e^{125} \wedge\left(x_{2} e^{3}-x_{5} e^{4}\right) \wedge\left(y_{2} e^{3}-y_{5} e^{4}\right)\right) \\
= & \left(e^{124} \wedge\left(a_{3} b_{5} e^{35}-a_{5} b_{3} e^{35}\right)-e^{135} \wedge\left(a_{2} b_{4} e^{24}-a_{4} b_{2} e^{24}\right)\right) \\
& \otimes\left(e^{134} \wedge\left(-x_{3} y_{4} e^{25}+x_{4} y_{3} e^{25}\right)+e^{125} \wedge\left(-x_{2} y_{5} e^{34}+x_{5} y_{2} e^{34}\right)\right) \\
= & \left(a_{5} b_{3}-a_{3} b_{5}+a_{2} b_{4}-a_{4} b_{2}\right)\left(-x_{3} y_{4}+x_{4} y_{3}-x_{2} y_{5}+x_{5} y_{2}\right) \otimes \varepsilon_{0}^{2}
\end{aligned}
$$

Taking the trace of the first factor $V^{*} \otimes V$, we obtain a map

$$
L=\operatorname{tr}(K): \Lambda^{2} V^{*} \oplus \Lambda^{3} V^{*} \oplus \Lambda^{3} V^{*} \rightarrow\left(V^{*} \otimes V\right) \otimes \Lambda^{5} V^{*} \otimes \Lambda^{5} V^{*}
$$

and for the model tensors we obtain

$$
L_{0}(y, b):=\operatorname{tr}\left(K_{0}\right)(y, b)=\left(-b_{4} y_{5}+b_{5} y_{4}-b_{2} y_{3}+b_{3} y_{2}\right) \otimes \varepsilon_{0}^{2}
$$

i.e. $L_{0}=I_{1} \otimes \varepsilon_{0}^{2}$. Identifying $V^{*} \otimes V=\operatorname{Hom}(V, V)$, we define

$$
L^{2}: \Lambda^{2} V^{*} \oplus \Lambda^{3} V^{*} \oplus \Lambda^{3} V^{*} \rightarrow\left(V^{*} \otimes V\right) \otimes\left(\Lambda^{5} V^{*}\right)^{4}
$$

and so

$$
L_{0}^{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & -\mathrm{id}_{\mathbb{R}^{4}}
\end{array}\right) \otimes \varepsilon_{0}^{4}
$$

Taking again the trace, we obtain a map

$$
\operatorname{tr}\left(L^{2}\right): \Lambda^{2} V^{*} \oplus \Lambda^{3} V^{*} \oplus \Lambda^{3} V^{*} \rightarrow\left(\Lambda^{5} V^{*}\right)^{4}
$$

with $\operatorname{tr}\left(L_{0}^{2}\right)=-4 \varepsilon_{0}^{4}$. Hence

$$
\varepsilon:=\sqrt[4]{-\frac{1}{4} \operatorname{tr}\left(L^{2}\right)}: \Lambda^{2} V^{*} \oplus \Lambda^{3} V^{*} \oplus \Lambda^{3} V^{*} \rightarrow \Lambda^{5} V^{*} \oplus i \Lambda^{5} V^{*}
$$

is the desired equivariant map.

Definition 3.6. Suppose $V=\mathbb{R}^{5}$ is equipped with a fixed orientation. For $\left(\omega_{1}, \rho_{2}, \rho_{3}\right) \in \Lambda^{2} V^{*} \oplus \Lambda^{3} V^{*} \oplus \Lambda^{3} V^{*}$ we call

$$
\varepsilon:=\varepsilon\left(\omega_{1}, \rho_{2}, \rho_{3}\right) \in \Lambda^{5} V^{*}
$$

from Lemma 3.5 the associated volume element. Whenever $\varepsilon \neq 0$, we define

$$
\begin{aligned}
2 \alpha(x) \varepsilon & \left.:=(x\lrcorner \rho_{2}\right) \wedge \rho_{2}, \\
\omega_{2}(x, y) \varepsilon & \left.\left.:=-(x\lrcorner \omega_{1}\right) \wedge(y\lrcorner \omega_{1}\right) \wedge \rho_{2}, \\
\omega_{3}(x, y) \varepsilon & \left.\left.:=-(x\lrcorner \omega_{1}\right) \wedge(y\lrcorner \omega_{1}\right) \wedge \rho_{3}, \\
g(x, y) \varepsilon & \left.\left.:=\alpha(x) \alpha(y) \varepsilon+\alpha \wedge \omega_{1} \wedge(x\lrcorner \omega_{2}\right) \wedge(y\lrcorner \omega_{3}\right), \\
\beta\left(I_{1} x\right) \varepsilon & \left.:=\alpha \wedge \beta \wedge(x\lrcorner \omega_{2}\right) \wedge \omega_{3} .
\end{aligned}
$$

Proposition 3.7. Consider $V=\mathbb{R}^{5}$ with the canonical orientation and

$$
\left(\omega_{1}, \rho_{2}, \rho_{3}\right) \in \Lambda^{2} V^{*} \oplus \Lambda^{3} V^{*} \oplus \Lambda^{3} V^{*}
$$

with $\varepsilon \neq 0$. Then $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ lies in the $G L^{+}(5)$ orbit of the model forms $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ if and only if the tensors from Definition 3.6 satisfy $\alpha \wedge \omega_{1}^{2}>0, g(x, x)>0$, for $x \neq 0$, and
(1) $\omega_{1} \wedge \omega_{2}=\omega_{1} \wedge \omega_{3}=\omega_{2} \wedge \omega_{3}=0$,
(2) $\omega_{1}^{2}=\omega_{2}^{2}=\omega_{3}^{2}$,
(3) $\rho_{2}=\alpha \wedge \omega_{2}$ and $\rho_{3}=\alpha \wedge \omega_{3}$.

In this case, the associated volume is given by $2 \varepsilon=\alpha \wedge \omega_{1}^{2}>0$.

Proof: The relations can be easily verified if $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ lies in the $G L^{+}(5)$ orbit of the model forms. Conversely, condition (1) implies that g from Definition 3.6 is symmetric

$$
\begin{aligned}
\left.\left.\alpha \wedge \omega_{1} \wedge(x\lrcorner \omega_{2}\right) \wedge(y\lrcorner \omega_{3}\right) & \left.=x\lrcorner\left(\alpha \wedge \omega_{1}\right) \wedge \omega_{2} \wedge(y\lrcorner \omega_{3}\right) \\
& \left.=-x\lrcorner\left(\alpha \wedge \omega_{1}\right) \wedge \omega_{3} \wedge(y\lrcorner \omega_{2}\right) \\
& \left.\left.=\alpha \wedge \omega_{1} \wedge(y\lrcorner \omega_{2}\right) \wedge(x\lrcorner \omega_{3}\right) .
\end{aligned}
$$

Conditions (1), (2) and (3) also yield

$$
\begin{align*}
\omega_{2}\left(I_{1} x, y\right) \varepsilon & \left.\left.=-\alpha \wedge(y\lrcorner \omega_{2}\right) \wedge(x\lrcorner \omega_{2}\right) \wedge \omega_{3} \\
& \left.\left.=\alpha \wedge(y\lrcorner \omega_{2}\right) \wedge \omega_{2} \wedge(x\lrcorner \omega_{3}\right) \\
& \left.\left.=\alpha \wedge(y\lrcorner \omega_{1}\right) \wedge \omega_{1} \wedge(x\lrcorner \omega_{3}\right) \\
& \left.\left.=-\alpha \wedge(y\lrcorner \omega_{1}\right) \wedge(x\lrcorner \omega_{1}\right) \wedge \omega_{3} \tag{4}\\
& \left.\left.=(x\lrcorner \omega_{1}\right) \wedge(y\lrcorner \omega_{1}\right) \wedge \alpha \wedge \omega_{3} \\
& =-\omega_{3}(x, y) \varepsilon .
\end{align*}
$$

and

$$
\begin{aligned}
\omega_{3}\left(I_{1} x, y\right) \varepsilon & \left.\left.=-\alpha \wedge(y\lrcorner \omega_{3}\right) \wedge(x\lrcorner \omega_{2}\right) \wedge \omega_{3} \\
& \left.\left.=-\alpha \wedge(y\lrcorner \omega_{1}\right) \wedge \omega_{1} \wedge(x\lrcorner \omega_{2}\right) \\
& \left.\left.=\alpha \wedge(y\lrcorner \omega_{1}\right) \wedge(x\lrcorner \omega_{1}\right) \wedge \omega_{2} \\
& \left.\left.=-(x\lrcorner \omega_{1}\right) \wedge(y\lrcorner \omega_{1}\right) \wedge \alpha \wedge \omega_{2} \\
& =\omega_{2}(x, y) .
\end{aligned}
$$

By definition we have $\alpha \circ I_{1}=0$ and hence

$$
\begin{align*}
g\left(I_{1} x, I_{1} y\right) \varepsilon & \left.\left.=\alpha \wedge \omega_{1} \wedge\left(I_{1} x\right\lrcorner \omega_{2}\right) \wedge\left(I_{1} y\right\lrcorner \omega_{3}\right) \\
& \left.\left.=-\alpha \wedge \omega_{1} \wedge(x\lrcorner \omega_{3}\right) \wedge(y\lrcorner \omega_{2}\right) \\
& =g(y, x) \varepsilon-\alpha(x) \alpha(y) \varepsilon \tag{6}\\
& =(g(x, y)-\alpha(x) \alpha(y)) \varepsilon,
\end{align*}
$$

Similarly,

$$
\begin{align*}
g\left(I_{1}^{2} x, y\right) \varepsilon & \left.\left.=\alpha \wedge \omega_{1} \wedge\left(I_{1}^{2} x\right\lrcorner \omega_{2}\right) \wedge(y\lrcorner \omega_{3}\right) \\
& \left.\left.=-\alpha \wedge \omega_{1} \wedge(x\lrcorner \omega_{2}\right) \wedge(y\lrcorner \omega_{3}\right) \tag{7}\\
& =(-g(x, y)+\alpha(x) \alpha(y)) \varepsilon
\end{align*}
$$

and

$$
\begin{align*}
\omega_{1}\left(I_{1} x, y\right) \varepsilon & \left.\left.=-\alpha \wedge(y\lrcorner \omega_{1}\right) \wedge(x\lrcorner \omega_{2}\right) \wedge \omega_{3} \\
& \left.\left.=\alpha \wedge \omega_{1} \wedge(y\lrcorner \omega_{3}\right) \wedge(x\lrcorner \omega_{2}\right) \tag{8}\\
& =(-g(x, y)+\alpha(x) \alpha(y)) \varepsilon .
\end{align*}
$$

By (6) and (7) we have $I_{1}^{2} x=-x$ and $g\left(I_{1} x, I_{1} y\right)=g(x, y)$, for $x, y \in \operatorname{ker}(\alpha)$. Hence we can find a g-orthonormal basis for $\operatorname{ker}(\alpha)$ of the form

$$
\left(a_{2}, a_{3}=I_{1} a_{2}, a_{4}, a_{5}=I_{1} a_{4}\right)
$$

Since $\alpha \neq 0$ and $\alpha \circ I_{1}=0$, we have $\operatorname{ker}\left(I_{1}\right) \neq\{0\}$. So we can find $0 \neq a_{1} \in \operatorname{ker}\left(I_{1}\right)$ with $\alpha\left(a_{1}\right)=1$, since $\alpha\left(a_{1}\right)=0$ and (6) would imply $0=I_{1}^{2} a_{1}=-a_{1}$. By (4) and (5) we have $\left.x\lrcorner \omega_{2}=x\right\lrcorner \omega_{3}=0$, for $x \in \operatorname{ker}\left(I_{1}\right)$, and so

$$
\left(a_{1}, a_{2}, a_{3}=I_{1} a_{2}, a_{4}, a_{5}=I_{1} a_{4}\right)
$$

is a g-orthonormal basis for \mathbb{R}^{5}. If we define $A \in G L(5)$ by

$$
A a_{i}=e_{i}, \text { for } i=1, . ., 5
$$

we have

$$
A \alpha=\alpha_{0}, \quad A g=g_{0} \quad \text { and } \quad A I_{1} A^{-1} e_{i}=I_{10} e_{i}:= \begin{cases}0 & , i=1 \\ e_{i+1} & , i \text { even } \\ -e_{i-1} & , i \text { odd }\end{cases}
$$

From (8) and $\alpha \circ I_{1}=0$ we get in addition

$$
\begin{aligned}
A \omega_{1} & =-\sum_{i<j} \omega_{1}\left(I_{1}^{2} A^{-1} e_{i}, A^{-1} e_{j}\right) e^{i j}=\sum_{i<j} g\left(I_{1} A^{-1} e_{i}, A^{-1} e_{j}\right) e^{i j} \\
& =\sum_{i<j} g_{0}\left(I_{10} e_{i}, e_{j}\right) e^{i j}=e^{23}+e^{45},
\end{aligned}
$$

i.e. $\omega_{1}=a^{23}+a^{45}$. In particular,

$$
\operatorname{det}\left(A^{-1}\right) \alpha \wedge \omega_{1}^{2}=A\left(\alpha \wedge \omega_{1}^{2}\right)=2 \varepsilon_{0}>0
$$

shows that $A \in G L^{+}(5)$ holds, since $\alpha \wedge \omega_{1}^{2}>0$. Equation (4) and (5) imply

$$
\left.\left.\left.\left.(x+i I x)\lrcorner\left(\omega_{2}+i \omega_{3}\right)=x\right\lrcorner \omega_{2}-i x\right\lrcorner \omega_{3}+i x\right\lrcorner \omega_{3}-x\right\lrcorner \omega_{2}=0
$$

i.e. $\omega_{2}+i \omega_{3} \in \Lambda^{(2,0)} \operatorname{ker}(\alpha)^{*}$ w.r.t. the almost complex structure I_{1}. So we can find $z \in \mathbb{C}$ with

$$
\omega_{2}+i \omega_{3}=z \Phi
$$

where $\Phi=\left(a^{2}+i a^{3}\right) \wedge\left(a^{4}+i a^{5}\right)$. Since $\Phi \wedge \bar{\Phi}=4 a^{2345}$, we get from (2)

$$
4|z|^{2} a^{1 . .5}=\alpha \wedge z \Phi \wedge \overline{z \Phi}=\alpha \wedge\left(\omega_{2}^{2}+\omega_{3}^{2}\right)=2 \alpha \wedge \omega_{1}^{2}=4|z|^{2} a^{1 . .5}
$$

So $z \in S^{1}$ and for

$$
B:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & z & 0 \\
0 & 0 & 1
\end{array}\right) \in\{1\} \times U(2)
$$

we have $B A \in G L^{+}(5)$. Then $B A \alpha=B e^{1}=e^{1}, B A \Phi=B \Phi_{0}=z^{-1} \Phi_{0}$ and hence $B A\left(\omega_{2}+i \omega_{3}\right)=\Phi_{0}$. This yields

$$
B A \rho_{2}=e^{124}-e^{135} \quad \text { and } \quad B A \rho_{3}=e^{125}+e^{134}
$$

and from $B \in\{1\} \times U(2)$, we have

$$
B A \omega_{1}=B\left(e^{23}+e^{45}\right)=e^{23}+e^{45} .
$$

The $G L^{+}(5)$-equivariance of the map ε from Lemma 3.5 yields eventually

$$
2 \varepsilon\left(\omega_{1}, \rho_{2}, \rho_{3}\right)=2(B A)^{-1} \varepsilon_{0}=\alpha \wedge \omega_{1}^{2}
$$

Corollary 3.8. Suppose M is a five dimensional manifold with a fixed orientation. Then $S U(2)$-structures on M which are compatible with the given orientation correspond to triplets of forms

$$
\left(\omega_{1}, \rho_{2}, \rho_{3}\right) \in \Omega^{2}(M) \oplus \Omega^{3}(M) \oplus \Omega^{3}(M)
$$

with $\varepsilon \neq 0$, and for which the tensors from Definition 3.6 satisfy $\alpha \wedge \omega_{1}^{2}>0$, $g(X, X)>0$, for $X \neq 0$, and
(1) $\omega_{1} \wedge \omega_{2}=\omega_{1} \wedge \omega_{3}=\omega_{2} \wedge \omega_{3}=0$,
(2) $\omega_{1}^{2}=\omega_{2}^{2}=\omega_{3}^{2}$,
(3) $\rho_{2}=\alpha \wedge \omega_{2}$ and $\rho_{3}=\alpha \wedge \omega_{3}$.

In this case, the associated volume is given by $2 \varepsilon=\alpha \wedge \omega_{1}^{2}>0$.

We will now describe the Lie algebra of $S U(2)$ and $U(2)$ as subgroups of $S O(5)$.

Lemma 3.9. $A=\left(a_{i j}\right) \in \mathfrak{s o}_{5}$ is an element of $\mathfrak{u}_{2} \subset \mathfrak{s o}_{5}$ if and only if $a_{1 j}=0$ and

$$
a_{25}+a_{34}=0, \quad a_{24}-a_{35}=0
$$

Moreover, $A \in \mathfrak{s u}_{2}$ if in addition

$$
a_{23}+a_{45}=0
$$

Equivalently,

$$
\begin{aligned}
\mathfrak{u}_{2} & =\left\{A \in \mathfrak{s o}_{5} \mid A e_{1}=0 \text { and } A I_{1}=I_{1} A\right\}, \\
\mathfrak{s u}_{2} & =\left\{A \in \mathfrak{s o}_{5} \mid A e_{1}=0 \text { and } A I_{i}=I_{i} A, \text { for } i=1,2,3\right\} .
\end{aligned}
$$

The orthogonal complements in $\mathfrak{5 0}_{5}$ are given by

$$
\begin{aligned}
\mathfrak{u}_{2}^{\perp} & =\left\{\left.\left(\begin{array}{cc}
0 & -x^{T} \\
x & A
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{4} \text { and } A \in \mathbb{R} I_{2} \oplus \mathbb{R} I_{3}=\mathfrak{u}_{2}^{\perp} \subset \mathfrak{s o}_{4}\right\}, \\
\mathfrak{s u}_{2}^{\perp} & =\left\{\left.\left(\begin{array}{cc}
0 & -x^{T} \\
x & A
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{4} \text { and } A \in \mathbb{R} I_{1} \oplus \mathbb{R} I_{2} \oplus \mathbb{R} I_{3}=\mathfrak{s u}_{2}^{\perp} \subset \mathfrak{s o}_{4}\right\} .
\end{aligned}
$$

Proof: Since $U(2)=G L(2, \mathbb{C}) \cap S O(4)$, we have

$$
\mathfrak{u}(2)=\mathfrak{g l}(2, \mathbb{C}) \cap \mathfrak{s o}(4)=\left\{A \in \mathfrak{s o}(4) \mid A I_{1}=I_{1} A\right\}
$$

which can easily be seen to be described by the first two relations. Now $A=B+i C \in$ $\mathfrak{s u}(2)$ if $\operatorname{tr}_{\mathbb{C}}(A)=0$, i.e. $\operatorname{tr}(B)=\operatorname{tr}(C)=0$. Using the embedding $\mathfrak{g l}(2, \mathbb{C}) \subset \mathfrak{g l}(4)$ which is induced by I_{1}, we have $\operatorname{tr}(B)=\frac{1}{2} \operatorname{tr}(A)=0$, since A is skew-symmetric,
and $\operatorname{tr}(C)=a_{23}+a_{45}$, yielding the third relation. The description of $\mathfrak{s u}_{2}$ follows from

$$
S L(2, \mathbb{C})=\left\{A \in G L(2, \mathbb{C}) \mid A\left(\omega_{2}+i \omega_{3}\right)=\omega_{2}+i \omega_{3}\right\}
$$

and $\omega_{i}=g_{0}\left(I_{i} .,.\right)$. For $A \in \mathfrak{5 o}_{4}$ we compute

$$
\begin{aligned}
& \operatorname{tr}\left(A I_{1}\right)=-2\left(a_{23}+a_{45}\right), \\
& \operatorname{tr}\left(A I_{2}\right)=2\left(a_{35}-a_{24}\right), \\
& \operatorname{tr}\left(A I_{3}\right)=-2\left(a_{25}+a_{34}\right),
\end{aligned}
$$

and the Lemma follows.

Proposition 3.10. The following decompositions of $S U(2)$-modules are irreducible:

$$
\begin{aligned}
\mathfrak{s u}_{2}^{\perp} & =\mathbb{R} I_{1} \oplus \mathbb{R} I_{2} \oplus \mathbb{R} I_{3}, \\
\mathfrak{s o}_{4} & =\mathfrak{s u}{ }_{2} \oplus \mathbb{R} I_{1} \oplus \mathbb{R} I_{2} \oplus \mathbb{R} I_{3}, \\
\operatorname{End}\left(\mathbb{R}^{4}\right) & =\left(\mathbb{R i d} \oplus I_{1} \mathfrak{s u}(2) \oplus I_{2} \mathfrak{s u}(2) \oplus I_{3} \mathfrak{s u}(2)\right) \oplus\left(\mathfrak{s u}_{2} \oplus \mathbb{R} I_{1} \oplus \mathbb{R} I_{2} \oplus \mathbb{R} I_{3}\right) .
\end{aligned}
$$

The $S U(2)$-module $\Lambda^{2}:=\Lambda^{2} \mathbb{R}^{4 *}$ decomposes accordingly into

$$
\begin{aligned}
\Lambda^{2}= & \Lambda_{3}^{2} \oplus \mathbb{R} \omega_{1} \oplus \mathbb{R} \omega_{2} \oplus \mathbb{R} \omega_{3}, \text { where } \\
& \Lambda_{3}^{2}=\left\{\omega \in \Lambda^{2} \mid \omega \wedge \omega_{i}=0, \text { for } i=1,2,3\right\} \cong \mathfrak{s u}_{2} .
\end{aligned}
$$

Proof: The decomposition $\mathfrak{s u}_{2}^{\perp}=\mathbb{R} I_{1} \oplus \mathbb{R} I_{2} \oplus \mathbb{R} I_{3}$ is clearly irreducible. Since $\mathfrak{s u}_{2}$, and hence $I_{j} \mathfrak{s u}_{2}$, is irreducible, we see that the decomposition of $\operatorname{End}\left(\mathbb{R}^{4}\right)$ is $S U(2)$-irreducible.

Lemma 3.11. The maps $D_{\omega_{i}}: \operatorname{End}\left(\mathbb{R}^{4}\right) \rightarrow \Lambda^{2} \mathbb{R}^{4 *}, i=1,2,3$, define isomorphisms between certain submodules of $\operatorname{End}\left(\mathbb{R}^{4}\right)$ and $\Lambda^{2} \mathbb{R}^{4 *}$,

	$\mathbb{R i d}$	$I_{1} \mathfrak{s u}(2)$	$I_{2} \mathfrak{s u}(2)$	$I_{3} \mathfrak{s u}(2)$	$\mathfrak{s u}{ }_{2}$	$\mathbb{R} I_{1}$	$\mathbb{R} I_{2}$	$\mathbb{R} I_{3}$
$D_{\omega_{1}}$	$\mathbb{R} \omega_{1}$	Λ_{3}^{2}	0	0	0	0	$\mathbb{R} \omega_{3}$	$\mathbb{R} \omega_{2}$
$D_{\omega_{2}}$	$\mathbb{R} \omega_{2}$	0	Λ_{3}^{2}	0	0	$\mathbb{R} \omega_{3}$	0	$\mathbb{R} \omega_{1}$
$D_{\omega_{3}}$	$\mathbb{R} \omega_{3}$	0	0	Λ_{3}^{2}	0	$\mathbb{R} \omega_{2}$	$\mathbb{R} \omega_{1}$	0

Proof: By Lemma 3.1 we have for $A \in \operatorname{End}\left(\mathbb{R}^{4}\right)$

$$
\left.D_{\omega_{i}}(A)=-\sum_{i=2}^{5} e^{i} \wedge A e_{i}\right\lrcorner \omega_{i}=-2 \operatorname{pr}_{\Lambda^{2}}\left(I_{i} A\right)
$$

With this formula we can compute $D_{\omega_{i}}(A)$, for $A \in \operatorname{End}\left(\mathbb{R}^{4}\right)$ in a particular submodule, and obtain the above table.

Definition 3.12. Let M be a five dimensional oriented manifold equipped with a $S U(2)$-structure $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ with intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{5 *} \otimes \mathfrak{s u}(2)^{\perp}$. According to the decomposition

$$
\mathbb{R}^{5 *} \otimes \mathfrak{s u}_{2}^{\perp}=\left(\mathbb{R}^{5 *} \otimes \mathbb{R}^{4}\right) \oplus \mathbb{R}^{5 *} I_{1} \oplus \mathbb{R}^{5 *} I_{2} \oplus \mathbb{R}^{5 *} I_{3}
$$

we decompose τ into a linear map $F: T M \rightarrow \operatorname{ker}(\alpha)$ and three 1-forms η_{1}, η_{2} and η_{3}, such that

$$
\tau(X)=\alpha \otimes F(X)-F(X)\lrcorner g \otimes \xi+\eta_{1}(X) I_{1}+\eta_{2}(X) I_{2}+\eta_{3}(X) I_{3}
$$

where $\xi\lrcorner g:=\alpha$. Explicitly,

$$
\begin{aligned}
& F(X)=\tau(X) \xi \\
& \eta_{i}(X)=\frac{1}{4}\left\langle\tau(X), I_{i}\right\rangle, \text { since }\left\langle I_{i}, I_{i}\right\rangle=4
\end{aligned}
$$

Proposition 3.13. Let M be a five dimensional oriented manifold equipped with a $S U(2)$-structure $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ with intrinsic torsion $\tau \cong F+\eta_{1}+\eta_{2}+\eta_{3}$. Then

$$
\begin{aligned}
\nabla^{g} \xi & =F, \\
\nabla^{g} \omega_{1} & \left.=2\left(\eta_{3} \otimes \omega_{2}-\eta_{2} \otimes \omega_{3}\right)-\alpha \wedge(F\lrcorner \omega_{1}\right), \\
\nabla^{g} \omega_{2} & \left.=2\left(\eta_{1} \otimes \omega_{3}-\eta_{3} \otimes \omega_{1}\right)-\alpha \wedge(F\lrcorner \omega_{2}\right), \\
\nabla^{g} \omega_{3} & \left.=2\left(\eta_{2} \otimes \omega_{1}-\eta_{1} \otimes \omega_{2}\right)-\alpha \wedge(F\lrcorner \omega_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d \alpha & =2 \operatorname{pr}_{\Lambda^{2}}(F), \\
d \omega_{1} & =2\left(\eta_{3} \wedge \omega_{2}-\eta_{2} \wedge \omega_{3}\right)-\alpha \wedge D_{\omega_{1}}(F), \\
d \omega_{2} & =2\left(\eta_{1} \wedge \omega_{3}-\eta_{3} \wedge \omega_{1}\right)-\alpha \wedge D_{\omega_{2}}(F), \\
d \omega_{3} & =2\left(\eta_{2} \wedge \omega_{1}-\eta_{1} \wedge \omega_{2}\right)-\alpha \wedge D_{\omega_{3}}(F) .
\end{aligned}
$$

Proof: By Proposition 1.18 we have

$$
\nabla_{X}^{g}\left(\alpha, \omega_{1}, \omega_{2}, \omega_{3}, \rho_{2}, \rho_{3}\right)=D_{\left(\alpha, \omega_{1}, \omega_{2}, \omega_{3}, \rho_{2}, \rho_{3}\right)}(\tau(X))
$$

Since $S O(5)$ acts on each factor of $\Lambda^{1} \oplus \Lambda^{2} \oplus \Lambda^{2} \oplus \Lambda^{2} \oplus \Lambda^{3} \oplus \Lambda^{3}$ separately, the corresponding equation holds for each of the forms $\alpha, \omega_{1}, \omega_{2}, \omega_{3}, \rho_{2}$ and ρ_{3}. Let $\left(E_{1}, . . E_{5}\right)$ be a local Cayley frame for the $S U(2)$-structure. Applying Lemma 3.1,
we find

$$
\begin{aligned}
g\left(\nabla_{X}^{g} \xi, Y\right) & \left.=\left(\nabla_{X}^{g} \alpha\right) Y=D_{\alpha}(\tau(X)) Y=-\left(\sum_{i=1}^{5} E^{i} \wedge \tau(X) E_{i}\right\lrcorner \alpha\right) Y \\
& =-\sum_{i=1}^{5} \alpha\left(\tau(X) E_{i}\right) E^{i}(Y)=-\alpha(\tau(X) Y)=g(\tau(X) \xi, Y) \\
& =g(F(X), Y)
\end{aligned}
$$

Using $\left.E^{i} \wedge\left(I_{j} E_{i}\right\lrcorner \omega_{j}\right)=-E^{i} \wedge E^{i}=0$, we get

$$
\begin{aligned}
\nabla_{X}^{g} \omega_{1} & \left.=D_{\omega_{1}}(\tau(X))=-\sum_{i=1}^{5} E^{i} \wedge \tau(X) E_{i}\right\lrcorner \omega_{1} \\
& \left.=-\alpha \wedge F(X)\lrcorner \omega_{1}-\sum_{i=2}^{5} E^{i} \wedge\left(\eta_{2}(X) I_{2} E_{i}+\eta_{3}(X) I_{3} E_{i}\right)\right\lrcorner \omega_{1} \\
& \left.\left.=-\alpha \wedge F(X)\lrcorner \omega_{1}-\sum_{i=2}^{5} E^{i} \wedge\left(\eta_{2}(X) E_{i}\right\lrcorner \omega_{3}-\eta_{3}(X) E_{i}\right\lrcorner \omega_{2}\right) \\
& =-\alpha \wedge F(X)\lrcorner \omega_{1}-2\left(\eta_{2}(X) \omega_{3}-\eta_{3}(X) \omega_{2}\right),
\end{aligned}
$$

and similarly the equations for $\nabla^{g} \omega_{2}$ and $\nabla^{g} \omega_{3}$. Now

$$
\left.d \alpha=\sum_{i=1}^{5} E^{i} \wedge \nabla_{E_{i}}^{g} \alpha=\sum_{i=1}^{5} E^{i} \wedge F\left(E_{i}\right)\right\lrcorner g=2 \operatorname{pr}_{\Lambda^{2}}(F)
$$

and

$$
\begin{aligned}
d \omega_{1} & =\sum_{i=1}^{5} E^{i} \wedge \nabla_{E_{i}}^{g} \omega_{1} \\
& \left.=\alpha \wedge\left(\sum_{i=1}^{5} E^{i} \wedge F\left(E_{i}\right)\right\lrcorner \omega_{1}\right)+2 \sum_{i=1}^{5} E^{i} \wedge\left(\eta_{3}\left(E_{i}\right) \omega_{2}-\eta_{2}\left(E_{i}\right) \omega_{3}\right) \\
& =-\alpha \wedge D_{\omega_{1}}(F)+2\left(\eta_{3} \wedge \omega_{2}-\eta_{2} \wedge \omega_{3}\right) .
\end{aligned}
$$

The remaining equations are obtained similarly.

By Proposition 3.10 we have the following decomposition into irreducible $S U(2)$ modules

$$
\begin{aligned}
& \mathbb{R}^{5 *} \otimes \mathfrak{s u} \\
& 2=\mathbb{R}^{5 *} \otimes\left(\mathbb{R}^{4} \oplus \mathbb{R} I_{1} \oplus \mathbb{R} I_{2} \oplus \mathbb{R} I_{3}\right) \\
&=\mathbb{R}^{4} \oplus \operatorname{End}\left(\mathbb{R}^{4}\right) \oplus\left(\mathbb{R} \oplus \mathbb{R}^{4 *}\right) \oplus\left(\mathbb{R} \oplus \mathbb{R}^{4 *}\right) \oplus\left(\mathbb{R} \oplus \mathbb{R}^{4 *}\right) \\
&=\mathbb{R}^{4} \oplus\left(\mathbb{R i d} \oplus I_{1} \mathfrak{s u}(2) \oplus I_{2} \mathfrak{s u}(2) \oplus I_{3} \mathfrak{s u}(2)\right) \\
& \oplus\left(\mathfrak{s u} u_{2} \oplus \mathbb{R} I_{1} \oplus \mathbb{R} I_{2} \oplus \mathbb{R} I_{3}\right) \oplus\left(\mathbb{R} \oplus \mathbb{R}^{4 *}\right) \oplus\left(\mathbb{R} \oplus \mathbb{R}^{4 *}\right) \oplus\left(\mathbb{R} \oplus \mathbb{R}^{4 *}\right)
\end{aligned}
$$

and hence there are 2^{15} different types of $S U(2)$-structures in dimension five. We are only interested in two particular classes of $S U(2)$-structures:

Theorem 3.14. Let $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ be a $S U(2)$-structure on M with intrinsic torsion $\tau \cong F+\eta_{1}+\eta_{2}+\eta_{3}$ and $0 \neq \lambda \in \mathbb{R}$. Furthermore, decompose $\eta_{i}=\eta_{i 0}+\eta_{i}(\xi) \alpha$ and $F=F_{0}+\alpha \otimes F(\xi)$. In the following table we list different types of $S U(2)$-structures, the related torsion types and the corresponding equations for the structure tensors.

Name	Torsion	Characterization
nearly hypo	$F_{0}+2 \lambda I_{2} \in I_{2} \mathfrak{s u}_{2} \oplus I_{3} \mathfrak{s u}_{2} \oplus \mathfrak{s u}_{2} \oplus \mathbb{R} I_{1}$	$d \rho_{2}+4 \lambda \omega_{1}^{2}=0$
	$\eta_{2}=\lambda \alpha, \eta_{3}=0$ and $\left.2 \eta_{10}=I_{1}(F(\xi)\lrcorner g\right)$	$d \omega_{1}+6 \lambda \rho_{3}=0$
hypo	$F_{0} \in I_{2} \mathfrak{s u}_{2} \oplus I_{3} \mathfrak{s u}_{2} \oplus \mathfrak{s u}_{2} \oplus \mathbb{R} I_{1}$	$d \omega_{1}=d \rho_{2}=d \rho_{3}=0$
	$\eta_{2}=\eta_{3}=0$ and $\left.2 \eta_{10}=I_{1}(F(\xi)\lrcorner g\right)$.	

Proof: Since $\alpha \wedge D_{\omega_{1}}(F)=\alpha \wedge D_{\omega_{1}}\left(F_{0}\right)$ and $\left.2 \operatorname{pr}_{\Lambda^{2}}(F)=2 \operatorname{pr}_{\Lambda^{2}}\left(F_{0}\right)+\alpha \wedge(F(\xi)\lrcorner g\right)$, we obtain from Proposition 3.13

$$
\begin{aligned}
& d \omega_{1}=2\left(\eta_{30} \wedge \omega_{2}-\eta_{20} \wedge \omega_{3}\right)-\alpha \wedge\left(D_{\omega_{1}}\left(F_{0}\right)-2 \eta_{3}(\xi) \omega_{2}+2 \eta_{2}(\xi) \omega_{3}\right), \\
& \left.d \rho_{2}=2 \operatorname{pr}_{\Lambda^{2}}\left(F_{0}\right) \wedge \omega_{2}-2 \alpha \wedge\left(\eta_{10} \wedge \omega_{3}-\eta_{30} \wedge \omega_{1}-\frac{1}{2}(F(\xi)\lrcorner g\right) \wedge \omega_{2}\right), \\
& \left.d \rho_{3}=2 \operatorname{pr}_{\Lambda^{2}}\left(F_{0}\right) \wedge \omega_{3}-2 \alpha \wedge\left(\eta_{20} \wedge \omega_{1}-\eta_{10} \wedge \omega_{2}-\frac{1}{2}(F(\xi)\lrcorner g\right) \wedge \omega_{3}\right) .
\end{aligned}
$$

Hypo case: The conditions $d \omega_{1}=d \rho_{2}=d \rho_{3}=0$ are equivalent to
(1) $0=\eta_{30} \wedge \omega_{2}-\eta_{20} \wedge \omega_{3}$
(2) $0=D_{\omega_{1}}\left(F_{0}\right)-2 \eta_{3}(\xi) \omega_{2}+2 \eta_{2}(\xi) \omega_{3}$
(3) $0=\operatorname{pr}_{\Lambda^{2}}\left(F_{0}\right) \wedge \omega_{2}$
(4) $\left.0=\eta_{10} \wedge \omega_{3}-\eta_{30} \wedge \omega_{1}-\frac{1}{2}(F(\xi)\lrcorner g\right) \wedge \omega_{2}$
(5) $0=\operatorname{pr}_{\Lambda^{2}}\left(F_{0}\right) \wedge \omega_{3}$
(6) $\left.0=\eta_{20} \wedge \omega_{1}-\eta_{10} \wedge \omega_{2}-\frac{1}{2}(F(\xi)\lrcorner g\right) \wedge \omega_{3}$.

With Lemma 3.3 and Lemma 3.11 we see that the conditions on the torsion components yield $d \omega_{1}=d \rho_{2}=d \rho_{3}=0$. Conversely, equation (3) and (5) imply $\operatorname{pr}_{\mathfrak{s o}_{4}}\left(F_{0}\right) \in \mathfrak{s u}_{2} \oplus \mathbb{R} I_{1}$. Wedging equation (2) with ω_{2}, Lemma 3.11 yields $0=\eta_{3}(\xi) \omega_{2}^{2}$, i.e. $\eta_{3}(\xi)=0$. Similarly, wedging (2) with ω_{3}, yields $\eta_{2}(\xi)=0$ and hence $D_{\omega_{1}}\left(F_{0}\right)=0$, i.e.

$$
F_{0} \in I_{2} \mathfrak{s u}_{2} \oplus I_{3} \mathfrak{s u}_{2} \oplus \mathfrak{s u}_{2} \oplus \mathbb{R} I_{1}
$$

With Lemma 3.3, equation (1) yields $0=\left(\eta_{30}+I_{1} \eta_{20}\right) \wedge \omega_{2}$ and hence

$$
\eta_{30}=-I_{1} \eta_{20}
$$

Similarly (4) and (6) become

$$
\begin{aligned}
& \left.0=-I_{1} \eta_{10}+I_{3} I_{1} \eta_{20}-\frac{1}{2} F(\xi)\right\lrcorner g \\
& \left.0=I_{3} \eta_{20}-\eta_{10}+\frac{1}{2} I_{1}(F(\xi)\lrcorner g\right) .
\end{aligned}
$$

So $\eta_{20}=\eta_{30}=0$ and $\left.2 \eta_{10}=I_{1}(F(\xi)\lrcorner g\right)$.
Nearly hypo case: The conditions $d \rho_{2}+4 \lambda \omega_{1}^{2}=0$ and $d \omega_{1}+6 \lambda \rho_{3}=0$ are equivalent to (1), (4) and
(7) $0=\operatorname{pr}_{\Lambda^{2}}\left(F_{0}\right) \wedge \omega_{2}+2 \lambda \omega_{1}^{2}$,
(8) $0=D_{\omega_{1}}\left(F_{0}\right)-2 \eta_{3}(\xi) \omega_{2}+2 \eta_{2}(\xi) \omega_{3}-6 \lambda \omega_{3}$.

Hence the conditions on the torsion components imply $d \rho_{2}+4 \lambda \omega_{1}^{2}=0$ and $d \omega_{1}+$ $6 \lambda \rho_{3}=0$. Conversely, we obtain from $\lambda \neq 0$ equations (5) and (6). From (5) we get $\operatorname{pr}_{\mathfrak{s o}_{4}}\left(F_{0}\right) \in \mathfrak{s u}_{2} \oplus \mathbb{R} I_{1} \oplus \mathbb{R} I_{2}$ and, wedging (8) with ω_{2}, yields together with Lemma 3.11, $\eta_{3}(\xi)=0$. So

$$
0=D_{\omega_{1}}\left(F_{0}\right)+2 \eta_{2}(\xi) \omega_{3}-6 \lambda \omega_{3}=D_{\omega_{1}}\left(F_{0}\right)+D_{\omega_{1}}\left(3 \lambda I_{2}-\eta_{2}(\xi) I_{2}\right),
$$

i.e.

$$
F_{0}+\left(3 \lambda-\eta_{2}(\xi)\right) I_{2} \in I_{2} \mathfrak{s u}_{2} \oplus I_{3} \mathfrak{s u}_{2} \oplus \mathfrak{s u}_{2} \oplus \mathbb{R} I_{1}
$$

and hence $\lambda=\eta_{2}(\xi)$ by (7). Equations (1), (4) and (6) yield, like in the hypo case, $\left.2 \eta_{10}=I_{1}(F(\xi)\lrcorner g\right)$ and $\eta_{20}=\eta_{30}=0$.

$S U(3)$-Structures in Dimension Six

In this section we consider the following model forms on \mathbb{R}^{6} :

$$
\begin{array}{ll}
\omega_{0}:=e^{12}+e^{34}+e^{56}, & \sigma_{0}:=e^{1234}+e^{1256}+e^{3456} \\
\rho_{0}:=e^{135}-e^{245}-e^{236}-e^{146}, & \widehat{\rho}_{0}:=e^{136}-e^{246}+e^{235}+e^{145}
\end{array}
$$

and $g_{0}\left(I_{0} .,.\right):=\omega_{0}$. They satisfy certain relations, which can be verified in a direct computation:

Lemma 3.15. For all $x, y \in \mathbb{R}^{6}$ and $\beta \in \Lambda^{1} \mathbb{R}^{6 *}$
(1) $\omega_{0} \wedge \rho_{0}=\omega_{0} \wedge \widehat{\rho}_{0}=0$.
(2) $\rho_{0} \wedge \widehat{\rho}_{0}=4 \varepsilon_{0}$.
(3) $2 \sigma_{0}=\omega_{0}^{2}$.
(4) $\omega_{0}^{3}=6 \varepsilon_{0}$.
(5) $\left.\left.\left.\rho_{0} \wedge(x\lrcorner \rho_{0}\right)=\widehat{\rho}_{0} \wedge(x\lrcorner \widehat{\rho}_{0}\right)=-2 I_{0} x\right\lrcorner \varepsilon_{0}$.
(6) $\left.2 \beta\left(I_{0} x\right) \varepsilon_{0}=\rho_{0} \wedge(x\lrcorner \rho_{0}\right) \wedge \beta$.
(7) $\left.\left.2 g_{0}(x, y) \varepsilon_{0}=(x\lrcorner \rho_{0}\right) \wedge(y\lrcorner \rho_{0}\right) \wedge \omega_{0}$.
(8) $\left.I_{0}\right\lrcorner \rho_{0}=-\widehat{\rho}_{0}$.
(9) $\left.\left.\left.\left.\left.\left.(x\lrcorner \rho_{0}\right) \wedge(x\lrcorner \rho_{0}\right)=(x\lrcorner \widehat{\rho}_{0}\right) \wedge(x\lrcorner \widehat{\rho}_{0}\right)=2 x\right\lrcorner((x\lrcorner g) \wedge \sigma_{0}\right)$

Lemma 3.16. After choosing an orientation for $V:=\mathbb{R}^{6}$, there are homomorphisms

$$
\varepsilon: \Lambda^{4} V^{*} \rightarrow \Lambda^{6} V^{*} \oplus i \Lambda^{6} V^{*}
$$

and

$$
\varepsilon: \Lambda^{3} V^{*} \rightarrow \Lambda^{6} V^{*} \oplus i \Lambda^{6} V^{*}
$$

of $G L^{+}(6)$-modules, such that for the model tensors and the canonical orientation $\left[\varepsilon_{0}\right]$ of \mathbb{R}^{6}

$$
\varepsilon\left(\sigma_{0}\right)=\varepsilon\left(\rho_{0}\right)=\varepsilon\left(\widehat{\rho}_{0}\right)=\varepsilon_{0} .
$$

Proof: Given an orientation, we can define a $G L^{+}(6)$-equivariant map $\sqrt[2]{ }$. like in Lemma 3.5. The wedge product yields a homomorphism of $G L(6)$-modules

$$
h: \Lambda^{4} V^{*}=\Lambda^{2} V \otimes \Lambda^{6} V^{*} \rightarrow \Lambda^{6} V \otimes\left(\Lambda^{6} V^{*}\right)^{3}=\left(\Lambda^{6} V^{*}\right)^{2} .
$$

Hence

$$
\Lambda^{4} V^{*} \ni \sigma \mapsto \varepsilon(\sigma):=\sqrt[2]{\frac{1}{6} h(\sigma)} \in \Lambda^{6} V^{*} \oplus i \Lambda^{6} V^{*}
$$

is $G L^{+}(6)$-equivariant and for the model tensor we compute

$$
\begin{aligned}
h\left(\sigma_{0}\right) & =h\left(\sum_{i<j} e_{i j} \otimes e^{i j} \wedge \sigma_{0}\right)=h\left(\left(e_{12}+e_{34}+e_{56}\right) \otimes \varepsilon_{0}\right) \\
& =6 e_{1 . .6} \otimes \varepsilon_{0}^{3}
\end{aligned}
$$

so $\varepsilon\left(\sigma_{0}\right)=\varepsilon_{0}$. Now consider the $G L(6)$-equivariant map

$$
K: \Lambda^{3} V^{*} \rightarrow\left(V^{*} \otimes V\right) \otimes \Lambda^{6} V^{*}
$$

defined by

$$
K(\rho)(x, \beta)=\rho \wedge(x\lrcorner \rho) \wedge \beta,
$$

where $x \in V$ and $\beta \in V^{*}$. For the model tensors we obtain by Lemma 3.15

$$
K\left(\rho_{0}\right)(x, \beta)=K\left(\widehat{\rho}_{0}\right)(x, \beta)=2 \beta\left(I_{0} x\right) \varepsilon_{0}
$$

Hence

$$
K^{2}: \Lambda^{3} V^{*} \rightarrow\left(V^{*} \otimes V\right) \otimes\left(\Lambda^{6} V^{*}\right)^{2}
$$

satisfies $K^{2}\left(\rho_{0}\right)=K^{2}\left(\widehat{\rho}_{0}\right)=-4 \mathrm{id}_{V} \otimes \varepsilon_{0}^{2}$ and

$$
\Lambda^{3} V^{*} \ni \rho \mapsto \varepsilon(\rho):=\sqrt[2]{-\frac{1}{24} \operatorname{tr}\left(K^{2}\right)} \in \Lambda^{6} V^{*} \oplus i \Lambda^{6} V^{*}
$$

is the desired map.

