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Kurzzusammenfassug

Wir reduzieren das Einbettungsproblem fiir SU(2) und SU (3)-Strukturen auf das
Einbettungsproblem fiir Go-Strukturen. Der Ga-Fall wird mittels Automorphis-
men des Tangentialbiindels untersucht und wir zeigen dass keine nicht-trivialen
Langzeitlosungen des Einbettungsproblems existieren. Hitchins Flussgleichung fiir
den Gs-Fall lésst sich zu einer Gleichung fiir die entsprechenden Automorphismen
des Tangentialbiindels verallgemeinern. Diese verallgemeinerte Flussgleichung be-
schreibt eine Deformation der Ausgangsstruktur mittels ihrer intrinsischen Torsion.
Fiir reell-analytische Strukturen besitzt diese Flussgleichung stets eine eindeutige
reell-analytische Losung.

Wir erweitern den Kéhler-Ricci Fluss auf SU (n)-Strukturen und untersuchen wann
dieser gegen eine parallele SU (n)-Struktur konvergiert. Unser Ansatz erméglicht zu-
dem eine Erweiterung des Ricci Flusses auf G5 und Spin,-Strukturen. Fiir SU(3)-
Strukturen auf sieben-dimensionalen Mannigfaltigkeiten beschreiben wir eine Gray-
Hervella Klassifikation und definieren damit das Gz-Analogon zu Kéhler SU(3)-
Strukturen. Diese Go-Strukturen besitzen eine Faserung, deren Fasern mittels des
Ricci-Flusses deformiert werden kénnen. Der faserweise Ricci-Fluss deformiert die

ambiente Go-Struktur zu einer Ricci-flachen Ga-Struktur.

Abstract

We reduce the embedding problem for hypo SU(2) and SU(3)-structures to the
embedding problem for hypo Ga-structures into parallel Spin(7)-manifolds. The
latter will be described in terms of gauge deformations. This description involves
the intrinsic torsion of the initial Go-structure and allows us to prove that the evo-
lution equations, for all of the above embedding problems, do not admit non-trivial
longtime solutions. For Ga-structures we introduce a new flow, which generalizes
Hitchin’s flow equations. This intrinsic torsion flow admits unique solutions in the
real analytic category.

We extend the Kéhler-Ricci flow to SU(n)-structures and characterize under which
conditions this flow converges to a parallel SU(n)-structure. This approach al-
so yields an extension of the Ricci flow to Gy and Spin;-structures. For SU(3)-
structures in dimension seven we derive the analogue of the Gray-Hervella classi-
fication. Based on this classification, we define a type of Gs-structure which can
be regarded as the seven dimensional analogue of Kéahler SU(3)-structures. This
type of Ga-structures allow a fibrewise Ricci flow that converges to a Ricci flat

Go-structure.
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INTRODUCTION

The Berger-Simons classification [6], [48] of the possible holonomy groups of a
Riemannian manifold leads to the question which of the Ricci flat holonomy groups
can actually be realized as the holonomy group of a Riemannian metric on a compact
manifold. A metric with holonomy group equal to G C O(n) induces a G-structure,
i.e. a reduction of the frame bundle to the structure group G. Conversely, such a
reduction yields a metric with holonomy G C O(n) if the reduction is compatible
with the Levi-Civita connection of the induced O(n)-structure. This compatibility
is measured by the intrinsic torsion of the G-structure, which takes values in the
G-module
R™ @ gt.

In the U(n) and Go-case, Gray et al. [27], [32] decomposed this G-module into
irreducible summands and classified structures according to the irreducible com-
ponents of their intrinsic torsion. For certain torsion types many explicit examples
of structures with the prescribed torsion type are known. For instance, Kahler
structures with vanishing first real Chern class can be regarded as certain types of
SU (n)-structures. Namely, the intrinsic torsion of a SU(n)-structure decomposes
into a Kéhler part and a component measuring the defect of the structure to give a
further holonomy reduction to SU(n) C U(n). Yau’s student H. Cao proves in [17]
that the Kéhler-Ricci flow can actually be used to deform a Kahler SU (n)-structure
into a Ricci flat structure. In other words, Cao studies a particular evolution of a
geometry with torsion to prove the Calabi conjecture. In this thesis we discuss two
approaches to construct manifolds with special holonomy via evolution of geome-

tries with torsion:

I. Hitchin’s flow equations

In [37] N. Hitchin introduced certain evolution equations for Gy and SU(3) struc-
tures on a manifold M, whose solutions are the gradient flow of a certain volume
functional. A family of structures, evolving according to Hitchin’s flow equations
for time t € I C R, yields a parallel structure on the product I x M. In this sense, a
solution of the evolution equations embeds the initial structure into a manifold with
a parallel structure and is therefore called a solution of the embedding problem for
the initial structure.

Hitchin’s flow equations were extended in [22] and [28] to SU(2)-structures in
dimension five. Similar equations are known for embedding SU (2)-structures in di-
mension five and SU(3)-structures in dimension six into manifolds with a nearly
parallel SU(3) and Ga-structure, respectively, cf. [21]. This evolution equations
lead to a huge variety of embedding problems for certain geometries.

Solving the embedding problem for a given structure has two different aspects. First



one has to establish the existence of a solution to the flow equations. Secondly, the
particular solution has to satisfy certain compatibility conditions to actually define
a family of G-structures. In the Ga-case no compatibility conditions occur, since
the structure is described by a single stable 3-form. In contrast, the SU(2) and
SU (3)-case involve various compatibility conditions. Hitchin proves that the SU(3)
evolution equations already imply the desired compatibility conditions. A similar
result holds for the embedding problem for SU(3)-structures into nearly parallel
Ga-structures, cf. [49].

R. Bryant [11] shows that in the real analytic category, the embedding problem
for hypo SU(3) and Ga-structures can be solved. Bryant also provided counter-
examples in the smooth category. The embedding problem for SU(2)-structures in

dimension five was solved by D. Conti and S. Salamon in [22], cf. also [21].

II. Ricci flow for SU(3) and Gs-structures

Yau’s proof [50] of the Calabi conjecture [16] settled the existence of compact mani-
folds with holonomy equal to SU(m). First mayor progress towards the exceptional
cases was achieved by R. Bryant and S. Salamon [13], who established the first
complete, but non compact, examples with holonomy equal to G5 and Spin(7). It
took until 1996 before D. Joyce [40], [41], [42] proved the existence of compact ma-
nifolds with holonomy equal to G2 and Spin(7). Nevertheless, an a priori existence
theorem for G5 manifolds is still missing today.