Lemma 3.17.

$$
\begin{aligned}
\operatorname{Iso}_{G L^{+}(6)}\left(\rho_{0}\right) & =\operatorname{Iso}_{G L^{+}(6)}\left(\widehat{\rho}_{0}\right)=S L(3, \mathbb{C}) \\
\operatorname{Iso}_{G L^{+}(6)}\left(\sigma_{0}\right) & =S p(6, \mathbb{R}) \\
\operatorname{Iso}_{G L^{+}(6)}\left(\rho_{0}, \sigma_{0}\right) & =S U(3)
\end{aligned}
$$

In particular, the forms $\rho_{0}, \widehat{\rho}_{0}$ and σ_{0} are stable.

Proof: For $A \in \operatorname{Iso}_{G L^{+}(6)}\left(\rho_{0}\right)$ we obtain $A \varepsilon_{0}=\varepsilon_{0}$, by Lemma 3.16. Hence the formula for I_{0} from Lemma 3.15 yields $A I_{0} A^{-1}=I_{0}$, i.e. $A \in G L(3, \mathbb{C})$. Again by Lemma 3.15 we have $\left.\widehat{\rho}_{0}=I_{0}\right\lrcorner \rho_{0}$ and hence $A\left(\rho_{0}+i \widehat{\rho}_{0}\right)=\left(\rho_{0}+i \widehat{\rho}_{0}\right)$, yielding $A \in S L(3, \mathbb{C})$. The same arguments hold for $\widehat{\rho}_{0}$.

For $A \in \operatorname{Iso}_{G L^{+}(6)}\left(\sigma_{0}\right)$ Lemma 3.16 gives $A \varepsilon_{0}=\varepsilon_{0}$. Now

$$
\sigma_{0}=\sum_{i<j} e_{i j} \otimes\left(e^{i j} \wedge \sigma_{0}\right)=\left(e_{12}+e_{34}+e_{56}\right) \otimes \varepsilon_{0}
$$

yields $A \omega_{0}=\omega_{0}$ and hence $\operatorname{Iso}_{G L^{+}(6)}\left(\sigma_{0}\right)=S p(6, \mathbb{R})$.
The last equation follows form $S U(3)=S L(3, \mathbb{C}) \cap S p(6, \mathbb{R})$. To prove stability, we compute

$$
\begin{aligned}
\operatorname{dim}(G L(6) / S L(3, \mathbb{C})) & =36-16=\operatorname{dim}\left(\Lambda^{3} \mathbb{R}^{6 *}\right) \\
\operatorname{dim}(G L(6) / S p(6, \mathbb{R})) & =36-21=\operatorname{dim}\left(\Lambda^{2} \mathbb{R}^{6 *}\right)
\end{aligned}
$$

Definition 3.18. Suppose $V=\mathbb{R}^{6}$ is equipped with a fixed orientation. For $\sigma \in \Lambda^{4} V^{*}$ and $\rho \in \Lambda^{3} V^{*}$ we call $\varepsilon(\sigma)$ and $\varepsilon(\rho)$ from Lemma 3.16 the associated volume elements.
(1) Whenever $\varepsilon(\sigma) \neq 0$, we define

$$
\omega:=\frac{1}{2} \sigma\left(\omega^{*}\right) \in \Lambda^{2} V^{*}
$$

where $\omega^{*} \in \Lambda^{2} V$ is defined by $\sigma=\omega^{*} \otimes \varepsilon(\sigma) \in \Lambda^{2} V \otimes \Lambda^{4} V^{*}$ and σ is considered as an element $\sigma \in \Lambda^{2} V^{*} \otimes \Lambda^{2} V^{*}=\operatorname{Hom}\left(\Lambda^{2} V, \Lambda^{2} V^{*}\right)$.
(2) Whenever $\varepsilon(\rho) \neq 0$, we define $I(\rho) \in \operatorname{End}(V)$ by

$$
2 \beta(I(\rho) x) \varepsilon(\rho):=\rho \wedge(x\lrcorner \rho) \wedge \beta
$$

and

$$
\widehat{\rho}:=-I(\rho)\lrcorner \rho .
$$

(3) Whenever $\varepsilon(\sigma) \neq 0$ and $\varepsilon(\rho) \neq 0$, we define

$$
g(x, y):=\omega(x, I y)
$$

Proposition 3.19. Consider $V=\mathbb{R}^{6}$ with the canonical orientation. For $\sigma \in$ $G L^{+}(6) \sigma_{0}$ and $\rho \in G L^{+}(6) \rho_{0}$ we have $\varepsilon(\sigma), \varepsilon(\rho)>0$ and $(\sigma, \rho) \in G L^{+}(6)\left(\sigma_{0}, \rho_{0}\right)$ holds if and only if the tensors from Definition 3.18 satisfy $g(x, x)>0$, for $x \neq 0$, and
(1) $\omega \wedge \rho=0$
and
(2) $\varepsilon(\sigma)=\varepsilon(\rho)$.

Proof: The above relations are clearly satisfied for $(\sigma, \rho) \in G L^{+}(6)\left(\sigma_{0}, \rho_{0}\right)$. Conversely, for $A \in G L^{+}(6)$ and $\sigma=A \sigma_{0}$, Definition 3.18 (1) yields $\omega(\sigma)=A \omega\left(\sigma_{0}\right)=$ $A \omega_{0}$. Hence

$$
\sigma=A \sigma_{0}=\frac{1}{2}\left(A \omega_{0}\right)^{2}=\frac{1}{2} \omega^{2}
$$

and

$$
\varepsilon(\sigma)=A \varepsilon_{0}=\frac{1}{3} A\left(\omega_{0} \wedge \sigma_{0}\right)=\frac{1}{3} \omega \wedge \sigma
$$

By definition of g and (1) we have

$$
\begin{aligned}
2 g(x, y) \varepsilon(\rho) & =2 \omega(x, I y) \varepsilon=\rho \wedge(y\lrcorner \rho) \wedge(x\lrcorner \omega) \\
& =\rho \wedge(x\lrcorner \rho) \wedge(y\lrcorner \omega)=2 g(y, x) \varepsilon(\rho) .
\end{aligned}
$$

Hence g is symmetric and defines a metric on V, since $g(x, x)>0$, for $x \neq 0$. By definition of $I(\rho)$ we have for $A \in G L^{+}(6)$

$$
\begin{aligned}
2 \beta\left(I\left(A \rho_{0}\right) x\right) \varepsilon\left(A \rho_{0}\right) & \left.\left.=A \rho_{0} \wedge(x\lrcorner A \rho_{0}\right) \wedge \beta=A\left(\rho_{0} \wedge\left(A^{-1} x\right\lrcorner \rho_{0}\right) \wedge A^{-1} \beta\right) \\
& =2\left(A^{-1} \beta\right)\left(I_{0} A^{-1} x\right) A \varepsilon_{0}=2 \beta\left(A I_{0} A^{-1} x\right) \varepsilon\left(A \rho_{0}\right)
\end{aligned}
$$

i.e. $I\left(A \rho_{0}\right)=A I_{0} A^{-1}$ and for $\rho=A \rho_{0}$

$$
\begin{aligned}
\varepsilon(\rho) & =A \varepsilon_{0}=\frac{1}{4} A\left(\rho_{0} \wedge \widehat{\rho}_{0}\right) \\
& \left.=-\frac{1}{4}\left(\rho \wedge A\left(I_{0}\right\lrcorner \rho_{0}\right)=-\frac{1}{4}(\rho \wedge(I\lrcorner \rho)\right) \\
& =\frac{1}{4} \rho \wedge \widehat{\rho} .
\end{aligned}
$$

In particular, we have for $\rho \in G L^{+}(6) \rho_{0}$

$$
I(\rho)^{2}=-\mathrm{id}
$$

This yields

$$
g(I x, I y)=-\omega(I x, y)=g(y, x)=g(x, y)
$$

and hence we can find an orthonormal basis for g of the form

$$
\left(a_{1}, a_{2}=I a_{1}, . ., a_{5}, a_{6}=I a_{5}\right)
$$

If we define $A \in G L(6)$ by

$$
A a_{i}=e_{i}, \quad \text { for } i=1, . ., 6
$$

we obtain

$$
A \omega=\omega_{0} \quad \text { and } \quad A g=g_{0}
$$

Hence

$$
A \sigma=\frac{1}{2}(A \omega)^{2}=\sigma_{0}
$$

and

$$
\operatorname{det}\left(A^{-1}\right) \varepsilon(\sigma)=A \varepsilon(\sigma)=\frac{1}{3} A(\omega \wedge \sigma)=\frac{1}{3} \omega_{0} \wedge \sigma_{0}=\varepsilon_{0}>0
$$

implies $A \in G L^{+}(6)$, since $\varepsilon(\sigma)>0$. By definition we have $\left.\widehat{\rho}=-I\right\lrcorner \rho$, and $I^{2}=-\mathrm{id}$ yields $\rho=I\lrcorner \widehat{\rho}$. Hence

$$
(x+i I x)\lrcorner(\rho+i \widehat{\rho})=0
$$

i.e. $\rho+i \widehat{\rho} \in \Lambda^{(3,0)} V^{*}$ w.r.t. the almost complex structure I. So we can find $z \in \mathbb{C}$ with

$$
\rho+i \widehat{\rho}=z \Phi
$$

where $\Phi:=\left(a^{1}+i a^{2}\right) \wedge . . \wedge\left(a^{5}+i a^{6}\right)$. Now (2) and $\Phi \wedge \bar{\Phi}=-8 i a^{1 . .6}$ imply

$$
8|z|^{2} \varepsilon(\rho)=8|z|^{2} \varepsilon(\sigma)=8|z|^{2} a^{1 . .6}=i|z|^{2} \Phi \wedge \bar{\Phi}=i z \Phi \wedge \overline{z \Phi}=2 \rho \wedge \widehat{\rho}=8 \varepsilon(\rho),
$$

i.e. $|z|=1$. So

$$
B:=\left(\begin{array}{ccc}
z & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in U(3)
$$

satisfies $B A(\rho+i \widehat{\rho})=z B A \Phi=z B \Phi_{0}=\Phi_{0}$ and hence

$$
B A \rho=\rho_{0}
$$

Since $B \in U(3)$, we have $B A \sigma=B \sigma_{0}=\sigma_{0}$ and since $B A \in G L^{+}(6)$, the proposition follows.

From Proposition 1.2, Lemma 3.17 and Proposition 3.19 we obtain

Corollary 3.20. Suppose M is a six dimensional manifold with a fixed orientation. Then $S U(3)$-structures on M, which are compatible with the given orientation, correspond to forms $\sigma \in \Omega^{4}(M)$ and $\rho \in \Omega^{3}(M)$, of type σ_{0} and ρ_{0}, respectively, such that the tensors from Definition 3.18 satisfy $g(X, X)>0$, for $X \neq 0$, and

$$
\text { (1) } \omega \wedge \rho=0 \quad \text { and } \quad \text { (2) } \varepsilon(\sigma)=\varepsilon(\rho)>0 \text {. }
$$

We will now describe the Lie algebra of $S U(3)$ and $U(3)$ as subgroups of $S O(6)$.

Lemma 3.21. $A=\left(a_{i j}\right) \in \mathfrak{s o}_{6}$ is an element of $\mathfrak{u}_{3} \subset \mathfrak{s o}_{6}$ if and only if

$$
\begin{array}{lll}
a_{35}-a_{46}=0, & a_{45}+a_{36}=0, & a_{26}-a_{15}=0 \\
a_{16}+a_{25}=0, & a_{13}-a_{24}=0, & a_{14}+a_{23}=0
\end{array}
$$

Moreover, $A \in \mathfrak{s u}_{3}$ if and only if in addition

$$
a_{12}+a_{34}+a_{56}=0
$$

Equivalently,

$$
\begin{aligned}
\mathfrak{u}_{3} & =\left\{A \in \mathfrak{s o}(6) \mid A I_{0}=I_{0} A\right\}, \\
\mathfrak{s u}_{3} & \left.=\left\{A \in \mathfrak{s o}(6) \mid A I_{0}=I_{0} A \text { and }(A\lrcorner g_{0}\right) \wedge \sigma_{0}=0\right\} .
\end{aligned}
$$

The orthogonal complements in $\mathfrak{s o}_{6}$ are given by

$$
\begin{aligned}
\mathfrak{u}_{3}^{\perp} & \left.=\{A \in \mathfrak{s o}(6) \mid A\lrcorner g=x\lrcorner \rho_{0}, \text { for some } x \in \mathbb{R}^{6}\right\}, \\
\mathfrak{s u}_{3}^{\perp} & =\mathfrak{u}_{3}^{\perp} \oplus \mathbb{R} I_{0} .
\end{aligned}
$$

Proof: Since $U(3)=G L(3, \mathbb{C}) \cap S O(6)$, we have

$$
\mathfrak{u}(3)=\mathfrak{g l}(3, \mathbb{C}) \cap \mathfrak{s o}(6)=\left\{A \in \mathfrak{s o}(6) \mid A I_{0}=I_{0} A\right\}
$$

which can easily be seen to be described by the first six relations. Now $A=B+i C \in$ $\mathfrak{s u}(3)$ if $\operatorname{tr}_{\mathbb{C}}(A)=0$, i.e. $\operatorname{tr}(B)=\operatorname{tr}(C)=0$. Using the embedding $\mathfrak{g l}(3, \mathbb{C}) \subset \mathfrak{g l}(6)$ which is induced by I_{0}, we have $\operatorname{tr}(B)=\frac{1}{2} \operatorname{tr}(A)=0$, since A is skew-symmetric, and

$$
\left.\operatorname{tr}(C) \varepsilon_{0}=\left(a_{12}+a_{34}+a_{56}\right) \varepsilon_{0}=(A\lrcorner g\right) \wedge \sigma_{0}
$$

yielding the last relation. Since for $A \in \mathfrak{u}_{3}$

$$
\begin{aligned}
\rho_{0}\left(x, A I_{0} y, I_{0} y\right) & =\rho_{0}\left(x, I_{0} A y, I_{0} y\right)=\rho_{0}\left(I_{0} A y, I_{0} y, x\right) \\
& =-\widehat{\rho}_{0}\left(A y, I_{0} y, x\right)=\rho_{0}(y, A y, x) \\
& =-\rho_{0}(x, A y, y),
\end{aligned}
$$

we obtain for $B \in \mathfrak{s o}(6)$ with $B\lrcorner g=x\lrcorner \rho_{0}$, for some $x \in \mathbb{R}^{6}$,

$$
\begin{aligned}
\operatorname{tr}(B A) & =\sum_{i=1,3,5} g_{0}\left(B A e_{i}, e_{i}\right)+g_{0}\left(B A I_{0} e_{i}, I_{0} e_{i}\right) \\
& =\sum_{i=1,3,5} \rho_{0}\left(x, A e_{i}, e_{i}\right)+\rho_{0}\left(x, A I_{0} e_{i}, I_{0} e_{i}\right) \\
& =0
\end{aligned}
$$

This proves

$$
\left.\{A \in \mathfrak{s o}(6) \mid A\lrcorner g=x\lrcorner \rho_{0}, \text { for some } x \in \mathbb{R}^{6}\right\} \subset \mathfrak{u}_{3}^{\perp}
$$

and, counting dimensions, we see that those spaces coincide. The description of $\mathfrak{s u}{ }_{3}^{\perp}$ follows from

$$
\operatorname{tr}\left(I_{0} A\right)=-a_{12}-a_{34}-a_{56}=0
$$

for $A \in \mathfrak{s u}_{3}$.

Proposition 3.22. The following decompositions of $S U(3)$-modules are irreducible:

$$
\begin{aligned}
\mathfrak{s u}_{3}^{\perp} & =\mathfrak{u}_{3}^{\perp} \oplus \mathbb{R} I_{0} \\
\mathfrak{s o}_{6} & =\mathfrak{s u}_{3} \oplus \mathfrak{u}_{3}^{\perp} \oplus \mathbb{R} I_{0} \\
\operatorname{End}\left(\mathbb{R}^{6}\right) & =\left(\mathbb{R i d} \oplus I_{0} \mathfrak{s u}(3) \oplus S_{12}^{2}\right) \oplus\left(\mathfrak{s u}_{3} \oplus \mathfrak{u}_{3}^{\perp} \oplus \mathbb{R} I_{0}\right), \text { where } \\
S_{12}^{2} & =\left\{A \in S^{2} \mid I_{0} A+A I_{0}=0\right\} .
\end{aligned}
$$

The above decomposition of $\operatorname{End}\left(\mathbb{R}^{6}\right)$ is actually a decomposition into symmetric and skew-symmetric endomorphisms, refined by a further decomposition into endomorphisms which (anti)commute with I_{0} :

	I_{0}^{+}	I_{0}^{-}
$S^{2}\left(\mathbb{R}^{6}\right)$	$\mathbb{R i d} \oplus I_{0} \mathfrak{s u}(3)$	S_{12}^{2}
$\mathfrak{s o}_{6}$	$\mathbb{R} I_{0} \oplus \mathfrak{s u}(3)$	\mathfrak{u}_{3}^{\perp}

The $S U(3)$-modules $\Lambda^{k}:=\Lambda^{k} \mathbb{R}^{6 *}$ decompose into the following irreducible submodules, where the lower index denotes the dimension of the submodule:

$$
\begin{aligned}
\Lambda^{1}= & \Lambda_{6}^{1} \\
\Lambda^{2}= & \Lambda_{1}^{2} \oplus \Lambda_{6}^{2} \oplus \Lambda_{8}^{2}, \text { where } \\
& \Lambda_{1}^{2}=\mathbb{R} \omega_{0}, \\
& \left.\Lambda_{6}^{2}=\{x\lrcorner \rho_{0} \mid x \in \mathbb{R}^{6}\right\}, \\
& \Lambda_{8}^{2}=\left\{\alpha \in \Lambda^{2} \mid \alpha \wedge \rho_{0}=0 \text { and } \alpha \wedge \sigma_{0}=0\right\} \cong \mathfrak{s u}_{3} . \\
\Lambda^{3}= & \Lambda_{1}^{3} \oplus \Lambda_{1}^{3} \oplus \Lambda_{6}^{3} \oplus \Lambda_{12}^{3}, \text { where } \\
& \Lambda_{1}^{3}=\mathbb{R} \rho_{0}, \\
& \Lambda_{1}^{\hat{3}}=\mathbb{R} \widehat{\rho}_{0}, \\
& \left.\Lambda_{6}^{3}=\left\{\alpha \wedge \omega_{0} \mid \alpha \in \Lambda^{1}\right\}=\{x\lrcorner \sigma_{0} \mid x \in \mathbb{R}^{6}\right\}, \\
& \Lambda_{12}^{3}=\left\{\alpha \in \Lambda^{3} \mid \omega_{0} \wedge \alpha=\rho_{0} \wedge \alpha=\widehat{\rho}_{0} \wedge \alpha=0\right\} . \\
\Lambda^{4}= & \Lambda_{1}^{4} \oplus \Lambda_{6}^{4} \oplus \Lambda_{8}^{4}, \text { where } \\
& \Lambda_{1}^{4}=\mathbb{R} \sigma_{0}, \\
& \left.\Lambda_{6}^{4}=\left\{*(x\lrcorner \rho_{0}\right) \mid x \in \mathbb{R}^{6}\right\}=\left\{\alpha \wedge \widehat{\rho}_{0} \mid \alpha \in \Lambda^{1}\right\}=\left\{\alpha \wedge \rho_{0} \mid \alpha \in \Lambda^{1}\right\} \\
& \Lambda_{8}^{4}=\left\{\alpha \in \Lambda^{4} \mid * \alpha \wedge \rho_{0}=0 \quad \text { and } \quad * \alpha \wedge \sigma_{0}=0\right\} . \\
\Lambda^{5}= & \Lambda_{6}^{5} .
\end{aligned}
$$

Proof: Since $S U(3)$ acts transitively on the unit sphere, we see that $\Lambda_{6}^{1}, \Lambda_{6}^{2}, \Lambda_{6}^{3}$ and Λ_{6}^{5} are irreducible. Since $\Lambda_{8}^{2} \cong \mathfrak{s u}_{3}$, the irreducibility of Λ_{8}^{2} follows. Hence we see that the decompositions of Λ^{2} and Λ^{4} are irreducible, using the Hodge operator. For the irreducibility of the submodule Λ_{12}^{3} see [19] formula (2) and table 1.
The map $D_{\rho_{0}}: \operatorname{End}\left(\mathbb{R}^{6}\right) \rightarrow \Lambda^{3}$ satisfies $\operatorname{ker}\left(D_{\rho_{0}}\right)=\mathfrak{s l}(3, \mathbb{C})$ by Lemma 1.14 and Lemma 3.17. Hence

$$
S_{12}^{2} \cap \operatorname{ker}\left(D_{\rho_{0}}\right)=\{0\}
$$

and, since the decomposition of Λ^{3} is irreducible, it follows $0 \neq D_{\rho_{0}}\left(S_{12}^{2}\right)=\Lambda_{12}^{3}$. In particular, S_{12}^{2} is irreducible by the irreducibility of Λ_{12}^{3}. Since also $\mathfrak{s u}_{3}$ and \mathfrak{u}_{3}^{\perp} are
irreducible, the Proposition follows.

Lemma 3.23. The maps $D_{\omega_{0}}, D_{\sigma_{0}}, D_{\rho_{0}}$ and $D_{\widehat{\rho}_{0}}$ define isomorphisms between certain submodules of $\operatorname{End}\left(\mathbb{R}^{6}\right)$ and $\Lambda^{2} \mathbb{R}^{6 *}, \Lambda^{4} \mathbb{R}^{6 *}$ and $\Lambda^{3} \mathbb{R}^{6 *}$, respectively:

	$\mathbb{R i d}$	$I_{0} \mathfrak{s u}(3)$	S_{12}^{2}	$\mathfrak{s u}_{3}$	\mathfrak{u}_{3}^{\perp}	$\mathbb{R} I_{0}$
$D_{\omega_{0}}$	Λ_{1}^{2}	Λ_{8}^{2}	0	0	Λ_{6}^{2}	0
$D_{\sigma_{0}}$	Λ_{1}^{4}	Λ_{8}^{4}	0	0	Λ_{6}^{4}	0
$D_{\rho_{0}}$	Λ_{1}^{3}	0	Λ_{12}^{3}	0	Λ_{6}^{3}	Λ_{1}^{3}
$D_{\widehat{\rho}_{0}}$	$\Lambda_{1}^{\hat{3}}$	0	Λ_{12}^{3}	0	Λ_{6}^{3}	Λ_{1}^{3}

Proof: Using Lemma 3.1 we can easily compute the images of $\mathbb{R i d}$ and $\mathbb{R} I_{0}$. In the proof of Lemma 3.22 we have already seen that $D_{\rho_{0}}\left(S_{12}^{2}\right)=\Lambda_{12}^{3}$ holds. The same argument yields $D_{\widehat{\rho}_{0}}\left(S_{12}^{2}\right)=\Lambda_{12}^{3}$ and by Schur's Lemma we get $D_{\omega_{0}}\left(S_{12}^{2}\right)=$ $0=D_{\sigma_{0}}\left(S_{12}^{2}\right)$. Now Lemma 1.14 yields

$$
\operatorname{ker}\left(D_{\omega_{0}}\right)=\operatorname{ker}\left(D_{\sigma_{0}}\right)=\mathfrak{s p}(6, \mathbb{R}) \quad \text { and } \quad \operatorname{ker}\left(D_{\rho_{0}}\right)=\operatorname{ker}\left(D_{\widehat{\rho}_{0}}\right)=\mathfrak{s l}(3, \mathbb{C})
$$

Since $\mathfrak{s u}_{3} \subset \mathfrak{s p}(6, \mathbb{R})$ and $\operatorname{dim}(\mathfrak{s p}(6, \mathbb{R}))=21$, we get

$$
\mathfrak{s p}(6, \mathbb{R})=\mathbb{R} I_{0} \oplus \mathfrak{s u}_{3} \oplus S_{12}^{2}
$$

and, since $\operatorname{dim}(\mathfrak{s l}(3, \mathbb{C}))=16$,

$$
\mathfrak{s l}(3, \mathbb{C})=I_{0} \mathfrak{s u}(3) \oplus \mathfrak{s u}(3)
$$

DEFINITION 3.24. Let M be a six dimensional oriented manifold equipped with a $S U(3)$-structure (σ, ρ) with intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{6 *} \otimes \mathfrak{s u}_{3}^{\perp}$. According to the decomposition

$$
\mathbb{R}^{6 *} \otimes \mathfrak{s u}_{3}^{\perp}=\left(\mathbb{R}^{6 *} \otimes \mathfrak{u}_{3}^{\perp}\right) \oplus \mathbb{R}^{6 *} I_{0}
$$

we decompose τ into $\mathcal{T} \in C^{\infty}(\operatorname{End}(T M))$ and $\eta \in \Omega^{1}(M)$, such that

$$
g(\tau(X) Y, Z)=\rho(\mathcal{T}(X), Y, Z)+\eta(X) \omega(Y, Z)
$$

If we choose a Cayley frame $\left(E_{1}, . ., E_{6}\right)$ for the $S U(3)$-structure and let $\left.A_{i}\right\lrcorner g:=$ $\left.E_{i}\right\lrcorner \rho$, then

$$
\begin{aligned}
\mathcal{T}(X) & =\frac{1}{4} \sum_{i=1}^{6}\left\langle\tau(X), A_{i}\right\rangle E_{i}, \text { since }\left\langle A_{i}, A_{i}\right\rangle=4 . \\
\eta(X) & =\frac{1}{6}\langle\tau(X), I\rangle, \text { since }\langle I, I\rangle=6 .
\end{aligned}
$$

Proposition 3.25. Let M be a six dimensional oriented manifold equipped with a $S U(3)$-structure (σ, ρ) with intrinsic torsion $\tau \cong \mathcal{T}+\eta$. Then

$$
\begin{array}{ll}
\left.\nabla^{g} \omega=-2 \mathcal{T}\right\lrcorner \widehat{\rho}, & d \omega=2 D_{\widehat{\rho}}(\mathcal{T}), \\
\left.\nabla^{g} \sigma=-2(\mathcal{T}\lrcorner \widehat{\rho}\right) \wedge \omega, & d \sigma=2 D_{\widehat{\rho}}(\mathcal{T}) \wedge \omega \\
\left.\nabla^{g} \rho=-2 \mathcal{T}\right\lrcorner \sigma+3 \eta \otimes \widehat{\rho}, & d \rho=2 D_{\sigma}(\mathcal{T})+3 \eta \wedge \widehat{\rho}, \\
\left.\nabla^{g} \widehat{\rho}=-2 I \mathcal{T}\right\lrcorner \sigma-3 \eta \otimes \rho, & d \widehat{\rho}=2 D_{\sigma}(I \mathcal{T})-3 \eta \wedge \rho .
\end{array}
$$

Proof: By Proposition 1.18 we have for the intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{6 *} \otimes \mathfrak{s u}_{3}^{\perp}$ of the $S U(3)$-structure

$$
\nabla_{X}^{g}(\omega, \sigma, \rho, \widehat{\rho})=D_{(\omega, \sigma, \rho, \widehat{\rho})}(\tau(X))
$$

Since $S O(6)$ acts on each factor $\Lambda^{2} \times \Lambda^{4} \times \Lambda^{3} \times \Lambda^{3}$ separately, the corresponding equation hold for each of the tensors ω, σ, ρ and $\widehat{\rho}$. Let $\left(E_{1}, . ., E_{6}\right)$ be a local Cayley frame for the $S U(3)$-structure. Applying Lemma 3.1, we find

$$
\begin{aligned}
\nabla_{X}^{g} \omega & \left.=D_{\omega}(\tau(X))=-\sum_{i=1}^{6} E^{i} \wedge \tau(X) E_{i}\right\lrcorner \omega=-\sum_{i, j=1}^{6} g\left(I \tau(X) E_{i}, E_{j}\right) E^{i j} \\
& =2 \sum_{i, j=1}^{6} g\left(\tau(X) E_{i}, I E_{j}\right) E^{i j}=\sum_{i, j=1}^{6}\left(\rho\left(\mathcal{T}(X), E_{i}, I E_{j}\right)+\eta(X) \omega\left(E_{i}, I E_{j}\right)\right) E^{i j} \\
& =\sum_{i, j=1}^{6} \rho\left(\mathcal{T}(X), E_{i}, I E_{j}\right) E^{i j}=-\sum_{i=1}^{6} \widehat{\rho}\left(E_{j}, \mathcal{T}(X), E_{i}\right) E^{i j} \\
& \left.=-2 \sum_{i<j} \widehat{\rho}\left(\mathcal{T}(X), E_{i}, E_{j}\right) E^{i j}=-2 \mathcal{T}(X)\right\lrcorner \widehat{\rho}
\end{aligned}
$$

Using that $2 \sigma=\omega^{2}$, the same computation yields

$$
\left.\nabla_{X}^{g} \sigma=-2(\mathcal{T}(X)\lrcorner \widehat{\rho}\right) \wedge \omega .
$$

Similarly, with Lemma 3.15

$$
\begin{aligned}
\nabla_{X}^{g} \rho & \left.\left.=D_{\rho}(\tau(X))=-\sum_{i=1}^{6} E^{i} \wedge \tau(X) E_{i}\right\lrcorner \rho=-\sum_{i, j=1}^{6} g\left(\tau(X) E_{i}, E_{j}\right) E^{i} \wedge E_{j}\right\lrcorner \rho \\
& \left.=-\sum_{i, j=1}^{6}\left(\rho\left(\mathcal{T}(X), E_{i}, E_{j}\right)+\eta(X) \omega\left(E_{i}, E_{j}\right)\right) E^{i} \wedge E_{j}\right\lrcorner \rho \\
& \left.=-\sum_{j=1}^{6} \rho\left(E_{j}, \mathcal{T}(X), .\right) \wedge E_{j}\right\lrcorner \rho+3 \eta(X) \widehat{\rho} \\
& \left.\left.\left.=-\frac{1}{2} \mathcal{T}(X)\right\lrcorner \sum_{j=1}^{6}\left(E_{j}\right\lrcorner \rho \wedge E_{j}\right\lrcorner \rho\right)+3 \eta(X) \widehat{\rho} \\
& =-2 \mathcal{T}(X)\lrcorner \sigma+3 \eta(X) \widehat{\rho}
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla_{X}^{g} \widehat{\rho} & \left.=-\sum_{j=1}^{6} \rho\left(E_{j}, \mathcal{T}(X), .\right) \wedge E_{j}\right\lrcorner \widehat{\rho}-3 \eta(X) \rho \\
& \left.=-\sum_{j=1}^{6} \widehat{\rho}\left(E_{j}, I \mathcal{T}(X), .\right) \wedge E_{j}\right\lrcorner \widehat{\rho}-3 \eta(X) \rho \\
& \left.\left.\left.=-\frac{1}{2} I \mathcal{T}(X)\right\lrcorner \sum_{j=1}^{6}\left(E_{j}\right\lrcorner \widehat{\rho} \wedge E_{j}\right\lrcorner \widehat{\rho}\right)-3 \eta(X) \rho \\
& =-2 I \mathcal{T}(X)\lrcorner \sigma-3 \eta(X) \rho
\end{aligned}
$$

Now the exterior derivatives are

$$
\begin{aligned}
& \left.d \omega=\sum_{i=1}^{6} E^{i} \wedge \nabla_{E_{i}}^{g} \omega=-2 \sum_{i=1}^{6} E^{i} \wedge \mathcal{T}\left(E_{i}\right)\right\lrcorner \widehat{\rho}=2 D_{\widehat{\rho}}(\mathcal{T}) . \\
& d \sigma=2 D_{\widehat{\rho}}(\mathcal{T}) \wedge \omega \\
& d \rho=\sum_{i=1}^{6} E^{i} \wedge \nabla_{E_{i}}^{g} \rho=2 D_{\sigma}(\mathcal{T})+3 \eta \wedge \widehat{\rho} . \\
& d \widehat{\rho}=\sum_{i=1}^{6} E^{i} \wedge \nabla_{E_{i}}^{g} \widehat{\rho}=2 D_{\sigma}(I \mathcal{T})-3 \eta \wedge \rho .
\end{aligned}
$$

Definition 3.26. The Nijenhuis tensor of an almost complex structure I on M is defined by

$$
N_{I}(X, Y):=[X, Y]+I[I X, Y]+I[X, I Y]-[I X, I Y]
$$

The Newlander-Nirenberg Theorem states that $N_{I}=0$ is actually equivalent to the integrability of the almost complex structure I.

By Proposition 3.22 we have the following decomposition into irreducible $S U(3)$ modules

$$
\begin{aligned}
\mathbb{R}^{6 *} \otimes \mathfrak{s u}_{3}^{\perp} & =\mathbb{R}^{6 *} \otimes\left(\mathfrak{u}_{3}^{\perp} \oplus \mathbb{R} I_{0}\right)=\operatorname{End}\left(\mathbb{R}^{6}\right) \oplus \mathbb{R}^{6 *} \\
& =\left(\mathbb{R i d} \oplus I_{0} \mathfrak{s u}(3) \oplus S_{12}^{2}\right) \oplus\left(\mathfrak{s u}_{3} \oplus \mathfrak{u}_{3}^{\perp} \oplus \mathbb{R} I_{0}\right) \oplus \mathbb{R}^{6 *}
\end{aligned}
$$

and hence there are 2^{7} different types of $S U(3)$-structures in dimension six. Before we characterize some of these classes, we need

Lemma 3.27. For $A \in \operatorname{End}\left(\mathbb{R}^{6}\right)$ we have
$\forall x, y \in \mathbb{R}^{6} \widehat{\rho}_{0}(A x, x, y)=0 \quad \Leftrightarrow \quad \forall x, y \in \mathbb{R}^{6} \quad \rho_{0}(A x, x, y)=0 \quad \Leftrightarrow \quad A=\lambda \mathrm{id}+\mu I_{0}$

Proof: It suffices to prove the second equivalence, since $\widehat{\rho}_{0}\left(I_{0} ., .,.\right)=\rho_{0}$. If $A=$ $\lambda \mathrm{id}+\mu I_{0}$, we clearly have

$$
\rho_{0}(A x, x, y)=\lambda \rho_{0}(x, x, y)-\mu \widehat{\rho}_{0}(x, x, y)=0
$$

Conversely, suppose that $\rho_{0}(A x, x, y)=0$ holds for all $x, y \in \mathbb{R}^{6}$. For $y=e_{1}$ we get $0=\left(e^{35}-e^{46}\right)(A x, x)$ and choosing $x \in\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\}$ yields $0=a_{35}=a_{53}=$ $a_{46}=a_{64}$. Repeating this argument for $y=e_{2}, . ., e_{6}$ shows that

$$
A=\left(\begin{array}{ccc}
A_{1} & 0 & 0 \\
0 & A_{2} & 0 \\
0 & 0 & A_{3}
\end{array}\right), \text { where } A_{i}:=\left(\begin{array}{cc}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right)
$$

Computing

$$
\begin{aligned}
0 & =\rho_{0}\left(A\left(e_{1}+e_{3}\right), e_{1}+e_{3}, y\right) \\
& =a_{1} \rho_{0}\left(e_{1}, e_{3}, y\right)+c_{1} \rho_{0}\left(e_{2}, e_{3}, y\right)+a_{2} \rho_{0}\left(e_{3}, e_{1}, y\right)+c_{2} \rho_{0}\left(e_{4}, e_{1}, y\right)
\end{aligned}
$$

for $y=e_{6}$ and $y=e_{5}$, yields $c_{1}=c_{2}$ and $a_{1}=a_{2}$. Similarly we get eventually

$$
A_{1}=A_{2}=A_{3}=A:=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then

$$
\begin{aligned}
0 & =\rho_{0}\left(A\left(e_{1}+e_{4}\right), e_{1}+e_{4}, y\right) \\
& =a \rho_{0}\left(e_{1}, e_{4}, y\right)+c \rho_{0}\left(e_{2}, e_{4}, y\right)+b \rho_{0}\left(e_{3}, e_{1}, y\right)+d \rho_{0}\left(e_{4}, e_{1}, y\right)
\end{aligned}
$$

yields $\lambda:=a=d$, for $y=e_{6}$, and $\mu:=c=-b$, for $y=e_{5}$.

We are interested in the following classes of $S U(3)$-structures:

Theorem 3.28. Let (σ, ρ) be a $S U(3)$-structure on M with intrinsic torsion $\tau \cong \mathcal{T}+\eta$ and $0 \neq \lambda \in \mathbb{R}$. In the following table we list different types of $S U(3)$ structures, the related torsion types and the corresponding equations for the structure tensors.

Name	Torsion	Characterization
Nearly Hypo	$I \mathcal{T}+\frac{1}{8} \lambda I \in S^{2}$ $\eta=0$	$d \rho=\lambda \sigma$
Hypo	$I \mathcal{T} \in S^{2}$	
$\eta=0$	$d \sigma=d \rho=0$	
Nearly Parallel	$I \mathcal{T}=\lambda$ id	$d \omega=6 \lambda \rho$ and $d \widehat{\rho}=-4 \lambda \omega^{2}$.
(nearly Kähler)	$\eta=0$	Equivalently: For all $X \in T M$
		$\left(\nabla_{X}^{g} I\right) X=0$ and $d \rho=0$.
Parallel	$\mathcal{T}=0$	$d \omega=d \rho=d \widehat{\rho}=0$
(Calabi-Yau)	$\eta=0$	

Complex	$\mathcal{T} \in S_{12}^{2} \oplus \mathfrak{u}_{3}^{\perp}$	$N_{I}=0$
Kähler	$\mathcal{T}=0$	$N_{I}=0$ and $d \omega=0$.
		Equivalently,
		$\nabla^{g} \omega=0$.

Proof: From Proposition 3.22 and Schur's Lemma we see that

$$
\operatorname{ker}\left(\omega \wedge .: \Lambda^{3} \rightarrow \Lambda^{5}\right)=\Lambda_{1}^{3} \oplus \Lambda_{1}^{\hat{3}} \oplus \Lambda_{12}^{3}
$$

Now Lemma 3.23 and Proposition 3.25 give

$$
\begin{array}{rll}
d \omega=0 & \Leftrightarrow & \mathcal{T} \in I_{0} \mathfrak{H u}_{3} \oplus \mathfrak{s u}_{3} . \\
d \sigma=0 \quad \Leftrightarrow & \mathcal{T} \in \mathbb{R i d} \oplus I_{0} \mathfrak{s u}(3) \oplus S_{12}^{2} \oplus \mathfrak{s u}_{3} \oplus \mathbb{R} I_{0} . \\
d \rho=0 \quad \Leftrightarrow & \mathcal{T} \in S_{12}^{2} \oplus \mathfrak{s u} u_{3} \oplus \mathfrak{u}_{3}^{\perp} \oplus \mathbb{R} I_{0} \text { and } \\
& & 2 D_{\sigma}\left(\operatorname{pr}_{\mathfrak{u}_{3}^{\perp}}(\mathcal{T})\right)+3 \eta \wedge \widehat{\rho}=0 . \\
d \widehat{\rho}=0 \quad \Leftrightarrow & I \mathcal{T} \in S_{12}^{2} \oplus \mathfrak{s u} u_{3} \oplus \mathfrak{u}_{3}^{\perp} \oplus \mathbb{R} I_{0} \text { and } \\
& & 2 D_{\sigma}\left(\operatorname{pr}_{\mathfrak{u}_{3}^{\perp}}(I \mathcal{T})\right)-3 \eta \wedge \rho=0 .
\end{array}
$$

With this characterizations, and the non-degeneracy of $\widehat{\rho}$, the description of hypo structures and parallel structures follows.

Nearly hypo case: By Proposition 3.25 the condition $d \rho=\lambda \sigma$ holds if and only if

$$
\begin{equation*}
\lambda \sigma=2 D_{\sigma}(\mathcal{T})+3 \eta \wedge \widehat{\rho} \tag{1}
\end{equation*}
$$

Since $D_{\sigma}(\mathrm{id})=-4 \sigma$ by Lemma 3.1, we see that the condition on the torsion components imply $d \rho=\lambda \sigma$. Conversely, $\lambda \neq 0$ yields $d \sigma=0$ and hence (1) is equivalent to $\eta=0$ and

$$
\mathcal{T} \in \mathbb{R i d} \oplus S_{12}^{2} \oplus \mathfrak{s u}_{3} \oplus \mathbb{R} I_{0}
$$

and

$$
\lambda \sigma=2 D_{\sigma}\left(\operatorname{pr}_{\mathbb{R i d}} \mathcal{T}\right)=2 D_{\sigma}\left(\frac{1}{6} \operatorname{tr}(\mathcal{T}) \mathrm{id}\right)=-\frac{4}{3} \operatorname{tr}(\mathcal{T}) \sigma .
$$

So

$$
S_{12}^{2} \oplus \mathfrak{s u}_{3} \oplus \mathbb{R} I_{0} \ni \mathcal{T}-\frac{1}{6} \operatorname{tr}(\mathcal{T}) \mathrm{id}=\mathcal{T}+\frac{1}{8} \lambda \mathrm{id}
$$

and since $I\left(S_{12}^{2} \oplus \mathfrak{s u}_{3} \oplus \mathbb{R} I_{0}\right)=S^{2}$, the description of nearly hypo structures follows.
Complex case: Using that $[X, Y]=\nabla_{X}^{g} Y-\nabla_{Y}^{g} X$ and $\left(\nabla_{X}^{g} I\right) Y=\nabla_{X}^{g} I Y-I\left(\nabla_{X}^{g} Y\right)$, we get

$$
N_{I}(X, Y)=I\left(\nabla_{X}^{g} I\right) Y-\left(\nabla_{I X}^{g} I\right) Y-I\left(\nabla_{Y}^{g} I\right) X+\left(\nabla_{I Y}^{g} I\right) X
$$

Since $\left.\nabla_{X}^{g} \omega=\left(\nabla_{X}^{g} I\right)\right\lrcorner g$, we get from Proposition 3.25

$$
\left.g\left(\left(\nabla_{X}^{g} I\right) Y, Z\right)=-2(\mathcal{T} X\lrcorner \widehat{\rho}\right)(Y, Z)=-2 \widehat{\rho}(\mathcal{T} X, Y, Z)
$$

and hence

$$
\begin{aligned}
g\left(N_{I}(X, Y), Z\right)= & -g\left(\left(\nabla_{X}^{g} I\right) Y, I Z\right)-g\left(\left(\nabla_{I X}^{g} I\right) Y, Z\right) \\
& +g\left(\left(\nabla_{Y}^{g} I\right) X, I Z\right)+g\left(\left(\nabla_{I Y}^{g} I\right) X, Z\right) \\
= & 2 \widehat{\rho}(\mathcal{T} X, Y, I Z)+2 \widehat{\rho}(\mathcal{T} I X, Y, Z) \\
& -2 \widehat{\rho}(\mathcal{T} Y, X, I Z)-2 \widehat{\rho}(\mathcal{T} I Y, X, Z) \\
= & 2 \rho(\mathcal{T} X, Y, Z)-2 \rho(I \mathcal{T} I X, Y, Z) \\
& -2 \rho(\mathcal{T} Y, X, Z)+2 \rho(I \mathcal{T} I Y, X, Z) \\
= & 2(\rho((\mathcal{T}-I \mathcal{T} I) X, Y, Z)-\rho((\mathcal{T}-I \mathcal{T} I) Y, X, Z)) \\
= & 4\left(\rho\left(\operatorname{pr}_{I^{+}}(\mathcal{T}) X, Y, Z\right)-\rho\left(\operatorname{pr}_{I^{+}}(\mathcal{T}) Y, X, Z\right)\right)
\end{aligned}
$$

where $\mathrm{pr}_{I^{+}}$denotes the projection on the space of endomorphisms which commute with I. It follows immediately $N_{I}=0$, for $\mathcal{T} \in S_{12}^{2} \oplus \mathfrak{u}_{3}^{\perp}=I^{-}$, cf. Proposition 3.22. Conversely, $N_{I}=0$ yields

$$
0=g\left(N_{I}(X, Y), Y\right)=-4 \rho\left(\operatorname{pr}_{I^{+}}(\mathcal{T}) Y, X, Y\right)
$$

which is by Lemma 3.27 equivalent to $\operatorname{pr}_{I^{+}}(\mathcal{T})=\lambda \mathrm{id}+\mu I$, for some functions $\lambda, \mu: M \rightarrow \mathbb{R}$. Then $N_{I}=0$ yields

$$
\begin{aligned}
0 & =\lambda \rho(X, Y, Z)+\mu \rho(I X, Y, Z)-\lambda \rho(Y, X, Z)-\mu \rho(I Y, X, Z) \\
& =\lambda \rho(X, Y, Z)-\mu \widehat{\rho}(X, Y, Z)-\lambda \rho(Y, X, Z)+\mu \widehat{\rho}(Y, X, Z) \\
& =2(\lambda \rho-\mu \widehat{\rho})(X, Y, Z)
\end{aligned}
$$

i.e. $\lambda=\mu=0$ and so $\operatorname{pr}_{I^{+}}(\mathcal{T})=0$, i.e. $\mathcal{T} \in S_{12}^{2} \oplus \mathfrak{u}_{3}^{\perp}=I^{-}$, cf. Proposition 3.22.

Kähler case: This follows immediately from the characterization of $N_{I}=0$ and $d \omega=0$, Proposition 3.25 and the fact that $\hat{\rho}$ is non-degenerated.

Nearly Parallel case: The equations $d \omega=6 \lambda \rho$ and $d \widehat{\rho}=-4 \lambda \omega^{2}$ translate into

$$
\begin{gather*}
-2 D_{\rho}(I \mathcal{T})=6 \lambda \rho, \tag{2}\\
2 D_{\sigma}(I \mathcal{T})-3 \eta \wedge \rho=-8 \lambda \sigma . \tag{3}
\end{gather*}
$$

Since $D_{\rho}(\mathrm{id})=-3 \rho$ and $D_{\sigma}(\mathrm{id})=-4 \sigma$, the conditions on the torsion imply $d \omega=$ $6 \lambda \rho$ and $d \widehat{\rho}=-4 \lambda \omega^{2}$. Conversely, $\lambda \neq 0$ yields $d \rho=0$ and $d \sigma=0$, which gives $\eta=0$ and $\mathcal{T} \in S_{12}^{2} \oplus \mathfrak{s u}_{3} \oplus \mathbb{R} I_{0}$. Hence $I \mathcal{T} \in S^{2}$ and (2) yields

$$
I \mathcal{T} \in \mathbb{R i d} \oplus I_{0} \mathfrak{s u}_{3} \quad \text { and } \quad-2 D_{\rho}\left(\operatorname{pr}_{\mathbb{R i d}}(I \mathcal{T})\right)=6 \lambda \rho
$$

Now (3) gives

$$
I \mathcal{T} \in \mathbb{R i d} \quad \text { and } \quad 2 D_{\sigma}\left(\operatorname{pr}_{\mathbb{R} i d}(I \mathcal{T})\right)=-8 \lambda \sigma
$$

Writing $I \mathcal{T}=f$ id, for some $f: M \rightarrow \mathbb{R}$, we get

$$
6 \lambda \rho=6 f \rho \quad \text { and }-8 \lambda \sigma=-8 f \sigma
$$

i.e. $I \mathcal{T}=\lambda$ id. For the second characterization observe that by Proposition 3.25 and Lemma 3.27

$$
\left(\nabla_{X}^{g} I\right) X=0 \quad \Leftrightarrow \quad \widehat{\rho}(\mathcal{T} X, X, .)=0 \quad \Leftrightarrow \quad \mathcal{T}=u \mathrm{id}+v I
$$

for some functions $u, v: M \rightarrow \mathbb{R}$. Hence it suffices to show that $\mathcal{T}=u \mathrm{id}+v I$ and $d \rho=0$ imply $\eta=0$ and $I \mathcal{T}=\lambda i d$, for some constant λ. First observe that $\mathcal{T}=u \mathrm{id}+v I$ yields $d \sigma=0$. Next

$$
0=d \rho=-8 u \sigma+3 \eta \wedge \widehat{\rho}
$$

gives $u=0$ and $\eta=0$. So $d \widehat{\rho}=8 v \sigma$ and

$$
0=d v \wedge \sigma
$$

shows that $d v=0$, i.e. $\lambda:=-v$ is constant and $I \mathcal{T}=\lambda \mathrm{id}$.

G_{2}-Structures in Dimension Seven

In this section we consider the following model forms on \mathbb{R}^{7} :

$$
\begin{aligned}
& \varphi_{0}=e^{246}-e^{356}-e^{347}-e^{257}+e^{123}+e^{145}+e^{167} \\
& \psi_{0}=e^{2345}+e^{2367}+e^{4567}-e^{1247}+e^{1357}-e^{1346}-e^{1256}
\end{aligned}
$$

They satisfy certain relations, which can be verified in a direct computation:

Lemma 3.29. For all $x, y \in \mathbb{R}^{7}$
(1) $\varphi_{0} \wedge \psi_{0}=7 \varepsilon_{0}$.
(2) $\left.\left.6 g_{0}(x, y) \varepsilon_{0}=(x\lrcorner \varphi_{0}\right) \wedge(y\lrcorner \varphi_{0}\right) \wedge \varphi_{0}$.
(3) $\left.\left.\left.\left.(x\lrcorner \varphi_{0}\right) \wedge(x\lrcorner \varphi_{0}\right)=2 x\right\lrcorner\left((x\lrcorner g_{0}\right) \wedge \psi_{0}\right)$.
(4) $\left.\left.\left.\left.\left.(y\lrcorner x\lrcorner \varphi_{0}\right) \wedge(x\lrcorner \varphi_{0}\right)=-(y\lrcorner g_{0}\right) \wedge(x\lrcorner\left((x\lrcorner g_{0}\right) \wedge \psi_{0}\right)\right)$

Lemma 3.30. (1) For $V:=\mathbb{R}^{7}$ there is a homomorphism

$$
\varepsilon: \Lambda^{3} V^{*} \rightarrow \Lambda^{7} V^{*}
$$

of $G L(7)$-modules, such that $\varepsilon\left(\varphi_{0}\right)=\varepsilon_{0}$.
(2) After choosing an orientation for V, there is a homomorphism

$$
\varepsilon: \Lambda^{4} V^{*} \rightarrow \Lambda^{7} V^{*} \oplus i \Lambda^{7} V^{*}
$$

of $G L^{+}(7)$-modules, such that for the model tensor and the canonical orientation $\varepsilon\left(\psi_{0}\right)=\varepsilon_{0}$ holds.

Proof: For part (1) consider the $G L(7)$-equivariant map

$$
\left.\left.K: \Lambda^{3} V^{*} \rightarrow \operatorname{Hom}\left(V, V^{*} \otimes \Lambda^{7} V^{*}\right) \quad \text { with } \quad K(\varphi)(x, y):=\frac{1}{6} x\right\lrcorner \varphi \wedge y\right\lrcorner \varphi \wedge \varphi
$$

Since

$$
\begin{aligned}
\operatorname{det}(K(\varphi)) & \in \Lambda^{7} V^{*} \otimes \Lambda^{7}\left(V^{*} \otimes \Lambda^{7} V^{*}\right) \\
& =\Lambda^{7} V^{*} \otimes \Lambda^{7} V^{*} \otimes\left(\Lambda^{7} V^{*}\right)^{7} \\
& =\left(\Lambda^{7} V^{*}\right)^{9},
\end{aligned}
$$

we get an equivariant map

$$
\operatorname{det}(K): \Lambda^{3} V^{*} \rightarrow\left(\Lambda^{7} V^{*}\right)^{9}
$$

Even without a fixed orientation for V we can define

$$
\varepsilon: \Lambda^{3} V^{*} \rightarrow \Lambda^{7} V^{*} \quad \text { by } \quad \varepsilon(\varphi):=\sqrt[9]{\operatorname{det}(K(\varphi))}
$$

and for the model tensor we have by Lemma 3.29

$$
\varepsilon\left(\varphi_{0}\right)=\sqrt[9]{\operatorname{det}\left(g_{0} \otimes \varepsilon_{0}\right)}=\varepsilon_{0}
$$

For part (2) identify $\psi \in \Lambda^{4} V^{*}=\Lambda^{3} V \otimes \Lambda^{7} V^{*}$ and consider the $G L(7)$-equivariant map

$$
K: \Lambda^{4} V^{*} \rightarrow \operatorname{Hom}\left(V^{*}, V \otimes\left(\Lambda^{7} V^{*}\right)^{2}\right)
$$

with

$$
\left.\left.K(\psi)(\alpha, \beta):=\frac{1}{6}(\alpha\lrcorner \psi \wedge \beta\right\lrcorner \psi \wedge \psi\right) \in \Lambda^{7} V \otimes\left(\Lambda^{7} V^{*}\right)^{3}=\left(\Lambda^{7} V^{*}\right)^{2} .
$$

Since

$$
\begin{aligned}
\operatorname{det}(K(\psi)) & \in \Lambda^{7} V \otimes \Lambda^{7}\left(V \otimes\left(\Lambda^{7} V^{*}\right)^{2}\right) \\
& =\Lambda^{7} V \otimes \Lambda^{7} V \otimes\left(\Lambda^{7} V^{*}\right)^{14} \\
& =\left(\Lambda^{7} V^{*}\right)^{12},
\end{aligned}
$$

we get an equivariant map

$$
\operatorname{det}(K): \Lambda^{4} V^{*} \rightarrow\left(\Lambda^{7} V^{*}\right)^{12}
$$

Given an orientation for V, we can define

$$
\varepsilon: \Lambda^{4} V^{*} \rightarrow \Lambda^{7} V^{*} \oplus i \Lambda^{7} V^{*} \quad \text { by } \quad \varepsilon(\psi):=\sqrt[12]{\operatorname{det}(K(\psi))}
$$

cf. Lemma 3.5. For the model tensor $\psi_{0}=\varphi_{0}^{*} \otimes \varepsilon_{0}$ we compute

$$
K\left(\psi_{0}\right)(\alpha, \beta)=g_{0}(\alpha, \beta) \varepsilon_{0}^{2}
$$

and hence $\varepsilon\left(\psi_{0}\right)=\sqrt[12]{\varepsilon_{0}^{12}}=\varepsilon_{0}$.

Lemma 3.31.

$$
\begin{aligned}
\operatorname{Iso}_{G L(7)}\left(\varphi_{0}\right) & =G_{2} \\
\operatorname{Iso}_{G L^{+}(7)}\left(\psi_{0}\right) & =G_{2} .
\end{aligned}
$$

In particular, the forms φ_{0} and ψ_{0} are stable.

Proof: A proof of the first statement can be found in [47], Lemma 11.1. For the second part observe that $A \varepsilon_{0}=\varepsilon_{0}$ by Lemma 3.30 , for $A \in \operatorname{Iso}_{G L^{+}(7)}\left(\psi_{0}\right)$. In addition, we have seen in the proof of Lemma 3.30 that

$$
K\left(\psi_{0}\right)(\alpha, \beta)=g_{0}(\alpha, \beta) \varepsilon_{0}^{2}
$$

holds. Hence $A g_{0}=g_{0}$, i.e. $A \in S O(7)$. Now observe that $\psi_{0}=*_{0} \varphi_{0}$, where $*_{0}$ is the Hodge operator w.r.t. g_{0} and the canonical orientation for \mathbb{R}^{7}. So

$$
*_{0} \varphi_{0}=A *_{0} \varphi_{0}=*_{0} A \varphi_{0}
$$

shows that $A \in \operatorname{Iso}_{G L(7)}\left(\varphi_{0}\right)=G_{2}$. Conversely, $A \in G_{2} \subset S O(7)$ satisfies $A \psi_{0}=$ $*_{0} A \varphi_{0}=\psi_{0}$. Since $\operatorname{dim}\left(G_{2}\right)=14$, stability follows from

$$
\operatorname{dim}\left(G L(7) / G_{2}\right)=49-14=\operatorname{dim}\left(\Lambda^{3} \mathbb{R}^{7 *}\right)=\operatorname{dim}\left(\Lambda^{4} \mathbb{R}^{7 *}\right)
$$

DEFINITION 3.32. Suppose $V=\mathbb{R}^{7}$ is equipped with a fixed orientation. For $\psi \in G L^{+}(7) \psi_{0} \subset \Lambda^{4} V^{*}$ we call $\varepsilon(\psi) \in \Lambda^{7} V^{*}$ from Lemma 3.30 the associated volume element and define

$$
\varphi=*_{\psi} \psi \in \Lambda^{3} V^{*},
$$

where $*_{\psi}$ is the Hodge operator associated to the volume $\varepsilon(\psi)$ and the metric given by $K(\psi)(\alpha, \beta)=g(\alpha, \beta) \varepsilon(\psi)^{2}$, cf. Lemma 3.30.

From Proposition 1.2 and Lemma 3.31 we obtain

Corollary 3.33. Suppose M is a seven dimensional manifold with a fixed orientation. Then G_{2}-structures on M, which are compatible with the given orientation, correspond to forms $\psi \in \Omega^{4}(M)$ of type ψ_{0}, such that $\varepsilon(\psi)>0$.

We will now describe the Lie algebra of $G_{2} \subset S O(7)$.

Lemma 3.34. $A=\left(a_{i j}\right) \in \mathfrak{s o}_{7}$ is an element of $\mathfrak{g}_{2} \subset \mathfrak{s o}_{7}$ if and only if

$$
\begin{array}{rlr}
a_{23}+a_{45}+a_{67} & =0, & a_{46}-a_{57}-a_{13}=0, \\
-a_{26}+a_{37}-a_{15} & =0, & a_{56}-a_{47}+a_{12}=0 \\
-a_{34}-a_{27}+a_{14}=0, & a_{24}-a_{35}-a_{17}=0
\end{array}
$$

Note that the $i^{t h}$ equation corresponds to $a_{k l} \varphi_{i k l}=0$. The orthogonal complement in $\mathfrak{s o}_{7}$ is given by

$$
\left.\left.\mathfrak{g}_{2}^{\perp}=\left\{A \in \mathfrak{s o}_{7} \mid A\right\lrcorner g=x\right\lrcorner \varphi_{0}, \text { for some } x \in \mathbb{R}^{7}\right\}
$$

Proof: By Lemma 1.14 we have

$$
\mathfrak{g}_{2}=\operatorname{ker}\left(D_{\varphi_{0}}: \mathfrak{s o}_{7} \rightarrow \Lambda^{3} \mathbb{R}^{7 *}\right)
$$

and Lemma 3.1 yields $A \in \mathfrak{g}_{2}$ if and only if

$$
\left.\left.0=\sum_{i=1}^{7} e^{i} \wedge A e_{i}\right\lrcorner \varphi_{0}=\sum_{i, j=1}^{7} a_{i j} e^{i} \wedge e_{j}\right\lrcorner \varphi_{0}
$$

This system translates into the seven equations for the coefficients $a_{i j}$. Hence for $A \in \mathfrak{g}_{2}$

$$
\sum_{j=1}^{7} \varphi\left(e_{i}, A e_{j}, e_{j}\right)=2 \sum_{j<k} a_{j k} \varphi\left(e_{i}, e_{k}, e_{j}\right)=0
$$

and we see that $\left.B\lrcorner g:=e_{i}\right\lrcorner \varphi_{0}$ defines an element $B \in \mathfrak{g}_{2}^{\perp}$. Since $\operatorname{dim}\left(\mathfrak{g}_{2}^{\perp}\right)=7$, the Lemma follows.

Proposition 3.35. The following decompositions of G_{2}-modules are irreducible:

$$
\begin{aligned}
\mathfrak{s o}_{7} & =\mathfrak{g}_{2} \oplus \mathfrak{g}_{2}^{\perp} \\
\operatorname{End}\left(\mathbb{R}^{7}\right) & =\left(\mathbb{R i d} \oplus S_{0}^{2}\right) \oplus\left(\mathfrak{g}_{2} \oplus \mathfrak{g}_{2}^{\perp}\right), \text { where } \\
S_{0}^{2} & =\left\{A \in S^{2} \mid \operatorname{tr}(A)=0\right\}
\end{aligned}
$$

The G_{2}-modules $\Lambda^{k}:=\Lambda^{k} \mathbb{R}^{7 *}$ decompose into the following irreducible submodules, where the lower index denotes the dimension of the submodule:

$$
\begin{aligned}
\Lambda^{1}= & \Lambda_{7}^{1} \\
\Lambda^{2}= & \Lambda_{7}^{2} \oplus \Lambda_{14}^{2}, \text { where } \\
& \left.\Lambda_{7}^{2}=\{x\lrcorner \varphi_{0} \mid x \in \mathbb{R}^{7}\right\}, \\
& \Lambda_{14}^{2}=\left\{\omega \in \Lambda^{2} \mid \psi_{0} \wedge \omega=0\right\} \cong \mathfrak{g}_{2}, \\
\Lambda^{3}= & \Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}, \text { where } \\
& \Lambda_{1}^{3}=\mathbb{R} \varphi_{0},
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Lambda_{7}^{3}=\{x\lrcorner \psi_{0} \mid x \in \mathbb{R}^{7}\right\}, \\
& \Lambda_{27}^{3}=\left\{\omega \in \Lambda^{3} \mid \varphi_{0} \wedge \omega=0 \text { and } \psi_{0} \wedge \omega=0\right\}, \\
\Lambda^{4}= & \Lambda_{1}^{4} \oplus \Lambda_{7}^{4} \oplus \Lambda_{27}^{4}, \text { where } \\
& \Lambda_{1}^{4}=\mathbb{R} \psi_{0}, \\
& \Lambda_{7}^{4}=\left\{\alpha \wedge \varphi_{0} \mid \alpha \in \Lambda^{1}\right\}, \\
& \Lambda_{27}^{4}=\left\{\omega \in \Lambda^{4} \mid \varphi_{0} \wedge \omega=0 \text { and } \varphi_{0} \wedge * \omega=0\right\}, \\
\Lambda^{5}= & \Lambda_{7}^{5} \oplus \Lambda_{14}^{5}, \text { where } \\
& \Lambda_{7}^{5}=\left\{\alpha \wedge \psi_{0} \mid \alpha \in \Lambda^{1}\right\}, \\
& \Lambda_{14}^{5}=\left\{\omega \in \Lambda^{5} \mid \psi_{0} \wedge *_{0} \omega=0\right\}, \\
\Lambda^{6}= & \Lambda_{7}^{6} .
\end{aligned}
$$

Proof: The decompositions of Λ^{k} into irreducible submodules can be found in [43], formulae 2.14-2.17 and 2.19-2.24. The map $D_{\varphi_{0}}: \operatorname{End}\left(\mathbb{R}^{7}\right) \rightarrow \Lambda^{3}$ satisfies $\operatorname{ker}\left(D_{\varphi_{0}}\right)=\mathfrak{g}_{2}$ by Lemma 1.14 and Lemma 3.31. Hence $\mathbb{R i d} \cap \operatorname{ker}\left(D_{\varphi_{0}}\right)=\{0\}$ and, by irreducibility, $D_{\varphi_{0}}(\mathbb{R i d})=\Lambda_{1}^{3}$. This yields similarly $D_{\varphi_{0}}\left(\mathfrak{g}_{2}^{\perp}\right)=\Lambda_{7}^{3}$ and $D_{\varphi_{0}}\left(S_{0}^{2}\right)=\Lambda_{35}^{3}$. In particular, S_{0}^{2} is irreducible by the irreducibility of Λ_{27}^{3}, which proves that the above decomposition of $\operatorname{End}\left(\mathbb{R}^{7}\right)$ is irreducible.

Lemma 3.36. The maps $D_{\varphi_{0}}: \operatorname{End}\left(\mathbb{R}^{7}\right) \rightarrow \Lambda^{3} \mathbb{R}^{7 *}$ and $D_{\psi_{0}}: \operatorname{End}\left(\mathbb{R}^{7}\right) \rightarrow \Lambda^{4} \mathbb{R}^{7 *}$ define isomorphisms between certain submodules of $\operatorname{End}\left(\mathbb{R}^{4}\right)$ and $\Lambda^{3} \mathbb{R}^{7 *}$, respectively $\Lambda^{4} \mathbb{R}^{7 *}$:

	$\mathbb{R i d}$	S_{0}^{2}	\mathfrak{g}_{2}	\mathfrak{g}_{2}^{\perp}
$D_{\varphi_{0}}$	Λ_{1}^{3}	Λ_{27}^{3}	0	Λ_{7}^{3}
$D_{\psi_{0}}$	Λ_{1}^{4}	Λ_{27}^{4}	0	Λ_{7}^{4}

Proof: We proved this already in Lemma 3.35 for $D_{\varphi_{0}}$. The proof for $D_{\psi_{0}}$ is similar.

Definition 3.37. Let M be a seven dimensional oriented manifold equipped with a G_{2}-structure ψ with intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{7 *} \otimes \mathfrak{g}_{2}^{\perp}$. We identify τ with an element $\mathcal{T} \in C^{\infty}(\operatorname{End}(T M))$, such that

$$
g(\tau(X) Y, Z)=\varphi(\mathcal{T}(X), Y, Z)
$$

If we choose a Cayley frame $\left(E_{1}, . ., E_{7}\right)$ for the G_{2}-structure and let $\left.\left.A_{i}\right\lrcorner g:=E_{i}\right\lrcorner \varphi$, then

$$
\mathcal{T}(X)=\frac{1}{6} \sum_{i=1}^{7}\left\langle\tau(X), A_{i}\right\rangle E_{i}, \text { since }\left\langle A_{i}, A_{i}\right\rangle=6
$$

Proposition 3.38. Let M be a seven dimensional oriented manifold equipped with a G_{2}-structure ψ with intrinsic torsion $\tau \cong \mathcal{T}$. Then

$$
\begin{aligned}
\nabla^{g} \varphi & =-3 \mathcal{T}\lrcorner \psi, & & d \varphi=3 D_{\psi}(\mathcal{T}) \\
\nabla^{g} \psi & =3(\mathcal{T}\lrcorner g) \wedge \varphi, & & d \psi=6 \operatorname{pr}_{\Lambda^{2}}(\mathcal{T}) \wedge \varphi
\end{aligned}
$$

Proof: By Proposition 1.18 we have for the intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{7 *} \otimes \mathfrak{g}_{2}^{\perp}$ of the G_{2}-structure

$$
\nabla_{X}^{g}(\varphi, \psi)=D_{(\varphi, \psi)}(\tau(X))
$$

Since $S O(7)$ acts on each factor $\Lambda^{3} \times \Lambda^{4}$ separately, the corresponding equation hold for φ and ψ. Let $\left(E_{1}, . ., E_{7}\right)$ be a local Cayley frame for the G_{2}-structure. Applying Lemma 3.1 and Lemma 3.29, we find

$$
\begin{aligned}
\nabla_{X}^{g} \varphi & \left.=D_{\varphi}(\tau(X))=-\sum_{i=1}^{7} E^{i} \wedge \tau(X) E_{i}\right\lrcorner \varphi \\
& \left.=-\sum_{i, j=1}^{7} g\left(\tau(X) E_{i}, E_{j}\right) E^{i} \wedge E_{j}\right\lrcorner \varphi \\
& \left.=-\sum_{i, j=1}^{7} \varphi\left(\mathcal{T}(X), E_{i}, E_{j}\right) E^{i} \wedge E_{j}\right\lrcorner \varphi \\
& \left.=-\sum_{j=1}^{7} \varphi\left(E_{j}, \mathcal{T}(X), .\right) \wedge E_{j}\right\lrcorner \varphi \\
& \left.\left.\left.=-\frac{1}{2} \mathcal{T}(X)\right\lrcorner \sum_{j=1}^{7} E_{j}\right\lrcorner \varphi \wedge E_{j}\right\lrcorner \varphi \\
& =-3 \mathcal{T}(X)\lrcorner \psi
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla_{X}^{g} \psi & \left.=-\sum_{j=1}^{7} \varphi\left(E_{j}, \mathcal{T}(X), .\right) \wedge E_{j}\right\lrcorner \psi \\
& \left.=(\mathcal{T}(X)\lrcorner g) \wedge\left(\sum_{j=1}^{7} E_{j}\right\lrcorner\left(E^{j} \wedge \varphi\right)\right) \\
& =3(\mathcal{T}(X)\lrcorner g) \wedge \varphi
\end{aligned}
$$

Hence the exterior derivatives are given by

$$
\begin{aligned}
d \varphi & \left.=\sum_{i=1}^{7} E^{i} \wedge \nabla_{E_{i}}^{g} \varphi=-3 \sum_{i=1}^{7} E^{i} \wedge \mathcal{T}\left(E_{i}\right)\right\lrcorner \psi \\
& =3 D_{\psi}(\mathcal{T})
\end{aligned}
$$

and

$$
\begin{aligned}
d \psi & \left.=\sum_{i=1}^{7} E^{i} \wedge \nabla_{E_{i}}^{g} \psi=3 \sum_{i=1}^{7} E^{i} \wedge\left(\mathcal{T}\left(E_{i}\right)\right\lrcorner g\right) \wedge \varphi \\
& =6 \operatorname{pr}_{\Lambda^{2}}(\mathcal{T}) \wedge \varphi
\end{aligned}
$$

By Proposition 3.35 we have the following decomposition into irreducible $G_{2^{-}}$ modules

$$
\begin{aligned}
\mathbb{R}^{7 *} \otimes \mathfrak{g}_{2}^{\perp} & =\mathbb{R}^{7 *} \otimes \mathbb{R}^{7}=\operatorname{End}\left(\mathbb{R}^{7}\right) \\
& =\left(\mathbb{R i d} \oplus S_{0}^{2}\right) \oplus\left(\mathfrak{g}_{2} \oplus \mathfrak{g}_{2}^{\perp}\right)
\end{aligned}
$$

and hence there are 2^{4} different types of G_{2}-structures in dimension seven. We are interested in the following classes:

Theorem 3.39. Let ψ be a G_{2}-structure on M with intrinsic torsion $\tau \cong \mathcal{T}$ and $0 \neq \lambda \in \mathbb{R}$. In the following table we list different types of G_{2}-structures, the related torsion types and the corresponding equations for the structure tensors.

Name	Torsion	Characterization
Hypo	$\mathcal{T} \in S^{2}$	$d \psi=0$
Nearly Parallel	$\mathcal{T}=-\frac{1}{12} \lambda \mathrm{id}$	$d \varphi=\lambda \psi$
Parallel	$\mathcal{T}=0$	$d \psi=d \varphi=0$

Proof: By Proposition 3.38 we have $d \psi=0 \Leftrightarrow \operatorname{pr}_{\Lambda^{2}}(\mathcal{T}) \wedge \varphi=0$. Since $\varphi \wedge$.: $\Lambda^{2} \rightarrow \Lambda^{5}$ is an isomorphism, we actually have

$$
d \psi=0 \Leftrightarrow \operatorname{pr}_{\Lambda^{2}}(\mathcal{T})=0
$$

With Lemma 3.36 we see that $d \varphi=\lambda \psi$ is equivalent to

$$
\mathcal{T} \in \mathbb{R i d} \oplus \mathfrak{g}_{2} \quad \text { and } \quad 3 D_{\psi}\left(\mathrm{pr}_{\mathbb{R} i d}\right)=\lambda \psi
$$

Since $D_{\psi}(\mathrm{id})=-4 \psi$, the condition on the torsion implies $d \varphi=\lambda \psi$. Conversely, $\lambda \neq 0$ yields $\mathcal{T} \in S^{2}$ and hence $\mathcal{T}=f$ id, for some function $f: M \rightarrow \mathbb{R}$. Then $\lambda \psi=3 D_{\psi}(f \mathrm{id})=-12 f \psi$ shows that

$$
\mathcal{T}=-\frac{1}{12} \lambda \mathrm{id}
$$

By Proposition 3.38 and Lemma 3.36, $d \varphi=d \psi=0$ is equivalent to $\operatorname{pr}_{\Lambda^{2}}(\mathcal{T})=0$ and $\mathcal{T} \in \mathfrak{g}_{2}$, i.e. $\mathcal{T}=0$.

$S U(3)-$ Structures in Dimension Seven

In this section we consider the following model tensors on \mathbb{R}^{7} :

$$
\begin{aligned}
& \varphi_{0}=e^{246}-e^{356}-e^{347}-e^{257}+e^{123}+e^{145}+e^{167} \\
& \psi_{0}=e^{2345}+e^{2367}+e^{4567}-e^{1247}+e^{1357}-e^{1346}-e^{1256} \\
& \alpha_{0}=e^{1}, \quad \xi_{0}=e_{1}
\end{aligned}
$$

and on $\mathbb{R}^{6} \cong \operatorname{ker}\left(\alpha_{0}\right)$

$$
\begin{aligned}
& \left.\omega_{0}=\xi_{0}\right\lrcorner \varphi_{0}=e^{23}+e^{45}+e^{67} \\
& \sigma_{0}=\frac{1}{2} \omega_{0}^{2}=e^{2345}+e^{2367}+e^{4567} \\
& \rho_{0}=\varphi_{0}-\alpha_{0} \wedge \omega_{0}=e^{246}-e^{356}-e^{347}-e^{257} \\
& \left.\widehat{\rho}_{0}=-\xi_{0}\right\lrcorner \psi_{0}=e^{247}-e^{357}+e^{346}+e^{256}
\end{aligned}
$$

as well as $g_{0}\left(I_{0} .,.\right):=\omega_{0}$. Since the G_{2}-stabilizer of a unit vector in \mathbb{R}^{7} equals $S U(3)$, the description of $S U(3)$-structures in dimension seven is much simpler than the description of $S U(2)$-structures in dimension five. Namely, Lemma 3.31 yields

Lemma 3.40.

$$
\begin{aligned}
\operatorname{Iso}_{G L(7)}\left(\alpha_{0}, \varphi_{0}\right) & =S U(3) . \\
\operatorname{Iso}_{G L^{+}(7)}\left(\alpha_{0}, \psi_{0}\right) & =S U(3) .
\end{aligned}
$$

Proposition 3.41. Consider $V=\mathbb{R}^{7}$ with the canonical orientation and let $\psi \in G L^{+}(7) \psi_{0}$ and $\alpha \in \Lambda^{1} V^{*}$. Then

$$
(\psi, \alpha) \in G L^{+}(7)\left(\psi_{0}, \alpha_{0}\right) \quad \Leftrightarrow \quad g(\alpha, \alpha)=1
$$

where g is the metric induced by ψ.

Proof: The Lemma follows immediately from the fact that the group G_{2} acts transitively on $S^{6} \subset \mathbb{R}^{7}$.

From Proposition 1.2, Lemma 3.40 and Proposition 3.41 we obtain

Corollary 3.42. Suppose M is a seven dimensional manifold with a fixed orientation. Then $S U(3)$-structures on M, which are compatible with the given
orientation, correspond to pairs of forms $(\alpha, \psi) \in \Omega^{1}(M) \times \Omega^{4}(M)$, where ψ is of type ψ_{0} with $\varepsilon(\psi)>0$ and α satisfies $g(\alpha, \alpha)=1$, w.r.t. the metric induced by ψ.

For a compact seven dimensional manifold M we have $\chi(M)=0$ and hence M admits a nowhere vanishing vector field. Hence any G_{2}-structure on M can be reduced to a $S U(3)$-structure by choosing a particular unit vector field.

We will now study the Lie algebra of $S U(3) \subset S O(7)$.

Lemma 3.43. $A=\left(a_{i j}\right) \in \mathfrak{s o}_{7}$ is an element of $\mathfrak{u}_{3} \subset \mathfrak{s o}_{7}$ if and only if $A e_{1}=0$ and

$$
\begin{array}{lll}
a_{46}-a_{57}=0, & a_{56}+a_{47}=0, & a_{37}-a_{26}=0 \\
a_{27}+a_{36}=0, & a_{24}-a_{35}=0, & a_{25}+a_{34}=0
\end{array}
$$

Moreover, $A \in \mathfrak{s u}_{3}$ if and only if in addition

$$
a_{23}+a_{45}+a_{67}=0
$$

Equivalently,

$$
\begin{aligned}
\mathfrak{u}_{3} & =\left\{A \in \mathfrak{s o}(7) \mid A e_{1}=0 \text { and } A I_{0}=I_{0} A\right\}, \\
\mathfrak{s u}_{3} & \left.=\left\{A \in \mathfrak{s o}(7) \mid A e_{1}=0 \text { and } A I_{0}=I_{0} A \text { and }(A\lrcorner g_{0}\right) \wedge \sigma_{0}=0\right\} .
\end{aligned}
$$

The orthogonal complements in $\mathfrak{s o}_{7}$ are given by

$$
\begin{aligned}
\mathfrak{u}_{3}^{\perp} & =\left\{\left.\left(\begin{array}{cc}
0 & -x^{T} \\
x & A
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{6} \text { and } A \in \mathfrak{u}_{3}^{\perp} \subset \mathfrak{s o}_{6}\right\}, \\
\mathfrak{s u}_{3}^{\perp} & =\left\{\left.\left(\begin{array}{cc}
0 & -x^{T} \\
x & A
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{6} \text { and } A \in \mathfrak{s u}_{3}^{\perp} \subset \mathfrak{s o}_{6}\right\} .
\end{aligned}
$$

Proof: The Lemma follows immediately from Lemma 3.21.

Definition 3.44. Let M be a seven dimensional oriented manifold equipped with a $S U(3)$-structure (ψ, α) with intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{7 *} \otimes \mathfrak{s u}_{3}^{\perp}$. According to the decomposition

$$
\mathbb{R}^{7 *} \otimes \mathfrak{s u}_{3}^{\perp}=\left(\mathbb{R}^{7 *} \otimes \mathbb{R}^{6}\right) \oplus\left(\mathbb{R}^{7 *} \otimes \mathfrak{u}_{3}^{\perp}\right) \oplus \mathbb{R}^{7 *}
$$

we decompose τ into linear maps $F, \mathcal{T}: T M \rightarrow \operatorname{ker}(\alpha)$ and a 1-form η, such that $g(\tau(X) Y, Z)=\alpha(Y) g(F(X), Z)-\alpha(Z) g(F(X), Y)+\rho(\mathcal{T}(X), Y, Z)+\eta(X) \omega(Y, Z)$.

If we choose a Cayley frame $\left(E_{1}, . ., E_{7}\right)$ for the G_{2}-structure and let $\left.\left.A_{i}\right\lrcorner g:=E_{i}\right\lrcorner \rho$, for $i=2, . ., 7$, then

$$
\begin{aligned}
F(X) & =\tau(X) \xi \\
\mathcal{T}(X) & =\frac{1}{6} \sum_{i=2}^{7}\left\langle\tau(X), A_{i}\right\rangle E_{i}, \text { since }\left\langle A_{i}, A_{i}\right\rangle=6 \\
\eta(X) & =\frac{1}{6}\langle\tau(X), I\rangle, \text { since }\langle I, I\rangle=6
\end{aligned}
$$

Proposition 3.45. Let M be a seven dimensional oriented manifold equipped with a $S U(3)$-structure (ψ, α) with intrinsic torsion $\tau \cong F+\mathcal{T}+\eta$. Then

$$
\begin{aligned}
& \left.\nabla^{g} \alpha=F\right\lrcorner g \\
& \left.\left.\nabla^{g} \omega=-\alpha \wedge F\right\lrcorner \omega-2 \mathcal{T}\right\lrcorner \widehat{\rho}, \\
& \left.\left.\nabla^{g} \sigma=-\alpha \wedge(F\lrcorner \sigma\right)-2(\mathcal{T}\lrcorner \widehat{\rho}\right) \wedge \omega \\
& \left.\left.\nabla^{g} \rho=-\alpha \wedge F\right\lrcorner \rho-2 \mathcal{T}\right\lrcorner \sigma+3 \eta \otimes \widehat{\rho} \\
& \left.\left.\nabla^{g} \widehat{\rho}=-\alpha \wedge F\right\lrcorner \widehat{\rho}-2 I \mathcal{T}\right\lrcorner \sigma-3 \eta \otimes \rho
\end{aligned}
$$

and

$$
\begin{aligned}
d \alpha & =2 \operatorname{pr}_{\Lambda^{2}}(F) \\
d \omega & =-\alpha \wedge D_{\omega}(F)+2 D_{\widehat{\rho}}(\mathcal{T}) \\
d \sigma & =-\alpha \wedge D_{\sigma}(F)+2 D_{\widehat{\rho}}(\mathcal{T}) \wedge \omega \\
d \rho & =-\alpha \wedge D_{\rho}(F)+2 D_{\sigma}(\mathcal{T})+3 \eta \wedge \widehat{\rho} \\
d \widehat{\rho} & =-\alpha \wedge D_{\widehat{\rho}}(F)+2 D_{\sigma}(I \mathcal{T})-3 \eta \wedge \rho
\end{aligned}
$$

Proof: By Proposition 1.18 we have for the intrinsic torsion $\tau: P \rightarrow \mathbb{R}^{7 *} \otimes \mathfrak{s u}_{3}^{\perp}$ of the $S U(3)$-structure

$$
\nabla_{X}^{g}(\alpha, \omega, \sigma, \rho, \widehat{\rho})=D_{(\alpha, \omega, \sigma, \rho, \widehat{\rho})}(\tau(X))
$$

Since $S O(7)$ acts on each factor separately, the corresponding equation hold for α, ω, σ, ρ and $\widehat{\rho}$. Let $\left(\xi=E_{1}, . ., E_{7}\right)$ be a local Cayley frame for the $S U(3)$-structure. Applying Lemma 3.1, we find

$$
\begin{aligned}
\nabla_{X}^{g} \alpha & =D_{\alpha}(\tau(X))=-\sum_{i=1}^{7} \alpha\left(\tau(X) E_{i}\right) E^{i}=\sum_{i=2}^{7} g\left(\tau(X) \xi, E_{i}\right) E^{i} \\
& \left.=\sum_{i=1}^{7} g\left(F(X), E_{i}\right) E^{i}=F(X)\right\lrcorner g
\end{aligned}
$$

and, using that $g(F(X), \xi)=0$,

$$
\begin{aligned}
\nabla_{X}^{g} \omega & \left.=D_{\omega}(\tau(X))=-\sum_{i=1}^{7} E^{i} \wedge \tau(X) E_{i}\right\lrcorner \omega=\sum_{i, j=1}^{7} g\left(\tau(X) E_{i}, I E_{j}\right) E^{i j} \\
& =\sum_{j=2}^{7} g\left(\tau(X) \xi, I E_{j}\right) \alpha \wedge E^{j}+\sum_{i, j=2}^{7} g\left(\tau(X) E_{i}, I E_{j}\right) E^{i j} \\
& =\sum_{j=2}^{7} g\left(F(X), I E_{j}\right) \alpha \wedge E^{j}+\sum_{i, j=2}^{7}\left(\rho\left(\mathcal{T}(X), E_{i}, I E_{j}\right)+\eta(X) \delta_{i j}\right) E^{i j} \\
& =-\alpha \wedge F(X)\lrcorner \omega-\sum_{i, j=2}^{7} \widehat{\rho}\left(\mathcal{T}(X), E_{i}, E_{j}\right) E^{i j} \\
& =-\alpha \wedge F(X)\lrcorner \omega-2 \mathcal{T}(X)\lrcorner \widehat{\rho} .
\end{aligned}
$$

The same computation yields

$$
\left.\left.\nabla_{X}^{g} \sigma=-\alpha \wedge(F(X)\lrcorner \omega\right) \wedge \omega-2(\mathcal{T}(X)\lrcorner \widehat{\rho}\right) \wedge \omega
$$

and similarly we obtain

$$
\begin{aligned}
\nabla_{X}^{g} \rho & \left.=D_{\rho}(\tau(X))=-\sum_{i, j=1}^{7} g\left(\tau(X) E_{i}, E_{j}\right) E^{i} \wedge E_{j}\right\lrcorner \rho \\
& \left.\left.=-\sum_{j=2}^{7} g\left(\tau(X) \xi, E_{j}\right) \alpha \wedge E_{j}\right\lrcorner \rho-\sum_{i, j=2}^{7} g\left(\tau(X) E_{i}, E_{j}\right) E^{i} \wedge E_{j}\right\lrcorner \rho \\
& \left.=-\alpha \wedge F(X)\lrcorner \rho-\sum_{i, j=2}^{7}\left(\rho\left(\mathcal{T}(X), E_{i}, E_{j}\right)+\eta(X) \omega\left(E_{i}, E_{j}\right)\right) E^{i} \wedge E_{j}\right\lrcorner \rho \\
& \left.\left.\left.\left.=-\alpha \wedge F(X)\lrcorner \rho-\frac{1}{2} \mathcal{T}(X)\right\lrcorner\left(\sum_{j=2}^{7} E_{j}\right\lrcorner \rho \wedge E_{j}\right\lrcorner \rho\right)-\eta(X) \sum_{i=2}^{7} E^{i} \wedge I E_{i}\right\lrcorner \rho \\
& =-\alpha \wedge F(X)\lrcorner \rho-2 \mathcal{T}(X)\lrcorner \sigma+3 \eta(X) \widehat{\rho}
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla_{X}^{g} \widehat{\rho} & \left.=-\alpha \wedge F(X)\lrcorner \widehat{\rho}-\sum_{i, j=2}^{7}\left(\rho\left(\mathcal{T}(X), E_{i}, E_{j}\right)+\eta(X) \omega\left(E_{i}, E_{j}\right)\right) E^{i} \wedge E_{j}\right\lrcorner \widehat{\rho} \\
& \left.=-\alpha \wedge F(X)\lrcorner \widehat{\rho}-3 \eta(X) \rho-\sum_{i, j=2}^{7} \widehat{\rho}\left(I \mathcal{T}(X), E_{i}, E_{j}\right) E^{i} \wedge E_{j}\right\lrcorner \widehat{\rho} \\
& \left.\left.\left.=-\alpha \wedge F(X)\lrcorner \widehat{\rho}-3 \eta(X) \rho-\frac{1}{2} I \mathcal{T}(X)\right\lrcorner\left(\sum_{j=2}^{7} E_{j}\right\lrcorner \widehat{\rho} \wedge E_{j}\right\lrcorner \widehat{\rho}\right) \\
& =-\alpha \wedge F(X)\lrcorner \widehat{\rho}-3 \eta(X) \rho-2 I \mathcal{T}(X)\lrcorner \sigma
\end{aligned}
$$

Now the exterior derivatives are given by

$$
d \alpha=\sum_{i=1}^{7} E^{i} \wedge \nabla_{E_{i}}^{g} \alpha=2 \operatorname{pr}_{\Lambda^{2}}(F)
$$

and

$$
\begin{aligned}
d \omega & \left.\left.=\sum_{i=1}^{7} E^{i} \wedge \nabla_{E_{i}}^{g} \omega=\sum_{i=1}^{7} E^{i} \wedge\left(-\alpha \wedge F\left(E_{i}\right)\right\lrcorner \omega-2 \mathcal{T}\left(E_{i}\right)\right\lrcorner \widehat{\rho}\right) \\
& =-\alpha \wedge D_{\omega}(F)+2 D_{\widehat{\rho}}(\mathcal{T}) .
\end{aligned}
$$

Hence $d \sigma=-\alpha \wedge D_{\sigma}(F)+2 D_{\widehat{\rho}}(\mathcal{T}) \wedge \omega$, and similarly

$$
\begin{aligned}
d \rho & \left.\left.=\sum_{i=1}^{7} E^{i} \wedge \nabla_{E_{i}}^{g} \rho=\sum_{i=1}^{7} E^{i} \wedge\left(-\alpha \wedge F\left(E_{i}\right)\right\lrcorner \rho-2 \mathcal{T}\left(E_{i}\right)\right\lrcorner \sigma+3 \eta\left(E_{i}\right) \widehat{\rho}\right) \\
& =-\alpha \wedge D_{\rho}(F)+2 D_{\sigma}(\mathcal{T})+3 \eta \wedge \widehat{\rho}
\end{aligned}
$$

and

$$
\begin{aligned}
d \widehat{\rho} & \left.\left.=\sum_{i=1}^{7} E^{i} \wedge \nabla_{E_{i}}^{g} \widehat{\rho}=\sum_{i=1}^{7} E^{i} \wedge\left(-\alpha \wedge F\left(E_{i}\right)\right\lrcorner \widehat{\rho}-2 I \mathcal{T}\left(E_{i}\right)\right\lrcorner \sigma-3 \eta\left(E_{i}\right) \rho\right) \\
& =-\alpha \wedge D_{\widehat{\rho}}(F)+2 D_{\sigma}(I \mathcal{T})-3 \eta \wedge \rho .
\end{aligned}
$$

Theorem 3.46. Let (ψ, α) be a $S U(3)$-structure on M with intrinsic torsion $\tau \cong F+\mathcal{T}+\eta$ and $0 \neq \lambda \in \mathbb{R}$. In the following table we list different types of $S U(3)$-structures, the related torsion types and the corresponding equations for the structure tensors. For this let

$$
\mathcal{T}_{0}:=\mathcal{T}_{\mid \operatorname{ker}(\alpha)} \in \operatorname{End}(\operatorname{ker}(\alpha)) \quad \text { and } \quad \eta_{0}:=\eta_{\mid \operatorname{ker}(\alpha)} \in \Omega^{1}(\operatorname{ker}(\alpha))
$$

Name	Torsion	Characterization
Nearly Hypo	$\begin{gathered} I \mathcal{T}_{0}+\frac{1}{8} \lambda I \in S^{2} \\ \eta_{0}=0 \end{gathered}$	$d \rho=\lambda \sigma$ on $\operatorname{ker}(\alpha)$.
Нуро	$\begin{gathered} I \mathcal{T}_{0} \in S^{2} \\ \eta_{0}=0 \end{gathered}$	$d \sigma=d \rho=0$ on $\operatorname{ker}(\alpha)$.
Nearly Parallel (nearly Kähler)	$\begin{aligned} I \mathcal{T}_{0} & =\lambda \mathrm{id} \\ \eta_{0} & =0 \end{aligned}$	$\begin{aligned} d \omega & =6 \lambda \rho \text { on } \operatorname{ker}(\alpha) \text { and } \\ d \widehat{\rho} & =-4 \lambda \omega^{2} \text { on } \operatorname{ker}(\alpha) . \end{aligned}$ Equivalently: For all $X \in \operatorname{ker}(\alpha)$ $\left(\nabla_{X}^{g} I\right) X=0$ and $d \rho=0$ on $\operatorname{ker}(\alpha)$.
Parallel (Calabi-Yau)	$\begin{aligned} \mathcal{T}_{0} & =0 \\ \eta_{0} & =0 \end{aligned}$	$d \omega=d \rho=d \widehat{\rho}=0$ on $\operatorname{ker}(\alpha)$.
Complex	$\mathcal{T}_{0} \in S_{12}^{2} \oplus \mathfrak{u}_{3}^{\perp}$	$N_{I}=0$ on $\operatorname{ker}(\alpha)$.
Kähler	$\mathcal{T}_{0}=0$	$\begin{gathered} N_{I}=0 \text { and } d \omega=0 \text { on } \operatorname{ker}(\alpha) . \\ \text { Equivalently, } \\ \nabla^{g} \omega=0 \text { on } \operatorname{ker}(\alpha) . \end{gathered}$

Sasakian	$\mathcal{T}=0$	
$F=I$	$I=\nabla^{g} \xi$ and	
		$\left(\nabla_{X}^{g} I\right) Y=g(\xi, Y) X-g(X, Y) \xi$,
for all $X, Y \in T M$.		