Cao’s work [17] on the Kéhler-Ricci flow motivates the conjecture that a similar
flow could deform Ga-structures with sufficiently small torsion into parallel struc-
tures. Recently there have been various approaches to define the analogue of a

Kahler-Ricci flow for the Ga-case. Bryant [10] discusses the Ga-Laplacian evolution
o= Acp‘Pv

where ¢ € Q3(M) is the structure tensor of the G-structure. Although this evo-
lution seems to be quite natural, Bryant argues that one would not expect the
Laplacian flow to converge for most Ga-structures. H. Weift and F. Witt [51] des-
cribe the evolution of a Ga-structure under the gradient flow of a Dirichlet energy
functional. The authors establish the short-time existence and uniqueness for this
gradient flow.

However, it is still unclear what flow and what type of initial structure would be
appropriate in the Gy-case. The attempt to deform the whole Ga-structure under
a certain heat flow, seems to be symptomatic for all current approaches. In con-
trast, the Ké&hler-Ricci flow only deforms the ambient U (n)-structure, leaving the
complex structure unchanged. This motivates the conjecture that Hamilton’s Ricci
flow should also be applicable to certain initial types of Ga-structures. A result
due to R. Bryant [10], R. Cleyton and S. Ivanov [20] supports this conjecture. The

authors prove that closed Go-structures which are Einstein have to be parallel. This



indicates that the difference between a Ricci flat and a parallel G-structure is less

drastic than it seems to be.

III. Methods

In the first and second chapter we develop certain methods to study general defor-
mations of special geometries. Gauge deformations, i.e. automorphisms of the tan-
gent bundle, provide a unifying approach to describe deformations of G-structures.
In many cases the structure tensor ¢ of a given G-structure is stable in the sense
that the orbit under the natural action of GL(n) is open. Hence any smooth defor-
mation ¢; of the structure tensor stays inside the open orbit and can be described by
a family [A:] € GL(n)/G. Choosing a particular connection on GL(n) — GL(n)/G,
allows a description of the form ¢; = A;p, cf. Theorem 1.6. For a family of metrics
g; this is the familiar description g, = A;g, where A; is symmetric and positive
w.r.t. the initial metric g. Geometrically, the family of gauge deformations A; des-
cribes the evolution of the principal G-reduction in vertical direction.

The evolution of the structure tensor ¢; = A;p can be computed in terms of a
G-equivariant map,

¢ = Do, (A A7),

cf. Lemma 1.16. This allows to translate the evolution equation for the structure
tensors into a corresponding equation for the family of gauge deformations. The
deformation of the underlying metric of the G C O(n) structure is then obtained
using polar decomposition to write A; = P,Q; € S?- O(n). In Theorem 1.19 we
compute the change in the intrinsic torsion after deforming the initial structure
by a gauge deformation. For a function f : M — R and A := fid, this yields the

well-known formula for conformal changes, cf. [2], [43].

The space of gauge deformations C*°(Aut(TM)) is an open subset of the Fréchet
space C*°(End(T'M)). A solution ¢(t) of a certain evolution equation can therefore
be regarded as an integral curve of a vector field on a Fréchet space. In order for a
solution to preserve some initial condition, we study in the second chapter the case
where the vector field is tangent to the subspace determined by the initial condition,
cf. Proposition 2.3. In contrast to finite dimensional geometry, the integral curve of
a vector field tangent to some subspace does not have to stay inside the subspace.
In the particular case where the solution can be developed in a power series of the

form
o0

c(t) = ﬁc(k) (0)
N k! ’
k=0
we prove in Corollary 2.4 that the solution ¢(t) actually stays inside the subspace.
Hence Corollary 2.4 can be regarded as a conservation law for integral curves in
Fréchet spaces.
The condition that the solution can be developed in a power series is quite restric-

tive. However, the Cauchy-Kowalevski Theorem proves, beyond the existence, that



the integral curves in question satisfy this condition. We translate the local version
of the Cauchy-Kowalevski Theorem into a global version Theorem 2.11 for integral
curves in Fréchet spaces of the form C*°(V'), where V is a vector bundle over a

compact manifold.

IV. Applications

We prove that the embedding problems for SU(2) and SU(3)-structures can be
reduced to the Ga-case, which will be studied in terms of gauge deformations in
chapter four. It seems to be coincidence, that in the Gs-case, the intrinsic torsion
T takes values in the Ga-module gl(7) and therefore can be regarded again as an
(infinitesimal) gauge deformation. In Proposition 4.12 we show that the intrinsic
torsion flow for Go-structures
At =Ti0A

can be regarded as a generalization of Hitchin’s flow equation, and hence as a
generalization of the SU(2), SU(3) and Gs-embedding problem. We describe the
evolution of the metric and the intrinsic torsion under the intrinsic torsion flow,
cf. Theorem 4.13. As a consequence of the Cheeger-Gromoll Splitting Theorem,
we prove in Theorem 4.14 and Corollary 4.15 that there are no nontrivial long-
time solutions for the embedding problem. The Cauchy-Kowalevski Theorem and
the conservation law Corollary 2.4 allow us to prove that the intrinsic torsion flow
preserves certain compatibility conditions, which implies that for any real analytic
hypo SU(2), SU(3) and Ga-structure on a compact manifold, the embedding pro-
blem admits a unique real analytic solution. Moreover, the solution can be described

by a family of gauge deformations

A =3 D ym
t_zy 0 >
k=0

where the series converges in the C*°-topology on C*°(End(T'M)).

In chapter five we define a canonical extension of the Kédhler-Ricci flow to SU(n)-
structures via gauge deformations and characterize in Theorem 5.13 under which
conditions this flow converges to a parallel SU(n)-structure. In Theorem 5.9 we
prove that the canonical extension evolves under an equation that has a striking
similarity with the evolution equation of the K&hler-Ricci flow. Below we list the
evolution equations for the different types of Ricci flows, using the map D form
Lemma 1.16:

’ Name ‘ Structure Group ‘ Evolution Equation ‘
usual Ricci flow O(n) gr = Dy, (Ricy)
Kéhler-Ricci flow U(n) (Gt, @) = D(g, w,)(Ricy)
(special) K&hler-Ricci flow SU(n) (Gt,@t, Pt) = D(g, w,,p0) (Ricy)




This motivates the conjecture that for a given Ga-structure ¢ on M with sufficiently
small torsion, the flow
¢r = Dy, (Ricy)

should converge to a Ricci-flat Go-structure. Essentially the same flow equation
can be considered for Spin,-structures, or more generally, for any G C O(n) struc-
tures, described by certain structure tensors. We show that the family of metrics,
corresponding to a family of structures ¢, evolving according to ¢, = Dy, (Ric;),
satisfies g; = —2ric;.

Moreover, we prove that all of the above evolution equations can be described in a

unified way, using gauge deformations. Namely, a solution A; € C*°(Aut(TM)) of

At = RiCt ] At
Ap=id
yields a solution for all of the above Ricci flows. For instance, ¢, := A;p solves

¢+ = Dy, (Ricy), for any initial Go-structure ¢ on M. We call A; the universal Ricci
flow for the initial metric g and prove in Theorem 5.14 that any compact Rieman-
nian manifold admits a unique universal Ricci flow for some time ¢ € [0, 7).

The Spin,-case reveals another advantage of working with families of gauge defor-
mations. In contrast to the Gs-case, the orbit of the model tensor is not open in
the Spin,-case. Hence it is not obvious that a Spin,-structure ¥ evolving according
to U; = Dy, (Ric;) actually defines a whole family of Spin,-structures. Describing
the solution via a family of gauge deformation ¥; = A;¥ completely circumvents

this problem.

Based on the discussion of SU(3)-structures in chapter three, we define a type of
(G9-structure which can be regarded as the seven dimensional analogue of K&hler
SU(3)-structures. This type of Ga-structures allow a fibrewise Ricci flow. Using
Cao’s result for Kéhler structures in dimension six, we prove in Theorem 5.22 that

the fibrewise Ricci flow converges to a Ricci flat Ga-structure.



1. DEFORMATIONS OF PRINCIPAL BUNDLES

In this chapter we study deformations of principal bundles via gauge deformations.
A gauge deformation is an equivariant map A : P — G, where P is some principal
bundle with structure group G. Given such a map and a reduction @ of P to H C G,

we obtain a new H-reduction by

QA:={qA(q) | g€ Q} C P.

Hence a gauge deformation can be regarded as a vertical deformation of the initial
reduction @. In contrast, a diffeomorphism of M induces a horizontal deformation
of a reduction @ C FM, where F'M is the frame bundle of some manifold M.
Many reductions can be described by certain tensors. For instance, a family of
metrics g; on M induces a family of O(n)-reductions F9*M C FM. Using polar
decomposition, one can easily see that such a family of metric can be described by
a family of gauge deformations via g; = A;g, where g := g¢ is the initial metric. In
Theorem 1.6 we obtain a generalization of this description for certain families of
tensors.

The compatibility of a given G C O(n) reduction P C FIM with the Levi-Civita
connection on F9M is measured by the intrinsic torsion of P C F9M. Deforming
the initial structure by a gauge deformation effects the intrinsic torsion. In Theo-
rem 1.19 we compute the change in the intrinsic torsion under a general gauge
deformation. Using Theorem 1.6, we obtain in Corollary 1.21 a characterization of

G-structures that can be deformed to torsion-free structures.

STABILITY

Let 1 : P — M be a principal G-bundle and ¢ : G — Aut(V) be a real G-
representation. We identify sections of the associated bundle Px ,V with equivariant

maps ¢ : P — V| satisfying

e(pg) = 9~ "o(p) :== olg™")e(p),

for all p € P and g € G. A G-structure P C F'M is a reduction of the frame bundle
7 : FM — M to a Lie subgroup G C GL(n). A basis p € FM corresponds to an
isomorphism p : R™ — T,y M which identifies the standard basis (e, .., e,) of R"
with the basis p of T5(,) M. Hence an element g € GL(n) acts on F'M by

pg=pog:R" — T )M,

w(p



making F'M into a principal GL(n)-bundle over M.

DEFINITION 1.1. Let 7 : P — M be a principal G-bundle, ¢ : G — Aut(V) a

real G-representation, g € V and ¢ : P — V equivariant.

(1) g is stable if the orbit Gyg := o(G)po C V is open.
(2) ¢ is stable if ¢(p) € V is stable, for all p € P.

(3) ¢ is of type g if p(p) € Gpg C V, for all p € P.

An equivariant map ¢ : P — V of type g € V defines a reduction of P to the
isotropy group Isog(¢p) C G via

P?:={pe P|p({p)=ypo}

Conversely, given such a reduction ) C P, we obtain an equivariant map ¢ : P — V

of type g by extending the constant map g = @o equivariantly to a map P — V.

ProOPOSITION 1.2. Let P — M be a principal G-bundle, 0 : G — Aut(V) a
real G-representation and ¢y € V. Then the reductions of P to the isotropy group
Isog(¢o) C G correspond to equivariant maps ¢ : P — V of type pq.

O

One of the main motivations to study stability in relation with G-structures is the

following

PROPOSITION 1.3. Let P — M be a principal G-bundle over a connected ma-
nifold M, and ¢ : G — Aut(V) a real G-representation. If ¢ : P — V is stable,
then for any p € P, the map ¢ is already of type ¢o := ¢(p) € V. In particular, ¢

induces a reduction to the isotropy group of ¢g.

PROOF: Since ¢ is stable,
Wo:={z € M|[3pe Py o(p) = o} = (¢~ (Gpy)) C M

is open. For € M \ Wy choose some p € P,.. Then ¢y := ¢(p) ¢ Gpo and Wy C M
defines an open set containing z. If W1 NWy # 0, we find p,q € P with w(p) = 7(q),
o(p) = po and ¢(q) = ¢1. Hence ¢ = pg for some g € G and

-1

1 =0(q) =g "o(p) = g "o € Gy,



which contradicts « ¢ Wy.

A similar result holds for whole families of stable maps.

PROPOSITION 1.4. Suppose P — M is a principal G-bundle over a connected
manifold M, o : G — Aut(V) is a real G-representation and that {¢; : P — V}ieris
a family of stable tensors, where I C R is some interval containing zero. If ¢ := p;—¢

is of type o € V, then ¢, is of type po € V, for all ¢t € I.

PROOF: Since ¢ is of type ¢g, we find p € P such that ¢(p) = . By Proposition
1.3 we have
0€ Jo:={t eIy isof type po} = {t € I| p1(p) € Gipo}-.

Hence Jo = (t — ¢i(p)) " (Gpo) C I is open and non-empty. For t € I\ Jy we
have 1 := ¢(p) ¢ Gyo and J; C I is open and contains ¢. If Jy N J; # 0, we get
Goo N Gey # 0 and hence 1 € Gy = Gy, in contradiction to t ¢ Jy.

O

GAUGE DEFORMATIONS

One way to deform a given G-structure P C F'M is to transform it by an element
F e Diff(M). Namely consider

F.P:={F.p|pe P},

where F.p € Fp(r(p))M is defined by (Fip)e; := Fi(pe;). Since F.(pg) = (Fip)g,
we see that F,. P C FM defines again a G-structure. Similarly we can deform P by
an element A € C*°(Aut(T'M)),

PA:= {pA(p) | p € P},

where pA(P) € Fy(,)M is defined by (pA(p))e; := p(A(p)e;). The latter deformation
is a vertical deformation in the sense that w(pA(p)) = 7(p), whereas w(F.p) # w(p),
for F # id.

DEFINITION 1.5. Suppose P is a principal G-bundle over M and ¢ : G — Aut(V)

is a real G-representation.



(1) A gauge deformation is an equivariant map P — G, where G acts on itself

by conjugation. The set of gauge deformations is denoted by
G(P) :=C*®(P xg Q).