Proof: The equations for the exterior derivatives of the structure tensors from Proposition 3.45 and Lemma 3.1 give

$$
\begin{aligned}
d \rho_{\mid \operatorname{ker}(\alpha)} & =2 D_{\sigma}(\mathcal{T})_{\mid \operatorname{ker}(\alpha)}+3(\eta \wedge \widehat{\rho})_{\mid \operatorname{ker}(\alpha)} \\
& \left.=-2 \sum_{i=1}^{7}\left(E^{i} \wedge \mathcal{T} E_{i}\right\lrcorner \sigma\right)_{\mid \operatorname{ker}(\alpha)}+3 \eta_{0} \wedge \widehat{\rho}_{\mid \operatorname{ker}(\alpha)} \\
& \left.=-2 \sum_{i=2}^{7} E^{i} \wedge \mathcal{T}_{0} E_{i}\right\lrcorner \sigma_{\mid \operatorname{ker}(\alpha)}+3 \eta_{0} \wedge \widehat{\rho}_{\mid \operatorname{ker}(\alpha)}, \text { for } E^{1}=\alpha \\
& =2 D_{\sigma_{\mid \operatorname{ker}(\alpha)}}\left(\mathcal{T}_{0}\right)+3 \eta_{0} \wedge \widehat{\rho}_{\mid \operatorname{ker}(\alpha)} .
\end{aligned}
$$

Similarly we obtain formulae for the restriction of $d \omega, d \sigma$ and $d \widehat{\rho}$ to $\operatorname{ker}(\alpha)$. The resulting equations are precisely the equations from the six dimensional case, cf. Proposition 3.25. For the covariant derivatives we obtain again by Proposition 3.45

$$
\left.\left(\nabla^{g} \omega\right)_{\mid \operatorname{ker}(\alpha)}=-2 \mathcal{T}_{0}\right\lrcorner \widehat{\rho}_{\mid \operatorname{ker}(\alpha)},
$$

which was required in the proof of Theorem 3.28 to characterize the condition $N_{I}=0$. With this observation, we can reduce all computations to $\operatorname{ker}(\alpha)$ and repeat arguments from the proof of Theorem 3.28.

For the description of Sasakian structures we use Proposition 3.45 to find $I=$ $\nabla^{g} \xi=F$ and hence

$$
\begin{aligned}
\left(\nabla_{X}^{g} \omega\right)(Y, Z) & =(-\alpha \wedge F(X)\lrcorner \omega-2 \mathcal{T}(X)\lrcorner \widehat{\rho})(Y, Z) \\
& =(\alpha \wedge X\lrcorner g-2 \mathcal{T}(X)\lrcorner \widehat{\rho})(Y, Z) \\
& =g(\xi, Y) g(X, Z)-g(\xi, Z) g(X, Y)-2 \widehat{\rho}(\mathcal{T}(X), Y, Z) .
\end{aligned}
$$

Now the characterization follows, since $\mathcal{T}(X) \in \operatorname{ker}(\alpha)$ and $\widehat{\rho}$ is non degenerated on $\operatorname{ker}(\alpha)$.

Remark 3.47. M. Cabrera [14] studies $S U(3)$-structures on hyper surfaces which are induced by certain types of ambient G_{2}-structures. The only case where the induced structure is actually Kähler (i.e. of type \mathcal{W}_{5} in the notation of [14]) occurs in Table 2 of [14]. Cabrera shows that in this case, the ambient G_{2}-structure must be parallel and the hyper surface has to be totally geodesic. However, Cabrera only
studies ambient G_{2}-structures which are of one of the four canonical Gray-Hervella types. A generic $S U(3) \subset G_{2}$ structure with $\mathcal{T}_{\operatorname{ker}(\alpha)}=0$ does not belong to one of these four types.

Remark 3.48. Sasakian structures in dimension $2 n+1$ are $\{1\} \times U(n)$ structures which satisfy the integrability conditions

$$
I=\nabla^{g} \xi \quad \text { and } \quad\left(\nabla_{X}^{g} I\right) Y=g(\xi, Y) X-g(X, Y) \xi
$$

Hence a $S U(3)$-structure on a seven dimensional manifold satisfies these conditions if and only if the underlying $\{1\} \times U(3)$ structure is a Sasakian structure, cf. [8]. Sasakian structures are usually considered as the odd-dimensional analogue of Kähler structures. From this point of view, Sasakian structures which are compatible with a topological G_{2}-structure can be regarded as the analogue of $S U(3)$-Kähler structures, i.e. Kähler structures with $c_{1}=0$. By Yau's proof of the Calabi conjecture, such a Kähler structure admits a unique Ricci flat Kähler structure within its cohomology class. But a Sasakian structure can neither be Ricci flat, nor allow parallel forms.
Another reason why the term 'analogue' should be used with caution, is the fact that it is used with respect to a certain embedding of the $\{1\} \times U(n)$ structure into an even dimensional space. In the Sasakian case the ambient space is the metric cone over the odd dimensional manifold M, but different choices for the ambient space will lead to different notions of what one should call an odd dimensional 'analogue' of Kähler structures.
To avoid the choice of an ambient space, it seems natural to call a $\{1\} \times U(n)$ structure Kähler if the $U(n)$-structure on $\operatorname{ker}(\alpha)$ is Kähler, i.e. $\mathcal{T}=0$ on $\operatorname{ker}(\alpha)$. This notion can be refined by requiring the distributional part F to live in a certain submodule of

$$
F \in\left(\begin{array}{cc}
0 & 0 \\
\mathbb{R}^{6} & \operatorname{End}\left(\mathbb{R}^{6}\right)
\end{array}\right)
$$

where $\operatorname{End}\left(\mathbb{R}^{6}\right)$ decomposes as an $S U(3)$-module into

	I^{+}	I^{-}
$S^{2}\left(\mathbb{R}^{6}\right)$	$\mathbb{R i d} \oplus I_{0} \mathfrak{s u}(3)$	S_{12}^{2}
$\mathfrak{s o}_{6}$	$\mathbb{R} I_{0} \oplus \mathfrak{s u}(3)$	\mathfrak{u}_{3}^{\perp}

So the possible notions of 'analogue' Kähler structures are parameterized by the distributional part F. Theorem 3.46 states that $S U(3)$-Sasakian structures are precisely those types of Kähler structures for which $F=I \in \mathbb{R} I_{0}$ and $\mathcal{T}(\xi)=0$ holds.

Spin(7)-Structures in Dimension Eight

In this section we consider the following model form on \mathbb{R}^{8} :

$$
\begin{aligned}
\Psi_{0}= & \psi_{0}+e^{1} \wedge \varphi_{0} \\
= & e^{3456}+e^{3478}+e^{5678}-e^{2358}+e^{2468}-e^{2457}-e^{2367} \\
& +e^{1357}-e^{1467}-e^{1458}-e^{1368}+e^{1234}+e^{1256}+e^{1278}
\end{aligned}
$$

This form satisfies certain relations, which can be verified in a direct computation:

Lemma 3.49. For all $x \in \mathbb{R}^{8}$
(1) $\Psi_{0} \wedge \Psi_{0}=14 \varepsilon_{0}$.
(2) $*_{0} \Psi_{0}=\Psi_{0}$.
(3) $\left.\left.*_{0}\left((x\lrcorner g_{0}\right) \wedge \Psi_{0}\right)=x\right\lrcorner \Psi_{0}$.
(4) $\left.\left.*_{0}(x\lrcorner \Psi_{0} \wedge \Psi_{0}\right)=7 x\right\lrcorner g_{0}$.

The isotropy group of Ψ_{0} can be identified with the Lie group Spin(7), cf. [47] Lemma 12.2.

Lemma 3.50.

$$
\operatorname{Iso}_{G L(8)}\left(\Psi_{0}\right)=\operatorname{Spin}(7)
$$

Since $\operatorname{dim}(G L(8) / \operatorname{Spin}(7))=64-21<70=\operatorname{dim}\left(\Lambda^{4} \mathbb{R}^{8 *}\right)$, the form Ψ_{0} is not stable. Nevertheless, we have by Proposition 1.2

Corollary 3.51. Spin(7)-structures on an eight dimensional manifold M correspond to forms $\Psi \in \Omega^{4}(M)$ of type Ψ_{0}.

We will now describe the Lie algebra of $\operatorname{Spin}(7) \subset S O(8)$.

Lemma 3.52. $A=\left(a_{i j}\right) \in \mathfrak{s o}_{8}$ is an element of $\mathfrak{s p i n}_{7} \subset \mathfrak{s o}_{8}$ if and only if

$$
\begin{array}{rlrl}
a_{23}+a_{45}+a_{67} & =0, & a_{46}-a_{57}-a_{13}+a_{12}=0, \\
-a_{56}-a_{47}+a_{12}+a_{13} & =0, & -a_{26}+a_{37}-a_{15}+a_{14}=0 \\
+a_{36}+a_{27}+a_{14}+a_{15} & =0, & a_{24}-a_{35}-a_{17}+a_{16}=0, \\
-a_{34}-a_{25}+a_{16}+a_{17} & =0 . & &
\end{array}
$$

Note that the $i^{t h}$ equation corresponds to $a_{k l} \varphi_{i k l}+a_{1 i}=0$. The orthogonal complement in $\mathfrak{5 0}_{8}$ is given by

$$
\left.\left.\left.\mathfrak{s p i n}_{7}^{\perp}=\left\{A \in \mathfrak{s o}_{8} \mid A\right\lrcorner g=x\right\lrcorner \varphi_{0}+e^{1} \wedge(x\lrcorner g_{0}\right), \text { for some } x \in \mathbb{R}^{8}\right\}
$$

Proof: By Lemma 1.14 we have

$$
\mathfrak{s p i n}_{7}=\operatorname{ker}\left(D_{\Psi_{0}}: \mathfrak{s o}_{8} \rightarrow \Lambda^{4} \mathbb{R}^{7 *}\right)
$$

and Lemma 3.1 yields $A \in \mathfrak{s p i n}_{7}$ if and only if

$$
\left.\left.0=\sum_{i=1}^{8} e^{i} \wedge A e_{i}\right\lrcorner \psi_{0}=\sum_{i, j=1}^{8} a_{i j} e^{i} \wedge e_{j}\right\lrcorner \psi_{0}
$$

This system translates into the seven equations for the coefficients $a_{i j}$. Hence for $A \in \mathfrak{s p i n}_{7}$ and $\left.\left.\left.B_{i}\right\lrcorner g:=e_{i}\right\lrcorner \varphi_{0}+e^{1} \wedge\left(e_{i}\right\lrcorner g\right)$

$$
\begin{aligned}
\operatorname{tr}\left(B_{i} A\right) & =\sum_{j=1}^{8}\left(\varphi_{0}\left(e_{i}, A e_{j}, e_{j}\right)+a_{j 1} \delta_{i j}-a_{j i} \delta_{j 1}\right) \\
& =2 \sum_{j<k} a_{j k} \varphi_{0}\left(e_{i}, e_{k}, e_{j}\right)+a_{i 1}-a_{1 i} \\
& =2 a_{1 i}-2 a_{1 i}=0
\end{aligned}
$$

and we see that B_{i} defines an element $B_{i} \in \mathfrak{s p i n}_{7}^{\perp}$. Since $\operatorname{dim}\left(\mathfrak{s p i n}_{7}^{\perp}\right)=7$ and $B_{1}=0$, the Lemma follows.

Proposition 3.53. The following decompositions of Spin(7)-modules are irreducible:

$$
\begin{aligned}
\mathfrak{s o}_{8} & =\mathfrak{s p i n}_{7} \oplus \mathfrak{s p i n}_{7}^{\perp} \\
\operatorname{End}\left(\mathbb{R}^{8}\right) & =\left(\mathbb{R i d} \oplus S_{0}^{2}\right) \oplus\left(\mathfrak{s p i n}_{7} \oplus \mathfrak{s p i n}_{7}^{\perp}\right), \text { where } \\
S_{0}^{2} & =\left\{A \in S^{2} \mid \operatorname{tr}(A)=0\right\}
\end{aligned}
$$

The $\operatorname{Spin}(7)$-modules $\Lambda^{k}:=\Lambda^{k} \mathbb{R}^{8 *}$ decompose into the following irreducible submodules, where the lower index denotes the dimension of the submodule:

$$
\Lambda^{1}=\Lambda_{8}^{1}
$$

$$
\begin{aligned}
\Lambda^{2}= & \Lambda_{7}^{2} \oplus \Lambda_{21}^{2}, \text { where } \\
& \Lambda_{7}^{2}=\left\{\omega \in \Lambda^{2} \mid *_{0}\left(\Psi_{0} \wedge \omega\right)=3 \omega\right\}, \\
& \Lambda_{21}^{2}=\left\{\omega \in \Lambda^{2} \mid *_{0}\left(\Psi_{0} \wedge \omega\right)=-\omega\right\} \cong \mathfrak{s p i n}_{7}, \\
\Lambda^{3}= & \Lambda_{8}^{3} \oplus \Lambda_{48}^{3}, \text { where } \\
& \left.\Lambda_{8}^{3}=\{x\lrcorner \Psi_{0} \mid x \in \mathbb{R}^{8}\right\}, \\
& \Lambda_{48}^{3}=\left\{\omega \in \Lambda^{3} \mid \Psi_{0} \wedge \omega=0\right\}, \\
\Lambda^{4}= & \Lambda_{1}^{4} \oplus \Lambda_{7}^{4} \oplus \Lambda_{27}^{4} \oplus \Lambda_{35}^{4}, \text { where } \\
& \Lambda_{1}^{4}=\mathbb{R}_{0}, \\
& \left.\left.\left.\Lambda_{7}^{4}=\left\{\sum_{i=1}^{8} e^{i} \wedge A e_{i}\right\lrcorner \Psi_{0}-\left(A e_{i}\right\lrcorner g_{0}\right) \wedge\left(e_{i}\right\lrcorner \Psi_{0}\right) \mid A \in \mathfrak{s p i n}_{7}^{1}\right\}, \\
& \Lambda_{27}^{4}=\left\{\omega \in \Lambda^{4} \mid \omega=*_{0} \omega, \Psi_{0} \wedge \omega=0 \text { and } \Lambda_{7}^{4} \subset \operatorname{ker}(\omega \wedge .)\right\}, \\
& \Lambda_{35}^{4}=\left\{\omega \in \Lambda^{4} \mid *_{0} \omega=-\omega\right\}, \\
\Lambda^{5}= & \Lambda_{8}^{5} \oplus \Lambda_{48}^{5}, \text { where } \\
& \Lambda_{8}^{5}=\left\{\alpha \wedge \Psi_{0} \mid \alpha \in \Lambda^{1}\right\}, \\
& \Lambda_{48}^{5}=\left\{\omega \in \Lambda^{5} \mid \Psi_{0} \wedge *_{0} \omega=0\right\}, \\
\Lambda^{6}= & \Lambda_{7}^{6} \oplus \Lambda_{21}^{6}, \text { where } \\
& \Lambda_{7}^{6}=\left\{\omega \in \Lambda^{6} \mid \Psi_{0} \wedge *_{0} \omega=3 \omega\right\}, \\
& \Lambda_{21}^{6}=\left\{\omega \in \Lambda^{6} \mid \Psi_{0} \wedge *_{0} \omega=-\omega\right\}, \\
\Lambda^{7}= & \Lambda_{8}^{7} .
\end{aligned}
$$

Proof: The decompositions of Λ^{k} into irreducible submodules can be found in [43], formulae 4.7-4.10 and 4.12-4.19. The map $D_{\Psi_{0}}: \operatorname{End}\left(\mathbb{R}^{8}\right) \rightarrow \Lambda^{4}$ satisfies $\operatorname{ker}\left(D_{\Psi_{0}}\right)=\mathfrak{s p i n}_{7}$ by Lemma 1.14 and Lemma 3.50. Hence $\mathbb{R i d} \cap \operatorname{ker}\left(D_{\Psi_{0}}\right)=\{0\}$ and $D_{\Psi_{0}}(\mathbb{R i d})$ is a one dimensional submodule of Λ^{4}. By irreducibility, we see that $0 \neq D_{\Psi_{0}}(\mathbb{R i d})=\Lambda_{1}^{4}$. This yields similarly $D_{\Psi_{0}}\left(\mathfrak{s p i n}_{7}^{\frac{1}{7}}\right)=\Lambda_{7}^{4}$ and $D_{\Psi_{0}}\left(S_{0}^{2}\right)=\Lambda_{35}^{4}$. In particular, S_{0}^{2} is irreducible by the irreducibility of Λ_{35}^{4}, which proves that the above decomposition of $\operatorname{End}\left(\mathbb{R}^{8}\right)$ is irreducible.

Lemma 3.54. The map $D_{\Psi_{0}}: \operatorname{End}\left(\mathbb{R}^{8}\right) \rightarrow \Lambda^{4} \mathbb{R}^{8 *}$ defines an isomorphism between certain submodules of $\operatorname{End}\left(\mathbb{R}^{8}\right)$ and $\Lambda^{4} \mathbb{R}^{8 *}$:

	Rid	S_{0}^{2}	$\mathfrak{s p i n}_{7}$	$\mathfrak{s p i n}_{7}^{\frac{1}{7}}$
$D_{\Psi_{0}}$	Λ_{1}^{4}	Λ_{35}^{4}	0	Λ_{7}^{4}

Proof: We proved this already in Lemma 3.53.

Consider the map

$$
f_{\Psi_{0}}: \mathbb{R}^{8 *} \otimes \mathfrak{s p i n}_{7}^{\perp} \rightarrow \Lambda^{5} \mathbb{R}^{8 *} \quad \text { with } \quad \tau \mapsto \sum_{i=1}^{8} e^{i} \wedge D_{\Psi_{0}}\left(\tau\left(e_{i}\right)\right) .
$$

This definition is independent of the choice of g_{0}-orthonormal basis $\left(e_{1}, . ., e_{8}\right)$ and hence Lemma 1.14 shows that $f_{\Psi_{0}}$ is $\operatorname{Spin}(7) \subset S O(8)$ equivariant. From Lemma 3.1 we get

$$
\left.f_{\Psi_{0}}(\tau)=-\sum_{i, j, k} \tau_{i j k} e^{i j} \wedge e_{k}\right\lrcorner \Psi_{0}
$$

which can be used to show that $f_{\Psi_{0}}$ is injective and hence an isomorphism. Since $\Lambda^{5}=\Lambda_{8}^{5} \oplus \Lambda_{48}^{5}$, we obtain a corresponding decomposition into irreducible $\operatorname{Spin}(7)-$ modules

$$
\mathbb{R}^{8 *} \otimes \mathfrak{s p i n}_{7}^{\perp}=\mathcal{W}_{8} \oplus \mathcal{W}_{48}
$$

and hence there are 2^{2} different types of $\operatorname{Spin}(7)$-structures in dimension eight:

Theorem 3.55. Let Ψ be a $\operatorname{Spin}(7)$-structure on M with intrinsic torsion τ. In the following table we list different types of $\operatorname{Spin}(7)$-structures, the related torsion types and the corresponding equations for the structure tensors.

Name	Torsion	Characterization
Balanced	$\tau \in \mathcal{W}_{48}$	$\Theta:=*(* d \Psi \wedge \Psi)=0$ (Lee form)
Locally conformal parallel	$\tau \in \mathcal{W}_{8}$	$d \Psi=\frac{1}{7} \Theta \wedge \Psi$
Parallel	$\tau=0$	$d \Psi=0$

Proof: From Proposition 1.18 we get $f_{\Psi}(\tau)=d \Psi$ and, since f_{Ψ} is an isomorphism, we have $d \Psi=0 \Leftrightarrow \tau=0$. By Proposition 3.53 we have

$$
\tau \in \mathcal{W}_{48} \quad \Leftrightarrow \quad d \Psi \in \Lambda_{48}^{5} \quad \Leftrightarrow \quad \Theta=0
$$

and similarly

$$
\tau \in \mathcal{W}_{8} \quad \Leftrightarrow \quad d \Psi \in \Lambda_{8}^{5} \quad \Leftrightarrow \quad d \Psi=\alpha \wedge \Psi
$$

for some 1-form α. Using Lemma 3.49, we get

$$
\Theta=*(* d \Psi \wedge \Psi)=*(\xi\lrcorner \Psi \wedge \Psi)=7 \alpha
$$

where $\xi\lrcorner g:=\alpha$.

4. Embedding Theorems for Special Geometries

In [36] N. Hitchin introduces a flow equation for hypo G_{2}-structures on a manifold M, whose solutions yield parallel $\operatorname{Spin}(7)$-structures on $I \times M$, for some interval $I \subset \mathbb{R}$. In this sense, a solution of the flow equation embeds the initial G_{2}-structure into a manifold with a parallel $\operatorname{Spin}(7)$-structure and is therefore called a solution of the embedding problem for the initial structure. Similar equations are known for embedding $S U(2)$-structures in dimension five and $S U(3)$-structures in dimension six into manifolds with a parallel $S U(3)$ and G_{2}-structure, respectively, cf. $[\mathbf{2 1}],[\mathbf{2 2}],[\mathbf{2 3}],[\mathbf{2 8}],[\mathbf{2 9}]$. R. Bryant shows in $[\mathbf{1 1}]$ that in the real analytic category, the embedding problem for hypo $S U(3)$ and G_{2}-structures can be solved. Bryant also provided counterexamples in the smooth category. The embedding problem for $S U(2)$-structures in dimension five was solved by D. Conti and S. Salamon in [22], cf. also [21].

In this section we describe a unifying approach to all of the above embedding problems. We reduce the $S U(2)$ and $S U(3)$ embedding problem to the G_{2}-case, which will be studied in terms of gauge deformations. Since the structure tensor $\varphi \in \Omega^{3}(M)$ of a G_{2}-structure is stable, any smooth deformation φ_{t} can be described by a family of gauge deformations $A_{t} \in C^{\infty}(\operatorname{Aut}(T M))$ via $\varphi_{t}=A_{t} \varphi$, cf. Theorem 1.6. In the G_{2}-case, the intrinsic torsion \mathcal{T} takes values in the G_{2}-module $\mathfrak{g l}(7)$ and can therefore be regarded again as an (infinitesimal) gauge deformation. We prove that the intrinsic torsion flow for G_{2}-structures

$$
\dot{A}_{t}=\mathcal{T}_{t} \circ A_{t}
$$

can be regarded as a generalization of Hitchin's flow equation, and hence as a generalization of the $S U(2), S U(3)$ and G_{2}-embedding problem, cf. Proposition 4.12. In Theorem 4.13 we determine the evolution of the metric and the intrinsic torsion under the intrinsic torsion flow. Using the Cheeger-Gromoll Splitting Theorem, we prove in Theorem 4.14 and Corollary 4.15 that there are no nontrivial longtime solutions for the embedding problem.

Generalized Cylinders

Let ξ be a unit vector field on (M, g), such that $d \alpha=0$, where $\alpha:=\xi\lrcorner g$. On the integral manifolds $i: N \hookrightarrow M$ of the distribution $\operatorname{ker}(\alpha)$, we denote by $g_{N}:=i^{*} g$
the induced metric. Conversely, the collection of metrics on all integral manifolds determines the ambient metric via

$$
g=\alpha \otimes \alpha+\left\{g_{N}\right\}
$$

where $\left\{g_{N}\right\}:=\operatorname{pr}^{*} g$ and $\operatorname{pr}: T M \rightarrow \operatorname{ker}(\alpha)$ is the projection $\operatorname{pr}(X):=X-\alpha(X) \xi$. The Weingarten map

$$
\mathcal{W}:=\nabla^{g} \xi
$$

defines a symmetric endomorphism on (M, g) with

$$
\left(L_{\xi} g\right)(X, Y)=2 g(\mathcal{W} X, Y)
$$

and $W(\xi)=0$. This shows that the integral curves of ξ are geodesics on (M, g) and that \mathcal{W} reduces to a symmetric endomorphism \mathcal{W}_{N} on each integral manifold $N \subset M$. We will now express the curvature quantities R, ric and scal on M in terms of the curvature quantities $R_{N}, \operatorname{ric}_{N}$ and scal_{N} on $N \subset M$.

Proposition 4.1. For $X, Y, U, V \in T_{p} N \subset T_{p} M$ we have

$$
\begin{aligned}
g(R(U, X) Y, V)= & g_{N}\left(R_{N}(U, X) Y, V\right) \\
& +g_{N}\left(\mathcal{W}_{N} U, Y\right) g_{N}\left(\mathcal{W}_{N} X, V\right)-g_{N}\left(\mathcal{W}_{N} X, Y\right) g_{N}\left(\mathcal{W}_{N} U, V\right) \\
g(R(\xi, X) Y, \xi)= & g_{N}\left(\mathcal{W}_{N} X, \mathcal{W}_{N} Y\right)-\frac{1}{2}\left(L_{\xi}^{2} g\right)(X, Y) \\
g(R(U, \xi) Y, V)= & g_{N}\left(\left(\nabla_{V}^{g_{N}} \mathcal{W}_{N}\right) Y, U\right)-g_{N}\left(\left(\nabla_{Y}^{g_{N}} \mathcal{W}_{N}\right) V, U\right) \\
\operatorname{ric}(X, Y)= & \operatorname{ric}_{N}(X, Y)-\operatorname{tr}\left(\mathcal{W}_{N}\right) g_{N}\left(\mathcal{W}_{N} X, Y\right) \\
& +2 g_{N}\left(\mathcal{W}_{N} X, \mathcal{W}_{N} Y\right)-\frac{1}{2}\left(L_{\xi}^{2} g\right)(X, Y) \\
\operatorname{ric}(\xi, \xi)= & \operatorname{tr}\left(\mathcal{W}_{N}^{2}\right)-\frac{1}{2} \operatorname{tr}_{g}\left(L_{\xi}^{2} g\right) \\
\operatorname{ric}(X, \xi)= & \operatorname{div}\left(\mathcal{W}_{N}\right)(X)-X \cdot \operatorname{tr}\left(\mathcal{W}_{N}\right) \\
\operatorname{scal}= & \operatorname{scal}_{N}+3 \operatorname{tr}\left(\mathcal{W}_{N}^{2}\right)-\operatorname{tr}\left(\mathcal{W}_{N}\right)^{2}-\operatorname{tr}_{g}\left(L_{\xi}^{2} g\right)
\end{aligned}
$$

Proof: It suffices to consider vector fields X with $L_{\xi} X=0$, so that $\nabla_{\xi}^{g} X=\mathcal{W}(X)$ and

$$
\xi \cdot g(X, Y)=2 g(\mathcal{W} X, Y)
$$

The first and third equation can be found in this form in [46], 4.2. Theorem 3 and 4, respectively. From [46] 4.2 Theorem 2 we get the second equation,

$$
\begin{aligned}
R(\xi, X, Y, \xi) & =-g(\mathcal{W} X, \mathcal{W} Y)-g\left(\left(\nabla_{\xi}^{g} \mathcal{W}\right) X, Y\right) \\
& =-g(\mathcal{W} X, \mathcal{W} Y)-\xi \cdot g(\mathcal{W} X, Y)+g\left(\mathcal{W} X, \nabla_{\xi}^{g} Y\right)+g\left(\nabla_{\xi}^{g} X, \mathcal{W} Y\right) \\
& =g(\mathcal{W} X, \mathcal{W} Y)-\frac{1}{2} \xi \cdot(\xi \cdot g(X, Y)) \\
& =g(\mathcal{W} X, \mathcal{W} Y)-\frac{1}{2}\left(L_{\xi}^{2} g\right)(X, Y)
\end{aligned}
$$

Now let $\left(\xi, E_{2}, . ., E_{n}\right)$ be a local orthonormal basis with $\nabla_{X}^{g} E_{i}=0$ at a fixed point. Then at this point

$$
\begin{aligned}
\operatorname{ric}(X, \xi) & =\sum_{i=2}^{n} R\left(E_{i}, X, \xi, E_{i}\right)=-\sum_{i=2}^{n} R\left(E_{i}, \xi, E_{i}, X\right) \\
& =\sum_{i=2}^{n}-g_{N}\left(\left(\nabla_{X}^{g_{N}} \mathcal{W}_{N}\right) E_{i}, E_{i}\right)+g_{N}\left(\left(\nabla_{E_{i}}^{g_{N}} \mathcal{W}_{N}\right) X, E_{i}\right) \\
& =\sum_{i=2}^{n}-X \cdot g_{N}\left(\mathcal{W}_{N} E_{i}, E_{i}\right)+\operatorname{div}\left(\mathcal{W}_{N}\right)(X) \\
& =-X \cdot \operatorname{tr}\left(\mathcal{W}_{N}\right)+\operatorname{div}\left(\mathcal{W}_{N}\right)(X)
\end{aligned}
$$

The remaining equations are obtained similarly.

Lemma 4.2. Suppose φ is a k-form on M such that $\xi\lrcorner \varphi=0$. Then $\varphi=\left\{\varphi_{N}\right\}$ and

$$
d \varphi=\left\{d \varphi_{N}\right\}+\alpha \wedge L_{\xi} \varphi,
$$

where $d \varphi_{N}$ denotes the exterior derivative of φ_{N} on the integral manifold $N \subset M$.

Proof: Fix $N_{0} \subset M$ and choose local coordinates $\left\{v_{2}, . ., v_{n}\right\}$ for N_{0}. The flow Φ_{t} of ξ defines a diffeomorphism

$$
\Phi_{t}: N_{0} \rightarrow N_{t}
$$

where $N_{t}:=\Phi_{t}\left(N_{0}\right)$ is again an integral manifold of $\operatorname{ker}(\alpha)$. For

$$
q \in U:=\bigcup_{t \in(-\varepsilon, \varepsilon)} \Phi_{t}\left(N_{0}\right)
$$

exists a unique $p \in N_{0}$ and $t \in(-\varepsilon, \varepsilon)$ such that $q=\Phi_{t}(p)$. Now we obtain coordinates on U by

$$
u_{1}\left(\Phi_{t}(p)\right):=t \quad \text { and } \quad u_{i}\left(\Phi_{t}(p)\right):=v_{i}(p), \text { for } i \geq 2
$$

with

$$
\left.\frac{\partial}{\partial u_{1}}\right|_{\Phi_{t}(p)}=\frac{d}{d s} u^{-1}(t+s, v(p))=\frac{d}{d s} \Phi_{t+s}(p)=\xi \circ \Phi_{t}(p) .
$$

Hence $\left.\frac{\partial}{\partial u_{1}}\right\lrcorner \varphi=0$ and computing $d \varphi$ at $p \in N_{0}$ yields

$$
\begin{aligned}
d \varphi(p) & =\left.\sum_{1 \notin J} \sum_{i=2}^{7} \frac{\partial}{\partial u_{i}}\right|_{p} \cdot \varphi\left(\frac{\partial}{\partial u_{J}}\right)\left(d u_{i} \wedge d u_{J}\right)(p)+\left.\sum_{1 \notin J} \frac{\partial}{\partial u_{1}}\right|_{p} \cdot \varphi\left(\frac{\partial}{\partial u_{J}}\right)\left(d u_{1} \wedge d u_{J}\right)(p) \\
& =\left.\sum_{1 \notin J} \sum_{i=2}^{7} \frac{\partial}{\partial v_{i}}\right|_{p} \cdot \varphi_{N_{0}}\left(\frac{\partial}{\partial v_{J}}\right)\left(d v_{i} \wedge d v_{J}\right)(p)+\left.\alpha(p) \wedge \sum_{1 \notin J} \xi\right|_{p} \cdot \varphi\left(\frac{\partial}{\partial u_{J}}\right) d u_{J}(p) \\
& =\left(d \varphi_{N_{0}}\right)(p)+\left.\alpha(p) \wedge \sum_{1 \notin J} \xi\right|_{p} \cdot \varphi\left(\frac{\partial}{\partial u_{J}}\right) d u_{J}(p),
\end{aligned}
$$

where we used that the flow of $\frac{\partial}{\partial u_{i}}$ stays in N_{0}, for $i \geq 2$. Now

$$
\left.\left.L_{\xi} d u_{i}=d \xi\right\lrcorner d u_{i}=d \frac{\partial}{\partial u_{1}}\right\lrcorner d u_{i}=0
$$

gives

$$
L_{\xi} \varphi=L_{\xi}\left(\sum_{1 \notin J} \varphi\left(\frac{\partial}{\partial u_{J}}\right) d u_{J}\right)=\sum_{1 \notin J} \xi \cdot \varphi\left(\frac{\partial}{\partial u_{J}}\right) d u_{J}
$$

i.e.

$$
d \varphi(p)=\left(d \varphi_{N_{0}}\right)(p)+\alpha(p) \wedge\left(L_{\xi} \varphi\right)(p)
$$

Let $I \subset \mathbb{R}$ be an open interval, $\left\{g_{t}\right\}_{t \in I}$ a family of metrics on $N, M:=I \times N$ and Φ_{t} the flow of the vector field $\xi:=d / d t$ on M. We extend the family $\left\{g_{t}\right\}_{t \in I}$ to a $(2,0)$-tensor $\left\{g_{t}\right\}$ on M by

$$
\xi\lrcorner\left\{g_{t}\right\}=0 \quad \text { and } \quad\left\{g_{t}\right\}\left(\Phi_{t *} X, \Phi_{t *} Y\right):=g_{t}(X, Y)
$$

for all $X, Y \in T N \subset T M$. With this definition,

$$
\begin{aligned}
\left\{\dot{g}_{t}\right\}\left(\Phi_{t *} X, \Phi_{t *} Y\right) & =\dot{g}_{t}(X, Y)=\frac{d}{d t} g_{t}(X, Y)=\frac{d}{d t}\left\{g_{t}\right\}\left(\Phi_{t *} X, \Phi_{t *} Y\right) \\
& =\left.\frac{d}{d s}\right|_{s=0}\left\{g_{t}\right\}\left(\Phi_{t+s *} X, \Phi_{t+s *} Y\right)=\left.\frac{d}{d s}\right|_{s=0}\left(\Phi_{s}^{*}\left\{g_{t}\right\}\right)\left(\Phi_{t *} X, \Phi_{t *} Y\right) \\
& =\left(L_{\xi}\left\{g_{t}\right\}\right)\left(\Phi_{t *} X, \Phi_{t *} Y\right)
\end{aligned}
$$

i.e.

$$
\left\{\dot{g}_{t}\right\}=L_{\xi}\left\{g_{t}\right\}
$$

The Riemannian manifold

$$
M:=I \times N \quad \text { with } \quad g:=d t^{2}+\left\{g_{t}\right\}
$$

is called a generalized cylinder.

Lemma 4.3. Let $M=I \times N$ be a generalized cylinder with metric $g=d t^{2}+\left\{g_{t}\right\}$. Then (M, g) is complete if and only if $I=\mathbb{R}$ and $\left(N, g_{t}\right)$ is complete, for all $t \in I$.

Proof: We use the Hopf-Rinow Theorem and denote by $\left(M, d_{g}\right)$ the metric space associated to (M, g). If M is complete, we get $I=\mathbb{R}$, since $c(t)=(t, p) \in M$ is a geodesic. To see that $\left(N, g_{t}\right)$ is complete, it suffices to show that any closed and bounded subset is compact. If $A \subset\left(N, d_{g_{t}}\right)$ is closed and bounded, A is also closed and bounded as a subset of $\left(M, d_{g}\right)$. Hence $A \subset M$ is compact and since $N \subset M$ is closed, we see that $A \subset N$ is compact.

Conversely, let $\left(t_{n}, p_{n}\right)$ be a Cauchy sequence in the metric space $\left(M, d_{g}\right)$. Then t_{n} defines a Cauchy sequence in $I=\mathbb{R}$ and hence we can assume that $t_{n} \rightarrow t$, as
$n \rightarrow \infty$. Now $\left(t, p_{n}\right)$ is still a Cauchy sequence in $\left(\{t\} \times N, d_{g_{t}}\right)$ and hence we can find a convergent subsequence of $\left(t, p_{n}\right)$.

The Weingarten map $\mathcal{W}:=\nabla^{g} \xi$ of a generalized cylinder $(M, g)=\left(I \times N, d t^{2}+\left\{g_{t}\right\}\right)$ induces a family of g_{t}-symmetric endomorphisms \mathcal{W}_{t} on $T N$ by

$$
\mathcal{W}_{t} X:=\operatorname{pr}_{*} \circ \mathcal{W} \circ \Phi_{t *} X
$$

where pr : $I \times N \rightarrow N$ is the canonical projection.

Lemma 4.4. Let g_{t} be a family of metrics on N. Denote by ric ${ }_{t}$ the Ricci tensor of the metric g_{t} and by ric the Ricci tensor of the metric $g=d t^{2}+\left\{g_{t}\right\}$ on $I \times N$. Then

$$
\begin{aligned}
\dot{g}_{t}(X, Y) & =2 g_{t}\left(\mathcal{W}_{t} X, Y\right) \\
g_{t}\left(\dot{\mathcal{W}}_{t} X, Y\right) & =\operatorname{ric}_{t}(X, Y)-\operatorname{ric}\left(\Phi_{t *} X, \Phi_{t *} Y\right)-\operatorname{tr}\left(\mathcal{W}_{t}\right) g_{t}\left(\mathcal{W}_{t} X, Y\right)
\end{aligned}
$$

for all $X, Y \in T N$.

Proof: For $X, Y \in T N$ we compute

$$
\begin{aligned}
\dot{g}_{t}(X, Y) & =\left(L_{\xi}\left\{g_{t}\right\}\right)\left(\Phi_{t *} X, \Phi_{t *} Y\right)=\left(L_{\xi} g\right)\left(\Phi_{t *} X, \Phi_{t *} Y\right) \\
& =2 g\left(\mathcal{W} \Phi_{t *} X, \Phi_{t *} Y\right)=2 g_{t}\left(\mathcal{W}_{t} X, Y\right)
\end{aligned}
$$

Similarly, $\left(L_{\xi}^{2} g\right)\left(\Phi_{t *} X, \Phi_{t *} Y\right)=\ddot{g}_{t}(X, Y)$ and by Proposition 4.1

$$
\begin{aligned}
\operatorname{ric}\left(\Phi_{t *} X, \Phi_{t *} Y\right)= & \operatorname{ric}_{t}(X, Y)-\operatorname{tr}\left(\mathcal{W}_{t}\right) g_{t}\left(\mathcal{W}_{t} X, Y\right) \\
& +2 g_{t}\left(\mathcal{W}_{t} X, \mathcal{W}_{t} Y\right)-\frac{1}{2} \ddot{g}_{t}(X, Y)
\end{aligned}
$$

Now the second equation follows from

$$
\begin{aligned}
\frac{1}{2} \ddot{g}_{t}(X, Y) & =\frac{1}{2} \frac{d}{d t} \dot{g}_{t}(X, Y)=\frac{d}{d t} g_{t}\left(\mathcal{W}_{t} X, Y\right) \\
& =\dot{g}_{t}\left(\mathcal{W}_{t} X, Y\right)+g_{t}\left(\dot{\mathcal{W}}_{t} X, Y\right) \\
& =2 g_{t}\left(\mathcal{W}_{t} X, \mathcal{W}_{t} Y\right)+g_{t}\left(\dot{\mathcal{W}}_{t} X, Y\right)
\end{aligned}
$$

Like for a family of metrics, we can lift a family of forms $\left\{\varphi_{t}\right\}_{t \in I}$ on N to a single form $\left\{\varphi_{t}\right\}$ on $M=I \times N$ with $L_{\xi}\left\{\varphi_{t}\right\}=\left\{\dot{\varphi}_{t}\right\}$. Hence Lemma 4.2 translates into

Lemma 4.5.

$$
d\left\{\varphi_{t}\right\}=\left\{d \varphi_{t}\right\}+d t \wedge\left\{\dot{\varphi}_{t}\right\} .
$$

Evolution Equations

For notational reasons we define

$$
G_{k}:= \begin{cases}S U(2) & \text { for } k=5 \\ S U(3) & \text { for } k=6 \\ G_{2} & \text { for } k=7 \\ \operatorname{Spin}(7) & \text { for } k=8\end{cases}
$$

The inclusions $G_{k} \subset G_{k+1}$, obtained by regarding G_{k} as the isotropy group of a unit vector under the natural action of G_{k+1}, allow us to lift any G_{k} structure on M^{k} to a G_{k+1} structure on $\mathbb{R} \times M^{k}$. More generally, we can lift whole families of structures on M^{k}, parameterized by $t \in I$, to a structure on

$$
M^{k+1}:=I \times M^{k} .
$$

In order for the resulting structure to be (nearly) parallel, the underlying family has to be (nearly) hypo and must evolve according to certain evolution equations. In fact, (nearly) hypo structures are precisely those type of structures which are induced on hypersurfaces by (nearly) parallel structures on the ambient space.

For instance, a family of G_{2}-structures ψ_{t} on M^{7} defines a 4-form $\Psi:=\left\{\psi_{t}\right\}+d t \wedge$ $\left\{\varphi_{t}\right\}$ of model tensor type Ψ_{0}, and hence a $\operatorname{Spin}(7)$-structure on $M^{8}:=I \times M^{7}$. For notational simplicity we will suppress the bracket notation and call

$$
\Psi:=\psi_{t}+d t \wedge \varphi_{t}
$$

the lift of ψ_{t} to $I \times M^{7}$. With Lemma 4.5 we get

$$
d^{8} \Psi=d^{7} \psi_{t}+d t \wedge \dot{\psi}_{t}-d t \wedge d^{7} \varphi_{t}=d^{7} \psi_{t}+d t \wedge\left(\dot{\psi}_{t}-d^{7} \varphi_{t}\right)
$$

where d^{7}, d^{8} denotes the exterior derivative on M^{7}, M^{8}, respectively. Hence the $\operatorname{Spin}(7)$-structure is parallel if and only if $d^{7} \psi_{t}=0$ and $\dot{\psi}_{t}=d \varphi_{t}$. The second equation can be regarded as an evolution equation for the initial structure $\varphi:=\varphi_{t=0}$. If the initial structure is hypo, the evolution equation guarantees that the hypo condition $d^{7} \psi_{t}=0$ is preserved in time. In the following Proposition we list the lifting maps for the $S U(2), S U(3)$ and G_{2}-case, the (nearly) hypo condition for the initial structure and the evolution equations to obtain (nearly) parallel structures on $I \times M^{k}$.

Proposition 4.6. Let M^{k} be a manifold of dimension $k \in\{5,6,7\}$, equipped with a family of G_{k}-structures. Then the lift in the following table defines a $G_{k+1^{-}}$ structure on $M^{k+1}:=I \times M^{k}$.

k	Lift	Initial Condition	Evolution
5	$\omega:=\omega_{1}+d t \wedge \alpha$	$0=d \omega_{1}+6 \lambda \rho_{3}$	$\dot{\omega}_{1}=d \alpha+6 \lambda \omega_{2}$
	$\sigma:=\frac{1}{2} \omega_{1}^{2}+d t \wedge \alpha \wedge \omega_{1}$	$0=d \rho_{2}+4 \lambda \omega_{1}^{2}$	$\dot{\rho}_{2}=d \omega_{3}-8 \lambda \alpha \wedge \omega_{1}$
	$\rho:=-\rho_{3}+d t \wedge \omega_{2}$	$0=d \rho_{3}$	$\dot{\rho_{3}}=-d \omega_{2}$
	$\widehat{\rho}:=\rho_{2}+d t \wedge \omega_{3}$		
6	$\varphi:=\rho+d t \wedge \omega$	$0=d \rho-\lambda \sigma$	$\dot{\rho}=d \omega-\lambda \widehat{\rho}$
	$\psi:=\sigma-d t \wedge \widehat{\rho}$	$0=d \sigma$	$\dot{\sigma}=-d \widehat{\rho}$
7	$\Psi:=\psi+d t \wedge \varphi$	$0=d \psi$	$\dot{\psi}=d \varphi$

(1) The structure on M^{k+1} is parallel if and only if the initial structure is hypo (i.e. $\lambda=0$) and evolves according to the evolution equations from the table.
(2) The structure on M^{k+1} is nearly parallel if and only if the initial structure is nearly hypo (i.e. $\lambda \neq 0$) and evolves according to the evolution equations from the table.
(3) The metric of the G_{k+1}-structure on $I \times M^{k}$ is given by

$$
g=d t^{2}+g_{t}
$$

where g_{t} is the family of metrics induced by the family of G_{k}-structures on M^{k}.