(2) An infinitesimal gauge deformation is an equivariant map P — g, where
G acts on g by the adjoint representation. The set of infinitesimal gauge

deformations is denoted by
g(P) :=C(P x4 9)-
(3) Using exp(Ad(g)X) = gexp(X)g~*, for the usual exponential map exp :
g — G, we can define
exp:g(P) —» G(P) by  exp(X)(p) := exp(X(p)).

(4) For A € G(P) and ¢ : P — V equivariant, we define an equivariant map

o A)p: P =V by (o(A)p)(p) = o(A(p))e(p).

The following Theorem essentially states that families of H-reductions can be des-

cribed by certain families gauge deformations.

THEOREM 1.6. Let m : P — M be a principal G-bundle, o : G — Aut(V) a
real G-representation, ¢y € V with isotropy group H C G, 7 : G — G/H the
canonical projection and {p; : P — V}ier a family of equivariant maps which
are all of type ¢o. Suppose that g is equipped with some Ad(H )-invariant inner
product and denote by h+ the orthogonal complement of h C g. Denote by Q C P
the H-reduction induced by ¢ := ¢;—¢ and let

b (Q) :={X eg(P) [ Xg: Q— b}
(1) There exists a family of gauge deformations A, € G(P), ¢t € I, such that
pr =0(A)p and Apg=ce

(2) If moexp: b+ — G/H is a covering map, then there exists a family of infinite-
simal gauge deformations X; € h(Q), t € I, such that

v = o(exp(Xy))e and Xp=0.

(3) If H and M are compact, then there exists an open subinterval J C I containing
0 such that the conclusion in (2) holds for J instead of I.

PrOOF: Fixqe Q@ ={p€ P | p(p) =¢o € V} and define

A(q): 1 — G/H by Ay(q) :=mo A(q),



where A;(q) € G satisfies ¢:(q) = 0(A4+(q))(q). Note that such an element A;(q) €
G exists, since ¢;(q) € Gpg = Go(q) is of type @o.

Proof of part (1): The decomposition g = h @ h* induces a horizontal distribution
on the principal H-bundle 7 : G — G/H by
H, = Rg.bh*.

Hence there exists a unique horizontal lift A;(q) of A;(q) with Ay(¢) = e. From
7o Ai(q) = Ai(q) we get ¢i(q) = 0(Ai(q))e(q) and it remains to show that A; :
@ — G is H-equivariant, i.e. for all ¢ € Q, h € H and t € I we have to show that

c(t) := Ay(qgh) = h" Ay (q)h =: d(t)

holds. The curve ¢(t) € G is horizontal by definition, whereas the horizontality of
d(t) follows from

d(t) = Ad(h™")Ai(q) € Ad(h™)Ra, ()b = RanAd(h™)b* C Ry,
by Ad(H )-invariance. Now
o(d(t))p(gh) = o(h™")o(Ae(a))p(a) = o(h™")pe(q) = ¢i(qh)
implies o d(t) = A;(qgh) = 7o c(t) and ¢(0) = e = d(0) yields c(t) = d(t).
Proof of part (2): If moexp : b+ — G/H is a covering map, we can lift the map
A(q) : I — G/H uniquely to a map X(q) : I — b+ with Xo(q) = 0. Hence

moexp(Xi(q)) = Ai(q),

which yields ¢;(q) = o(exp(X:(q)))¢(q). It remains to show that X; : Q — bt is
equivariant, i.e. for all ¢ € Q, h € H and t € I we have to show that

c(t) := X;(qgh) = Ad(h™1) X, (q) =: d(t)

holds. Since already ¢(0) = 0 = d(0), it suffices to verify that 7 o expoc(t) =
7 o exp od(t) holds. To see this, observe that

o(exp(Ad(h™")X:(q)))e(gh) = o(h™")olexp(Xe(q)))o(h)o(h™)¢(q)
= o(h™Mei(q) = @i(qh)
implies

7o expod(t) = nexp(Ad(h™)Xi(q))) = Ay(gh) = 7 o expoc(t).

Proof of part (3): Choose an open neighborhood U C b+ of 0 such that
Fi=moexpycy : U— F(U)

is a diffeomorphism. Since H is compact, we can choose U to be Ad(H )-invariant.
Now consider
Jy={teT| Alg) € FU)}.

10



Since @) is compact, if M and H are compact, we can assume that there exists an
open interval J such that 0 € J C J, for all ¢ € Q. For t € J define X; : Q - U C
b+ by

Xi(q) == F~'(Ae(q))-
Then Xo(q) = 0 and 7 o exp(X;(q)) = F o F~1(A;(q)) implies

©i(q) = o(exp(X¢(q)))p(q).

Now we obtain like in part (1) the equation o(exp(Ad(h~1)X:(q)))p(gh) = vi(gh),
which implies 7(exp(Ad(h~1)X;(q))) = A¢(gh) and

F(Xi(qh)) = Ai(qh) = w(exp(Ad(h~")X,(q))) = F(Ad(h™") X:(q)).

Since X;(q) € U and U is Ad(H )-invariant, it follows X;(qh) = Ad(h™1)X(q).
(]

EXAMPLE 1.7. Given two Riemannian metrics g and g, on M, we can define a
gauge deformation B; € C*°(Aut(TM)) by g = Byug. So B; is symmetric and
positive w.r.t. g and hence there is a unique square root A; of B;l w.r.t. g, i.e.
B; = A; YA, where A; is again symmetric and positive w.r.t. g. This shows that

any two metrics are gauge equivalent,

gr = Aig.

We can also apply Theorem 1.6 to a family of metrics g; on M and obtain the same
gauge deformation A;. Here H := O(n) C GL(n) =: G and the Ad(O(n))-invariant
inner product on gl(n) is given by (X,Y) := tr(XY7T).

EXAMPLE 1.8. Suppose [ is an almost complex structure on M and consider 7'M
as a complex vector bundle via X := I X, for X € TM. A hermitian metric on
(M, I) is a Riemannian metric g which satisfies g(I.,I.) = g and hence induces a
2-form w := g(I.,.). Then

h:=g—iw

defines a hermitian structure on the complex vector bundle (T'M, I), i.e. the map

h:TMxTM — C is C-linear in the first argument and satisfies h(X,Y) = h(Y, X)
and h(X, X) > 0, for every X # 0. We regard h as a C-anti-linear isomorphism

h:TM —-T*M via X~ h(.,X).

Given two hermitian metrics g and g; on (M, I), we define a gauge deformation B
by h:(Y, X) = h(Y, B;X). Since

BiI=1IB; and h(Y,B:X)=h(B;Y,X) and h(B:X,X)>0, for X #0
we can find a unique square root of B; ' w.r.t. h, i.e. By = A; ' A7 and

Al =TA; and Rh(Y,A:X)=h(AY,X) and h(4:X,X)>0, for X £0.