Proof: Choosing a Cayley frame $\left(E_{2}(t), . ., E_{k}(t)\right)$ for the family of G_{k}-structures, we obtain a Cayley frame for the lift by

$$
\left(\frac{d}{d t}, E_{2}(t), . ., E_{k}(t)\right)
$$

This proves that the lift actually defines a G_{k+1}-structure and that the metric is given by the formula in (3). Since we already proved the case $k=7$, we only have to consider the cases $k=5$ and $k=6$:
$\mathrm{k}=5$: By Lemma 4.5 we have

$$
\begin{aligned}
d \omega & =d \omega_{1}+d t \wedge\left(\dot{\omega}_{1}-d \alpha\right), \\
d \rho & =-d \rho_{3}-d t \wedge\left(\dot{\rho}_{3}+d \omega_{2}\right), \\
d \widehat{\rho} & =d \rho_{2}+d t \wedge\left(\dot{\rho}_{2}-d \omega_{3}\right),
\end{aligned}
$$

and we see that the $S U(3)$-structure is parallel, i.e. $d \omega=d \rho=d \widehat{\rho}=0$, if and only if the whole family of $S U(2)$-structures is hypo and satisfies the evolution equations from the table with $\lambda=0$. Since the evolution equations preserve the hypo condition, it suffices to require the initial $S U(2)$-structure to be hypo. The $S U(3)$-structure is nearly parallel if and only if

$$
d \omega=6 \lambda \rho=-6 \lambda \rho_{3}+6 \lambda d t \wedge \omega_{2} \quad \text { and } \quad d \widehat{\rho}=-4 \lambda \omega^{2}=-4 \lambda \omega_{1}^{2}-8 \lambda d t \wedge \alpha \wedge \omega_{1}
$$

for some $\lambda \neq 0$. Hence it suffices to show that the evolution equations preserve $0=d \omega_{1}+6 \lambda \rho_{3}$ and $0=d \rho_{2}+4 \lambda \omega_{1}^{2}$. This follows from

$$
\frac{d}{d t}\left(d \omega_{1}+6 \lambda \rho_{3}\right)=6 \lambda d \omega_{2}-6 \lambda \omega_{2}=0
$$

and, using $\omega_{1} \wedge \omega_{2}=0$,

$$
\frac{d}{d t}\left(d \rho_{2}+4 \lambda \omega_{1}^{2}\right)=-8 \lambda d\left(\alpha \wedge \omega_{1}\right)+8 \lambda\left(\omega_{1} \wedge d \alpha\right)=8 \lambda \alpha \wedge d \omega_{1}=-64 \lambda^{2} \alpha \wedge \rho_{3}=0
$$

$\mathrm{k}=6$: By Lemma 4.5 we have

$$
\begin{aligned}
& d \varphi=d \rho+d t \wedge(\dot{\rho}-d \omega) \\
& d \psi=d \sigma+d t \wedge(\dot{\sigma}+d \widehat{\rho}) .
\end{aligned}
$$

Hence the G_{2}-structure is parallel, i.e. $d \varphi=d \psi=0$, if and only if the whole family of $S U(3)$-structures is hypo and satisfies the evolution equations from the table with $\lambda=0$. Since the evolution equations preserve the hypo condition, it suffices to require the initial $S U(3)$-structure to be hypo. The G_{2}-structure is nearly parallel if and only if

$$
d \varphi=\lambda \psi=\lambda \sigma-\lambda d t \wedge \widehat{\rho},
$$

for some $\lambda \neq 0$. Since the evolution equations imply

$$
\frac{d}{d t}(d \rho-\lambda \sigma)=-\lambda d \widehat{\rho}+\lambda d \widehat{\rho}=0
$$

the Proposition follows.

Definition 4.7. Let M^{k} be a manifold of dimension $k \in\{5,6,7\}$, equipped with a (nearly) hypo G_{k}-structure. A family of G_{k}-structures which solves the evolution equations from Proposition 4.6 and equals the initial structure at $t=0$ is called a solution of the embedding problem for the initial G_{k}-structure.

The Hypo Lift

The lift from Proposition 4.6 does not preserve the hypo condition. This motivates

Definition 4.8. Let M^{k} be a manifold of dimension $k \in\{5,6\}$, equipped with a G_{k}-structure. We call

$k=5$	$k=6$
$\omega:=\omega_{3}+d \theta \wedge \alpha$	$\varphi:=-\widehat{\rho}+d \theta \wedge \omega$
$\sigma:=\frac{1}{2} \omega_{3}^{2}+d \theta \wedge \rho_{3}$	$\psi:=\sigma-d \theta \wedge \rho$
$\rho:=\rho_{2}-d \theta \wedge \omega_{1}$	
$\widehat{\rho}:=-\alpha \wedge \omega_{1}-d \theta \wedge \omega_{2}$	

the hypo lift of the G_{k}-structure to $S^{1} \times M^{k}$. Conversely, given a G_{k+1}-structure on a manifold M^{k+1} of dimension $k+1$, we obtain a G_{k}-structure on every oriented hypersurface $i: M^{k} \hookrightarrow M^{k+1}$ by

$$
\begin{array}{|l|l|}
\hline k=5 & k=6 \\
\left.\hline \hline \omega_{1}:=-i^{*}\left(\frac{\partial}{\partial \theta}\right\lrcorner \rho\right) & \left.\rho:=-i^{*}\left(\frac{\partial}{\partial \theta}\right\lrcorner \psi\right) \\
\rho_{2}:=i^{*} \rho & \sigma:=i^{*} \psi \\
\left.\rho_{3}:=i^{*}\left(\frac{\partial}{\partial \theta}\right\lrcorner \sigma\right) & \\
\hline
\end{array}
$$

where $\frac{\partial}{\partial \theta}$ is a global vector field along $i: M^{k} \hookrightarrow M^{k+1}$, which is orthonormal to M^{k}. We call the G_{k}-structure the structure induced by the G_{k+1}-structure and $\frac{\partial}{\partial \theta}$.

Note that we just applied the lifts from Proposition 4.6 to the structures

$$
\left(\alpha, \omega_{3},-\omega_{1},-\omega_{2}\right)=A\left(\alpha, \omega_{1}, \omega_{2}, \omega_{3}\right)
$$

respectively,

$$
(\omega,-\widehat{\rho}, \rho)=I(\omega, \rho, \widehat{\rho}),
$$

where $A \in G L^{+}(5)$ is defines by

$$
A\left(e_{1}, . ., e_{5}\right):=\left(e_{1}, e_{3}, e_{4}, e_{2}, e_{5}\right)
$$

Lemma 4.9. The hypo lift maps hypo structures to hypo structures.

Proof: In the $S U(2)$-case, we obtain $d \rho=0$ if $d \omega_{1}=d \rho_{2}=0$. The compatibility condition $\omega_{3}^{2}=\omega_{1}^{2}$ and $d \rho_{3}=0$ imply $d \sigma=0$. For a hypo $S U(3)$-structure we obtain immediately $d \psi=d \sigma+d \theta \wedge d \rho=0$.

We will now study the compatibility of the hypo lift with the evolution equations from Proposition 4.6.

Lemma 4.10. (1) Suppose ψ is a family of G_{2}-structures on $M^{7}=S^{1} \times M^{6}$ which is the hypo lift of some family of $S U(3)$-structure (ρ, σ) on M^{6}. Then

$$
\dot{\psi}=d \varphi \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\dot{\rho}=d \omega \\
\dot{\sigma}=-d \widehat{\rho}
\end{array}\right.
$$

(2) Suppose (ρ, σ) is a family of $S U(3)$-structures on $M^{6}=S^{1} \times M^{5}$ which is the hypo lift of some family of $S U(2)$-structure $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ on M^{5}. Then

$$
\left.\begin{array}{l}
\dot{\rho}=d \omega \\
\dot{\sigma}=-d \widehat{\rho}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
\dot{\omega}_{1}=d \alpha \\
\dot{\rho}_{2}=d \omega_{3} \\
\dot{\rho}_{3}=-d \omega_{2} \\
\left(\frac{1}{2} \omega_{3}^{2}\right)^{\cdot}=d\left(\alpha \wedge \omega_{1}\right)
\end{array}\right.
$$

Proof: By assumption we have $\psi=\sigma-d \theta \wedge \rho$ and $\varphi=-\widehat{\rho}+d \theta \wedge \omega$. Hence

$$
\dot{\psi}=\dot{\sigma}-d \theta \wedge \dot{\rho} \quad \text { and } \quad d \varphi=-d \widehat{\rho}-d \theta \wedge d \omega
$$

and part (1) follows. Similarly for part (2),

$$
\begin{array}{ll}
\omega=\omega_{3}+d \theta \wedge \alpha, & \sigma=\frac{1}{2} \omega_{3}^{2}+d \theta \wedge \rho_{3} \\
\rho=\rho_{2}-d \theta \wedge \omega_{1}, & \widehat{\rho}=-\alpha \wedge \omega_{1}-d \theta \wedge \omega_{2}
\end{array}
$$

gives

$$
\begin{aligned}
\dot{\rho} & =\dot{\rho}_{2}-d \theta \wedge \dot{\omega}_{1} \\
d \omega & =d \omega_{3}-d \theta \wedge d \alpha
\end{aligned}
$$

and

$$
\begin{aligned}
\dot{\sigma} & =\left(\frac{1}{2} \omega_{3}^{2}\right)^{\cdot}+d \theta \wedge \dot{\rho}_{3} \\
-d \widehat{\rho} & =d\left(\alpha \wedge \omega_{1}\right)-d \theta \wedge d \omega_{2}
\end{aligned}
$$

Lemma 4.11. Let ψ be a G_{2}-structure on M^{7} with metric g.
(1) If $M^{7}=S^{1} \times M^{6}$, then ψ is the hypo lift of some $S U(3)$-structure on M^{6} if and only if

$$
L_{\frac{\partial}{\partial \theta}} \psi=0, \quad \frac{\partial}{\partial \theta} \perp_{g} T M^{6} \quad \text { and } \quad g\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right)=1
$$

(2) If $M^{7}=S_{2}^{1} \times S_{1}^{1} \times M^{5}$, then ψ is the hypo lift of some $S U(2)$-structure on M^{5} if and only if

$$
L_{\frac{\partial}{\partial \theta_{i}}} \psi=0, \quad \frac{\partial}{\partial \theta_{i}} \perp_{g} T M^{5} \quad \text { and } \quad g\left(\frac{\partial}{\partial \theta_{i}}, \frac{\partial}{\partial \theta_{j}}\right)=\delta_{i j}
$$

for $i, j=1,2$.

Proof: If ψ is the hypo lift of some $S U(2)$ or $S U(3)$-structure, we get $L_{\frac{\partial}{\partial \theta_{i}}} \psi=0$ and the orthogonality condition on the S^{1}-directions. Conversely, we define forms σ and ρ on M^{7} by

$$
\psi=\underbrace{\left.\frac{\partial}{\partial \theta}\right\lrcorner(d \theta \wedge \psi)}_{=: \sigma}+d \theta \wedge \underbrace{\left.\left(\frac{\partial}{\partial \theta}\right\lrcorner \psi\right)}_{=:-\rho} .
$$

Since $\frac{\partial}{\partial \theta}$ is orthonormal to M^{6} and G_{2} acts transitively on S^{6}, we can find a Caley frame for which σ and ρ are of type σ_{0} and ρ_{0}. Hence (σ, ρ) defines a $S U(3)$-structure on each hypersurface $\left\{e^{i \theta}\right\} \times M^{6}$. Since

$$
0=L_{\frac{\partial}{\partial \theta}} \sigma-d \theta \wedge L_{\frac{\partial}{\partial \theta}} \rho
$$

implies $L_{\frac{\partial}{\partial \theta}} \sigma=L_{\frac{\partial}{\partial \theta}} \rho=0$, we see that σ and ρ are actually constant along the flow of $\frac{\partial}{\partial \theta}$. Part (2) of the Lemma follows similarly, using that G_{2} acts transitively on pairs of orthonormal vectors.

The Model Case $G_{2} \subset \operatorname{Spin}(7)$

Lemma 4.10 and 4.11 motivate the conjecture that the embedding problem for hypo $S U(2)$ and $S U(3)$-structures might be reduced to the embedding problem for $G_{2^{-}}$ structures. The reduction to the G_{2} case has the advantage that no compatibility conditions are involved. To solve the embedding problem for hypo structures we consequently focus on studying the evolution equation

$$
\dot{\psi}_{t}=d \varphi_{t}
$$

on a compact seven dimensional manifold M^{7}. Motivated by Theorem 1.6 we try to find a solution of the form

$$
\psi_{t}:=A_{t} \psi,
$$

where ψ is the initial hypo G_{2}-structure and $A_{t} \in C^{\infty}(\operatorname{Aut}(T M))$ is a family of gauge deformations with $A_{0}=$ id. First we translate the above evolution equation into an equation for the family of gauge deformations.

Proposition 4.12. Suppose $\psi_{t}=A_{t} \psi$ is a family of G_{2}-structures on M^{7}, described by a family of gauge deformations $A_{t} \in C^{\infty}\left(\operatorname{Aut}\left(T M^{7}\right)\right)$. If $\mathcal{T}_{t}=\mathcal{T}\left(A_{t} \psi\right)$ is the torsion endomorphism of ψ_{t}, then

$$
\dot{\psi}_{t}=d \varphi_{t} \quad \Leftrightarrow \quad D_{\psi_{t}}\left(\dot{A}_{t} \circ A_{t}^{-1}\right)=3 D_{\psi_{t}}\left(\mathcal{T}_{t}\right)
$$

Proof: By Lemma 1.16 and Proposition 3.38 we have

$$
\dot{\psi}_{t}=D_{\psi_{t}}\left(\dot{A}_{t} \circ A_{t}^{-1}\right) \quad \text { and } \quad d \varphi_{t}=3 D_{\psi_{t}}\left(\mathcal{T}_{t}\right)
$$

and the Proposition follows.

We can now compute the evolution of the metric and the torsion endomorphism.

Theorem 4.13. Let ψ_{t} be a family of hypo G_{2}-structures on M^{7}, which evolves under the flow $\dot{\psi}_{t}=d \varphi_{t}$. Then the evolution of the underlying metric g_{t} and the torsion endomorphism \mathcal{T}_{t} are given by

$$
\begin{aligned}
& \dot{g}_{t}(X, Y)=-6 g_{t}\left(\mathcal{T}_{t} X, Y\right) \\
& \dot{\mathcal{T}}_{t} X=-\frac{1}{3} \operatorname{Ric}_{t} X+3 \operatorname{tr}\left(\mathcal{T}_{t}\right) \mathcal{T}_{t} X
\end{aligned}
$$

where $\operatorname{Ric}_{t}=\operatorname{Ric}\left(g_{t}\right)$ is the Ricci tensor of the metric g_{t}.

Proof: By Theorem 1.6 we can describe the evolution by a family of gauge deformations $\psi_{t}=A_{t} \psi$ and Proposition 4.12 yields $D_{\psi_{t}}\left(\dot{A}_{t} \circ A_{t}^{-1}\right)=3 D_{\psi_{t}}\left(\mathcal{T}_{t}\right)$. Since the evolution $\dot{\psi}_{t}=d \varphi_{t}$ preserves the hypo condition $d \psi_{t}=0$, or equivalently $\mathcal{T}_{t} \in S^{2}$ w.r.t. g_{t}, we get from Lemma 3.36

$$
\operatorname{pr}_{S^{2}}\left(\dot{A}_{t} \circ A_{t}^{-1}\right)=3 \mathcal{T}_{t}
$$

Now Lemma 1.16 gives

$$
\dot{g}_{t}(X, Y)=D_{g_{t}}\left(\dot{A}_{t} \circ A_{t}^{-1}\right)(X, Y)=-2 g_{t}\left(\operatorname{pr}_{S^{2}}\left(\dot{A}_{t} \circ A_{t}^{-1}\right) X, Y\right)=-6 g_{t}\left(\mathcal{T}_{t} X, Y\right)
$$

By Lemma 4.4 we see that $\mathcal{W}_{t}=-3 \mathcal{T}_{t}$ and hence

$$
-3 g_{t}\left(\dot{\mathcal{T}}_{t} X, Y\right)=\operatorname{ric}_{t}(X, Y)-9 \operatorname{tr}\left(\mathcal{T}_{t}\right) g_{t}\left(\mathcal{T}_{t} X, Y\right)
$$

where we used that the metric $g=d t^{2}+g_{t}$ on $I \times M^{7}$ has holonomy contained in $\operatorname{Spin}(7)$ and hence is Ricci flat.

The following theorem shows that the flow will not produce complete metrics with special holonomy. In particular we can not expect to obtain periodic solutions which would lead to compact manifolds with special holonomy. In fact, the observation is that the length of the existence interval could be characteristic for the type of the initial structure.

Theorem 4.14. Suppose ψ is a hypo G_{2}-structures on a compact manifold M^{7}. Then the flow $\dot{\psi}_{t}=d \varphi_{t}$ is defined for all times $t \in \mathbb{R}$ if and only if the initial
structure is already parallel.

Proof: The metric on the product $M^{8}:=\mathbb{R} \times M^{7}$ has holonomy contained in $\operatorname{Spin}(7)$ and hence is Ricci flat. Since $g=d t^{2}+g_{t}$, the first factor actually defines a line and M^{8} is complete by Lemma 4.3. Now we can apply the Cheeger-Gromoll Splitting Theorem and see that M^{8} splits as a Riemannian product. Note that the line, i.e. the first factor of M^{8}, is actually the one dimensional factor that splits off in the decomposition as a Riemannian product, cf. Lemma 6.86 in [7]. Hence $g_{t}=g_{0}$ is constant and Theorem 4.13 yields $\mathcal{I}_{t}=0$.

In Lemma 4.10 (1) we showed that a longtime solution of the $S U(3)$ embedding problem would yield a longtime solution for the G_{2} embedding problem. Combining part (1) and (2) of Lemma 4.10, shows that a longtime solution of the $S U(2)$ embedding problem would also yield a longtime solution for the G_{2} embedding problem if in addition the equation $\left(\frac{1}{2} \omega_{3}^{2}\right)^{\cdot}=d\left(\alpha \wedge \omega_{1}\right)$ is satisfied. If the initial $S U(2)$-structure is hypo, we have $d \omega_{1}=0$, for all times t. So

$$
\left(\frac{1}{2} \omega_{3}^{2}\right)^{\cdot}=\left(\frac{1}{2} \omega_{1}^{2}\right)^{\cdot}=\omega_{1} \wedge \dot{\omega}_{1}=\omega_{1} \wedge d \alpha=d\left(\alpha \wedge \omega_{1}\right)
$$

and we obtain the following $S U(2)$ and $S U(3)$-analogue of Theorem 4.14.

Corollary 4.15. There are no non-trivial longtime solutions for the hypo $S U(2)$ and $S U(3)$ embedding problem on compact manifolds.

In the nearly hypo case we can give a similar argument to show that there are no non-trivial longtime solutions of the embedding problem. Namely such a solution would yield a complete metric on the non-compact manifold $\mathbb{R} \times M$ with positive Ricci curvature, which contradicts Myer's Theorem.

In view of Proposition 4.12, the following theorem yields solutions of the G_{2} embedding problem.

Theorem 4.16. Let ψ be a real analytic hypo G_{2}-structure on the compact manifold M^{7}. Then the intrinsic torsion flow

$$
\left\{\begin{array}{l}
\dot{A}_{t}=3 \mathcal{I}_{t} \circ A_{t} \\
A_{0}=\mathrm{id}
\end{array}\right.
$$

has a unique real analytic solution $A:(-\varepsilon, \varepsilon) \times M \rightarrow \operatorname{End}(T M)$. Moreover, the solution A_{t} is of the form

$$
A_{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A_{0}^{(k)},
$$

where the series converges in the C^{∞}-topology on $C^{\infty}(\operatorname{End}(T M))$.

Proof: To apply Theorem 2.11 we have to show that the map

$$
X: C^{\infty}(\operatorname{Aut}(T M)) \rightarrow C^{\infty}(\operatorname{End}(T M)) \quad \text { with } \quad X \circ A:=3 \mathcal{T}(A \varphi) \circ A
$$

is a real analytic first order differential operator in the sense of Definition 2.10. For this choose local coordinates $u: U \subset M \rightarrow \mathbb{R}^{7}$, for which φ is real analytic. These coordinates induce a local trivialization (π, v) of the bundle $\pi: \operatorname{End}(T M) \rightarrow M$ via

$$
v(A):=\left\{a_{k l}\right\}_{k, l=1 . .7}, \quad \text { where } \quad A=\sum_{k, l=1}^{7} a_{k l} d u_{k} \otimes \frac{\partial}{\partial u_{l}} \in \operatorname{End}(T M) .
$$

For a fixed local section $A=\sum a_{k l} d u_{k} \otimes \frac{\partial}{\partial u_{l}}: U \rightarrow \operatorname{Aut}(T M)$ write

$$
X \circ A=3 \mathcal{T}(A \varphi) \circ A=\sum_{a, b=1}^{7} f_{a b} d u_{a} \otimes \frac{\partial}{\partial u_{b}}
$$

Now it suffices to find an expression

$$
\begin{equation*}
f_{a b}=G_{a b}\left(u, a_{k l}, \frac{\partial a_{k l}}{\partial u_{j}}\right) \tag{1}
\end{equation*}
$$

for the coefficients $f_{a b}: U \rightarrow \mathbb{R}$, where $G_{a b}: D \subset \mathbb{R}^{7} \times \mathbb{R}^{49} \times \mathbb{R}^{343} \rightarrow \mathbb{R}$ is real analytic. The formula

$$
\left.\nabla^{A g} A \varphi=-3 \mathcal{T}(A \varphi)\right\lrcorner(A \psi)
$$

from Proposition 3.38 shows that the intrinsic torsion is a first order invariant of the G_{2}-structure and hence we can find an expression of the form (1) that is actually polynomial in $a_{k l}$ and $\frac{\partial a_{k l}}{\partial u_{j}}$, and real analytic in u, since the initial structure is real analytic.

Lemma 4.17. Suppose ψ is a G_{2}-structure on M and $F \in \operatorname{Diff}(M)$. Then the intrinsic torsion satisfies

$$
\mathcal{T}\left(F^{*} \psi\right)=F^{*} \mathcal{T}(\psi)=F_{*}^{-1} \mathcal{T}(\psi) F_{*} .
$$

Proof: By Koszul's formula we have

$$
F_{*}\left(\nabla_{X}^{F^{*} g} Y\right)=\nabla_{F_{*} X}^{g} F_{*} Y .
$$

Hence we get

$$
\begin{aligned}
& \left(\nabla_{X}^{F^{*} g} F^{*} \psi\right)\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \\
= & X \cdot\left(F^{*} \psi\right)\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \\
& -\left(F^{*} \psi\right)\left(\nabla_{X}^{F^{*} g} X_{1}, X_{2}, X_{3}, X_{4}\right)-\left(F^{*} \psi\right)\left(X_{1}, \nabla_{X}^{F^{*} g} X_{2}, X_{3}, X_{4}\right) \\
& -\left(F^{*} \psi\right)\left(X_{1}, X_{2}, \nabla_{X}^{F^{*} g} X_{3}, X_{4}\right)-\left(F^{*} \psi\right)\left(X_{1}, X_{2}, X_{3}, \nabla_{X}^{F^{*} g} X_{4}\right) \\
= & F_{*} X \cdot \psi\left(F_{*} X_{1}, F_{*} X_{2}, F_{*} X_{3}, F_{*} X_{4}\right) \\
& -\psi\left(\nabla_{F_{*} X}^{g} F_{*} X_{1}, F_{*} X_{2}, F_{*} X_{3}, F_{*} X_{4}\right)-\psi\left(F_{*} X_{1}, \nabla_{F_{*} X}^{g} F_{*} X_{2}, F_{*} X_{3}, F_{*} X_{4}\right) \\
& -\psi\left(F_{*} X_{1}, F_{*} X_{2}, \nabla_{F_{*} X}^{g} F_{*} X_{3}, F_{*} X_{4}\right)-\psi\left(F_{*} X_{1}, F_{*} X_{2}, F_{*} X_{3}, \nabla_{F_{*} X}^{g} F_{*} X_{4}\right) \\
= & \left(\nabla_{F_{*} X}^{g} \psi\right)\left(F_{*} X_{1}, F_{*} X_{2}, F_{*} X_{3}, F_{*} X_{4}\right) \\
= & F^{*}\left(\nabla_{F_{*} X}^{g} \psi\right)\left(X_{1}, X_{2}, X_{3}, X_{4}\right) .
\end{aligned}
$$

From Proposition 3.38 we know that $\left.\nabla_{X}^{g} \psi=3(\mathcal{T}(\psi)\lrcorner g\right) \wedge \varphi$ holds, which gives

$$
\begin{aligned}
\left.3\left(\mathcal{T}\left(F^{*} \psi\right) X\right\lrcorner F^{*} g\right) \wedge F^{*} \varphi & =\nabla_{X}^{F^{*} g}\left(F^{*} \psi\right)=F^{*}\left(\nabla_{F_{*} X}^{g} \psi\right) \\
& \left.=3 F^{*}\left(\left(\mathcal{T}(\psi) F_{*} X\right\lrcorner g\right) \wedge \varphi\right) \\
& \left.=3\left(F_{*}^{-1} \mathcal{T}(\psi) F_{*} X\right\lrcorner F^{*} g\right) \wedge F^{*} \varphi
\end{aligned}
$$

and the Lemma follows from the non-degeneracy of $F^{*} \varphi$.

Lemma 4.18. Suppose ψ is a G_{2}-structure on $M^{7}=S^{1} \times . . \times S^{1} \times M^{7-k}$, which is the hypo lift of some $S U(4-k)$-structure on M^{7-k}. Then the Ricci tensor Ric of the metric $g=g(\psi)$ satisfies for each S^{1}-direction $\frac{\partial}{\partial \theta}$

$$
L_{\frac{\partial}{\partial \theta}} \operatorname{Ric}=\operatorname{Ric} \frac{\partial}{\partial \theta}=d \theta \circ \operatorname{Ric}=0 .
$$

The intrinsic torsion \mathcal{T} satisfies

$$
L_{\frac{\partial}{\partial \theta}} \mathcal{T}=\mathcal{T} \frac{\partial}{\partial \theta}=0
$$

and $d \theta \circ \mathcal{T}=0$ if the structure is hypo.

Proof: If ψ is the hypo lift of some structure on M^{7-k}, then $g=d \theta_{1}^{2}+. .+d \theta_{k}^{2}+$ g_{7-k}, for some metric g_{7-k} on M^{7-k}. Hence the Ricci tensor satisfies Ric $\frac{\partial}{\partial \theta}=0$,

$$
d \theta \circ \operatorname{Ric}=g\left(\frac{\partial}{\partial \theta}, \operatorname{Ric}\right)=g\left(\operatorname{Ric} \frac{\partial}{\partial \theta}, .\right)=0
$$

and

$$
L_{\frac{d}{d \theta}} \operatorname{Ric}=\left.\frac{d}{d s}\right|_{s=0} \Phi_{s}^{*} \operatorname{Ric}(g)=\left.\frac{d}{d s}\right|_{s=0} \operatorname{Ric}\left(\Phi_{s}^{*} g\right)=\left.\frac{d}{d s}\right|_{s=0} \operatorname{Ric}(g)=0 .
$$

From Proposition 3.2 and $L_{\frac{\partial}{\partial \theta}} \varphi=\nabla^{g} \frac{\partial}{\partial \theta}=0$, we get $\tau\left(\frac{\partial}{\partial \theta}\right)=0$, i.e. $\mathcal{T} \frac{\partial}{\partial \theta}=0$. Lemma 4.17 and $L_{\frac{\partial}{\partial \theta}} \varphi=0$ imply $L_{\frac{\partial}{\partial \theta}} \mathcal{T}=0$. If the structure is hypo, i.e. \mathcal{T} is
symmetric, we get in addition

$$
d \theta \circ \mathcal{T}=g\left(\frac{\partial}{\partial \theta}, \mathcal{T}\right)=g\left(\mathcal{T} \frac{\partial}{\partial \theta}, .\right)=0
$$

Lemma 4.19. Suppose ψ is a G_{2}-structure on $M^{7}=S^{1} \times . . \times S^{1} \times M^{7-k}$, which is the hypo lift of some $S U(4-k)$-structure on M^{7-k}. If $A \in C^{\infty}(\operatorname{Aut}(T M))$ satisfies

$$
A \frac{\partial}{\partial \theta_{i}}=\frac{\partial}{\partial \theta_{i}}, \quad d \theta_{i} \circ A=d \theta_{i} \quad \text { and } \quad L_{\frac{\partial}{\partial \theta_{i}}} A=0
$$

then $A \psi$ is still the hypo lift of some $S U(4-k)$-structure.
Proof: By Lemma 4.11 we have $L_{\frac{\partial}{\partial \theta_{i}}}(A \psi)=0$ and

$$
(A g)\left(\frac{\partial}{\partial \theta_{i}}, X\right)=g\left(\frac{\partial}{\partial \theta_{i}}, A^{-1} X\right)=d \theta_{i}\left(A^{-1} X\right)=d \theta_{i}(X)=g\left(\frac{\partial}{\partial \theta_{i}}, X\right)
$$

Now the Lemma follows from Lemma 4.11.

We can now state the main result of this section.

Theorem 4.20. Suppose ψ is a real analytic hypo G_{2}-structure on $M=S^{1} \times$.. $\times S^{1} \times M^{7-k}$, which is the hypo lift of some $S U(4-k)$-structure on M^{7-k}. Then the solution A_{t} of the intrinsic torsion flow from Theorem 4.16 satisfies

$$
A_{t} \frac{\partial}{\partial \theta_{i}}=\frac{\partial}{\partial \theta_{i}}, \quad d \theta_{i} \circ A_{t}=d \theta_{i} \quad \text { and } \quad L_{\frac{\partial}{\partial \theta_{i}}} A_{t}=0
$$

In particular, $A_{t} \psi$ is the hypo lift of some family of $S U(4-k)$-structures on M^{7-k}.

Proof: We apply Corollary 2.4 with the following dictionary,
(1) $\mathcal{F}:=C^{\infty}(\operatorname{End}(T M)) \times C^{\infty}(\operatorname{End}(T M))$
(2) $\mathcal{U}:=C^{\infty}(\operatorname{Aut}(T M)) \times C^{\infty}(\operatorname{End}(T M))$
(3) $\mathcal{E}:=\left\{(B, \mathcal{T}) \in \mathcal{F} \left\lvert\, 0=L_{\frac{\partial}{\partial \theta_{i}}} B=L_{\frac{\partial}{\partial \theta_{i}}} \mathcal{T}\right.\right.$ and

$$
\left.0=B \frac{\partial}{\partial \theta_{i}}=\mathcal{T} \frac{\partial}{\partial \theta_{i}}=d \theta_{i}(B)=d \theta_{i}(\mathcal{T})\right\}
$$

(4) $X: \mathcal{U} \rightarrow \mathcal{F}$ is defined w.r.t. the initial metric g, $\left.X\right|_{(A, \mathcal{T})}:=\left(3 \mathcal{T} \circ A,-\frac{1}{3} \operatorname{Ric}(A g)+3 \operatorname{tr}(\mathcal{T}) \mathcal{T}\right)$.
(5) $c(t):=\left(A_{t}, \mathcal{T}_{t}\right)$.

Note that $\mathcal{U} \subset \mathcal{F}$ is open by Example 2.1. X is smooth and $\mathcal{E} \subset \mathcal{F}$ is closed, since differential operators are smooth by Example 3.6.6. in [34]. By Proposition 4.12,

Theorem 4.13 and the definition of A_{t}, the curve $c(t)$ is an integral curve of the vector field X. From Lemma 4.18 we get $c(0)=\left(\mathrm{id}, \mathcal{T}_{0}\right) \in \mathcal{E}_{f}$, where $f:=(\mathrm{id}, 0) \in \mathcal{F}$. Now it suffices to show that X is tangent to $\mathcal{U} \cap \mathcal{E}_{f}$, i.e.

$$
X_{\mid \mathcal{U} \cap \mathcal{E}_{f}}: \mathcal{U} \cap \mathcal{E}_{f} \rightarrow \mathcal{E}
$$

For $(A=\mathrm{id}+B, \mathcal{T}) \in \mathcal{U} \cap \mathcal{E}_{f}$ we have

$$
A \frac{\partial}{\partial \theta_{i}}=\frac{\partial}{\partial \theta_{i}}, \quad d \theta_{i} \circ A=d \theta_{i} \quad \text { and } \quad L_{\frac{\partial}{\partial \theta_{i}}} A=0 .
$$

By Lemma 4.19 we see that $A \psi$ is still the hypo lift of some $S U(4-k)$-structure and Lemma 4.18 yields

$$
L_{\frac{\partial}{\partial \theta_{i}}} \operatorname{Ric}(A g)=\operatorname{Ric}(A g) \frac{\partial}{\partial \theta_{i}}=d \theta_{i} \circ \operatorname{Ric}(A g)=0
$$

Now we can easily verify that $X(A, \mathcal{T}) \in \mathcal{E}$,

- $L_{\frac{\partial}{\partial \theta_{i}}}(\mathcal{T} \circ A)=0$ and $L_{\frac{\partial}{\partial \theta_{i}}}\left(-\frac{1}{3} \operatorname{Ric}(A g)+3 \operatorname{tr}(\mathcal{T}) \mathcal{T}\right)=0$,
- $\mathcal{T} \circ A \frac{\partial}{\partial \theta_{i}}=0$ and $\left(-\frac{1}{3} \operatorname{Ric}(A g)+3 \operatorname{tr}(\mathcal{T}) \mathcal{T}\right) \frac{\partial}{\partial \theta_{i}}=0$,
- $d \theta_{i}(\mathcal{T} \circ A)=0$ and $d \theta_{i}\left(-\frac{1}{3} \operatorname{Ric}(A g)+3 \operatorname{tr}(\mathcal{T}) \mathcal{T}\right)=0$
and the Theorem follows.

Remark 4.21. The property $L_{\frac{\partial}{\partial \theta}} A_{t}=0$ from Theorem 4.16 is a consequence of the diffeomorphism invariance of the evolution equation $\dot{A}_{t}=3 \mathcal{T}_{t} \circ A_{t}$. In fact, Lemma 4.17 shows that $B_{t}:=\Phi_{s}^{*} A_{t}$ also solves $\dot{A}_{t}=3 \mathcal{T}_{t} \circ A_{t}$, where Φ_{s} is the flow of $\frac{\partial}{\partial \theta}$. Since Φ_{s} is real analytic, the uniqueness part of Theorem 4.16 yields $A_{t}=\Phi_{s}^{*} A_{t}$, i.e. $L_{\frac{\partial}{\partial \theta}} A_{t}=0$.

We can now solve the embedding problem for real analytic hypo $S U(4-k)$-structures on M^{7-k} by reducing it to the embedding problem for real analytic hypo $G_{2^{-}}$ structures on $M=S^{1} \times . . \times S^{1} \times M^{7-k}$. Namely, the hypo lift of the initial $S U(4-k)$-structure yields a real analytic hypo G_{2}-structures on M. Theorem 4.16 yields a solution A_{t} of the intrinsic torsion flow. By Theorem 4.20 the family of G_{2}-structures $\psi_{t}=A_{t} \psi$ is still the hypo lift of some family of $S U(4-k)$-structures. Now Lemma 4.10 proves that the family of $S U(4-k)$-structures is a solution of the embedding problem.

Corollary 4.22. For any real analytic hypo $S U(2), S U(3)$ and G_{2}-structure on a compact manifold, the embedding problem admits a unique real analytic solution.

Moreover, the solution can be described by a family of gauge deformations

$$
A_{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A_{0}^{(k)},
$$

where the series converges in the C^{∞}-topology on $C^{\infty}(\operatorname{End}(T M))$.

An alternative to solve the G_{2}-embedding problem is to apply the Cauchy Kowalevski Theorem 2.11 directly to the initial value problem $\dot{\psi}_{t}=d \varphi_{t}$ with $\psi_{0}=\psi$. To obtain a solution for the $S U(2)$ and $S U(3)$ embedding problem, it suffices to prove that the family of metrics $g_{t}=g\left(\psi_{t}\right)$ leaves S^{1}-directions orthonormal, cf. Lemma 4.11. With Lemma 3.29 this condition can be translated into

$$
\left.\left.\frac{\partial}{\partial \theta}\right\lrcorner \varphi_{t} \wedge X\right\lrcorner \varphi_{t} \wedge \varphi_{t}=\frac{6}{7} d \theta(X) \varphi_{t} \wedge \psi_{t}
$$

But this condition is nonlinear and hence we can not apply Corollary 2.4, which was tailor-made to prove that certain linear conditions are preserved. Considering instead the system 4.13 allows us to express the requirement on the S^{1}-directions in terms of the linear condition $\mathcal{T}_{t} \frac{\partial}{\partial \theta}=0$.

The Nearly Hypo Case

In this section we study the embedding problem for nearly hypo $S U(2)$ and $S U(3)$ structures. Like in the hypo case, one would expect that the nearly hypo evolution equations for $S U(3)$-structures correspond under the hypo lift to the nearly hypo evolution equations for $S U(2)$-structures. A direct computation shows that this is not the case, which is due to the particular coefficients in the $S U(2)$ evolution equations, coming from the nearly Kähler condition. Due to this deficit we will treat both scenarios separately, starting with the $S U(3)$-case.

Theorem 4.23. For any real analytic nearly hypo $S U(3)$-structure (σ, ρ) on a compact manifold, the embedding problem admits a unique real analytic solution. Moreover, the solution is of the form

$$
\sigma_{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \sigma_{0}^{(k)} \quad \text { and } \quad \rho_{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \rho_{0}^{(k)}
$$

where the series converge in the C^{∞}-topology.

Proof: We can apply the Cauchy-Kowalevski Theorem 2.11 directly to the $S U(3)-$ evolution equations from Proposition 4.6. To see this, note that the components of the tensors ω and $\hat{\rho}$ can be computed as polynomials in the components of σ and ρ, and that in local coordinates, the exterior derivative can be expressed as polynomials in the directional derivatives. Now Theorem 2.5 from [49] shows that the evolution equations already guarantee the $S U(3)$-compatibility conditions.

Similarly, we can apply the Cauchy-Kowalevski Theorem 2.11 directly to the $S U(2)$ evolution equations from Proposition 4.6 and obtain

Theorem 4.24. For any real analytic nearly hypo $S U(2)$-structure $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ on a compact manifold, the evolution equations

$$
\begin{aligned}
\dot{\omega}_{1} & =d \alpha+6 \lambda \omega_{2} \\
\dot{\rho}_{2} & =d \omega_{3}-8 \lambda \alpha \wedge \omega_{1}, \\
\dot{\rho}_{3} & =-d \omega_{2}
\end{aligned}
$$

admit a unique real analytic solution. Moreover, the solution is of the form

$$
\omega_{1}(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \omega_{1}^{(k)}(0) \quad \text { and } \quad \rho_{2 / 3}(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \rho_{2 / 3}^{(k)}(0),
$$

where the series converge in the C^{∞}-topology.

To solve the embedding problem for nearly hypo $S U(2)$-structures one has to show that the family of tensors from Theorem 4.24 actually defines a family of $S U(2)$ structures, i.e. $\left(\omega_{1}, \rho_{2}, \rho_{3}\right)$ has to satisfy the compatibility conditions from Proposition 3.7. Since this conditions are nonlinear, we can not apply Corollary 2.4. Nevertheless, one might ask whether there is an analogue of Theorem 2.5 [49] for the $S U(2)$-case. The main difference between the $S U(2)$ and $S U(3)$-case is that a reduction to $S L(3, \mathbb{C})$ in dimension six can be described by a single 3 -form ρ and hence involves no compatibility conditions. In dimension five, reductions to $S L(2, \mathbb{C})$ correspond to triples $\left(\alpha, \omega_{2}, \omega_{3}\right)$ which have to satisfy certain compatibility conditions. Another $S U(3)$-specific ingredient in the proof of Theorem 2.5 [49] is that $\omega \wedge \rho=0$ is actually equivalent to $\omega \wedge \widehat{\rho}=0$. Therefore we can not expect that the evolution equations in the $S U(2)$-case imply all of the desired compatibility conditions.

5. Ricci flow for G_{2}-Structures

By Yau's proof of the Calabi conjecture, every Kähler structure (ω, g) on a complex manifold (M, I) with $c_{1}=0$, admits a unique Ricci flat Kähler structure ($\widetilde{\omega}, \widetilde{g}$) with $[\widetilde{\omega}]=[\omega]$. The restricted holonomy group of a Ricci flat Kähler structure is contained in $S U(n)$ and hence the Calabi-Yau theorem can be regarded as an existence result for manifolds with special holonomy. Cao [17] gave an alternative proof of the Calabi conjecture, using Hamilton's Ricci flow. We use gauge deformations to extend the Kähler-Ricci flow to a deformation of $S U(3)$-structures and characterize in Theorem 5.13 the conditions for the flow to converge to a parallel $S U(3)$-structure. Today a Calabi-Yau theorem is still missing for the G_{2}-case. The only result in this direction is a theorem due to Joyce, which is tailor made to prove the existence of parallel G_{2}-structures on certain resolutions of T^{7} / Γ, cf. [39] Thm. 11.6.1 and Chap. 12.
The condition $c_{1}=0$ is equivalent to the existence of a (topological) $S U(n)$ reduction of the Kähler structure. From this point of view, the candidates to apply the Calabi-Yau Theorem in dimension six are $S U(3)$-structures with intrinsic torsion $\tau \cong \eta$, i.e. the Kähler part \mathcal{T} of the intrinsic torsion vanishes, cf. Theorem 3.28. This observation suggests that for G_{2}-structures the condition $c_{1}=0$ is already encoded in the topological reduction to the structure group G_{2}. So the actual task at hand is to find the analogue of Kähler $S U(3)$-structures for the G_{2}-case. Joyce calls Kähler $S U(3)$-structures almost Calabi-Yau structures, cf. [38] Def. 8.4.3. His proposal for a G_{2}-analogue are almost G_{2}-structures, satisfying $d \varphi=0$, cf. [38] Def. 12.3.3. In our opinion, this is a disputable choice, since by Lemma 3.36 and Proposition 3.38 we have

$$
d \varphi=0 \quad \Leftrightarrow \quad \mathcal{T} \in \mathfrak{g}_{2},
$$

whereas for the $S U(3)$-case the Kähler condition becomes $\mathcal{T}=0$. The proof of Theorem 3.28 actually shows that

$$
d \omega=d \rho=0 \Leftrightarrow \mathcal{T} \in \mathfrak{s u}_{3} \text { and } \eta=0,
$$

which should therefore be regarded as the $S U(3)$-analogue of $d \varphi=0$. A second glance at the intrinsic torsion shows that it is difficult to exhibit a Fernández-Gray class of G_{2}-structures that corresponds to Kähler $S U(3)$-structures. The reason for this is that the structure tensor φ of a G_{2}-structure contains information about the Kähler form ω, but as well about the complex volume element ρ. This is manifested in the formula $\varphi=\rho+d \theta \wedge \omega$ and suggests that it is not advisable to translate $d \omega=0$ or $N_{I}=0$ into conditions like $d \varphi=0$ or $d \psi=0$.
Another reason why G_{2}-structures with $d \varphi=0$ are inappropriate candidates for Kähler G_{2}-structures is a result due to Bryant, Cleyton and Ivanov. Namely, any

Ricci flat G_{2}-structures with $d \varphi=0$ is already parallel. In contrast, Ricci flat Kähler structures have only restricted holonomy contained in $S U(3)$. All this assures the suspicion that non of the Fernández-Gray types is a an appropriate candidate. Instead of searching a Kähler G_{2}-analogue, one can more generally ask for Kähler structures in dimension seven. In chapter four we already discussed that Sasakian structures are at least not a natural choice for Kähler structures in odd dimension. Sasakian G_{2}-structures are even less suitable as Kähler G_{2}-structures, since they do not allow parallel tensors or Ricci flat metrics. The only remaining candidates are Kähler $S U(3)$-structures from Theorem 3.46, which do not belong to a particular Fernández-Gray type.
In this chapter we find a unifying description for the Ricci flow, the Kähler-Ricci flow and the extension of the Kähler-Ricci flow to $S U(n)$-structures. This description extends naturally to G_{2} and Spin_{7}-structures and allows us to define a universal Ricci flow. We prove existence and uniqueness of this flow. Another result is the description of a fibrewise Kähler-Ricci flow, whose limit metrics can be resembled to a Ricci flat metric on the ambient sevenfold.

KÄhler Geometry

Let (M, I) be a $2 n$-dimensional manifold, equipped with an almost complex structure I. If we extend I to an endomorphism of the complexified tangent bundle $T M \otimes \mathbb{C}$, we obtain a decomposition of $T M \otimes \mathbb{C}$ into eigenspaces of I :

$$
\begin{aligned}
& T^{(1,0)} M:=\{X-i I X \mid X \in T M\}=\operatorname{Eig}(I, i) \\
& T^{(0,1)} M:=\{X+i I X \mid X \in T M\}=\operatorname{Eig}(I,-i)
\end{aligned}
$$

Moreover, we define

$$
\begin{aligned}
T^{(1,0) *} M: & =\left\{\alpha \in \Lambda^{1} T^{*} M \otimes \mathbb{C} \mid \alpha(Z)=0, \text { for all } Z \in T^{(0,1)} M\right\} \\
& =\left\{\alpha-i \alpha \circ I \mid \alpha \in \Lambda^{1} T^{*} M\right\}, \\
T^{(0,1) *} M: & =\left\{\alpha \in \Lambda^{1} T^{*} M \otimes \mathbb{C} \mid \alpha(Z)=0, \text { for all } Z \in T^{(1,0)} M\right\} \\
& =\left\{\alpha+i \alpha \circ I \mid \alpha \in \Lambda^{1} T^{*} M\right\} .
\end{aligned}
$$

Note that if we consider I as andomorphism of $T^{*} M$ via

$$
I \alpha:=-\alpha \circ I,
$$

we have $T^{(1,0) *} M=\operatorname{Eig}(I,-i)$ and $T^{(0,1) *} M=\operatorname{Eig}(I, i)$. Denote by $\Lambda^{(p, 0)}$, respectively $\Lambda^{(0, p)}$, the $p^{t h}$ exterior power of $T^{(1,0) *} M$, respectively $T^{(0,1) *} M$,

$$
\Lambda^{(p, 0)}:=\Lambda^{p} T^{(1,0) *} M \quad \text { and } \quad \Lambda^{(0, p)}:=\Lambda^{p} T^{(0,1) *} M
$$

and let $\Lambda^{(p, q)}:=\Lambda^{(p, 0)} \otimes \Lambda^{(0, q)}$, such that

$$
\Lambda^{k} T^{*} M \otimes \mathbb{C}=\bigoplus_{p+q=k} \Lambda^{(p, q)}
$$

Sections of $\Lambda^{(p, q)}$ are called (p, q)-forms and the bundle

$$
K:=\Lambda^{(n, 0)}
$$

is called the canonical line bundle of (M, I).