11



In particular, we obtain a gauge deformation with
ht - At h

Since A;I = ITA;, A; is hermitian w.r.t. A if and only if it is symmetric w.r.t.
g = Re(h). Ignoring the almost complex structure, we can write g; = Ztg, where
A, is defined like in Example 1.7. So Ztg = Ayg and from the symmetry of A
and A, it follows A2 = A2. But since A2 and A2 are positive, they have a unique
positive square root and hence Zt = A;. So the gauge deformation A; is precisely
the one that we obtained in Example 1.7, but satisfies in addition A;I = I A;.

We can also apply Theorem 1.6 to a family of hermitian structures h; = gy —iw; on
(M, I) and obtain the same gauge deformation A;. Now H :=U(n) C GL(n,C) =:
G and the Ad(U(n))-invariant inner product on gl(n,C) is given by (X,Y) :=
Re(tre(XY™)).

INTRINSIC TORSION

Given a reduction P C FM, we have a natural concept of integrability. Name-
ly we may ask whether there exist local sections s = (X1, .., X,,) in P such that
[X;, X;] = 0 holds. Equivalently, we may look for sections in P which are induced
by the basis field of a local chart of M. So integrable GL(n, C)-structures are com-
plex structures on M and integrable Sp(n, R)-structures correspond to symplectic
structures on M.

As soon as we consider reductions to subgroups of O(n), this integrability concept
is to restrictive. In fact, an integrable O(n)-structure would yield a flat metric on
M. From this point of view, curvature is the obstruction to the existence of an
integrable O(n)-structure. To develop a weaker concept of integrability we have to
substitute the reference group GL(n) by O(n). Instead of measuring the compa-
tibility of a given G C O(n) structure with the GL(n)-structure FM, we have to
measure the compatibility with the metric structure F9M. This compatibility is

measured by the so-called intrinsic torsion of the G-structure P C FIM.

DEFINITION 1.9. (1) A connection on a principal G-bundle 7 : P — M is a

1-form Z on P with values in g, such that
Z(RpX)=X and R}Z=Ad(g"")Z

for all X € g, g € G and p € P. We say that a connection Z on P reduces to a
principal H-bundle ) C P if the restriction of Z to T'Q) takes values in b.

12



(2) Given a connection Z on P, we call H, := ker(Z,) the horizontal distribu-
tion of Z. This distribution is complementary to the vertical space V,, := ker(m,p),
ie.

T,P=H,0YV, and satisfies Hyy = Ry H,,.

Hence there exists for each X € T (,)M a unique
hp,X € H, suchthat m.h,X =X.

We call h, X the horizontal lift of X to p € P w.r.t the connection Z. Independent

of any connection, we always have a vertical lift of elements X € g, defined by

d
vp(X) = 7 pexp(tX) = Ry (X).
t=0

(3) The frame bundle 7 : FM — M admits a R™-valued 1-form
0:T,FM —R" with X w—p'mX.
Given a connection Z on a principal G-bundle P C FM, we call
T:P— NR™@R" with T(p)(z,y) = di(hy(pz), hy(py))
the torsion of Z.
(4) The curvature of a connection Z on a principal G-bundle P — M is the

map
R:P—ANR™@g with R(p)(z,y) = dZ(hy(pz), hy(py))-

Given a connection, we can differentiate tensors in horizontal directions.

ProposITION 1.10. Suppose ¢ : G — Aut(V) is a real G-representation and
m: P — M is a principal G-bundle, equipped with a connection.
(1) For X € C>°(TM) and ¢ : P — V the map
Vxp:P—V with (Vx¢)(p):=p«(hpX)
is again equivariant, i.e. V defines a map

V:C®(TM)x C®(Px,V)— C®P x,V).

(2) For X € C*°(TM) and A € G(P) the map

VxA:P—g with (VxA)(p):= (Lap)-1)«Ac(hpX)
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is again equivariant, i.e. V defines a map

V : C®(TM) x G(P) — g(P).

ProoF: If we write h,X = ¢(0), for some curve ¢(t) € P, the first part follows

from

. o(c(t)g) = o(g™h)

(Vxe)(pg) = px(Ryguhp X) = %

= 0(g7 ) (Vxe) (D).

Similarly for the second part,

p(c(t))

t=0

4
dt

d
(VxA)(pg) = Lagpg)-1+As(Rguhp X) = —

7 A(pg) " A(c(t)g)

t=0

d

= 2| 9 AWp) T Ale(t)g = Ad(g)(Vx A)(p)-

t=0

Note that the above definitions of covariant derivatives are not compatible with the
embedding GL(n) C gl(n). Namely the covariant derivative of a gauge deformation
A: FM — GL(n) from Proposition 1.10 (2) is not equal to the covariant derivative
of

A:FM — GL(n) C gl(n)

in the sense of Proposition 1.10 (1).

By definition of the curvature tensor we have R(p)(z,y) = —Z[h(z), h(y)], and
hence R measures the integrability of the horizontal distribution ker(Z). More ge-

nerally we have

LEMMA 1.11. Let Z be a connection on a principal G-bundle 7 : P — M. Then
for X, Y € C*(TM) and A,B€g

(1) [M(X), h(Y)]p = hp[ X, Y]y — vp(R(X, Y)(p)),
(2) [v(A), M(X)]p = O,
(3) [v(A),v(B)l, = vy[A, Bl.

ProoF: The first equation follows from 7, [h(X),h(Y)], = [X, Y] () and since

R(X,Y)(p) = dZ(hy(X), hp(Y)) = =Z[M(X), h(Y)]p. The flow ®,(p) := pexp(tA)
of v(A) satisfies ®4.h,(X) = he,(p)(X) and hence
[0(A), By = Ly nh(X) = 52| @i, y(X) =0,

dt|,_,
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which proves the second equation. Finally,

d
Q_ 1V, (p)(B) = e pexp(tA)exp(sB)exp(—tA)
s=0

= RI)* (Adexp(tA) (B)) = RP* (et[A’B])

and hence

Given a connection Z on a G-structure P C FM and an equivariant map & : P —

R™ ® g, we obtain a new connection on P by
Z:=Z+¢00.
The corresponding torsion tensors satisfy T=T+6o0 &, where
§:R™®@gl(n) — A*R™ @R" s given by (6F)(x,y) := F(z)y — F(y)x.

Since the restriction of § to R™ ® so(n) is an isomorphism of O(n)-modules, every
O(n)-reduction F9M C FM admits a unique torsion-free connection; the Levi-

Civita connection Z9 of the metric g.

Now let G C O(n) and consider a G-structure P C F9M. Decomposing so(n) =
gD g+ with respect to the inner product (X,Y) := tr(XY7T) on so(n), we obtain a

corresponding decomposition
E_‘,’lgTP:Z—i—.Z‘,’L cg®gt =so(n).