We now turn to the case where the almost complex structure is integrable, i.e. $N_{I}=0$. By the Newlander-Nirenberg theorem, the condition $N_{I}=0$ is equivalent to the existence of an atlas of complex charts with holomorphic transition functions. Given such a chart $z=x+i y: U \rightarrow \mathbb{C}^{n}$, defined on some open domain $U \subset M$, we define:

$$
g_{j \bar{k}}:=g\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{k}}\right),
$$

where

$$
\begin{aligned}
Z_{j} & :=\frac{\partial}{\partial z_{j}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right) \in T^{(1,0)} M, \\
\bar{Z}_{j} & :=\frac{\partial}{\partial \bar{z}_{j}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right) \in T^{(0,1)} M,
\end{aligned}
$$

since

$$
I \frac{\partial}{\partial x_{j}}=\frac{\partial}{\partial y_{j}} \quad \text { and } \quad I \frac{\partial}{\partial y_{j}}=-\frac{\partial}{\partial x_{j}} .
$$

$N_{I}=0$ is also equivalent to the condition that the exterior derivative defines a map

$$
d: C^{\infty}\left(\Lambda^{(p, q)} M\right) \rightarrow C^{\infty}\left(\Lambda^{(p+1, q)} M \oplus \Lambda^{(p, q+1)} M\right)
$$

for all $0 \leq p, q \leq n$. The projection onto the $(p+1, q)$ (resp. $(p, q+1))$ component defines operators ∂ (resp. $\bar{\partial}$) such that

$$
d=\partial+\bar{\partial}
$$

Moreover, we define the operator

$$
d^{c}:=i(\bar{\partial}-\partial),
$$

which is actually a real operator, i.e. $d^{c} \alpha$ is a real $(k+1)$-form if α is a real k-form. The following formulas are an easy consequence of $d^{2}=0$ and the above definitions,

$$
\begin{gathered}
\partial^{2}=\bar{\partial}^{2}=\partial \bar{\partial}+\bar{\partial} \partial=0 \\
\left(d^{c}\right)^{2}=d d^{c}+d^{c} d=0 \\
\partial=\frac{1}{2}\left(d+i d^{c}\right), \quad \bar{\partial}=\frac{1}{2}\left(d-i d^{c}\right) \quad \text { and } \quad d d^{c}=2 i \partial \bar{\partial} .
\end{gathered}
$$

Note also that for $f: M \rightarrow \mathbb{R}$ always

$$
I d f=I(\partial f+\bar{\partial} f)=-i \partial f+i \bar{\partial} f=d^{c} f
$$

holds.

Lemma 5.1. Let η be any 1 -form on the complex manifold (M, I). Then $d^{c} \eta=0$ if and only if $d(I \eta)=0$. In particular, d^{c}-closed 1-forms are locally d^{c}-exact.

Proof: Write $\eta=\eta_{10}+\eta_{01}$ according to the decomposition $\Lambda^{1} T^{*} M=\Lambda^{(1,0)} T^{*} M \oplus$ $\Lambda^{(0,1)} T^{*} M$. Then $d^{c} \eta=i(\bar{\partial}-\partial) \eta=0$ if and only if

$$
\begin{equation*}
\partial \eta_{10}=\bar{\partial} \eta_{01}=\partial \eta_{01}-\bar{\partial} \eta_{10}=0 \tag{1}
\end{equation*}
$$

Since $I \eta=-i \eta_{10}+i \eta_{01}$, we see that $d I \eta=(\partial+\bar{\partial}) I \eta=0$ is also equivalent to (1) and the first part of the Lemma follows. Now for $d^{c} \eta=0$, we have by the Poincaré Lemma $I \eta=d u$, for some local function $u: U \subset M \rightarrow \mathbb{R}$. Hence

$$
\eta=-I d u=d^{c}(-u)
$$

A proof of the next lemma can for instance be found in [3].

Lemma 5.2. Let (M, I) be a complex manifold and ω a real $(1,1)$-form on M.
(i) ω is closed, if and only if each point in M has an open neighborhood U, such that

$$
\omega_{\mid U}=i \partial \bar{\partial} u
$$

for some real function $u: U \rightarrow \mathbb{R}$.
(ii) Suppose that M is compact. Then ω is exact, if and only if

$$
\omega=i \partial \bar{\partial} u
$$

for some real function $u: M \rightarrow \mathbb{R}$.

For a compact Kähler manifold M, the equation $\partial \bar{\partial} u=0$ implies that u is constant. Hence the second part of Lemma 5.2 states that the Kähler metrics on a compact complex manifold (M, I), within a fixed Kähler class, are parameterized by smooth real valued functions on M.

From $\nabla^{g} I=0$, we see that the curvature operator of a Kähler structure satisfies

$$
R(X, Y) I Z=I R(X, Y) Z
$$

and hence

$$
R(I X, I Y, Z, U)=R(X, Y, Z, U)=R(X, Y, I Z, I U)
$$

for all $X, Y, Z, U \in C^{\infty}(T M)$. Then the Ricci tensor $\operatorname{ric}(X, Y)=\sum_{j=1}^{2 n} R\left(E_{i}, X, Y, E_{i}\right)$ satisfies

$$
\operatorname{ric}(I X, I Y)=\operatorname{ric}(X, Y) \quad \text { and } \quad \operatorname{Ric} \circ I=I \circ \operatorname{Ric},
$$

which shows that

$$
\varrho(X, Y):=\operatorname{ric}(I X, Y)
$$

defines a 2-form on M, which is called the Ricci form of the Kähler structure.

Proposition 5.3. Let (g, ω, I) be a Kähler structure on M with Ricci form ϱ.
In local coordinates $z: U \rightarrow \mathbb{C}^{n}$ we have

$$
\varrho=-i \partial \bar{\partial} \ln \operatorname{det}\left(g_{j \bar{k}}\right) \quad \text { and } \quad \text { ric }=-\partial \bar{\partial} \ln \operatorname{det}\left(g_{j \bar{k}}\right)
$$

Moreover, $d \varrho=0$ and $[\varrho / 2 \pi]=c_{1}(T M)$ equals the first real Chern class of M.

Proof: $\quad \nabla^{g} I=0$ implies

$$
\nabla_{Z_{j}}^{g} \bar{Z}_{k}=\nabla_{\bar{Z}_{j}}^{g} Z_{k}=0
$$

and the unmixed Christoffel symbols are defined by

$$
\nabla_{Z_{j}}^{g} Z_{k}=\sum_{l} \Gamma_{j k}^{l} Z_{l} \quad \text { and } \quad \nabla_{\bar{Z}_{j}}^{g} \bar{Z}_{k}=\sum_{\bar{l}} \Gamma_{\bar{j} \bar{k}}^{\bar{l}} \bar{Z}_{l} .
$$

Since

$$
R_{j \bar{k} l}=R\left(Z_{j}, \bar{Z}_{k}, Z_{l}\right)=-\nabla_{\bar{Z}_{k}}^{g} \nabla_{Z_{j}}^{g} Z_{l}=-\sum_{s}\left(\frac{\partial}{\partial \bar{z}_{k}} \cdot \Gamma_{l j}^{s}\right) Z_{s},
$$

we have

$$
\begin{equation*}
R_{j \bar{k} l}^{j}=-\frac{\partial}{\partial \bar{z}_{k}} \cdot \Gamma_{l j}^{j} . \tag{1}
\end{equation*}
$$

Writing $G:=\left(g_{j \bar{k}}\right)$, we compute

$$
\frac{\partial}{\partial z_{j}} \ln \operatorname{det}(G)=\operatorname{tr}\left(\frac{\partial G}{\partial z_{j}} G^{-1}\right)
$$

and
$\left(\frac{\partial G}{\partial z_{j}} G^{-1}\right)_{k l}=\sum_{r}\left(Z_{j} \cdot g_{k \bar{r}}\right) G_{r l}^{-1}=\sum_{r} g\left(\nabla_{Z_{j}}^{g} Z_{k}, \bar{Z}_{r}\right) G_{r l}^{-1}=\sum_{r, s} \Gamma_{j k}^{s} G_{s r} G_{r l}^{-1}=\Gamma_{j k}^{l}$,
i.e.

$$
\begin{equation*}
\frac{\partial}{\partial z_{j}} \ln \operatorname{det}(G)=\sum_{l} \Gamma_{j l}^{l} . \tag{2}
\end{equation*}
$$

Putting together (1) and (2) we obtain

$$
\begin{equation*}
\operatorname{ric}_{j \bar{k}}=\operatorname{ric}_{\bar{k} j}=\sum_{l} R_{l \bar{k} j}^{l}=-\sum_{l} \frac{\partial}{\partial \bar{z}_{k}} \cdot \Gamma_{j l}^{l}=-\frac{\partial}{\partial \bar{z}_{k}} \frac{\partial}{\partial z_{j}} \ln \operatorname{det}(G) . \tag{3}
\end{equation*}
$$

Since $\operatorname{ric}(I ., I)=.\operatorname{ric}$, we see that $\operatorname{ric}_{j k}=\operatorname{ric}_{\bar{j} \bar{k}}=0$ and hence

$$
\begin{aligned}
\varrho & =i \sum_{j k} \operatorname{ric}_{j \bar{k}} d z_{j} \wedge d \bar{z}_{k} \\
& =-i \sum_{j k} \frac{\partial}{\partial \bar{z}_{k}} \frac{\partial}{\partial z_{j}} \ln \operatorname{det}(G) d z_{j} \wedge d \bar{z}_{k} \\
& =i \bar{\partial} \partial \ln \operatorname{det}(G) \\
& =-i \partial \bar{\partial} \ln \operatorname{det}(G)
\end{aligned}
$$

The identities for the operators ∂ and $\bar{\partial}$ show that in particular $d \varrho=0$ holds. Since $\operatorname{tr}(A+i B)=i \operatorname{tr}(B)$, for an element $A+i B \in \mathfrak{u}(n)$, we obtain for the curvature, regarded as a $\mathfrak{u}(n)$ valued 2 -form,

$$
\operatorname{tr}(R(X, Y))=i \sum_{j=1}^{n} g\left(R(X, Y) E_{j}, I E_{j}\right)
$$

Now the first Bianchi identity gives

$$
\begin{aligned}
\varrho(X, Y) & =\operatorname{ric}(I X, Y)=\sum_{j=1}^{n} g\left(R\left(E_{j}, I X\right) Y, E_{j}\right)+g\left(R\left(I E_{j}, I X\right) Y, I E_{j}\right) \\
& =\sum_{j=1}^{n} g\left(R\left(E_{j}, I X\right) I Y, I E_{j}\right)-g\left(R\left(I E_{j}, I X\right) I Y, E_{j}\right) \\
& =\sum_{j=1}^{n} g\left(R\left(I X, E_{j}\right) I E_{j}, I Y\right)+g\left(R\left(I E_{j}, I X\right) E_{j}, I Y\right) \\
& =-\sum_{j=1}^{n} g\left(R\left(E_{j}, I E_{j}\right) I X, I Y\right)=-\sum_{j=1}^{n} g\left(R\left(E_{j}, I E_{j}\right) X, Y\right) \\
& =-\sum_{j=1}^{n} g\left(R(X, Y) E_{j}, I E_{j}\right)=i \operatorname{tr}(R(X, Y))
\end{aligned}
$$

and hence

$$
c_{1}(T M)=\left[\frac{i}{2 \pi} \operatorname{tr}(R)\right]=\left[\frac{1}{2 \pi} \varrho\right]
$$

Proposition 5.4. Let (g, ω, I) be a Kähler structure on M with canonical bundle K. The curvature of the Levi-Civita connection on K satisfies

$$
R(X, Y) \Phi=i \varrho(X, Y) \Phi
$$

for all sections $\Phi \in C^{\infty}(K)$ and vector fields $X, Y \in C^{\infty}(T M)$. In particular,

$$
c_{1}(K)=\left[\frac{i}{2 \pi} i \varrho\right]=\left[-\frac{1}{2 \pi} \varrho\right] .
$$

Proof: The Levi-Civita connection induces a connection on $\Lambda^{n} T^{*} M \otimes \mathbb{C}$ and, since $\nabla^{g} I=0$, a connection on $K \subset \Lambda^{n} T^{*} M \otimes \mathbb{C}$. The curvature R of the LeviCivita connection on $\Lambda^{k} T^{*} M \otimes \mathbb{C}$ acts by derivation, i.e.

$$
R(X, Y) \omega=\left.\frac{d}{d t}\right|_{t=0} \exp (t R(X, Y)) \omega
$$

for $\omega \in C^{\infty}\left(\Lambda^{k} T^{*} M \otimes \mathbb{C}\right)$. Hence we get for a complex volume form $\Phi \in C^{\infty}(K)$

$$
\begin{aligned}
R(X, Y) \Phi & =\left.\frac{d}{d t}\right|_{t=0} \exp (t R(X, Y)) \Phi \\
& =\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}_{\mathbb{C}}(\exp (-t R(X, Y)) \Phi \\
& =-\operatorname{tr}(R(X, Y)) \Phi \\
& =i \varrho(X, Y) \Phi
\end{aligned}
$$

as we have seen in the proof of Proposition 5.3.

Proposition 5.5. Suppose (g, ω, I) is a Kähler structure on M with Ricci form ϱ and first real Chern class $c_{1}(T M)$. Then
(i) $\quad c_{1}(T M)=0 \quad \Leftrightarrow \quad[\varrho]=0 \quad \Leftrightarrow \quad(g, \omega, I)$ is a Kähler $S U(n)$-structure
(ii) \quad ric $=0 \quad \Leftrightarrow \quad \varrho=0 \quad \Leftrightarrow \quad \operatorname{Hol}_{0}(g) \subset S U(n)$

Proof: By Proposition 5.3 and 5.4, we have $c_{1}(T M)=0 \Leftrightarrow c_{1}(K) \Leftrightarrow[\varrho]=0$. Since the first Chern class is a complete invariant for complex line bundles, i.e. the first Chern class $c_{1} \in H^{2}(M ; \mathbb{Z})$ classifies the line bundle up to isomorphism, we see that $c_{1}(K)=0$ is equivalent to the existence of a global section $\Phi=\rho+i \widehat{\rho} \in C^{\infty}(K)$ of unit length. Such a section corresponds to a further reduction of the Kähler structure to a (topological) $S U(n)$-structure.
For the second equivalence in (ii) recall that $i \varrho$ is the curvature of K by Proposition 5.4 and that the vanishing of the curvature is equivalent to the existence of local parallel sections in K. This can be seen as follows: Fix $p \in M$ and an element $\Phi_{0} \in K_{p}$ of unit length. For $U \subset M$ open and simply connected, we define a local section $\Phi: U \rightarrow K$ as follows: For $q \in U$ choose a curve $c:[0,1] \rightarrow M$ with $c(0)=p$ and $c(1)=q$. Parallel translation of $\Phi_{0} \in K_{p}$ along c gives an element

$$
\Phi(q) \in K_{q}
$$

Since ric $=0$, the canonical bundle has $\operatorname{Hol}_{0}=\{1\}$ by Proposition 5.3 and the Ambrose-Singer Theorem. Therefore $\Phi(q) \in K_{q}$ is independent of the choice of c and we obtain a well-defined section $\Phi: U \rightarrow K$, which is of unit length and parallel.

Let (g, ω) be a Kähler structure on a compact complex manifold (M, I) with Ricci form ϱ and first real Chern class $c_{1}(T M)$. Hamilton shows in [35] that the initial metric can be evolved under the Ricci flow $\dot{g}_{t}=-2$ ric $_{t}$ for a short time $t \in[0, T)$. Hamilton [35] also mentions that the solution of the Ricci flow actually yields a whole family of Kähler metrics $\left\{g_{t}\right\}$ on (M, I). In order to prove the Calabi-Conjecture, Cao [17] considers the following Kähler-Ricci flow on the complex manifold (M, I)

$$
\begin{align*}
& \dot{g}_{t}=-2 \operatorname{ric}_{t}-2 T(I ., .), \tag{1}\\
& \dot{\omega}_{t}=-2 \varrho_{t}+2 T,
\end{align*}
$$

where T is a real $(1,1)$-form such that $[T / 2 \pi]=c_{1}(T M)=[\varrho / 2 \pi]$. By Lemma 5.2 (ii) we can find $f: M \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
T-\varrho=i \partial \bar{\partial} f \tag{2}
\end{equation*}
$$

To solve (1), we try to find a solution of the form

$$
\begin{equation*}
g_{t}:=g-i \partial \bar{\partial} u_{t}(I ., .), \tag{3}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\omega_{t}:=\omega+i \partial \bar{\partial} u_{t} \tag{4}
\end{equation*}
$$

where $u_{t}: M \rightarrow \mathbb{R}$ is a smooth family of functions on M. Note that $2 i \partial \bar{\partial} u_{t}=d d^{c} u_{t}$ is actually a real $(1,1)$-form and that $\omega_{t}-\omega$ is exact, i.e. $\left[\omega_{t}\right]=[\omega]$. In local coordinates we have

$$
\begin{equation*}
\varrho_{t}:=-i \partial \bar{\partial} \ln \operatorname{det}\left(g_{t}\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{k}}\right)\right) \tag{5}
\end{equation*}
$$

and we see that $\dot{\omega}_{t}=-2 \varrho_{t}+2 T$ becomes

$$
\partial \bar{\partial} \dot{u}_{t}=2 \partial \bar{\partial} \ln \operatorname{det}\left(g_{j \bar{k}}+\frac{\partial}{\partial z_{j}} \cdot \frac{\partial}{\partial \bar{z}_{k}} \cdot u_{t}\right)-2 \partial \bar{\partial} \ln \operatorname{det}\left(g_{j \bar{k}}\right)+2 \partial \bar{\partial} f
$$

Equivalently, by the maximum principle,

$$
\begin{equation*}
\dot{u}_{t}=2 \ln \operatorname{det}\left(g_{j \bar{k}}+\frac{\partial}{\partial z_{j}} \cdot \frac{\partial}{\partial \bar{z}_{k}} \cdot u_{t}\right)-2 \ln \operatorname{det}\left(g_{j \bar{k}}\right)+2 f \tag{6}
\end{equation*}
$$

So (1) can be reduced to the scalar equation (6), which is actually a complex Monge-Amperé equation. Cao studies this equation in [17] and his main result can be summarized in the following

Theorem 5.6. Suppose (g, ω) is a Kähler structure on the complex manifold (M, I) and that $T / 2 \pi$ is a closed real $(1,1)$-form which represents the first real Chern class $c_{1}(T M)$ of M. Then the solution of

$$
\dot{g}_{t}=-2 \text { ric }_{t}-2 T(I ., .)
$$

exists for all times $t \in[0, \infty)$. As $t \rightarrow \infty$, the solution g_{t} converges in the $C^{\infty}{ }_{-}$ topology to a Kähler metric g_{∞} within the same Kähler class as the initial metric. Moreover, \dot{g}_{t} converges in the C^{∞}-topology to zero.

Remark 5.7. Since g_{t} converges in C^{∞}-topology to the metric g_{∞}, the Ricci tensor $\operatorname{ric}_{t}=\operatorname{ric}\left(g_{t}\right)$ converges to the Ricci tensor of the metric g_{∞}. Taking the limit of $\dot{g}_{t}=-2 \operatorname{ric}_{t}-2 T(I .,$.$) , we conclude that the Ricci form of the metric g_{\infty}$ is equal to T. Hence Cao's Theorem can be used to prove the existence statement of the Calabi conjecture.

An Extension of Cao's Result to $S U(n)$-Structures

From Proposition 5.5 we know that Kähler $S U(n)$-structures are precisely the Kähler structures with vanishing first Chern class. In this case Cao's Theorem yields a Ricci flat Kähler metric. On the other hand, Proposition 5.5 also tells us that Ricci flat Kähler structures are precisely the Kähler structures with local holonomy contained in $S U(n)$. This brings up the question whether the Ricci flow for $U(n)$ structures in Theorem 5.6 can be extended to a deformation of $S U(n)$ structures, such that the limit structure has holonomy contained in $S U(n)$. In the following we will discuss an approach to extend the Kähler-Ricci flow to $S U(n)$ structures.

Definition 5.8. (i) Suppose that $\left(g_{t}, \omega_{t}\right)$ is the solution of the Kähler-Ricci flow on (M, I) with initial data (g, ω). By Example 1.8 we can find a gauge deformation A_{t} which is symmetric and positive w.r.t. g and satisfies

$$
\left(g_{t}, \omega_{t}, I\right)=A_{t}(g, \omega, I)
$$

We call A_{t} the corresponding gauge deformation for the Ricci flow $\left(g_{t}, \omega_{t}, I\right)$.
(ii) If the initial structure is a Kähler $S U(n)$-structure (g, ω, ρ), we obtain a 1parameter family of Kähler $S U(n)$-structures by

$$
\rho_{t}:=A_{t} \rho .
$$

We call $\left(g_{t}, \omega_{t}, \rho_{t}\right)$ the canonical extension of the Kähler-Ricci flow to the $S U(n)$ Kähler structure (g, ω, ρ). From $A_{t} I=I A_{t}$ and $\rho \in \Lambda^{(3,0)}$ w.r.t. I, we get

$$
\rho_{t}=A_{t} \rho=\operatorname{det}_{\mathbb{C}}\left(A_{t}^{-1}\right) \rho,
$$

where $\operatorname{det}_{\mathbb{C}}\left(A_{t}^{-1}\right) \in \mathbb{R}$, since A_{t} is hermitian.

An alternative to the canonical extension of the Kähler-Ricci flow is motivated by the following observation: Since

$$
\left.D_{\omega}(\operatorname{Ric})=-\sum_{i=1}^{2 n} E^{i} \wedge \operatorname{Ric}\left(E_{i}\right)\right\lrcorner \omega=-2 \operatorname{pr}_{\Lambda^{2}}(I \circ \operatorname{Ric})=-2 \varrho,
$$

the evolution equation $\dot{\omega}_{t}=-2 \varrho_{t}$ can be reformulated as

$$
\dot{\omega}_{t}=D_{\omega_{t}}\left(\operatorname{Ric}_{t}\right)
$$

Similarly, $D_{g_{t}}\left(\right.$ Ric $\left._{t}\right)=-2$ ric $_{t}$ gives

$$
\dot{g}_{t}=D_{g_{t}}\left(\operatorname{Ric}_{t}\right) .
$$

Hence any initial $S U(3)$-Kähler structure (g, ω, ρ) should evolve according to

$$
\left(\dot{g}_{t}, \dot{\omega}_{t}, \dot{\rho}_{t}\right)=\left(D_{g_{t}}\left(\operatorname{Ric}_{t}\right), D_{\omega_{t}}\left(\operatorname{Ric}_{t}\right), D_{\rho_{t}}\left(\operatorname{Ric}_{t}\right)\right)=: D_{\left(g_{t}, \omega_{t}, \rho_{t}\right)}\left(\operatorname{Ric}_{t}\right)
$$

and indeed we have

Theorem 5.9. The canonical extension $\left(g_{t}, \omega_{t}, \rho_{t}\right)$ of the Kähler-Ricci flow to $S U(3)$-structures satisfies

$$
\left(\dot{g}_{t}, \dot{\omega}_{t}, \dot{\rho}_{t}\right)=D_{\left(g_{t}, \omega_{t}, \rho_{t}\right)}\left(\operatorname{Ric}_{t}\right)
$$

Proof: We have already seen that the equations $\dot{g}_{t}=D_{g_{t}}\left(\operatorname{Ric}_{t}\right)$ and $\dot{\omega}_{t}=$ $D_{\omega_{t}}\left(\operatorname{Ric}_{t}\right)$ hold for the canonical extension $\left(g_{t}, \omega_{t}, \rho_{t}\right)=A_{t}(g, \omega, \rho)$ of the KählerRicci flow. By Lemma 1.14, Lemma 1.16 and Lemma 3.23 we have

$$
\begin{aligned}
\dot{g}_{t}=D_{g_{t}}\left(\operatorname{Ric}_{t}\right) & \Leftrightarrow D_{g_{t}}\left(\dot{A}_{t} A_{t}^{-1}\right)=D_{g_{t}}\left(\operatorname{Ric}_{t}\right) \\
& \Leftrightarrow \operatorname{pr}_{S^{2}}\left(\dot{A}_{t} A_{t}^{-1}\right)=\operatorname{Ric}_{t}, \\
\dot{\omega}_{t}=D_{\omega_{t}}\left(\operatorname{Ric}_{t}\right) & \Leftrightarrow D_{\omega_{t}}\left(\dot{A}_{t} A_{t}^{-1}\right)=D_{\omega_{t}}\left(\operatorname{Ric}_{t}\right) \\
& \Leftrightarrow \operatorname{pr}_{\mathfrak{u}_{3}^{1}}\left(\dot{A}_{t} A_{t}^{-1}\right)=0 \text { and } \operatorname{pr}_{\mathbb{R i d} \oplus I_{0} \mathfrak{s u}}^{3}
\end{aligned}\left(\dot{A}_{t} A_{t}^{-1}\right)=\operatorname{pr}_{\mathbb{R i d}_{I_{0} \mathfrak{s u}_{3}}}\left(\operatorname{Ric}_{t}\right), ~ \$
$$

where all projections are taken w.r.t. the structure $\left(g_{t}, \omega_{t}, \rho_{t}\right)$. Similarly, the equation $\dot{\rho}_{t}=D_{\rho_{t}}\left(\operatorname{Ric}_{t}\right)$ is equivalent to

$$
\begin{equation*}
\operatorname{pr}_{\mathfrak{u}_{3}^{\frac{1}{3} \oplus \mathbb{R} I_{0}}}\left(\dot{A}_{t} A_{t}^{-1}\right)=0 \quad \text { and } \quad \operatorname{pr}_{\mathbb{R i d} \oplus S_{12}^{2}}\left(\dot{A}_{t} A_{t}^{-1}\right)=\operatorname{pr}_{\mathbb{R i d}_{1} \oplus S_{12}^{2}}\left(\operatorname{Ric}_{t}\right) . \tag{1}
\end{equation*}
$$

By Example 1.8 we have $A_{t} I=I A_{t}$ and $A_{t}^{T}=A_{t}$ w.r.t. the initial metric g. Since the complex structure is preserved, we get

$$
\begin{aligned}
\operatorname{pr}_{\mathbb{R} I_{0}}\left(\dot{A}_{t} A_{t}^{-1}\right) & =\left\langle\dot{A}_{t} A_{t}^{-1}, I\right\rangle_{t}=-\operatorname{tr}\left(\dot{A}_{t} A_{t}^{-1} I\right)=-\operatorname{tr}\left(\left(\dot{A}_{t} A_{t}^{-1} I\right)^{T}\right) \\
& =\operatorname{tr}\left(I A_{t}^{-1} \dot{A}_{t}\right)=\operatorname{tr}\left(A_{t}^{-1} I \dot{A}_{t}\right)=\operatorname{tr}\left(\dot{A}_{t} A_{t}^{-1} I\right) \\
& =-\operatorname{pr}_{\mathbb{R I}_{0}}\left(\dot{A}_{t} A_{t}^{-1}\right)
\end{aligned}
$$

So $\operatorname{pr}_{\mathbb{R} I_{0}}\left(\dot{A}_{t} A_{t}^{-1}\right)=0$ and since already $\operatorname{pr}_{S^{2}}\left(\dot{A}_{t} A_{t}^{-1}\right)=\operatorname{Ric}_{t}$ and $\operatorname{pr}_{\mathfrak{u}_{3}^{\frac{1}{3}}}\left(\dot{A}_{t} A_{t}^{-1}\right)=0$ holds, the evolution equation $\dot{\rho}_{t}=D_{\rho_{t}}\left(\operatorname{Ric}_{t}\right)$ follows from (1).

Lemma 5.10. Let A_{t} be the gauge deformation corresponding to the Ricci flow $\left(g_{t}, \omega_{t}\right)$ on (M, I). Then for local holomorphic coordinates z on M

$$
\operatorname{det}_{\mathbb{C}}\left(g_{t}\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{k}}\right)\right)=\operatorname{det}_{\mathbb{C}}\left(A_{t}^{-2}\right) \operatorname{det}_{\mathbb{C}}\left(g\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{k}}\right)\right)
$$

Proof: First observe that

$$
\alpha_{t, k}:=g_{t}\left(., \frac{\partial}{\partial \bar{z}_{k}}\right)=\frac{1}{2}\left(g_{t}\left(., \frac{\partial}{\partial x_{k}}\right)-i g_{t}\left(., \frac{\partial}{\partial x_{k}}\right) \circ I\right) \in T^{*(1,0)} M
$$

and that for $\Phi_{t}:=\alpha_{t, 1} \wedge . . \wedge \alpha_{t, n} \in \Lambda^{(n, 0)} T^{*} M$

$$
\Phi_{t}\left(\frac{\partial}{\partial z_{1}}, . ., \frac{\partial}{\partial z_{n}}\right)=\operatorname{det}_{\mathbb{C}}\left(\alpha_{t, k}\left(\frac{\partial}{\partial z_{j}}\right)\right)=\operatorname{det}_{\mathbb{C}}\left(g_{t}\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{k}}\right)\right)
$$

holds. From $g_{t}=A_{t} g$ and $A_{t} \in S^{2}$ w.r.t. g, we get

$$
\alpha_{t, k}=g\left(A_{t}^{-1} \cdot, A_{t}^{-1} \frac{\partial}{\partial \bar{z}_{k}}\right)=g\left(A_{t}^{-2} \cdot, \frac{\partial}{\partial \bar{z}_{k}}\right)=A_{t}^{2} \alpha_{k}
$$

i.e. $\Phi_{t}=A_{t}^{2} \Phi=\operatorname{det}_{\mathbb{C}}\left(A_{t}^{-2}\right) \Phi$ and hence

$$
\operatorname{det}_{\mathbb{C}}\left(g_{t}\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{k}}\right)\right)=\operatorname{det}_{\mathbb{C}}\left(A_{t}^{-2}\right) \Phi\left(\frac{\partial}{\partial z_{1}}, . ., \frac{\partial}{\partial z_{n}}\right)=\operatorname{det}_{\mathbb{C}}\left(A_{t}^{-2}\right) \operatorname{det}_{\mathbb{C}}\left(g\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{k}}\right)\right)
$$

Lemma 5.11. Let A_{t} be the gauge deformation corresponding to the Ricci flow $\left(g_{t}, \omega_{t}\right)$ on (M, I). Then the Ricci form ϱ_{t} of the metric g_{t} satisfies

$$
\varrho-\varrho_{t}=d d^{c} \ln \operatorname{det}_{\mathbb{C}}\left(A_{t}^{-1}\right) .
$$

Proof: By Proposition 5.3 and Lemma 5.10 we have in local coordinates

$$
\begin{aligned}
\varrho_{t} & =-i \partial \bar{\partial} \ln \operatorname{det}_{\mathbb{C}}\left(g_{t, j \bar{k}}\right) \\
& =-i \partial \bar{\partial} \ln \left(\operatorname{det}_{\mathbb{C}}\left(A_{t}^{-2}\right) \operatorname{det}_{\mathbb{C}}\left(g_{j \bar{k}}\right)\right) \\
& =-2 i \partial \bar{\partial} \ln \left(\operatorname{det}_{\mathbb{C}}\left(A_{t}^{-1}\right)\right)-i \partial \bar{\partial} \ln \operatorname{det}_{\mathbb{C}}\left(g_{j \bar{k}}\right) \\
& =-d d^{c} \ln \operatorname{det}_{\mathbb{C}}\left(A_{t}^{-1}\right)+\varrho .
\end{aligned}
$$

Lemma 5.12. Suppose (g, ω, ρ) is a Kähler $S U(3)$-structure on (M, I) with intrinsic torsion η, cf. Definition 3.24. Then the Ricci form satisfies

$$
\varrho=-3 d \eta
$$

Proof: The Lemma is a special case of Lemma 3.3 in [15]. The Kähler condition $\xi=0$ (in the notation of [15]) yields Ric $=-3 d \hat{\eta}$, where $\hat{\eta} \cong-\eta$ in our notation, since the intrinsic torsion is defined in [15] by $\bar{\nabla}=\nabla+\eta+\xi$, where $\bar{\nabla}$ is the
covariant derivative of the characteristic $S U(3)$-connection and ∇ is the Levi-Civita connection. Since Cabrera and Swann use the opposite sign convention for the curvature tensor, we obtain in our notation

$$
\varrho(X, Y)=\operatorname{ric}(I X, Y)=-\operatorname{ric}(X, I Y)=3 d \eta\left(X, I^{2} Y\right)=-3 d \eta(X, Y)
$$

We can now describe the condition under which the canonical extension of the Kähler-Ricci flow yields a parallel $S U(3)$ structure:

Theorem 5.13. Suppose (g, ω, ρ) is a $S U(3)$-Kähler structure on (M, I) with intrinsic torsion η, cf. Definition 3.24. Then the canonical extension of the KählerRicci flow converges to a parallel $S U(3)$-structure on M if and only if $d^{c} \eta=0$.

Proof: By Cao's Theorem the Kähler-Ricci flow converges to a Ricci flat Kähler structure $\left(g_{\infty}, \omega_{\infty}\right)$ on (M, I). If A_{∞} denotes the corresponding gauge deformation, we have

$$
\rho_{\infty}=\operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right) \rho .
$$

The $S U(3)$-structure is parallel if and only if $d \rho_{\infty}=0$ holds. By Proposition 3.25 we have

$$
\begin{aligned}
d \rho_{\infty} & =d\left(\operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right)\right) \wedge \rho+\operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right) d \rho \\
& =d\left(\operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right)\right) \wedge \rho+3 \operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right) \eta \wedge \widehat{\rho} \\
& =d\left(\operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right)\right) \wedge \rho-3 \operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right) I \eta \wedge \rho
\end{aligned}
$$

From the non-degeneracy of ρ we see that $d \rho_{\infty}=0$ is equivalent to

$$
\begin{align*}
0 & =d\left(\operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right)\right)-3 \operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right) I \eta \\
\Leftrightarrow \quad 0 & =d^{c}\left(\operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right)\right)+3 \operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right) \eta \tag{1}\\
\Leftrightarrow \quad 0 & =d^{c} \ln \left(\operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right)\right)+3 \eta .
\end{align*}
$$

So $d \rho_{\infty}=0$ implies $d^{c} \eta=0$. If conversely $d^{c} \eta=0$ holds, we can find by the Poincaré Lemma 5.1 a local function $u: U \subset M \rightarrow \mathbb{R}$ such that $\eta=d^{c} u$. By construction, the metric g_{∞} is Ricci flat and hence we obtain form Lemma 5.11

$$
\varrho=d d^{c} \ln \operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right) .
$$

By Lemma 5.12 we have $\varrho=-3 d \eta$ and so

$$
d d^{c} u=d \eta=-\frac{1}{3} \varrho=-\frac{1}{3} d d^{c} \ln \operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right) .
$$

Hence $-3 u=\ln \operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right)+c$, for some constant $c \in \mathbb{R}$. So $-3 \eta=-3 d^{c} u=$ $d^{c} \ln \operatorname{det}_{\mathbb{C}}\left(A_{\infty}^{-1}\right)$, which yields (1).

Universal Ricci Flow

In the previous section we have seen that the Ricci flow for $O(n)$ and $U(n)$ structures, as well as the canonical extension to $S U(n)$-structures, can be described in a unified way, using the map from Lemma 1.14:

$$
\begin{aligned}
O(n): & \dot{g}_{t}=D_{g_{t}}\left(\operatorname{Ric}_{t}\right) \\
U(n): & \\
S U(n): & \left(\dot{g}_{t}, \dot{\omega}_{t}\right)=D_{\left(g_{t}, \omega_{t}\right)}\left(\operatorname{Ric}_{t}\right) \\
& \left.\left.\left(\dot{g}_{t}, \dot{\omega}_{t}, \dot{\rho}_{t}\right)=D_{\left(g_{t}, \omega_{t}, \rho_{t}\right)}\right) \operatorname{Ric}_{t}\right)
\end{aligned}
$$

This motivates the conjecture that for a given G_{2}-structure φ on M with sufficiently small torsion, the flow

$$
\begin{equation*}
\dot{\varphi}_{t}=D_{\varphi_{t}}\left(\operatorname{Ric}_{t}\right) \tag{1}
\end{equation*}
$$

should converge to a Ricci-flat G_{2}-structure. Similar flow equations can be considered for Spin_{7}-structures, or more generally, for any $G \subset O(n)$ structures, described by certain structure tensors. Like in the proof of Theorem 4.13, we see that the metric of the underlying structure evolves according to the Ricci flow $\dot{g}_{t}=-2$ ric $_{t}$. In contrast to the G_{2}-case, the orbit of the model tensor is not open in the $\operatorname{Spin}_{7^{-}}$ case. Hence it is not obvious that a Spin_{7}-structure evolving according to (1) actually defines a whole family of Spin_{7}-structures. To avoid this problem, we can translate the above flow equation into an equation for a corresponding family of gauge deformations. By Lemma 1.16 we have $D_{\varphi_{t}}\left(\dot{A}_{t} A_{t}^{-1}\right)=\dot{\varphi}_{t}$, for $\varphi_{t}=A_{t} \varphi$. Hence a solution of $\dot{A}_{t}=\operatorname{Ric}_{t} \circ A_{t}$ yields a solution $\varphi_{t}=A_{t} \varphi$ of (1).

Theorem 5.14. Let (M, g) be a compact Riemannian manifold. Then there exists a unique solution $A_{t} \in C^{\infty}(\operatorname{Aut}(T M)), t \in[0, T)$, of the initial value problem

$$
\left\{\begin{array}{l}
\dot{A}_{t}=\operatorname{Ric}_{t} \circ A_{t} \\
A_{0}=\mathrm{id}
\end{array}\right.
$$

Proof: Since M is compact we can find a solution $g_{t}, t \in[0, T)$, of the usual Ricci flow

$$
\begin{equation*}
\dot{g}_{t}=-2 \text { ric }_{t} \quad \text { with } \quad g_{t=0}=g_{0} \tag{1}
\end{equation*}
$$

Given an orthonormal basis $p=\left(E_{1}, . ., E_{n}\right)$ for g, we can solve the linear ODE

$$
\begin{equation*}
\dot{E}_{i}(t)=\operatorname{Ric}_{t} \circ E_{i}(t) \quad \text { with } \quad E_{i}(0)=E_{i} \tag{2}
\end{equation*}
$$

for $i=1, . ., n$ and $t \in[0, T)$. From (1) and (2) we get

$$
\begin{aligned}
\frac{d}{d t}\left(g_{t}\left(E_{i}(t), E_{j}(t)\right)\right) & =-2 \operatorname{ric}_{t}\left(E_{i}(t), E_{j}(t)\right)+\operatorname{ric}_{t}\left(E_{i}(t), E_{j}(t)\right)+\operatorname{ric}_{t}\left(E_{i}(t), E_{j}(t)\right) \\
& =0
\end{aligned}
$$

i.e. $p_{t}:=\left(E_{1}(t), . ., E_{n}(t)\right)$ is actually an orthonormal basis w.r.t. the metric g_{t}. Modifying the initial basis p by an element $B \in O(n)$ yields a new basis $p B$ given by

$$
\tilde{E}_{i}:=p B e_{i}=\sum_{j=1}^{n} b_{i j} E_{j}
$$

Hence $\tilde{E}_{i}(t):=\sum_{j=1}^{n} b_{i j} E_{j}(t)$ satisfies $\tilde{E}_{i}(0)=\tilde{E}_{i}$ and

$$
\frac{d}{d t} \tilde{E}_{i}=\sum_{j=1}^{n} b_{i j} \operatorname{Ric}_{t} \circ E_{i}(t)=\operatorname{Ric}_{t} \circ \tilde{E}_{i}(t)
$$

Since the solution of (2) is unique, we get

$$
\begin{equation*}
(p B)_{t}=p_{t} B \tag{3}
\end{equation*}
$$

for all $B \in O(n)$. For $t \in[0, T)$ define

$$
A_{t}: F^{g} M \rightarrow \operatorname{Aut}\left(\mathbb{R}^{n}\right) \quad \text { by } \quad A_{t}(p):=p^{-1} \circ p_{t}
$$

Equation (3) shows that A_{t} is equivariant,

$$
A_{t}(p B)=(p B)^{-1} \circ p_{t} \circ B=B^{-1} \circ p^{-1} \circ p_{t} \circ B=B^{-1} A_{t}(p)
$$

and hence corresponds to an element $A_{t} \in \operatorname{Aut}(T M)$, given by

$$
A_{t} E_{i}=E_{i}(t)
$$

Now

$$
\begin{aligned}
\left(A_{t} g_{0}\right)\left(E_{i}(t), E_{j}(t)\right) & =g_{0}\left(A_{t}^{-1} E_{i}(t), A_{t}^{-1} E_{j}(t)\right) \\
& =g_{0}\left(E_{i}, E_{j}\right) \\
& =g_{t}\left(E_{i}(t), E_{j}(t)\right)
\end{aligned}
$$

shows that

$$
\begin{equation*}
A_{t} g_{0}=g_{t} \tag{4}
\end{equation*}
$$

holds. From (3) we get $\operatorname{Ric}_{t}=\operatorname{Ric}\left(g_{t}\right)=\operatorname{Ric}\left(A_{t} g_{0}\right)$ and (2) becomes

$$
\dot{E}_{i}(t)=\operatorname{Ric}\left(A_{t} g_{0}\right) \circ E_{i}(t) \quad \Leftrightarrow \quad \dot{A}_{t} E_{i}=\operatorname{Ric}\left(A_{t} g_{0}\right) \circ A_{t} E_{i}
$$

i.e. $\dot{A}_{t}=\operatorname{Ric}\left(A_{t} g_{0}\right) \circ A_{t}$.

Definition 5.15. Let (M, g) be a compact Riemannian manifold of dimension n and let A_{t} be the unique solution of

$$
\left\{\begin{array}{l}
\dot{A}_{t}=\operatorname{Ric}_{t} \circ A_{t} \\
A_{0}=\mathrm{id}
\end{array}\right.
$$

from Theorem 5.14.
(1) We call A_{t} the universal Ricci flow for (M, g).
(2) If $n=7$ and $g=g(\varphi)$, where φ is a G_{2}-structure on M, then we call $\varphi_{t}:=A_{t} \varphi$ the Ricci flow for φ.
(3) If $n=8$ and $g=g(\Psi)$, where Ψ is a Spin_{7}-structure on M, then we call $\Psi_{t}:=A_{t} \Psi$ the Ricci flow for Ψ.

Note that the Ricci flow satisfies by Lemma 1.16

$$
\begin{array}{ll}
G_{2}: & \dot{\varphi}_{t}=D_{\varphi_{t}}\left(\operatorname{Ric}_{t}\right) \\
\operatorname{Spin}_{7}: & \dot{\Psi}_{t}=D_{\Psi_{t}}\left(\operatorname{Ric}_{t}\right) .
\end{array}
$$

In contrast to the usual Ricci flow equation, the equation $\dot{A}_{t}=\operatorname{Ric}_{t} \circ A_{t}$ is not invariant under the full diffeomorphism group of M. Nevertheless, $\dot{A}_{t}=\operatorname{Ric}_{t} \circ A_{t}$ is invariant under the group $\operatorname{Isom}(M, g)$ and hence any isometry of the initial metric is preserved under the flow.

Remark 5.16. We proved in Theorem 5.9 that the canonical extension of the Kähler-Ricci flow already satisfies the evolution equation

$$
\left(\dot{g}_{t}, \dot{\omega}_{t}, \dot{\rho}_{t}\right)=D_{\left(g_{t}, \omega_{t}, \rho_{t}\right)}\left(\operatorname{Ric}_{t}\right)
$$

This brings up the question whether the Ricci flow for a metric g, coming from some G_{2}-structure φ on M, can be extended canonically to a solution φ_{t} of

$$
\dot{\varphi}_{t}=D_{\varphi_{t}}\left(\operatorname{Ric}_{t}\right)
$$

Like in the $S U(3)$-case we can write $g_{t}=A_{t} g$ for the solution of the Ricci flow. Here A_{t} is symmetric and positive w.r.t. the initial metric g. Then the canonical extension of the Ricci flow to the whole G_{2}-structure would be $\varphi_{t}:=A_{t} \varphi$. However, the proof of Theorem 5.9 does not carry over to the G_{2}-case. One critical ingredient in the proof of Theorem 5.9 was the fact that the corresponding gauge deformation preserves the complex structure. This property stems from the assumption that the initial structure is actually Kähler. For a generic G_{2}-structure, the family of gauge deformations A_{t}, describing the Ricci flow, do not necessarily contain enough symmetries to reproduce the proof of Theorem 5.9.
As a consequence, a G_{2}-structure for which the Ricci flow converges to a Ricci flat G_{2}-structure, should have the property that the canonical extension yields a solution of $\dot{\varphi}_{t}=D_{\varphi_{t}}\left(\operatorname{Ric}_{t}\right)$.

Fibrewise Ricci Flow

Given a $S U(3)$ structure (α, φ) on a compact seven dimensional manifold M with $d \alpha=0$, we obtain a fibration of M into compact integral manifolds of $\operatorname{ker}(\alpha)$. On a fixed integral manifold $i: N \hookrightarrow M$, the G_{2}-structure φ induces a $S U(3)$-structure by

$$
g_{N}:=i^{*} g, \quad \omega_{N}:=i^{*} \omega \quad \text { and } \quad \rho_{N}:=i^{*} \rho .
$$

Conversely, the collection of metrics $\left\{g_{N}\right\}$ on all integral manifolds $N \subset M$ determines the metric on M by

$$
g=\left\{g_{N}\right\}+\alpha \otimes \alpha
$$

Similarly we have

$$
\omega=\left\{\omega_{N}\right\} \quad \text { and } \quad \varphi=\left\{\rho_{N}\right\}+\alpha \wedge\left\{\omega_{N}\right\}
$$

In this section we will evolve the induced $S U(3)$-structures under the Ricci flow and resemble the evolved structures to a $S U(3)$-structure on M. To obtain again a smooth structure on M, we need the following Lemma, which states that the Ricci flow depends smoothly on the initial metric.