The 1-form Z takes values in g and defines a connection on P, the so-called charac-
teristic connection of P C F9M. By construction, Z+ measures the defect of the

Levi-Civita connection to reduce to a connection on P C F9M.

DEFINITION 1.12. The intrinsic torsion 7 of a G-structure P C FIM is the

equivariant map
7:P—R™®g" defined by 7(p)(z):=Z"(h,(pr)),

where h,(pz) denotes the horizontal lift w.r.t. the characteristic connection Z on
P. For X € C°°(TM), we denote by 7(X) the corresponding infinitesimal gauge

deformation
7(X) € C%°(P xaq 97) C s0(FIM).
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By definition of the intrinsic torsion we have 7 0@ = Z+. Hence the torsion 7 of

the characteristic connection Z on P satisfies
T+doT=0.
Since 7, (hy X — Rpum(X)(p)) = X om(p) and Z9(h, X — Rpu7(X)(p)) = Z+(hp X) —
7(X)(p) =0, we get
hX = hpX — Rp.7(X)(p),
which yields
(V&Y = VxY)(p) = Yi(h§ X — hpX) = =Y, Rp.7(X)(p)

d

= | Yo = - 5| en(-r(X)0)Y ()

0
= (r(X)Y)(p)-

We summarize the above formulas in the following

LEMMA 1.13. The intrinsic torsion 7 of a G-structure P C F9M satisfies
(1) 29=Z+47086,

(2) 0=T7T+dor,

(3) h(X) = h(X) - R.7(X),

(4)

1) 7(X)Y = VLY — VY.

The intrinsic torsion vanishes if and only if the Levi-Civita connection reduces to
a connection on P C F9M. The condition 7 = 0 is in general very restrictive. De-
composing the G-module R™* ® g into irreducible submodules, we may consider
structures with intrinsic torsion taking values only in some of these submodules.
This approach yields a rough classification of arbitrary G-structures in terms of
their intrinsic torsion. Many of these classes have a rich geometry, including ex-

amples of Einstein and Ricci-flat manifolds.

LEMMA 1.14. Let o : G — Aut(V) be a real G-representation.

(1) The map

D:Vxg—V with Dy(X):= o(exp(tX))ep.

is G-equivariant, i.e. D(y(g),)(Ad(g)X) = 0(9)Dy,(X), for all g € G and X € g.

(2) For fixed ¢ € V with isotropy group H C G, the map

D,:g—V
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is H-equivariant, i.e. Dy (Ad(h)X) = o(h)D,(X), for all h € H and X € g. Moreo-

ver,

ker(D,) = b.
PRrROOF: Part (1) follows from
d d
Do(o)p)(Ad(9)X) = —|  olexp(tAd(g)X))olg)p = | elgexp(tX))p

t=0 =0

d

= 2| elg)elexp(tX))p = o(g)Dy(X)

t=0

and the equivariance in part (2) is a special case of (1).

Since H C G is closed, H is actually a Lie subgroup and the exponential map of G,
restricted to h C g, is the exponential map of H. Hence exp(tX) € H, for X € b,
and it follows h C ker(D,,). Conversely, X € ker(D,,) satisfies

d d
il X)) = —
|, o(exp(tX))yp I

ofexp((t + ) X))o = 5| olexp(tX) exp(sX))g
s=0 s=0

= o(exp(tX))o(exp(sX))p
s s=0

= oexp(tX)) Dy (X) = 0.

Hence o(exp(tX))p = ¢, i.e. exp(tX) € H for all t € R, which yields X € b, since
H C G is closed.
O

Using part (1) of Lemma 1.14, we can make the following

DEFINITION 1.15. Suppose ¢ : G — Aut(V) is a real G-representation and
m: P — M is a principal G-bundle. We define
D:C®(Px,V)xg(P)— C®Px,V)
by
Dy(X) == —|  olexp(tX))e.

LEMMA 1.16. Let o : G — Aut(V) be a real G-representation and ¢g; € G and

¢ € V smooth curves. Then

d . :
2 (0(90)¢1) = Diotgiyen (B 1.90) + 09:)¢1
= Q(gt)Dw(ngl*gt) + 0(g¢)¢e.-

In particular, for A, € G C GL(n) and ¢, := o(Ay)p

¢r =Dy, (AA).
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PrRoOOF: The first equation follows from

d d d B
%(g(gt)wt) = % o Q(gt+s)§0t+s = % o Q(gt+sgt 1)Q(gt)§0t+s

= 9*(e>9(9t)w)(Rg;1*9t7 0(gt)p¢)

d ) _
- % Q(eXp(SRgfl*gt% Q(gt)@t + SQ(gt)(Pt)
s=0
= L1 plexp(sRy 1, 0)elg)en + 2| solexp(sR, 1,d0)e(g0)
= o S:OQ PUstt =1.9t))0\ge) Pt + 7 - o(exp(sR —1,9t))0(g¢)pr

= D(o(g0)p0) (Ry-1.9t) + 0(gt) -

Now Lemma 1.14 (1) implies the second equation,

Diotgryen) (Bg1.9t) = Diogryen) (Ad(g:) Lg1,9¢) = 0(9¢) Do, (Lg1,G)-

PROPOSITION 1.17. Suppose P — M is a principal G-bundle over M, equipped
with a connection. Let ¢ : G — Aut(V) be a real G-representation and ¢ : P — V
equivariant. Then we have for any A € G(P) and X € C*(T'M)

Vx(0(A)p) = 0(A)Vxp + 0(A)D,(Vx A).

PrROOF: From Definition of the covariant derivative in 1.10 and Lemma 1.16 we
obtain for p € P

Vx(e(A)p)(p) = (e(A)#)up(hp(X))

= G| elAtlan)e(e(s),  where 60) = 1y(X)
= oA Do (i | ACls)) +o(A0) | el

= 0(A(p)) Do) (Vx A)(p) + o(A(P))(Vx ) (p)
= (0(A)Dy(Vx A) + 0(A)Vx)(p)

PROPOSITION 1.18. Let ¢ : GL(n) — Aut(V) be a real GL(n)-representation
and o € V with isotropy group G C O(n). An equivariant map ¢ : FM — V of
type o induces a reduction P C F9M with intrinsic torsion 7 : P — R™ ® gt.
Then for X € C°(TM)

Vo = D, (r(X)).

Proor: By Lemma 1.13 we have

he X = hpX — Rput(X)(p)-
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Since ¢ is constant along the reduction P C F9M, we have ¢.(h,X) = 0. This
yields

(V@) (D) = 9 (h3X) = pu(hpX) — 0u(Rpu7(X)(p))

THEOREM 1.19. Let g9 : GL(n) — Aut(V) be a real GL(n)-representation, g € V
with isotropy group G C O(n) and ¢ : FM — V an equivariant map of type o.
Then we have for any gauge deformation A : FM — GL(n) and X € C*(TM)

VA9 (o(A)g) = o(A) (vw D, (VA (X) - Ad(A*)s(X))),
where £(X) € C*°(End(T'M)) is given by
29(E(X)Y, Z) = 9(X.(V4B)Z) + gV, (V4 B)Z) + g(B (VY ,B-1)X, Y)

and B := AAT w.r.t. the metric g.