Lemma 5.17. Let M be a compact manifold and g_{s} a smooth 1-parameter family of metrics on M. Denote by $g_{s}(t)$ the unique solution of

$$
\left\{\begin{array}{l}
\frac{d}{d t} g_{s}(t)=-2 \operatorname{ric}\left(g_{s}(t)\right) \\
g_{s}(0)=g_{s}
\end{array}\right.
$$

for $t \in\left[0, T_{s}\right)$ and $T_{s}:=T\left(g^{s}\right)>0$. Then $g_{s}(t)$ depends smoothly on s.

Proof: Let F be the vector bundle over M, whose fibres consist out of symmetric bilinear maps $T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ and denote by $U \subset F$ the subset of positive symmetric bilinear maps. Then

$$
\mathcal{U}:=C^{\infty}(M \times[0,1], U) \subset C^{\infty}(M \times[0,1], F)=: \mathcal{F}
$$

is an open subset of the Fréchet space \mathcal{F}, cf. Example 2.1. Hamilton applies the Nash-Moser inverse function theorem to the operator

$$
\begin{aligned}
\mathcal{E}: \mathcal{U} \subset \mathcal{F} & \rightarrow \mathcal{F} \times C^{\infty}(M, F) \\
f & \mapsto\left(\frac{d f}{d t}-E(f), f_{\mid\{t=0\}}\right),
\end{aligned}
$$

where $E(f):=-2 \operatorname{ric}(f)$, cf. the proof of Theorem 5.1, p. 263 in [35]. The NashMoser inverse function theorem states that \mathcal{E} is locally invertible and each (local) inverse is a smooth tame map, cf. [35] III Theorem 1.1.1. Now the solution for the Ricci flow with initial data $f(0) \in C^{\infty}(M, F)$ is given by $f:=\mathcal{E}^{-1}(0, f(0))$, where
\mathcal{E}^{-1} is the local inverse of \mathcal{E}, defined in some neighborhood of $(0, f(0))$. Since \mathcal{E}^{-1} is smooth, we see that a smooth variation $s \mapsto f_{s}(0)$ of the initial value yields a solution $f_{s}:=\mathcal{E}^{-1}\left(0, f_{s}(0)\right)$ that depends smoothly on s.

On a fixed (compact) integral manifold $N \subset M$ we can evolve the metric g_{N} under the Ricci flow for some time $t \in\left[0, T_{N}\right) \subset \mathbb{R}$. Since M is compact, we can find $0<T \leq \infty$ such that the Ricci flow exists on each integral manifold for at least time T. Lemma 5.17 can be used to show that the solutions of the Ricci flow on each integral manifold can be resembled to a smooth tensor on M.

Lemma 5.18. Suppose that the Ricci flow $g_{N}(t)$ exists on each integral manifold $N \subset M$ for at least time $t \in[0, T), 0<T \leq \infty$.
(1) The tensor

$$
g_{t}:=\left\{g_{N}(t)\right\}+\alpha \otimes \alpha
$$

defines a family of smooth metrics on M.
(2) Let $A_{N}(t)$ be the gauge deformation from Example 1.7 such that $g_{N}(t)=$ $A_{N}(t) g_{N}$. Then

$$
A_{t}:=\left\{A_{N}(t)\right\}+\alpha \otimes \xi
$$

is smooth and satisfies $g_{t}=A_{t} g$.

Proof: We first prove the smoothness of g_{t} : Fix an integral manifold $N \subset M$ and let $N_{s}:=\Phi_{s}(N)$, where Φ_{s} is the flow of ξ. Extending $X, Y \in C^{\infty}(T N)$ under the flow Φ_{s} via

$$
\left.\tilde{X}\right|_{(s, p)}:=\left.\Phi_{s *} X\right|_{p} \quad \text { and }\left.\quad \tilde{Y}\right|_{(s, p)}:=\left.\Phi_{s *} Y\right|_{p}
$$

yields smooth local vector fields on M. We will show that

$$
M \ni(s, p) \longmapsto\left\{g_{N}(t)\right\}\left(\left.\tilde{X}\right|_{(s, p)},\left.\tilde{Y}\right|_{(s, p)}\right) \in \mathbb{R}
$$

is smooth. To see this, observe that

$$
g_{s}(t):=\Phi_{s}^{*} g_{N_{s}}(t)
$$

defines a family of metrics on N which satisfies

$$
\left\{\begin{array}{l}
\frac{d}{d t} g_{s}(t)=-2 \operatorname{ric}\left(g_{s}(t)\right) \\
g_{s}(0)=\Phi_{s}^{*} g_{N_{s}}
\end{array}\right.
$$

So

$$
(s, p) \longmapsto\left\{g_{N}(t)\right\}\left(\left.\tilde{X}\right|_{(s, p)},\left.\tilde{Y}\right|_{(s, p)}\right)=g_{N_{s}}(t)\left(\left.\Phi_{s *} X\right|_{p},\left.\Phi_{s *} Y\right|_{p}\right)=g_{s}(t)\left(\left.X\right|_{p},\left.Y\right|_{p}\right)
$$

is smooth in s by Lemma 5.17, and smooth in p, since $g_{s}(t)$ is a smooth metric on N. Choosing local coordinates like in the proof of Lemma 4.2, we see that $\left\{g_{N}(t)\right\}$ is smooth, which implies the smoothness of g_{t}.

Now we prove that A_{t} is smooth: Since A_{t} is symmetric w.r.t. g, we have

$$
A_{t}^{-1} \circ A_{t}^{-1}=g^{-1} \circ\left(A_{t} g\right)=g^{-1} \circ g_{t}: T M \rightarrow T M
$$

Now A_{t}^{-2} is smooth, since $g^{-1}: T^{*} M \rightarrow T M$ is smooth by assumption and g_{t} : $T M \rightarrow T^{*} M$ is smooth as we have just seen. Since A_{t}^{-2} is positive w.r.t. g, we see that $A_{t}=\exp \left(-\frac{1}{2} \ln \left(A_{t}^{-2}\right)\right)$ is smooth, where the logarithm is defined w.r.t. g. Since clearly

$$
g_{t}=\left\{A_{N}(t) g_{N}\right\}+\alpha \otimes \alpha=A_{t}\left(\left\{g_{N}\right\}+\alpha \otimes \alpha\right)=A_{t} g
$$

holds, the Lemma follows.

Similar to Definition 5.8, the gauge deformations $A_{N}(t)$ from Example 1.7 can be used to define a whole family of $S U(3)$-structures on each integral manifold $N \subset M$:

$$
g_{N}(t)=A_{N}(t) g_{N}, \quad \omega_{N}(t):=A_{N}(t) \omega_{N} \quad \text { and } \quad \rho_{N}(t):=A_{N}(t) \rho_{N}
$$

This families can again be resembled to a family of G_{2}-structures on M :

Proposition 5.19. For any $t \in[0, T)$,

$$
\varphi_{t}:=\left\{\rho_{N}(t)\right\}+\alpha \wedge\left\{\omega_{N}(t)\right\}
$$

defines a G_{2}-structure on M with metric $g_{t}=\left\{g_{N}(t)\right\}+\alpha \otimes \alpha$ and dual $\psi_{t}=$ $\left\{\sigma_{N}(t)\right\}-\alpha \wedge\left\{\widehat{\rho}_{N}(t)\right\}$.

Proof: From Lemma 5.18 we see that

$$
A_{t}=\left\{A_{N}(t)\right\}+\alpha \otimes \xi \in C^{\infty}(\operatorname{Aut}(T M))
$$

for any $t \in[0, T)$. Hence

$$
\begin{aligned}
\varphi_{t} & =A_{t} \varphi=A_{t}\left(\left\{\rho_{N}\right\}+\alpha \wedge\left\{\omega_{N}\right\}\right) \\
& =A_{t}\left\{\rho_{N}\right\}+\alpha \wedge A_{t}\left\{\omega_{N}\right\} \\
& =\left\{A_{N}(t) \rho_{N}\right\}+\alpha \wedge\left\{A_{N}(t) \omega_{N}\right\} \\
& =\left\{\rho_{N}(t)\right\}+\alpha \wedge\left\{\omega_{N}(t)\right\}
\end{aligned}
$$

defines a G_{2}-structure with metric $g_{t}=A_{t} g=\left\{g_{N}(t)\right\}+\alpha \otimes \alpha$ and dual $\psi_{t}=$ $A_{t} \psi=\left\{\sigma_{N}(t)\right\}-\alpha \wedge\left\{\widehat{\rho}_{N}(t)\right\}$.

We now turn to the case where the initial structure (α, ψ) is Kähler, i.e. the induced $S U(3)$-structures on each integral manifold are Kähler, cf. Theorem 3.46. In this
case the Kähler-Ricci flow on N can be described by a gauge deformation $A_{N}(t)$ with

$$
\left(g_{N}(t), \omega_{N}(t), I\right)=A_{N}(t)\left(g_{N}, \omega_{N}, I\right)
$$

Note that $A_{N}(t)$ is actually the same gauge deformation used in Lemma 5.18 and Proposition 5.19, but satisfies in addition $A_{N}(t) I_{N}=I_{N} A_{N}(t)$, cf. Example 1.8.

Remark 5.20. If the initial structure (α, ψ) is Kähler, Cao's theorem states that the Ricci flow converges on each integral manifold N to a Ricci flat metric g_{N}^{∞} in C^{∞}-topology. In Lemma 5.18 we have seen that for finite time t, the metrics $g_{N}(t)$ can be resembled to a metric g_{t} on the ambient space M. The convergency of $g_{N}(t)$ in C^{∞}-topology would still guarantee the smoothness of g_{∞} in fibre direction, but it seems difficult to ensure the smoothness of the limit metric g_{∞} transverse to the fibres.

Definition 5.21. Let φ be a G_{2}-structure on M and ξ a unit vector field with dual $\alpha:=\xi\lrcorner g$ and flow Φ_{s}. We say that the vector field ξ is a Kähler field for the G_{2}-structure φ if
(1) $d \alpha=0$ and $\left.\nabla^{g}(\xi\lrcorner \varphi\right)=0$ on $\operatorname{ker}(\alpha)$.
(2) For all integral manifolds $N \subset M$ of $\operatorname{ker}(\alpha)$

$$
\left[\omega_{N}\right]=\left[\Phi_{s}^{*} \omega_{N_{s}}\right] \quad \text { and } \quad I_{N}=\Phi_{s}^{*} I_{N_{s}}
$$

$$
\text { where } N_{s}:=\Phi_{s}(N) \text {. }
$$

Note that Theorem 3.46 ensures that the induced $S U(3)$-structures on the integral manifolds are Kähler. Hence $d \omega_{N}=0$ and condition (2) states that the flow of the vector field ξ preserves the cohomology class and the complex structure.

The next result is essentially due to the uniqueness part of the Calabi-Yau theorem and solves in particular the problem encountered in Remark 5.20.

Theorem 5.22. Suppose ξ is a Kähler vector field for the G_{2}-structure φ. Then the Ricci flow limit metrics and Kähler forms satisfy

$$
g_{N}(\infty)=\Phi_{s}^{*} g_{N_{s}}(\infty) \quad \text { and } \quad \omega_{N}(\infty)=\Phi_{s}^{*} \omega_{N_{s}}(\infty)
$$

for each integral manifold $N \subset M$. In particular, $g_{\infty}=\alpha \otimes \alpha+\left\{g_{N}(\infty)\right\}$ defines a smooth metric on M with

$$
L_{\xi} g_{\infty}=0 \quad \text { and } \quad \nabla^{g_{\infty}} \xi=0
$$

So the fibrewise Ricci flow tightens the fibres $N \subset M$:

Proof: On a fixed integral manifold $N \subset M$ we have the Kähler structure

$$
\left(g_{N}(\infty), \omega_{N}(\infty), I_{N}\right)
$$

obtained by the Ricci flow and the Kähler structure

$$
\left(\Phi_{s}^{*} g_{N_{s}}(\infty), \Phi_{s}^{*} \omega_{N_{s}}(\infty), \Phi_{s}^{*} I_{N_{s}}=I_{N}\right) .
$$

By Cao's theorem both structures are Ricci flat,

$$
\operatorname{Ric}\left(\Phi_{s}^{*} g_{N_{s}}(\infty)\right)=\Phi_{s}^{*} \operatorname{Ric}\left(g_{N_{s}}(\infty)\right)=0
$$

Since the Ricci flow and the flow of ξ preserve cohomology classes, we get

$$
\left[\omega_{N}(\infty)\right]=\left[\omega_{N}\right]=\left[\Phi_{s}^{*} \omega_{N_{s}}\right]=\Phi_{s}^{*}\left[\omega_{N_{s}}\right]=\Phi_{s}^{*}\left[\omega_{N_{s}}(\infty)\right]=\left[\Phi_{s}^{*} \omega_{N_{s}}(\infty)\right]
$$

Then the uniqueness part of the Calabi-Yau theorem states that the two structures coincide. For the smoothness of g_{∞} choose local vector fields $X, Y \in C^{\infty}(T N)$ and extend them to local vector fields on M by

$$
\left.\tilde{X}\right|_{(s, p)}:=\left.\Phi_{s *} X\right|_{p} \quad \text { and }\left.\quad \tilde{Y}\right|_{(s, p)}:=\left.\Phi_{s *} Y\right|_{p}
$$

Now observe that

$$
\left\{g_{N}(\infty)\right\}\left(\left.\tilde{X}\right|_{(s, p)},\left.\tilde{Y}\right|_{(s, p)}\right)=g_{N_{s}}(\infty)\left(\left.\Phi_{s *} X\right|_{p},\left.\Phi_{s *} Y\right|_{p}\right)=g_{N}(\infty)\left(\left.X\right|_{p},\left.Y\right|_{p}\right)
$$

is constant and hence smooth in s. Let pr : TM $\rightarrow \operatorname{ker}(\alpha)$ be the map $X \mapsto$ $X-\alpha(X) \xi$. Then $L_{\xi} \alpha=0$ yields for $X \in T_{p} M$

$$
\operatorname{pr}\left(\Phi_{s *} X\right)=\Phi_{s *} X-\left.\alpha\left(\Phi_{s *} X\right) \xi\right|_{\Phi_{s}(p)}=\Phi_{s *} X-\left.\alpha(X) \Phi_{s *} \xi\right|_{p}=\Phi_{s *}(\operatorname{pr} X)
$$

Hence for $X, Y \in T_{p} M$

$$
\begin{aligned}
\Phi_{s}^{*}\left\{g_{N}(\infty)\right\}(X, Y) & =g_{N_{s}}(\infty)\left(\operatorname{pr}\left(\Phi_{s *} X\right), \operatorname{pr}\left(\Phi_{s *} Y\right)\right)=g_{N_{s}}(\infty)\left(\Phi_{s *}(\operatorname{pr} X), \Phi_{s *}(\operatorname{pr} Y)\right) \\
& =\left(\Phi_{s}^{\infty} g_{N_{s}}\right)(\operatorname{pr} X, \operatorname{pr} Y)=\left\{\Phi_{s}^{\infty} g_{N_{s}}\right\}(X, Y) \\
& =\left\{g_{N}(\infty)\right\}(X, Y)
\end{aligned}
$$

i.e. $L_{\xi}\left\{g_{N}(\infty)\right\}=0$ and so $L_{\xi} g_{\infty}=0$. Since also $\left.d(\xi\lrcorner g_{\infty}\right)=d \alpha=0$, it follows $\nabla^{g_{\infty}} \xi=0$.

Corollary 5.23. The metric obtained by fibrewise Ricci flow in Theorem 5.22 is Ricci flat,

$$
\operatorname{Ric}\left(g_{\infty}\right)=0
$$

Proof: By Cao's theorem, the metrics $g_{N}(\infty)$ on the fibres are Ricci flat. Hence Proposition 4.1 with $g_{\infty}=\alpha \otimes \alpha+\left\{g_{N}(\infty)\right\}$ and $\mathcal{W}_{\infty}=L_{\xi} g_{\infty}=0$ yields $\operatorname{Ric}\left(g_{\infty}\right)=0$.

The fibrewise Ricci flow can be extended to a deformation of the ambient $G_{2^{-}}$ structure φ. For this choose a gauge deformation A_{∞} like in Example 1.7 such that $g_{\infty}=A_{\infty} g$, where $g=g(\varphi)$ is the initial metric and g_{∞} is the metric obtained by fibrewise Ricci flow from Theorem 5.22. Then we have

Corollary 5.24. Suppose ξ is a Kähler vector field for the G_{2}-structure φ on M. Then the fibrewise Ricci flow yields a Ricci flat G_{2}-structure $\varphi_{\infty}:=A_{\infty} \varphi$ on M.

Corollary 5.25. The metric obtained by fibrewise Ricci flow in Theorem 5.22 satisfies

$$
\operatorname{Hol}_{0}\left(g_{\infty}\right) \subset\{1\} \times S U(3) \subset G_{2}
$$

In particular, the full holonomy group $\operatorname{Hol}\left(g_{\infty}\right)$ is always a proper subgroup of G_{2}.

Proof: Since $\nabla^{g_{\infty}} \xi=0$, we get from the DeRham splitting theorem

$$
\operatorname{Hol}_{0}\left(g_{\infty}\right)=\{1\} \times \operatorname{Hol}_{0}\left(g_{N}(\infty)\right)
$$

By Proposition 5.5, the restricted holonomy of the integral manifold $N \subset M$ is contained in $S U(3)$ and the first part of the corollary follows. Since the restricted holonomy group is the identity component of the full holonomy group, $\operatorname{Hol}\left(g_{\infty}\right)=G_{2}$ would imply $\operatorname{Hol}_{0}\left(g_{\infty}\right)=G_{2}$, which is impossible as we have just seen.

Corollary 5.26. Suppose ξ is a Kähler vector field for the G_{2}-structure φ on M. Then the fundamental group of M is infinite.

Proof: Let $\left(\hat{M}, \hat{g}_{\infty}\right)$ be the universal cover of $\left(M, g_{\infty}\right)$. By Corollary 5.25 we have

$$
\operatorname{Hol}\left(\hat{g}_{\infty}\right)=\operatorname{Hol}_{0}\left(g_{\infty}\right) \subset\{1\} \times S U(3) \subset G_{2} .
$$

If π_{1} were finite, the universal cover would be compact. But a compact manifold with holonomy contained in G_{2} and finite fundamental group has holonomy group equal to G_{2}, cf. [39] Prop. 10.2.2.

6. EXAMPLES

In this chapter we describe classes of manifolds, admitting certain types of $S U(2)$, $S U(3)$ and G_{2}-structures. Typically this manifolds are the total space of some bundle over a base manifold that carries an additional structure. In quite a few cases the structure is real analytic and can be embedded into a space with a parallel structure. We do not describe any explicit solutions for the embedding problems, but some can for instance be found in $[\mathbf{9}],[\mathbf{2 4}],[\mathbf{2 5}]$.
Of special interest is a new construction of R. Albuquerque [1]. Albuquerque constructs a G_{2}-structure on the unit tangent bundle $T^{1} M^{4}$. This structure is hypo if and only if the underlying metric on M^{4} is Einstein. We extend Albuquerque's approach to construct a family of $\operatorname{Spin}(7)$-structures Ψ_{λ} on $T M^{4} \backslash\{0\}$ and show that this structure is balanced if and only if the underlying metric is Einstein with ric $=\lambda g$.

G_{2} And $\operatorname{Spin}(7)$-Structures on $T M^{4}$

Given an oriented four dimensional manifold (M, g), we describe a construction due to Albuquerque [1], which yields a G_{2}-structure on the unit tangent bundle $T^{1} M$. It turns out that the Einstein condition for M is encoded in the Lee form Θ of the G_{2}-structure. Although the Lee form corresponds in general only to the vectorial part \mathfrak{g}_{2}^{\perp} of the intrinsic torsion, the vanishing of Θ implies in this particular case that the G_{2}-structure is actually hypo, i.e. the $\mathfrak{g}_{2}^{\perp} \oplus \mathfrak{g}_{2}$ component of the intrinsic torsion vanishes. Let ε_{M} be the induced volume form on (M, g) and $\pi: T M \rightarrow M$ be the tangent bundle. For every $u \in T M$, the Levi-Civita connection induces a splitting

$$
T_{u} T M=V_{u} \oplus H_{u}
$$

of the tangent space of $T M$ into a vertical space $V_{u}=\operatorname{ker}\left(\pi_{* u}\right)$ and a horizontal space $H_{u}=\pi^{*} T_{\pi(u)} M$. In particular, we may consider the vertical and horizontal lift of $X \in T_{\pi(u)} M$ to $u \in T M$, denoted respectively by

$$
v_{u}(X) \in V_{u} \subset T_{u} T M \quad \text { and } \quad h_{u}(X) \in H_{u} \subset T_{u} T M
$$

The connection map

$$
K: T_{u} T M \rightarrow T_{\pi(u)} M \quad \text { is now given by } \quad K(X):=J_{u}\left(X^{v}\right)
$$

where $J_{u}: V_{u} \rightarrow T_{\pi(u)} M$ is the inverse of the vertical lift v_{u}. The Sasakian metric on $T M$ is defined via

$$
\widehat{g}(X, Y):=g(K X, K Y)+g\left(\pi_{*} X, \pi_{*} Y\right)
$$

It is well known that the curvature tensor of the Levi-Civita connection on M measures the integrability of the horizontal distribution. More generally we have by Lemma 2 in [26]

Lemma 6.1. Let R be the Riemannian curvature tensor of the Levi-Civita connection ∇^{g} on M. For any vector fields X, Y on M and $u \in T M$ we have
(i) $[h(X), h(Y)]_{u}=h_{u}([X, Y])-v_{u}(R(X, Y) u)$,
(ii) $[v(X), v(Y)]_{u}=0$,
(iii) $[h(X), v(Y)]_{u}=v_{u}\left(\nabla_{X}^{g} Y\right)$.

In order to establish a G_{2}-structure on the unit tangent bundle $T^{1} M$, we make the following

Definition 6.2. (i) For notational reasons we introduce the map

$$
r: T M \backslash\{0\} \rightarrow \mathbb{R} \quad \text { by } \quad u \mapsto \sqrt{g(u, u)}=\|u\| .
$$

(ii) The map

$$
\theta: T_{u} T M \rightarrow V_{u} \quad \text { with } \quad X \mapsto v_{u}\left(\pi_{*} X\right)
$$

rotates the horizontal onto the vertical space and annihilates vertical vectors. As a $\operatorname{map} \theta: T T M \rightarrow T T M$, we may ask for the adjoint of θ with respect to \widehat{g} and find

$$
\theta^{T}=h \circ K,
$$

i.e. for $X \in T_{u} T M$ we have $\theta^{T}(X)=h_{u}(K X)$. Hence $\theta^{T} \circ \theta=\operatorname{id}_{H}$ and $\theta \circ \theta^{T}=\operatorname{id}_{V}$.
(iii) The decomposition $T T M=T M \oplus T M$ equips $T M$ with a natural symplectic structure ω. In terms of the map θ, we have

$$
\omega(X, Y):=\widehat{g}(I X, Y)
$$

where

$$
I:=\theta^{T}-\theta
$$

satisfies $I^{2}=-\mathrm{id}$. It is well known that ω is actually a closed 2-form on $T M$.
(iv) The \widehat{g}-gradient of r is given by

$$
N^{v}: T M \backslash\{0\} \rightarrow V \quad \text { with } \quad u \mapsto \frac{1}{r(u)} v_{u}(u)
$$

Using the map I from (iii), we may define the horizontal counterpart of N^{v} by

$$
N^{h}: T M \backslash\{0\} \rightarrow H, \quad u \mapsto I N^{v}(u)=\frac{1}{r(u)} h_{u}(u)
$$

We denote the dual 1-forms of N^{v} and N^{h} respectively by

$$
\mu^{v}(X):=\widehat{g}\left(N^{v}, X\right) \quad \text { and } \quad \mu^{h}(X):=\widehat{g}\left(N^{h}, X\right) .
$$

Note that N^{v} is the outer normal vector field on each sphere bundle $T^{r} M \subset T M$, for $r>0$.
(v) The volume element ε_{M} on M lifts to a volume element $K^{*} \varepsilon_{M}$ on the vertical distribution and a volume element $\pi^{*} \varepsilon_{M}$ on the horizontal distribution. Contracting this pull-backs, we obtain forms

$$
\begin{aligned}
\alpha(X, Y, Z) & :=\varepsilon_{M}\left(K N^{v}, K X, K Y, K Z\right) \\
\beta(X, Y, Z) & :=\varepsilon_{M}\left(\pi_{*} N^{h}, \pi_{*} X, \pi_{*} Y, \pi_{*} Z\right)
\end{aligned}
$$

for $X, Y, Z \in T_{u} T M$. Define additional 3 -forms on $T M$ by

$$
\begin{aligned}
& \rho(X, Y, Z):=\alpha(X, Y, Z)-\alpha(\theta X, \theta Y, Z)-\alpha(\theta Y, \theta Z, X)-\alpha(\theta Z, \theta X, Y) \\
& \widehat{\rho}(X, Y, Z):=\alpha(\theta X, Y, Z)+\alpha(\theta Y, Z, X)+\alpha(\theta Z, X, Y)-\beta(X, Y, Z)
\end{aligned}
$$

(vi) In the following we construct a local frame field ($E_{1}, . ., E_{8}$) on $T M \backslash\{0\}$. First we have two globally defined vector fields on $T M \backslash\{0\}$

$$
E_{1}:=N^{v} \quad \text { and } \quad E_{2}:=I E_{1}=N^{h}
$$

The remaining vector fields will be defined only locally. Choose a local positive orthonormal basis $\left\{e_{1}, . ., e_{4}\right\}$ of $T M$ and denote by $v\left(e_{i}\right)$ the vertical lift to $V \subset$ $T T M, i=1, . .4$. For $0 \neq u \in T M$ we write $\lambda_{i}(u):=g\left(u, e_{i}\right) \in \mathbb{R}$, such that $u=\sum \lambda_{i}(u) e_{i}$ holds. This yields

$$
E_{1}(u)=N^{v}(u)=\frac{1}{r(u)} v_{u}(u)=\frac{1}{r(u)} \sum_{i} \lambda_{i}(u) v_{u}\left(e_{i}\right)
$$

Now we define an orthonormal basis $E_{1}, E_{3}, E_{5}, E_{7}$ for V by

$$
\begin{aligned}
& E_{3}(u):=\frac{1}{r(u)}\left(-\lambda_{2}(u) v_{u}\left(e_{1}\right)+\lambda_{1}(u) v_{u}\left(e_{2}\right)-\lambda_{4}(u) v_{u}\left(e_{3}\right)+\lambda_{3}(u) v_{u}\left(e_{4}\right)\right), \\
& E_{5}(u):=\frac{1}{r(u)}\left(-\lambda_{3}(u) v_{u}\left(e_{1}\right)+\lambda_{4}(u) v_{u}\left(e_{2}\right)+\lambda_{1}(u) v_{u}\left(e_{3}\right)-\lambda_{2}(u) v_{u}\left(e_{4}\right)\right), \\
& E_{7}(u):=\frac{1}{r(u)}\left(-\lambda_{4}(u) v_{u}\left(e_{1}\right)-\lambda_{3}(u) v_{u}\left(e_{2}\right)+\lambda_{2}(u) v_{u}\left(e_{3}\right)+\lambda_{1}(u) v_{u}\left(e_{4}\right)\right),
\end{aligned}
$$

and complete it to an orthonormal basis for $T T M$ via

$$
E_{4}=I E_{3}, \quad E_{6}=I E_{5}, \quad E_{8}=I E_{7}
$$

In particular, we may choose $e_{1}, . ., e_{4} \in T_{p} M$ such that $e_{1}=\frac{u}{\|u\|}$ holds, for a fixed $u \in T_{p} M \backslash\{0\}$. This yields

$$
E_{2 i}(u)=h_{u}\left(e_{i}\right) \quad \text { and } \quad E_{2 i-1}(u)=v_{u}\left(e_{i}\right)
$$

By choosing local normal coordinates around p, we may extend $e_{1}, . ., e_{4}$ via parallel translation to a local basis field. Then

$$
\left(\nabla_{e_{i}}^{g} e_{j}\right)_{p}=0 \quad \text { and hence } \quad\left[e_{i}, e_{j}\right]_{p}=0
$$

hold at p. We refer to the corresponding basis field $\left(E_{1}, . ., E_{8}\right)$ as an adapted frame at u.

Lemma 6.3. In terms of the dual basis $\left(E^{1}, . ., E^{8}\right)$ of $\left(E_{1}, . ., E_{8}\right)$, the forms from Definition 6.2 are locally given by
(1) $\omega=E^{12}+E^{34}+E^{56}+E^{78}$,
(2) $\alpha=E^{357}$,
(3) $\beta=E^{468}$,
(4) $\rho=E^{357}-E^{368}-E^{467}-E^{458}$,
(5) $\hat{\rho}=E^{367}+E^{358}+E^{457}-E^{468}$,
(6) $\mu^{v}=E^{1} \quad$ and $\quad \mu^{h}=E^{2}$.

Definition 6.4. From the previous Lemma we see immediately that the restriction of the forms

$$
\varphi:=\rho+\mu^{h} \wedge \omega \quad \text { and } \quad \psi:=\frac{1}{2} \omega^{2}-\mu^{v} \wedge \mu^{h} \wedge \omega-\mu^{h} \wedge \widehat{\rho}
$$

to $T^{1} M$ defines a G_{2}-structure on $T^{1} M$. Moreover, we obtain a $\operatorname{Spin}(7)$-structure on $T M \backslash\{0\}$ via

$$
\Psi:=\psi+\mu^{v} \wedge \varphi=\frac{1}{2} \omega^{2}-\mu^{h} \wedge \widehat{\rho}+\mu^{v} \wedge \rho .
$$

To study the type of structure that is induced by the forms φ and Ψ, we compute the exterior derivative of the dual 1-forms E^{k} of an adapted frame at u.

Lemma 6.5. For the horizontal 1 -forms we have at u

$$
\begin{aligned}
& d E^{2}=\frac{1}{r}\left(E^{34}+E^{56}+E^{78}\right) \\
& d E^{4}=\frac{1}{r}\left(E^{23}+E^{58}+E^{67}\right) \\
& d E^{6}=\frac{1}{r}\left(E^{25}-E^{38}-E^{47}\right) \\
& d E^{8}=\frac{1}{r}\left(E^{27}+E^{36}+E^{45}\right)
\end{aligned}
$$

The analogue for the vertical forms involves the curvature R of (M, g). Let

$$
\begin{aligned}
\Omega_{2 k-1} & :=R_{121 k} E^{24}+R_{131 k} E^{26}+R_{141 k} E^{28} \\
& +R_{231 k} E^{46}+R_{241 k} E^{48}+R_{341 k} E^{68}
\end{aligned}
$$

then we have at u

$$
\begin{aligned}
& d E^{1}=0 \\
& d E^{3}=r \Omega_{3}+\frac{1}{r} E^{13}+\frac{2}{r} E^{57} \\
& d E^{5}=r \Omega_{5}+\frac{1}{r} E^{15}-\frac{2}{r} E^{37} \\
& d E^{7}=r \Omega_{7}+\frac{1}{r} E^{17}+\frac{2}{r} E^{35}
\end{aligned}
$$

Proof: First note that $d E^{k}\left(E_{i}, E_{j}\right)=-E^{k}\left[E_{i}, E_{j}\right]$ holds. For E^{k} horizontal we find the following:
(i) By integrability of the vertical distribution we get immediately $d E^{k}\left(E_{i}, E_{j}\right)=0$, for E_{i}, E_{j} vertical.
(ii) Suppose E_{i}, E_{j} are both horizontal. Recall that $\lambda_{j}(u)=g\left(u, e_{j}\right)$ holds by Definition 6.2 (vi). By construction of the local vector fields e_{j}, we see that λ_{j} is invariant under parallel transport, which yields

$$
\begin{equation*}
h_{u}\left(e_{i}\right) \cdot \lambda_{j}=0 \tag{1}
\end{equation*}
$$

Similarly, r is invariant under parallel transport, hence $h_{u}\left(e_{i}\right) \cdot r=0$. Now extending the Lie-bracket $\left[E_{i}, E_{j}\right]$ by using the linear combination for E_{i}, E_{j} from Definition 6.2 (vi), we obtain essentially summands of the form $\left[h\left(e_{i}\right), h\left(e_{j}\right)\right]_{u}=h_{u}\left(\left[e_{i}, e_{j}\right]\right)-$ $v_{u}\left(R\left(e_{i}, e_{j}\right) u\right)=-v_{u}\left(R\left(e_{i}, e_{j}\right) u\right)$. Here we used Lemma 6.1 and that $\left[e_{i}, e_{j}\right]=0$ at $p:=\pi(u)$. Then the horizontality of E^{k} yields again $d E^{k}\left(E_{i}, E_{j}\right)=0$.
(iii) Now let E_{i} be horizontal and E_{j} be vertical. First observe that

$$
v_{u}\left(e_{l}\right) \cdot \lambda_{k}=\left.\frac{d}{d t}\right|_{t=0} g\left(u+t e_{l}, e_{k}\right)=\delta_{l k}
$$

holds. Since $u=r(u) e_{1}$, we get

$$
v_{u}\left(e_{l}\right) \cdot r=\left.\frac{d}{d t}\right|_{t=0} \sqrt{g\left(u+t e_{l}, u+t e_{l}\right)}=\delta_{1 l}
$$

yielding

$$
\begin{equation*}
v_{u}\left(e_{l}\right) \cdot \frac{\lambda_{k}}{r}=\frac{1}{r}\left(\delta_{l k}-\delta_{1 l} \delta_{1 k}\right) \tag{2}
\end{equation*}
$$

Using (2) and Lemma 6.1 together with $\left(\nabla_{e_{i}}^{g} e_{j}\right)_{p}=0$, we computes at u,

$$
\begin{array}{llll}
{\left[E_{1}, E_{2}\right]=0,} & {\left[E_{1}, E_{4}\right]=0,} & {\left[E_{1}, E_{6}\right]=0,} & {\left[E_{1}, E_{8}\right]=0,} \\
{\left[E_{2}, E_{3}\right]=-\frac{1}{r} E_{4},} & {\left[E_{2}, E_{5}\right]=-\frac{1}{r} E_{6},} & {\left[E_{2}, E_{7}\right]=-\frac{1}{r} E_{8},} & {\left[E_{3}, E_{4}\right]=-\frac{1}{r} E_{2},} \\
{\left[E_{3}, E_{6}\right]=-\frac{1}{r} E_{8},} & {\left[E_{3}, E_{8}\right]=\frac{1}{r} E_{6},} & {\left[E_{4}, E_{5}\right]=-\frac{1}{r} E_{8},} & {\left[E_{4}, E_{7}\right]=\frac{1}{r} E_{6},} \\
{\left[E_{5}, E_{6}\right]=-\frac{1}{r} E_{2},} & {\left[E_{5}, E_{8}\right]=-\frac{1}{r} E_{4},} & {\left[E_{6}, E_{7}\right]=-\frac{1}{r} E_{4},} & {\left[E_{7}, E_{8}\right]=-\frac{1}{r} E_{2},}
\end{array}
$$

and obtain the above formulas for the horizontal forms.
Now consider the case where E^{k} is vertical.
(iv) Applying Lemma 6.1 we get for horizontal $E_{2 i}(u)=h_{u}\left(e_{i}\right)$ and $E_{2 j}(u)=$

$$
\begin{aligned}
& h_{u}\left(e_{j}\right) \\
& \qquad \begin{aligned}
d E^{2 k-1}\left(E_{2 i}(u), E_{2 j}(u)\right)= & h_{u}\left(e_{i}\right) \cdot E^{2 k-1}\left(h\left(e_{j}\right)\right)-h_{u}\left(e_{j}\right) \cdot E^{2 k-1}\left(h\left(e_{i}\right)\right) \\
& -E^{2 k-1}\left[h\left(e_{i}\right), h\left(e_{j}\right)\right]_{u} \\
= & -E^{2 k-1}\left[h\left(e_{i}\right), h\left(e_{j}\right)\right]_{u}=E^{2 k-1} v_{u}\left(R\left(e_{i}, e_{j}\right) u\right) \\
= & r(u) R_{i j 1 k}
\end{aligned}
\end{aligned}
$$

where we used that $E_{2 k-1}(u)=v_{u}\left(e_{k}\right)$ and $u=r(u) e_{1}$.
(v) The mixed terms are

$$
\begin{aligned}
d E^{k}\left(E_{2 i}(u), E_{2 j-1}(u)\right) & =d E^{k}\left(h_{u}\left(e_{i}\right), v_{u}\left(e_{j}\right)\right) \\
& =h_{u}\left(e_{i}\right) \cdot E^{k}\left(v\left(e_{j}\right)\right)-v_{u}\left(e_{j}\right) \cdot E^{k}\left(h_{e_{i}}\right)-E^{k}\left[h\left(e_{i}\right), v\left(e_{j}\right)\right]_{u} \\
& =0,
\end{aligned}
$$

since $E^{k}\left(v\left(e_{j}\right)\right)$ is horizontally constant by (1), $E^{k}\left(h_{e_{i}}\right)=0$ and $\left[h\left(e_{i}\right), v\left(e_{j}\right)\right]_{u}=0$ by Lemma 6.1.
(vi) Vertical terms can be computed by formula (2) and

$$
d E^{2 k-1}\left(E_{2 i-1}(u), E_{2 j-1}(u)\right)=v_{u}\left(e_{i}\right) \cdot E^{2 k-1}\left(v\left(e_{j}\right)\right)-v_{u}\left(e_{j}\right) \cdot E^{2 k-1}\left(v\left(e_{i}\right)\right) .
$$

The values for $d E^{2 k-1}\left(E_{2 i-1}(u), E_{2 j-1}(u)\right)$ are listed in the following table:

$E_{2 i-1}$	$E_{2 j-1}$	$d E^{1}$	$d E^{3}$	$d E^{5}$	$d E^{7}$
E_{1}	E_{3}	0	$\frac{1}{r(u)}$	0	0
E_{1}	E_{5}	0	0	$\frac{1}{r(u)}$	0
E_{1}	E_{7}	0	0	0	$\frac{1}{r(u)}$
E_{3}	E_{5}	0	0	0	$\frac{2}{r(u)}$
E_{3}	E_{7}	0	0	$\frac{-2}{r(u)}$	0
E_{5}	E_{7}	0	$\frac{2}{r(u)}$	0	0

Now we can easily verify the above formulas for the vertical forms.

Corollary 6.6. In an adapted frame we compute at $u \in T M \backslash\{0\}$

$$
\begin{aligned}
d \mu^{v}= & 0, \text { moreover } \mu^{v}=d r \\
d \omega= & 0, \\
d \rho= & r\left(\Omega_{3} \wedge E^{57}-\Omega_{5} \wedge E^{37}+\Omega_{7} \wedge E^{35}\right)+r \operatorname{ric}_{11} \mu^{h} \wedge \beta \\
& +\frac{2}{r} \mu^{v} \wedge \alpha-\frac{2}{r} \mu^{h} \wedge \beta+\frac{1}{r} \mu^{v} \wedge \rho-\frac{2}{r} \mu^{h} \wedge \widehat{\rho}, \\
d \widehat{\rho}= & \frac{1}{r} \mu^{h} \wedge(\rho-\alpha)+\frac{2}{r} \mu^{v} \wedge(\widehat{\rho}+\beta)+\frac{3}{r} \mu^{h} \wedge \alpha \\
& +r\left(\operatorname{ric}_{12} E^{3}+\operatorname{ric}_{13} E^{5}+\operatorname{ric}_{14} E^{7}\right) \wedge \beta+r \mu^{h} \wedge \Omega,
\end{aligned}
$$

where

$$
\begin{aligned}
\Omega & :=R_{1212}\left(E^{467}+E^{458}\right)+R_{1213}\left(E^{348}-E^{568}\right)+R_{1214}\left(E^{678}-E^{346}\right) \\
& +R_{1313}\left(E^{368}+E^{467}\right)+R_{1314}\left(E^{456}-E^{478}\right)+R_{1414}\left(E^{368}+E^{458}\right),
\end{aligned}
$$

and ric is the Ricci tensor of (M, g). Moreover, the Lee form of the $\operatorname{Spin}(7)$-structure is given by

$$
\Theta:=*(* d \Psi \wedge \Psi)=2 r\left(\operatorname{ric}_{11} E^{1}+\operatorname{ric}_{12} E^{3}+\operatorname{ric}_{13} E^{5}+\operatorname{ric}_{14} E^{7}\right)
$$

Proof: The equation $\mu^{v}=d r$ is easily verified, and implies $d \mu^{v}=0$, which corresponds to $d E^{1}=0$ in Lemma 6.5. The formula for $d E^{2}$ may be rewritten as $d \mu^{h}=\frac{1}{r}\left(\omega-\mu^{v} \wedge \mu^{h}\right)$, which yields

$$
d \omega=d r \wedge d \mu^{h}-\mu^{v} \wedge d \mu^{h}=0
$$

The formulas for $d \rho, d \widehat{\rho}$ and Θ are verified in a direct computation, using Lemma 6.5 and the local form for $\rho, \widehat{\rho}$ and Ψ from Lemma 6.3.

In particular we found an interpretation of Ricci flatness in terms of special geometries. Namely, the vanishing of the Lee form Θ yields ric ${ }_{1 i}=0$ for any orthonormal basis $\left\{e_{1}, . ., e_{4}\right\}$, and hence ric $=0$. Therefore the $\operatorname{Spin}(7)$-structure from Definition 6.4 on $T M \backslash\{0\}$ is balanced, i.e. $\Theta=0$, if and only if (M, g) is Ricci flat.

We can modify this result to give a characterization of Einstein manifolds (M, g) with arbitrary Einstein constant $\lambda \in \mathbb{R}$. First observe that changing the Cayley frame to $E_{i}(\lambda)=e^{-\frac{\lambda}{4} r^{2}} E_{i}$, corresponds to changing the structure tensors and Hodge operator into

$$
\Psi_{\lambda}=e^{\lambda r^{2}} \Psi, \quad \widehat{g}_{\lambda}=e^{\frac{\lambda}{2} r^{2}} \widehat{g} \quad \text { and } \quad *_{\lambda}=e^{\frac{7 \lambda}{4} r^{2}} *
$$

Then $d \Psi_{\lambda}=2 \lambda r e^{\lambda r^{2}} \mu^{v} \wedge \Psi+e^{\lambda r^{2}} d \Psi=e^{\lambda r^{2}}\left(2 \lambda r \mu^{v} \wedge \psi+d \Psi\right)$ and $*_{\lambda} d \Psi_{\lambda}=$ $e^{\frac{11 \lambda}{4} r^{2}}\left(\frac{2 \lambda}{7} r \varphi+* d \Psi\right)$, since $\psi \wedge \varphi=7 E^{2345678}$. Now the Lee form satisfies

$$
\begin{aligned}
\Theta_{\lambda} & =*_{\lambda}\left(*_{\lambda} d \Psi_{\lambda} \wedge \Psi_{\lambda}\right)=e^{\frac{11 \lambda}{2} r^{2}}\left(\frac{2 \lambda}{7} r *(\varphi \wedge \psi)+*(* d \Psi \wedge \Psi)\right) \\
& =e^{\frac{11 \lambda}{2} r^{2}}\left(-2 \lambda r \mu^{v}+\Theta\right) \\
& =2 r e^{\frac{11 \lambda}{2} r^{2}}\left(-\lambda \mu^{v}+\operatorname{ric}_{11} E^{1}+\operatorname{ric}_{12} E^{3}+\operatorname{ric}_{13} E^{5}+\operatorname{ric}_{14} E^{7}\right)
\end{aligned}
$$

and we proved:

Theorem 6.7. (M, g) is Einstein with ric $=\lambda g$ if and only if the Lee form of the $\operatorname{Spin}(7)$-structure $\Psi_{\lambda}:=e^{\lambda r^{2}} \Psi$ on $T M \backslash\{0\}$ vanishes. In particular, (M, g) is Ricci flat if and only if the Lee form of Ψ vanishes.

For the rest of this section we will study the induced G_{2}-structure φ on the unit tangent bundle $i: T^{1} M \subset T M$. Since $\psi=i^{*} \Psi$, the Lee form of the G_{2} structure is given by Corollary 6.6 by the formula

$$
\theta:=*(* d \psi \wedge \psi)=i^{*} \Theta=2\left(\operatorname{ric}_{12} E^{3}+\operatorname{ric}_{13} E^{5}+\operatorname{ric}_{14} E^{7}\right)
$$

Hence the G_{2}-structure has vanishing Lee form if and only if (M, g) is Einstein. Surprisingly, $\theta=0$ automatically implies the vanishing of the \mathfrak{g}_{2}-component of the intrinsic torsion. In fact we get from Corollary 6.6 and since $d \omega=0$ and $d \mu^{h} \wedge \widehat{\rho}=0$

$$
\begin{aligned}
d \psi & =d\left(\frac{1}{2} i^{*} \omega^{2}-\mu^{h} \wedge \widehat{\rho}\right)=-d \mu^{h} \wedge \widehat{\rho}+\mu^{h} \wedge d \widehat{\rho} \\
& =\mu^{h} \wedge\left(\operatorname{ric}_{12} E^{3}+\operatorname{ric}_{13} E^{5}+\operatorname{ric}_{14} E^{7}\right) \wedge \beta \\
& =\frac{1}{2} \mu^{h} \wedge \theta \wedge \beta
\end{aligned}
$$

Therefore (M, g) is Einstein if and only if the G_{2}-structure is hypo. Computing

$$
\begin{aligned}
d \varphi= & d \rho+d \mu^{h} \wedge i^{*} \omega=d \rho+i^{*} \omega^{2} \\
= & \Omega_{3} \wedge E^{57}-\Omega_{5} \wedge E^{37}+\Omega_{7} \wedge E^{35}+\operatorname{ric}_{11} \mu^{h} \wedge \beta \\
& -2 \mu^{h} \wedge \beta-2 \mu^{h} \wedge \widehat{\rho}+i^{*} \omega^{2} \\
= & \Omega_{3} \wedge E^{57}-\Omega_{5} \wedge E^{37}+\Omega_{7} \wedge E^{35}+\left(\operatorname{ric}_{11}-2\right) \mu^{h} \wedge \beta+2 \psi
\end{aligned}
$$

shows that neither $d \varphi=0$ nor $d \varphi=\lambda \psi$ is possible. The $\mathbb{R} i d$-component of the G_{2}-structure corresponds to $d \varphi \wedge \varphi$. To see this, observe that $d \varphi=3 D_{\psi}(\mathcal{T})$ by Proposition 3.38 and that the \mathbb{R} id-component is mapped to Λ_{1}^{4}, which is identified via $\varphi \wedge .: \Lambda^{4} \rightarrow \Lambda^{7}$ with Λ^{7} by Schur's Lemma. Now The first Bianchi identity yields

$$
\begin{aligned}
d \varphi \wedge \varphi & =\left(\Omega_{3} \wedge E^{57}-\Omega_{5} \wedge E^{37}+\Omega_{7} \wedge E^{35}\right) \wedge \varphi+\left(\operatorname{ric}_{11}+12\right) E^{234567} \\
& =\left(R_{1221}+R_{1331}+R_{1441}+R_{3421}+R_{4231}+R_{2341}+\operatorname{ric}_{11}+12\right) E^{234567} \\
& =2\left(\operatorname{ric}_{11}+6\right) E^{234567}
\end{aligned}
$$

In summary we have, cf. [1] Thm. 3.3,

Theorem 6.8. The G_{2}-structure φ on $T^{1} M$ with intrinsic torsion \mathcal{T} satisfies

$$
\begin{aligned}
\varphi \text { is hypo } & \Leftrightarrow \mathcal{T} \in \mathbb{R i d} \oplus S_{0}^{2} \\
& \Leftrightarrow \mathcal{T} \in \mathbb{R i d} \oplus S_{0}^{2} \oplus \mathfrak{g}_{2} \\
& \Leftrightarrow(M, g) \text { is Einstein. }
\end{aligned}
$$

Moreover, $\mathcal{T} \in S_{0}^{2}$ if and only if (M, g) is Einstein with $\lambda=-6$. The structure is never parallel or nearly parallel.

If (M, g) is Einstein, then there exists an atlas for M with real analytic transition functions, so that the metric g is real analytic in each chart, cf. Theorem 5.26 in [7]. Hence any adapted frame from Definition 6.2 (vi) is real analytic, which proves that the hypo G_{2}-structure φ on $T^{1} M$ is real analytic. Now Corollary 4.22 yields

Theorem 6.9. Every compact Einstein manifold (M^{4}, g) admits a parallel Spin(7)structure on $I \times T^{1} M^{4}$, for some interval $I \subset \mathbb{R}$.

$$
S U(2) \text { and } S U(3) \text {-Structures on } T M^{3}
$$

In this section we will describe a construction which yields certain $S U(2)$-structures on $T^{1} M$ and $S U(3)$-structures on $T M \backslash\{0\}$, where (M, g) is a 3 -dimensional Riemannian manifold with tangent bundle $\pi: T M \rightarrow M$. Like in the previous section, the Einstein condition for (M, g) is encoded in certain torsion components of the structures. Since M is 3 -dimensional, the Einstein condition is of course much more restrictive than in the 4 -dimensional case. The tensors $K, \widehat{g}, \theta, I, \omega, r, \mu^{v}, \mu^{h}, N^{v}$ and N^{v} are defined like in Definition 6.2 from the previous section.

Definition 6.10. Let ε_{M} be the induced volume form on (M, g). We define the following forms on $T M \backslash\{0\}$:

$$
\begin{aligned}
\beta_{2}(X, Y) & :=\varepsilon_{M}\left(K N^{v}, K X, K Y\right), \\
\beta_{3}(X, Y) & :=\varepsilon_{M}\left(\pi_{*} N^{h}, \pi_{*} X, \pi_{*} Y\right), \\
\omega_{2} & :=\beta_{2}-\beta_{3}, \\
\omega_{3}(X, Y) & :=\beta_{2}(\theta X, Y)-\beta_{2}(\theta Y, X), \\
\rho & :=\mu^{v} \wedge \omega_{2}-\mu^{h} \wedge \omega_{3}, \\
\widehat{\rho} & :=\mu^{v} \wedge \omega_{3}+\mu^{h} \wedge \omega_{2} .
\end{aligned}
$$

Moreover, we define forms on $i: T^{1} M \hookrightarrow T M$ by

$$
\begin{aligned}
\omega_{1} & :=i^{*} \omega . \\
\alpha & :=\mu^{h} .
\end{aligned}
$$

Definition 6.11. For a given basis field $\left\{e_{1}, e_{2}, e_{3}\right\}$ on $U \subset M$, we wish to associate a basis field on the open subset

$$
\tilde{U}:=\left\{u \in \pi^{-1}(U) \mid \lambda_{1}^{2}+\lambda_{2}^{2} \neq 0, \text { where } u=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\lambda_{3} e_{3}\right\} \subset T M \backslash\{0\} .
$$

For $u \in \tilde{U}$ with $u=\sum \lambda_{i} e_{i}$, let

$$
\begin{aligned}
& E_{1}(u):=\frac{1}{r(u)}\left(\lambda_{1} v_{u}\left(e_{1}\right)+\lambda_{2} v_{u}\left(e_{2}\right)+\lambda_{3} v_{u}\left(e_{3}\right)\right) \\
& E_{3}(u):=\frac{1}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}}\left(-\lambda_{2} v_{u}\left(e_{1}\right)+\lambda_{1} v_{u}\left(e_{2}\right)\right) \\
& E_{5}(u):=\frac{1}{r(u) \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}}\left(-\lambda_{1} \lambda_{3} v_{u}\left(e_{1}\right)-\lambda_{2} \lambda_{3} v_{u}\left(e_{2}\right)+\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) v_{u}\left(e_{3}\right)\right) .
\end{aligned}
$$

Then E_{1}, E_{3} and E_{5} are orthonormal and we obtain an orthonormal basis field via

$$
E_{2}:=I E_{1}, \quad E_{4}:=I E_{3} \quad \text { and } \quad E_{6}:=I E_{5} .
$$

Note also that $E_{1}(u)=\frac{1}{r(u)} v_{u}(u)=N^{v}(u)$ and $E_{2}(u)=I N^{v}(u)=N^{h}(u)$ holds. In particular, we may choose $e_{1}, e_{2}, e_{3} \in T_{p} M$ such that $e_{1}=\frac{u}{\|u\|}$ holds, for a fixed vector $u \neq 0$. This yields

$$
E_{2 i}(u)=h_{u}\left(e_{i}\right) \quad \text { and } \quad E_{2 i-1}(u)=v_{u}\left(e_{i}\right) .
$$

By choosing local normal coordinates around p, we may extend e_{1}, e_{2}, e_{3} via parallel translation to a local basis field. Then

$$
\left(\nabla_{e_{i}}^{g} e_{j}\right)_{p}=0 \quad \text { and hence } \quad\left[e_{i}, e_{j}\right]_{p}=0
$$

hold at p. We refer to the corresponding basis field $\left(E_{1}, . ., E_{6}\right)$ as an adapted frame at u.

The following Lemma can be easily verified:

Lemma 6.12. In terms of the dual basis $\left(E^{1}, . ., E^{6}\right)$ of $\left(E_{1}, . ., E_{6}\right)$, the forms from Definition 6.2 and 6.10 are locally given by
(1) $\omega=E^{12}+E^{34}+E^{56}$,
(2) $\beta_{2}=E^{35}$,
(3) $\beta_{3}=E^{46}$,
(4) $\alpha=E^{2}$,
(5) $\omega_{1}=E^{34}+E^{56}$,
(6) $\omega_{2}=E^{35}-E^{46}$,
(7) $\omega_{3}=E^{36}+E^{45}$,
(8) $\rho=E^{135}-E^{146}-E^{245}-E^{236}$,
(9) $\widehat{\rho}=E^{145}+E^{136}+E^{235}-E^{246}$.

Definition 6.13. From the previous Lemma we see immediately that the restriction of $\left(\alpha, \omega_{1}, \omega_{2}, \omega_{3}\right)$ to $T^{1} M$ defines a $S U(2)$-structure on $T^{1} M$. Moreover, (ω, ρ) defines a $S U(3)$-structure on $T M \backslash\{0\}$.

To study the type of these structures, we have to compute the analogue of Lemma 6.5:

Lemma 6.14. Fix $u \in T M \backslash\{0\}$ and let $E_{1}, . ., E_{6}$ be an adapted frame at u with dual frame $E^{1}, . ., E^{6}$. Then the following formulas hold at u :

$$
\begin{aligned}
& d E^{2}=\frac{1}{r}\left(E^{34}+E^{56}\right) \\
& d E^{4}=\frac{1}{r} E^{23} \\
& d E^{6}=\frac{1}{r} E^{25}
\end{aligned}
$$

The exterior derivative of the vertical forms involves the curvature R of (M, g). Let

$$
\Omega_{2 k-1}:=R_{121 k} E^{24}+R_{131 k} E^{26}+R_{231 k} E^{46}
$$

then we have at u

$$
\begin{aligned}
& d E^{1}=0 \\
& d E^{3}=r \Omega_{3}+\frac{1}{r} E^{13} \\
& d E^{5}=r \Omega_{5}+\frac{1}{r} E^{15} .
\end{aligned}
$$

Proof: The proof is completely analogue to the proof of Lemma 6.5. We use $d E^{k}\left(E_{i}, E_{j}\right)=-E^{k}\left[E_{i}, E_{j}\right]$ and

$$
\begin{gathered}
h_{u}\left(e_{i}\right) \cdot r=h_{u}\left(e_{i}\right) \cdot \lambda_{j}=0, \\
v_{u}\left(e_{i}\right) \cdot r=\delta_{1 i} \quad \text { and } \quad v_{u}\left(e_{i}\right) \cdot \lambda_{j}=\delta_{i j}
\end{gathered}
$$

which imply

$$
\begin{aligned}
v_{u}\left(e_{i}\right) \cdot \frac{\lambda_{a}}{r} & =\frac{1}{r}\left(\delta_{i a}-\delta_{1 i} \delta_{1 a}\right), \\
v_{u}\left(e_{i}\right) \cdot \frac{\lambda_{a}}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}} & =\frac{1}{r}\left(\delta_{i a}-\delta_{1 i} \delta_{1 a}\right), \\
v_{u}\left(e_{i}\right) \cdot \frac{\lambda_{a} \lambda_{b}}{r \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}} & =\frac{1}{r}\left(\delta_{i a} \delta_{1 b}+\delta_{i b} \delta_{1 a}-2 \delta_{1 a} \delta_{1 b} \delta_{1 i}\right) .
\end{aligned}
$$

Now we obtain

$$
\begin{array}{lll}
{\left[E_{1}, E_{2}\right]=0,} & {\left[E_{1}, E_{4}\right]=0,} & {\left[E_{1}, E_{6}\right]=0,} \\
{\left[E_{2}, E_{3}\right]=-\frac{1}{r} E_{4},} & {\left[E_{2}, E_{5}\right]=-\frac{1}{r} E_{6},} & {\left[E_{3}, E_{4}\right]=-\frac{1}{r} E_{2},} \\
{\left[E_{3}, E_{6}\right]=0,} & {\left[E_{4}, E_{5}\right]=0,} & {\left[E_{5}, E_{6}\right]=-\frac{1}{r} E_{2},}
\end{array}
$$

which yields the desired formula for $d E^{2 k}$. To compute $d E^{2 k-1}$, observe that

$$
d E^{2 k-1}\left(E_{2 i-1}, E_{2 j}\right)=0
$$

and by Lemma 6.1

$$
\begin{aligned}
d E^{2 k-1}\left(E_{2 i}(u), E_{2 j}(u)\right)= & d E^{2 k-1}\left(h_{u}\left(e_{i}\right), h_{u}\left(e_{j}\right)\right) \\
= & h_{u}\left(e_{i}\right) \cdot E^{2 k-1}\left(h\left(e_{j}\right)\right)-h_{u}\left(e_{j}\right) \cdot E^{2 k-1}\left(h\left(e_{i}\right)\right) \\
& -E^{2 k-1}\left[h\left(e_{i}\right), h\left(e_{j}\right)\right]_{u} \\
= & -E^{2 k-1}\left[h\left(e_{i}\right), h\left(e_{j}\right)\right]_{u} \\
= & E^{2 k-1}\left(v_{u}\left(R\left(e_{i}, e_{j}\right) u\right)\right. \\
= & r(u) R_{i j 1 k}
\end{aligned}
$$

Using

$$
\begin{aligned}
d E^{2 k-1}\left(E_{2 i-1}(u), E_{2 j-1}(u)\right)= & d E^{2 k-1}\left(v_{u}\left(e_{i}\right), v_{u}\left(e_{j}\right)\right) \\
= & v_{u}\left(e_{i}\right) \cdot E^{2 k-1}\left(v\left(e_{j}\right)\right)-v_{u}\left(e_{j}\right) \cdot E^{2 k-1}\left(v\left(e_{i}\right)\right) \\
& -E^{2 k-1}\left[v\left(e_{i}\right), v\left(e_{j}\right)\right]_{u} \\
= & v_{u}\left(e_{i}\right) \cdot E^{2 k-1}\left(v\left(e_{j}\right)\right)-v_{u}\left(e_{j}\right) \cdot E^{2 k-1}\left(v\left(e_{i}\right)\right),
\end{aligned}
$$

we compute

$E_{2 i-1}$	$E_{2 j-1}$	$d E^{1}$	$d E^{3}$	$d E^{5}$
E_{1}	E_{3}	0	$\frac{1}{r(u)}$	0
E_{1}	E_{5}	0	0	$\frac{1}{r(u)}$
E_{3}	E_{5}	0	0	0

and obtain the above formulas for the vertical forms.

We can now compute the exterior derivatives of the forms from Definition 6.10.

Proposition 6.15. Let $E_{1}, . ., E_{6}$ be an adapted frame at $u \in T M \backslash\{0\}$ and let

$$
\Omega_{2 k-1}:=R_{121 k} E^{24}+R_{131 k} E^{26}+R_{231 k} E^{46}
$$

where R is the curvature tensor of g. If ric denotes the Ricci tensor of R, then the following formulas hold at u :

$$
\begin{aligned}
d \mu^{v} & =0 \\
d \alpha & =\frac{1}{r} \omega_{1}, \\
d \omega & =0 \\
d \omega_{1} & =\frac{1}{r} \mu^{v} \wedge \omega_{1} \\
d \omega_{2} & =r\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right)-\frac{1}{r} \alpha \wedge \omega_{3}+\frac{2}{r} \mu^{v} \wedge \beta_{2} \\
d \omega_{3} & =-r \operatorname{ric}_{11} \alpha \wedge \beta_{3}+\frac{2}{r} \alpha \wedge \beta_{2}+\frac{1}{r} \mu^{v} \wedge \omega_{3} \\
d\left(\alpha \wedge \omega_{2}\right) & =-r \alpha \wedge\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right)+\frac{2}{r} \mu^{v} \wedge \alpha \wedge \beta_{2} \\
d\left(\alpha \wedge \omega_{3}\right) & =\frac{1}{r} \mu^{v} \wedge \alpha \wedge \omega_{3}, \\
d \rho & =r \mu^{v} \wedge\left(E^{3} \wedge \Omega_{5}-E^{5} \wedge \Omega_{3}\right), \\
d \widehat{\rho} & =r r_{i c}{ }_{11} \mu^{v} \wedge \alpha \wedge \beta_{3}-r \alpha \wedge\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right)
\end{aligned}
$$

Proof: The first three equations follow immediately from Lemma 6.14, since $d \omega=-\mu^{v} \wedge d E^{2}+d\left(E^{34}+E^{56}\right)=-\mu^{v} \wedge d E^{2}+d\left(r d E^{2}\right)=-\mu^{v} \wedge d E^{2}+\mu^{v} \wedge d E^{2}=0$.

For the other equations we compute $d \omega_{1}=d r \wedge d \alpha=\frac{1}{r} \mu^{v} \wedge \omega_{1}$,

$$
\begin{aligned}
d \omega_{2} & =d\left(E^{35}-E^{46}\right) \\
& =r \Omega_{3} \wedge E^{5}+\frac{1}{r} E^{135}-E^{3} \wedge\left(r \Omega_{5}+\frac{1}{r} E^{15}\right)-\frac{1}{r} E^{236}+\frac{1}{r} E^{425} \\
& =r\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right)-\frac{1}{r} \alpha \wedge \omega_{3}+\frac{2}{r} \mu^{v} \wedge \beta_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
d \omega_{3} & =d\left(E^{36}+E^{45}\right) \\
& =\left(r \Omega_{3}+\frac{1}{r} E^{13}\right) \wedge E^{6}-\frac{1}{r} E^{325}+\frac{1}{r} E^{235}-E^{4} \wedge\left(r \Omega_{5}+\frac{1}{r} E^{15}\right) \\
& =r\left(\Omega_{3} \wedge E^{6}-E^{4} \wedge \Omega_{5}\right)+\frac{2}{r} \alpha \wedge \beta_{2}+\frac{1}{r} \mu^{v} \wedge \omega_{3} \\
& =-r \operatorname{ric}_{11} \alpha \wedge \beta_{3}+\frac{2}{r} \alpha \wedge \beta_{2}+\frac{1}{r} \mu^{v} \wedge \omega_{3} .
\end{aligned}
$$

Since $\omega_{1} \wedge \omega_{2}=\omega_{1} \wedge \omega_{3}=0$, we get $d\left(\alpha \wedge \omega_{2}\right)=-\alpha \wedge d \omega_{2}$ and $d\left(\alpha \wedge \omega_{3}\right)=-\alpha \wedge d \omega_{3}$ and hence the seventh and eighth equation. Eventually,

$$
\rho=\mu^{v} \wedge \omega_{2}-\mu^{h} \wedge \omega_{3} \quad \text { and } \quad \widehat{\rho}=\mu^{v} \wedge \omega_{3}+\mu^{h} \wedge \omega_{2}
$$

yield

$$
\begin{aligned}
d \rho & =-\mu^{v} \wedge d \omega_{2}-d\left(\alpha \wedge \omega_{3}\right) \\
& =-r \mu^{v} \wedge\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right)+\frac{1}{r} \mu^{v} \wedge \alpha \wedge \omega_{3}-\frac{1}{r} \mu^{v} \wedge \alpha \wedge \omega_{3} \\
& =r \mu^{v} \wedge\left(E^{3} \wedge \Omega_{5}-E^{5} \wedge \Omega_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d \widehat{\rho} & =-\mu^{v} \wedge d \omega_{3}+d\left(\alpha \wedge \omega_{2}\right) \\
& =r \operatorname{ric}_{11} \mu^{v} \wedge \alpha \wedge \beta_{3}-\frac{2}{r} \mu^{v} \wedge \alpha \wedge \beta_{2}-r \alpha \wedge\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right)+\frac{2}{r} \mu^{v} \wedge \alpha \wedge \beta_{2} \\
& =r \operatorname{ric}_{11} \mu^{v} \wedge \alpha \wedge \beta_{3}-r \alpha \wedge\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right) .
\end{aligned}
$$

We can now study the $S U(3)$-structure (ω, ρ) on $T M \backslash\{0\}$ from Definition 6.13. Since always $d \omega=0$ holds, the intrinsic torsion satisfies by Lemma 3.23 and Proposition 3.25

$$
\mathcal{T} \in I_{0} \mathfrak{s u}(3) \oplus \mathfrak{s u}(3)
$$

From the proof of Theorem 3.28 we see that

$$
\begin{aligned}
\mathcal{T} \in \mathfrak{s u}(3) \text { and } \eta=0 \quad \Leftrightarrow \quad d \rho=0, \\
\mathcal{T} \in I_{0} \mathfrak{s u}(3) \text { and } \eta=0 \quad \Leftrightarrow \quad d \widehat{\rho}=0 .
\end{aligned}
$$

By Proposition 6.15 we have

$$
\begin{aligned}
d \rho= & r \mu^{v} \wedge\left(E^{3} \wedge \Omega_{5}-E^{5} \wedge \Omega_{3}\right) \\
= & r\left(R_{1231} E^{1234}+R_{1331} E^{1236}-R_{3213} E^{1346}\right. \\
& \left.+R_{1221} E^{1245}-R_{1321} E^{1256}+R_{2312} E^{1456}\right)
\end{aligned}
$$

and hence $d \rho=0$ is equivalent to ric $=0$. Similarly,

$$
\begin{aligned}
d \widehat{\rho} & =r \operatorname{ric}_{11} \mu^{v} \wedge \alpha \wedge \beta_{3}-r \alpha \wedge\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right) \\
& =r\left(\operatorname{ric}_{11} E^{1246}+R_{2312} E^{2456}-R_{3213} E^{2346}\right) \\
& =0
\end{aligned}
$$

is equivalent to ric $=0$. Hence we showed

Corollary 6.16. The $S U(3)$-structure on $T M \backslash\{0\}$ from Definition 6.13 is always of type $\mathcal{T} \in I_{0} \mathfrak{s u}(3) \oplus \mathfrak{s u}(3)$ and

$$
\mathcal{T} \in \mathfrak{s u}(3), \eta=0 \quad \Leftrightarrow \quad \mathcal{T} \in I_{0} \mathfrak{s u}(3), \eta=0 \quad \Leftrightarrow \quad \mathcal{T}=0, \eta=0 \quad \Leftrightarrow \quad R=0
$$

where R is the curvature tensor of (M, g).

Now consider the $S U(2)$-structure $\left(\alpha, \omega_{1}, \omega_{2}, \omega_{3}\right)$ on $T^{1} M$ from Definition 6.13. By Proposition 6.15

$$
d \omega_{1}=0 \quad \text { and } \quad d\left(\alpha \wedge \omega_{3}\right)=0
$$

always hold and

$$
\begin{aligned}
d \omega_{2}= & \Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}-\alpha \wedge \omega_{3} \\
= & -R_{1221} E^{245}+R_{1321} E^{256}-R_{2312} E^{456} \\
& -R_{1231} E^{234}-R_{1331} E^{236}+R_{3213} E^{346} \\
& -E^{236}-E^{245}
\end{aligned}
$$

Hence the equation $d \omega_{2}=\lambda\left(\alpha \wedge \omega_{3}\right)=\lambda\left(E^{236}+E^{245}\right)$, for some constant λ, is equivalent to ric $=-2(1+\lambda) g$. Moreover,

$$
\begin{aligned}
d\left(\alpha \wedge \omega_{2}\right) & =-\alpha \wedge\left(\Omega_{3} \wedge E^{5}-E^{3} \wedge \Omega_{5}\right) \\
& =R_{2312} E^{2456}-R_{3213} E^{2346}=0
\end{aligned}
$$

is equivalent to $\operatorname{ric}_{12}=\operatorname{ric}_{13}=0$, i.e. (M, g) being Einstein. Note also that

$$
d \omega_{3}=-\operatorname{ric}_{11} \alpha \wedge \beta_{3}+2 \alpha \wedge \beta_{2} \neq 0
$$

i.e. the structure is never parallel.

Corollary 6.17. The $S U(2)$-structure on $T^{1} M$ from Definition 6.13 always satisfies $d \omega_{1}=0$ and $d\left(\alpha \wedge \omega_{3}\right)=0$. Moreover,

$$
\begin{aligned}
d\left(\alpha \wedge \omega_{2}\right)=0 & \Leftrightarrow(M, g) \text { is Einstein. } \\
d \omega_{2}=\lambda\left(\alpha \wedge \omega_{3}\right) & \Leftrightarrow(M, g) \text { is Einstein with ric }=-2(1+\lambda) g .
\end{aligned}
$$

The structure is never parallel.

G_{2}-Structures on S^{1}-Bundles over M^{6}

Let $\left(M^{6}, g, \omega, I\right)$ be a Kähler manifold with canonical S^{1}-bundle

$$
\pi: K \subset \Lambda^{(3,0)} T^{*} M^{6} \rightarrow M^{6}
$$

In this section we define a G_{2}-structure on the total space K. Our approach is motivated by Example 1, p. 84 from [5]. In addition to the result from [5], we study the possible torsion types and show that the G_{2}-structure is always hypo and hence a candidate to solve the corresponding embedding problem.
The connection 1 -form \mathcal{Z}^{g} on K, induced by the Levi-Civita connection, is a $\mathfrak{u}_{1}=i \mathbb{R}$ valued 1-form and satisfies by Proposition 5.4

$$
d \mathcal{Z}^{g}=i \pi^{*} \varrho,
$$

where ϱ is the Ricci form of g. We denote by ξ the vertical lift of $i \in \mathfrak{u}_{1}$, i.e.

$$
\xi_{\Phi}=R_{\Phi *} i
$$

for all $\Phi \in K$. Then we obtain a metric \bar{g} on K by

$$
\bar{g}(\xi, \xi):=1, \quad \bar{g}\left(\xi, h^{g} X\right):=0 \quad \text { and } \quad \bar{g}\left(h^{g} X, h^{g} Y\right):=g(X, Y)
$$

where $X, Y \in T M^{6}$ and h^{g} denotes the horizontal lift to K w.r.t. the connection \mathcal{Z}^{g}. Since $\mathcal{Z}^{g}(\xi)=i$, the dual $\left.\alpha:=\xi\right\lrcorner \bar{g}$ of ξ is given by

$$
\alpha=-i \mathcal{Z}^{g} .
$$

The Kähler form pulls back to a 2 -form

$$
\bar{\omega}:=\pi^{*} \omega
$$

on K and we set

$$
\bar{\sigma}:=\frac{1}{2} \bar{\omega}^{2} .
$$

There are tautological 3 -forms on K, defined by

$$
\begin{aligned}
& \rho(U, V, W):=\operatorname{Re}(\Phi)\left(\pi_{*} U, \pi_{*} V, \pi_{*} W\right) \\
& \widehat{\rho}(U, V, W):=\operatorname{Im}(\Phi)\left(\pi_{*} U, \pi_{*} V, \pi_{*} W\right)
\end{aligned}
$$

for $U, V, W \in T_{\Phi} K$. Lifting a Cayley frame for the Kähler structure on M^{6} to K and extending the lift by the vector field ξ, yields a Caley frame for the G_{2}-structure

Definition 6.18.

$$
\begin{aligned}
& \varphi:=\rho+\alpha \wedge \bar{\omega}, \\
& \psi:=\bar{\sigma}-\alpha \wedge \widehat{\rho}
\end{aligned}
$$

Note that the metric of this structure is just $g(\varphi)=\bar{g}$. To compute the torsion type of this structure we need to compute the exterior derivatives of the tensors ρ and $\widehat{\rho}$. Using

$$
\begin{aligned}
d \rho\left(U_{0}, . ., U_{3}\right) & =\sum_{k=0}^{3}(-1)^{k} U_{k} \cdot\left(\rho\left(U_{1}, . ., \hat{U}_{k}, . ., U_{3}\right)\right) \\
& +\sum_{0 \leq k, l \leq 3}(-1)^{k+l} \rho\left(\left[U_{k}, U_{l}\right], U_{1}, . ., \hat{U}_{k}, . ., \hat{U}_{l}, . ., U_{3}\right),
\end{aligned}
$$

together with Lemma 1.11 and $\xi\lrcorner \rho=0$, we get

Lemma 6.19 .

$$
\begin{array}{r}
d \rho=i \mathcal{Z}^{g} \wedge \widehat{\rho}=-\alpha \wedge \widehat{\rho} \\
d \widehat{\rho}=-i \mathcal{Z}^{g} \wedge \rho=\alpha \wedge \rho
\end{array}
$$

The Kähler condition yields

$$
d \bar{\omega}=d \bar{\sigma}=0 \quad \text { and } \quad d \alpha=\pi^{*} \varrho .
$$

Hence we compute

$$
\begin{aligned}
d \psi & =-\pi^{*} \varrho \wedge \widehat{\rho}+\alpha \wedge \alpha \wedge \rho \\
& =-\pi^{*} \varrho \wedge \widehat{\rho}
\end{aligned}
$$

Since $\pi^{*} \varrho$ is a $(1,1)$ form w.r.t. the pullback of I to the horizontal distribution on K, and $\rho+i \widehat{\rho}$ is a $(3,0)$ form, we see that on the six-dimensional horizontal distribution the $(4,1)$ form $\pi^{*} \varrho \wedge(\rho+i \widehat{\rho})$ vanishes. Since the Ricci form $\pi^{*} \varrho$ is a real form, we obtain

$$
\pi^{*} \varrho \wedge \rho=\pi^{*} \varrho \wedge \widehat{\rho}=0
$$

and, in particular, $d \psi=0$. Now

$$
d \varphi=-\alpha \wedge \widehat{\rho}+\pi^{*} \varrho \wedge \bar{\omega}
$$

shows that $d \varphi \neq 0$ and we compute

$$
\begin{aligned}
& d \varphi=\lambda \psi \\
\Leftrightarrow & -\alpha \wedge \widehat{\rho}+\pi^{*}(\varrho \wedge \omega)=\lambda \bar{\sigma}-\lambda \alpha \wedge \widehat{\rho} \\
\Leftrightarrow & (\lambda-1) \alpha \wedge \widehat{\rho}+\pi^{*}\left(\varrho \wedge \omega-\frac{1}{2} \lambda \omega^{2}\right)=0 \\
\Leftrightarrow & \lambda=1 \quad \text { and } \quad \varrho \wedge \omega=\frac{1}{2} \omega^{2} .
\end{aligned}
$$

By Schur's Lemma, $\omega \wedge: \Lambda^{2} T^{*} M^{6} \rightarrow \Lambda^{4} T^{*} M^{6}$ defines an isomorphism. Hence $d \varphi=\lambda \psi$ is equivalent to $\lambda=1$ and $\varrho=\frac{1}{2} \omega$. In summary we have, cf. [5] Example 1, p.84:

Theorem 6.20. The G_{2}-structure φ on K from Definition 6.18 is always hypo, but never parallel. The structure is nearly parallel with $d \varphi=\psi$ if and only if the underlying Kähler structure is Einstein with ric $=\frac{1}{2} g$.

$S U(3)$-Structures on $S^{1} \times S^{1}$-Bundles over M^{4}

Let $\left(M^{4}, g, \omega, I\right)$ be a Kähler manifold with canonical S^{1}-bundle

$$
\pi_{K}: K \subset \Lambda^{(2,0)} T^{*} M^{4} \rightarrow M^{4}
$$

The connection 1-form \mathcal{Z}^{g} on K, induced by the Levi-Civita connection, is a $\mathfrak{u}_{1}=i \mathbb{R}$ valued 1-form and satisfies by Proposition 5.4

$$
d \mathcal{Z}^{g}=i \pi_{K}^{*} \varrho,
$$

where ϱ is the Ricci form of g. More generally, every closed 2-form ϱ_{P} on M^{4} such that

$$
\left[\frac{\varrho_{P}}{2 \pi}\right] \in H^{2}\left(M^{4} ; \mathbb{Z}\right)
$$

corresponds, up to isomorphism, to a S^{1}-bundle $\pi_{P}: P \rightarrow M^{4}$, together with a connection 1-form \mathcal{Z}_{P}, such that

$$
d \mathcal{Z}_{P}=i \pi_{P}^{*} \varrho_{P}
$$

holds, cf. [44]. Given such a form ϱ_{P}, we define a $S U(3)$-structure on the total space of $\pi: K \triangle P \rightarrow M^{4}$, where

$$
K \triangle P:=\left\{(\Phi, \Psi) \mid \pi_{K}(\Phi)=\pi_{P}(\Psi)\right\}
$$

is the fibre product of K and P. Like in the previous section we have tautological 2 -forms on K, given by

$$
\begin{aligned}
& \omega_{2}(U, V):=\operatorname{Re}(\Phi)\left(\pi_{*} U, \pi_{*} V\right), \\
& \omega_{3}(U, V):=\operatorname{Im}(\Phi)\left(\pi_{*} U, \pi_{*} V\right),
\end{aligned}
$$

for $U, V \in T_{\Phi} K$, which satisfy

$$
\begin{aligned}
d \omega_{2} & =i \mathcal{Z}^{g} \wedge \omega_{3} \\
d \omega_{3} & =-i \mathcal{Z}^{g} \wedge \omega_{2} .
\end{aligned}
$$

We denote by ξ, ξ_{P} the vertical lift of $(i, 0),(0, i) \in \mathfrak{u}_{1} \times \mathfrak{u}_{1}$ to K, P, respectively. Then we obtain a metric \bar{g} on $K \triangle P$ by

$$
\begin{aligned}
& \bar{g}(\xi, \xi):=\bar{g}\left(\xi_{P}, \xi_{P}\right):=1 \\
& \bar{g}\left(\xi, \xi_{P}\right):=0 \\
& \bar{g}(\xi, h X):=\bar{g}\left(\xi_{P}, h X\right):=0, \\
& \bar{g}(h X, h Y):=g(X, Y),
\end{aligned}
$$

where $X, Y \in T M^{4}$ and h denotes the horizontal lift to $K \triangle P$ w.r.t. the connection $\left(\mathcal{Z}^{g}, \mathcal{Z}_{P}\right)$. Then the dual 1-forms for ξ and ξ_{P} satisfy

$$
\left.\alpha:=\xi\lrcorner \bar{g}=-i \mathcal{Z}^{g} \quad \text { and } \quad \alpha_{P}:=\xi_{P}\right\lrcorner \bar{g}=-i \mathcal{Z}_{P}
$$

where we consider \mathcal{Z}^{g} and \mathcal{Z}_{P} as forms on $K \triangle P$ via the pull back under the canonical projections $K \triangle P \rightarrow K, P$. Hence the pull back of the tautological forms ω_{2} and ω_{3} to $K \triangle P$ satisfy

$$
\begin{aligned}
& d \omega_{2}=-\alpha \wedge \omega_{3}, \\
& d \omega_{3}=\alpha \wedge \omega_{2}
\end{aligned}
$$

and for the exterior derivatives of α and α_{P} we obtain

$$
d \alpha=\pi^{*} \varrho \quad \text { and } \quad d \alpha_{P}=\pi^{*} \varrho_{P}
$$

We can easily find a Cayley frame to prove that

Definition 6.21.

$$
\begin{aligned}
& \bar{\omega}:=\alpha_{P} \wedge \alpha+\omega_{3}, \\
& \rho:=\alpha_{P} \wedge \pi^{*} \omega-\alpha \wedge \omega_{2}, \\
& \hat{\rho}:=\alpha_{P} \wedge \omega_{2}+\alpha \wedge \pi^{*} \omega,
\end{aligned}
$$

defines a $S U(3)$-structure on $K \triangle P$. Since $\pi^{*} \varrho_{(P)}$ is a $(1,1)$ form w.r.t. the pullback of I to the horizontal distribution on $K \triangle P$, and $\omega_{2}+i \omega_{3}$ is a $(2,0)$ form, we see that on the four dimensional horizontal distribution the $(3,1)$ form $\pi^{*} \varrho_{(P)} \wedge\left(\omega_{2}+i \omega_{3}\right)$ vanishes. Since the Ricci form $\pi^{*} \varrho$ is a real form, we obtain

$$
\pi^{*} \varrho_{(P)} \wedge \omega_{2}=\pi^{*} \varrho_{(P)} \wedge \omega_{3}=0
$$

Then

$$
d \bar{\omega}=\pi^{*} \varrho_{P} \wedge \alpha-\alpha_{P} \wedge \pi^{*} \varrho+\alpha \wedge \omega_{2} \neq 0
$$

shows that the structure is never parallel, but satisfies

$$
d \bar{\omega} \wedge \bar{\omega}=0
$$

since $\omega_{2} \wedge \omega_{3}=0$. The Kähler condition $d \omega=0$ yields

$$
d \rho=\pi^{*}\left(\varrho_{P} \wedge \omega\right)-\pi^{*} \varrho \wedge \omega_{2}=\pi^{*}\left(\varrho_{P} \wedge \omega\right) .
$$

Hence the structure is hypo if $\varrho_{P} \wedge \omega=0$. In contrast to the G_{2}-case, the structure turns out to be never nearly Kähler. In summary we have

Theorem 6.22. The $S U(3)$-structure on $K \triangle P$ from Definition 6.21 always satisfies $d \bar{\omega} \wedge \bar{\omega}=0$. Moreover, the structure is hypo if in addition $\varrho_{P} \wedge \omega=0$ holds. The structure is never parallel or nearly parallel.

References

[1] R. Albuquerque: On the G_{2}-Bundle of a Riemannian 4-Manifold, J.Geom.Phys. 60, no.6-8, 924-939, 2010.
[2] I. Agricola, T. Friedrich: Geometric structures of vectorial type, J.Geom. Phy. 56, 2403-2414, 2006.
[3] W. Ballmann: Lectures on Kähler Manifolds, European Mathematical Society, 2006.
[4] C.Bär, P.Gauduchon, A.Moroianu: Generalized cylinders in semi Riemannian and spin geometry, Mathematische Zeitschrift 249 545, 2005.
[5] H. Baum, T. Friedrich, R. Grunewald, I. Kath: Twistor and Killing mpinors on Riemannian manifolds, Teubner-Texte zur Mathematik, 124, BG-Teubner, Stuttgart, 1991.
[6] M. Berger: Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83, 279-330, 1955.
[7] A.L. Besse: Einstein Manifolds, Springer Verlag, Berlin-Heidelberg-New York, 1987.
[8] C. Boyer, K.Galicki: Sasakian Geometry, Oxford Univ. Press, 2008.
[9] A.Brandhuber, J.Gomis, S.Gubser, S.Gukov: Gauge Theory at Large N and New G_{2} Holonomy Metrics, Nucl. Phys. B611, 179-204, 2001.
[10] R.Bryant: Some Remarks on G_{2}-Structures, Gökova Geometry/Topology Conference (GGT), pp.75-109, Gökova, 2006.
[11] R.Bryant: Nonembedding and Nonextension Results in Special Holonomy, In Proceedings of the August 2006 Madrid conference in honor of Nigel Hitchin's 60th Birthday. Oxford University Press.
[12] R.Bryant et al.: Exterior Differntial Systems, Mathematical Sciences Research Institute Publications, Springer -Verlag, 1991.
[13] R.Bryant, S. Salamon: On the construction of some comlete metrics with exceptional holonomy, Duke Math. J. 58 no. 3 ,829-850, 1989.
[14] F.M. Cabrera: $S U(3)$-structures on hypersurfaces of manifolds with G_{2}-structure, Monatsh.Math. 148, no.1, 29-50, 2006.
[15] F.M. Cabrera, A. Swann: Curvature of (Special) Almost Hermitian Manifolds, Pacific J.Math. 228, no.1, 165-184, 2006.
[16] E. Calabi: On Kähler manifolds with vanishing canonical class, in Algebraic geometry and topology, a symposium in honor of S. Lefschetz, Pricton Univ. Press, 78-89, 1955.
[17] H. Cao: Deformations of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math.81, no. 2 359-372, 1985.
[18] H.Cartan: Elementare Theorie der analytischen Funktionen einer oder mehrerer komplexen Veränderlichen, 1966, Bibliographisches Institut AG, Mannheim.
[19] S.Chiossi, S.Salamon: The intrinsic torsion of $S U(3)$ and G_{2} structures, Differential Geometry, Valencia 2001, World Sci. Publishing, 115-133, 2002.
[20] R. Cleyton, S. Ivanov: Curvature decomposition of G_{2}-manifolds, Journal of Geometry and Physics, Volume 58, Issue 10, p. 1429-1449, 2008.
[21] D.Conti: Embedding into Manifolds with Torsion, to appear, arXiv:0812.4186, 2009.
[22] D.Conti, S.Salamon: Generalized Killing Spinors in Dimension 5, Trans. Amer. Math. Soc., 359(11):5319-5343, 2007.
[23] V.Cortés, T.Leistner, L.Schäfer, F.Schulte-Hengesbach: Half-flat Structures and Special Holonomy, to appear, arXiv:0907.1222, 2009.
[24] M.Cvetič, G.W.Gibbons, H.Lü, C.N.Pope: M-theory Conifolds, Physical Review Letters 88 121602, 2002.
[25] M.Cvetič, G.W.Gibbons, H.Lü, C.N.Pope: Special Holonomy Spaces and M-theory, Unity from duality: gravity, gauge theory and strings (Les Houches, 2001), 523-545, NATO Adv. Study Inst., EDP Sci., Les Ulis, 2003.
[26] P. Dombrowski: On the Geometry of the Tangent Bundle, J. Reine Angew. Math 210, 73-88, 1962.
[27] M. Fernández, A. Gray: Riemannian Manifolds with Structure Group G_{2}, Ann.Mat.Pura Appl.,32:19-45, 1982.
[28] M. Fernández, S.Ivanov, V.Munoz, L.Ugarte: Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities, J.Lond.Math.Soc.(2) 78, no.3, 580-604, 2008.
[29] M. Fernández, A. Tomassini, L. Ugarte, R. Villacampa: Balanced Hermitian Metrics from SU(2)-Structures, Journal of Mathematical Physics, Volume 50, Issue 3, 2009.
[30] T. Friedrich, Nearly Kähler and Nearly Parallel G_{2}-Structures on Spheres, Archivum Mathematicum, Tomus 42, Supplement, 241-243, 2006.
[31] T. Friedrich, S. Ivanov: Parallel Spinors and Connections with Skew-Symmetric Torsion in String Theory, AsianJ.Math.6:303-336, 2002.
[32] A. Gray, L. Hervella: The Sixteen Classes of Almost Hermitian Manifolds, Ann.Mat.Pura Appl.,282:1-21, 1980.
[33] A. Gray: Weak Holonomy Groups, Math. Z. 123, 290-300, 1971.
[34] R.S. Hamilton: The Inverse Function Theorem of Nash and Moser, Bull.Amer.Math.Soc.7, 65-222, 1982.
[35] R.S. Hamilton: Three-Manifolds with Positive Ricci Curvature, J.Diff.Geom.17,255-306, 1982.
[36] N. Hitchin: The geometry of three-forms in six and seven dimensions, J.Differ.Geom.55, 547-576, 2000.
[37] N. Hitchin: Stable forms and special metrics, Global Differential Geometry: The Mathematical Legacy of Alfred Gray, volume 288 of Contemp. Math., 70-89. American Math.Soc., 2001.
[38] D.D. Joyce: Riemannian Holonomy Groups and Calibrated Geometries, Oxford Univ. Press, 2007.
[39] D.D. Joyce: Compact Manifolds with Special Holonomy, Oxford Univ. Press, 2000.
[40] D.D. Joyce: Compact 8-manifolds with holonomy Spin(7), Inventiones mathematicae, 123, 507-552, 1996.
[41] D.D. Joyce: Compact Riemannian 7-manifolds with holonomy G2 I, J. Diff. Geom.43, 291328, 1996.
[42] D.D. Joyce: Compact Riemannian 7-manifolds with holonomy G_{2} II, J. Diff. Geom.43, 329375, 1996.
[43] S. Karigiannis: Deformations of G_{2} and Spin(7) Structures on Manifolds, Canadian Journal of Mathematics 57, 1012-1055, 2005.
[44] S. Kobayashi: Principal Fibre Bundles with the 1-Dimensional Torodial Group, Tohoku Math. J. (2)8, 29-45, 1956.
[45] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry I, Interscience Publ., New York, 1963.
[46] P. Petersen: Riemannian Geometry, second edition, Springer Science+Business Media, 2006.
[47] S. Salamon: Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Mathematics 201, Longman, 1989.
[48] J. Simons: On transitivity on holonomy systems, Ann. Math. 76, 213-234, 1962.
[49] S. Stock: Lifting $S U(3)$-Structures to Nearly Parallel G_{2}-Structures, J.Geom.Phys.59, no.1, 1-7, 2009.
[50] S.T. Yau: On the Ricci curvature of a compact Kähler manifold and the complexe MongeAmpère equation I, Com. Pure and Appl. Math 31,339-411, 1978.
[51] H. Weiß, F. Witt: A heat flow for special metrics, to appear, arXiv:0912.0421v1.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Uwe Semmelmann betreut worden.

Köln, den \qquad

Teilpublikationen

Die Ergebnisse des vierten Kapitels wurden auf dem Preprint-Server arXiv.org unter dem Titel „Gauge Deformations and Embedding Theorems for Special Geometries", arXiv:0909.5549, gestellt.

Köln, den \qquad

Lebenslauf

Angaben zur Person:

Name:	Stock
Vorname:	Sebastian Wolfgang
Geburtsort:	Köln
Geburtsdatum:	22.08 .1982
Nationalität:	deutsch
Familienstand:	ledig

Universitäts- und Schulausbildung:

seit $07 / 2009$: Stipendiand des Graduiertenkollegs 1269 der Universität zu Köln.
01/2008-06/2009: Ph.D. Student an der McMaster University, Hamilton, Kanada.
04/2003-07/2007: Mathematikstudium an der Universität zu Köln.
2002: Allgemeinen Hochschulreife, Gymnasium der Stadt Kerpen.

Berufserfahrungen:

01/2008-06/2009: Teaching Assistant an der McMaster University.
04/2004-07/2007: Übungsgruppenleiter an der Universität zu Köln.
07/2002-04/2003: Grundwehrdienst.

Köln, den \qquad