ProoOF: The difference between the Levi-Civita connections is given by an equi-
variant map £ : FM — R™ @ gl(n) with

WX = hIX + Rp.(X).
This yields
(VD)D) = 0u(hgX + Rpul(X)) = (V49) (0) + 0 (Rpef(X))
= (V%@)(p) = Dy (€(X))(p)

and
(VEIA)(P) = La-1 (e An(hgX + Rpu(X)) = (VA (D) + La-1 () Ae(Rpu§(X))
= (V% A)(p) — Ad(A™(p))&(X).

From Proposition 1.17 we obtain
VA9 (o(A)g) = o(A) (V?fso n DW?J’A))
— o(A) <V§(<P D (E(X)) + Do(ViA) Dq;(Ad(Al)é(X)))

— o(A) (vw D, (VoA - €(X) - Ad(A*)f(X))).
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Now we compute for X, Y € C°(TM)
d
(VY = VRY)(p) = YalhiX = I7X) = —VeRpeb(X) = — o) exp(—t£(X))Y (p)

= (E(X)Y)(p)
and Koszul’s formula yields
29(VAIY, Z) = 29(AATIVIY, Z) = 29(A™' VY, A1 AAT 7)
= 2(Ag)(VX'Y, BZ)
= 29(V4Y, Z) + g(X, V4 Z) + g(Y, V% Z)
— g(V%,B'X,Y) + g(B~'Y, VY, X)
—g(B7'Y,V%BZ) — g(B"'X,V{BZ).
From Proposition 1.17 we obtain V% (BY) = BV%Y + B(V%B)Y and hence

g(B™'Z,V%BY) = g(Z,V%Y) + g(Z, (V% B)Y).

Now
29(E(X)Y, Z) = 29(V%Y. Z) - 29(VKY. Z)
= 9(X.(V§$B)Z) + g(Y, (V% B)Z)
+9(Vh,B7IX,Y) = g(B7'Y, V%, X)
and

9(V%,B'X,Y)=g(B~'V%,X + B 1(V%,B HX,Y)
=g(V%,X,B7'Y) +g(B~'(V%,B HX,Y)

yields eventually

29(6(X)Y, 2) = g(X, (V§.B)Z) + (Y, (V4 B)Z) + (B~ (Vg B~ X,Y).

COROLLARY 1.20. The gauge deformation A : FM — GL(n) from Theorem
1.19 yields a parallel structure VA9A¢ = 0 if and only if for all vector fields X €
C>(TM)

(X) = prgs (5<X> T Ad(AE(X) V%(A),

where 7 is the intrinsic torsion of P C F9M and the projection is taken w.r.t. P.

PROOF: By Proposition 1.18 we have V% ¢ = D, (7(X)) and kerD,, = g by Lemma
1.14. Hence Theorem 1.19 shows that VA9 Ay = 0 if and only if

pry. (T(X) + VEA—¢(X) - Ad(A_l)f(X)) =0.
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Since 7(X)(p) € g*, for p € P, the corollary follows.

COROLLARY 1.21. A G-structure P C FI9M like in Theorem 1.19 with intrinsic

torsion 7 can be deformed to a torsion-free structure if and only if there exists a
solution A € GL(FM) of

(X) = pry. (5<X> T Ad(ATE(X) - V&A),

where ¢ is defined like in Theorem 1.19 and the projection is taken w.r.t. P.

PrROOF: By Theorem 1.6 (1) any deformation P, C FM of the initial structure P
can be described by a family of gauge deformations A; and the Corollary follows

from Corollary 1.20.
O

HorLoNOMY

Suppose Z is a connection on a principal G-bundle P over M. Given a piecewise
smooth curve ¢ : [0,1] — M and a point p € P, there is a unique horizontal lift
¢p : [0,1] — P of ¢ to P such that ¢,(0) = p. Namely, ¢, is the integral curve of the

lifted vector field ¢. The parallel translation along c is the map
Ze: Pyoy — Py with  p—cp(1).
For a fixed point p € P consider
Hol(p, Z) :={g € G | pg = Z.(p) for some c: [0,1] — M with ¢(0) = ¢(1) = z}.

By Theorem 4.2 in [45], Hol(p, Z) defines in fact a Lie subgroup of G, called the
holonomy group of the connection Z. Note that changing the reference point p € P
only changes the conjugacy class Hol(p, Z) C G, as long as M is connected.

The holonomy bundle Q(p) C P consists of all points in P that can be joined with p
by a horizontal curve. In fibre direction, Q(p) is generated precisely by the action of
Hol(p, Z) and hence gives a Hol(p, Z)-reduction of P. Moreover, the connection Z
on P reduces to Q(p). To see this, consider X € H, for ¢ € Q(p). Then X = ¢é,(0) for
the lift of some curve ¢ in M with ¢(0) = 7, X. Since g € Q(p), we have Q(q) = Q(p)
and eventually X = ¢,(0) € T,Q(q) = T,Q(p).

On the other hand, consider a reduction Q C P to a Lie subgroup H of G which
is compatible with the connection on P. Then any horizontal curve stays in () and

so the holonomy group is a subgroup of H. Hence P admits a reduction to H C G
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that is compatible with the connection on P if and only if the holonomy group is
contained in H.

Holonomy can be measured in terms of curvature. The curvature tensor R : P —
AZR™ ® g satisfies

R(p)(z,y) = dZ(hy(px), hyp(py)) = —Z[h(x), h(y)]p-

Moreover we have J
[h(‘r)?h(y)]P = % ZCt (p)7
t=0

where ¢; denotes the family of loops in M that corresponds to the family of
quadrangles with vertices {0, tpx,tp(x + y),tpy} in Ty M. The corresponding 1-
parameter family g; € Hol(p, Z) is then given by Z., (p) = pg: and hence

R(p)(z,y) = —Z(Rpg(0)) = —4(0) € bol(p, Z).
Since Hol(g, Z) = Hol(p, £) holds for ¢ € Q(p), we get
h:={R(¢)(z,y) | z,y € R" and ¢ € Q(p)} C hol(p, 2).

One can actually show that h defines a Lie subalgebra of g and hence the distribution
H @ v(h) on Q(p) is integrable by Lemma 1.11. Since the horizontal distribution
is contained in H @ v(h), the holonomy bundle Q(p) is contained in the maximal
integral manifold through p € Q(p). This shows that also hol(p, Z) C h holds and

proves the Ambrose-Singer Theorem,

bol(p, Z) = {R(q)(x,y) | z,y € R" and ¢ € Q(p)} C g.
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2. INTEGRAL CURVES IN FRECHET SPACES

In the previous chapter we described deformations of principal bundles via fami-
lies of gauge deformations A, € C*°(Aut(T'M)) C C°°(End(TM)). Since the space
of sections C*°(End(TM)) is a Fréchet space, these type of vector spaces natu-
rally enter the scene when describing deformations of various structures. Indeed,
R. Hamilton makes intensive use of the Nash-Moser inverse function theorem for
Fréchet spaces in his fundamental work [34] on the Ricci flow. Natural deforma-
tions very often arise as the gradient flow of some functional. More generally, we
may consider deformations that evolve under the flow of a certain vector field X
on C*(Aut(TM)), i.e.
Ay = X o Ay

In contrast to finite dimensional geometry, there does not have to exist even a
short-time solution of the above equation. In the real analytic category, the Cauchy-
Kowalevski Theorem ensures the (local) existence of solutions for certain partial
differential equations. In this chapter we translate the Cauchy-Kowalevski Theorem
into a global version for integral curves in Fréchet spaces of the form C*°(V'), where
V — M is a vector bundle over a compact manifold M, cf. Theorem 2.11.

Beyond the existence, we show that the particular solution can be developed in
a (convergent) power series. This property is the crucial ingredient to prove that
the solutions coming from the Cauchy-Kowalevski Theorem preserve certain initial
conditions. In this sense, Corollary 2.4 can be regarded as a conservation law for
integral curves in Fréchet spaces. The basic idea stems from finite dimensional
geometry: If a vector field X is tangent to some submanifold N, then any integral
curve of X, which lies initially in N, stays in N for all times. Although not true
for arbitrary integral curves, this observation carries over to Fréchet spaces if the

integral curve can be developed in a power series.

FRECHET SPACES

Hamilton [34] gives an introduction to Fréchet manifolds which goes far beyond
of what we require for our purposes. Although Proposition 2.3 and Corollary 2.4
can be generalized to Fréchet manifolds, we focus on Fréchet spaces to keep the
technical efforts at a minimum.

A locally convex topological vector space F is a vector space with a collection of

seminorms, i.e. functions ||.||, : F — R, n € N, which satisfy

[ flln =0, 1f+glln < flln+llglln and XS]l = [A[l]f]ln
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for all f,g € F and scalars A. Such a family defines a unique topology which is
metrizable if and only if N is countable. In this case the topology is characterized

by the property
klirr;ofk:fef & VnEN:leIrolo\\fk—f\\nzo.
The topology is Hausdorff if and only if
(meN: |fln=0) = f=0.

The space is sequentially complete if every Cauchy sequence converges, where fj is
a Cauchy sequence if it is a Cauchy sequence for every seminorm ||.||,,. A Fréchet
space is a locally convex topological vector space, which is in addition metrizable,

Hausdorff and complete.

EXAMPLE 2.1. Suppose F' — M is a vector bundle over a compact manifold M.
Then the vector space
F :=C>(F)

of smooth sections of F' is a Fréchet space, where the collection of seminorms

n

1£lln ==Y sup [(V9) f)(p)]

j=0 peEM

can be defined after choosing Riemannian metrics and connections on 7'M and F,
cf. [34] Example 1.1.5. The induced topology is the C*°-topology on F.
Given an open subset U C F, we consider the subset of all sections in F, whose
image lies in U,

U:={ferF|fM)cU}
For f € U we can find € > 0 such that

FeBUH ={feFI[If-flo<e}cu.

Since BY(f) C F is open, U is an open subset of the Fréchet space F.

Smooth maps between Fréchet spaces can be defined as follows: Let U C F be an
open subset of a Fréchet space F and P : i — £ a continuous and nonlinear map
into another Fréchet space £. We say that P is C' on U if for every f € U and
every v € F the limit

DP(f)o = lim 3(P(f +tv) = P(/)

exists and the map DP : U x F — & is continuous. Consequently, we say that P is
C* on U if Pis C*~! and the limit

DX P(f) vy, .., vp} - =

1
}in% n (D(k_l)P(f + top){v1, .y Up—1} — D(]“_I)P(f){vl7 ..7vk1})

24



exists for all f € Y and vy, ..,v; € F, and the map DFP U x Fx .. x F — E is
continuous. We call P a smooth map on I/ if P is C* for all k € N. We summarize
Corollary 3.3.5 and Theorem 3.6.2 from [34] in the following

THEOREM 2.2. (1) If P:U C F — € is C! and c(t) € U C F is a parameterized
C* curve, then P o c(t) is a parameterized C! curve and

d

%(P oc(t)) = DP(c(t))e(t).

(2)IfP:UCF — Eis C¥, then for every f €U

DWP(f){vr, .00}

is completely symmetric and linear separately in vy, ..,v; € F.

In the following we will consider curves c¢(t) € F in a Fréchet space F, which are
integral curves of a vector field that is tangent to some subspace £ C F. In finite
dimension we would expect that any such integral curve with ¢(0) € £ actually
stays in the subspace for all times. This conclusion fails for Fréchet spaces, as was
pointed out to us by Christian Bér: Consider F := C*°[1,2] and & := {0} C M.
Then

(4t)~ = exp(—%), fort >0

0, fort <0

ce(z) =

solves ¢; = Ac; = 0%¢;/02% and hence defines an integral curve of the vector field
X(c) :== Ac. Although X is tangent to &£, i.e. X(0) =0, and ¢o = 0 € &, the curve
does not stay in &, since ¢; # 0, for t > 0. Note also that ¢ — ¢;(z) is not real

analytic in ¢ = 0.

PROPOSITION 2.3. Suppose £ C F is a closed subspace of the Fréchet space F
and that X : Y C F — F is a smooth map defined on some open subset U C F.
Let f € F and assume that

Xung, :UNEr — €&,
where & := {f} + £. If a smooth curve ¢: (—¢,¢) — F satisfies
c0)eUnés and Xoc(t)=¢ét),
where ¢: (—g,e) — F is the derivative of ¢(t) by ¢, then for all k£ > 1
AR 0) eé,

where ¢(®) : (—¢,e) — F is the k" derivative of c(t) by t.
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PROOF: First we prove by induction on k that the k' differential D®) X of X :
F — F satisfies

(1) DM X yne, xex.xe tUNEF x Ex . x E — E.

For k = 0 this is just the assumption Xyyne, : U NEr — E. For vg € U N Ey and

V1, .., Vp+1 € € we have by definition

D(’““)X(vo){vl, ooy Vg1 }

= lim — (D(k)X( vo 4 svrrr {1, ., v} — DP X (vo){v1, .., v })
s—0 8§ N e’

eUNEy for s small

€& by induction hypothesis

and since & is closed, we conclude that (1) holds for k£ 4+ 1. Next we show that for
k > 0 and any choice of smooth curves t — vg(t) € U and t — v (t), .., vk(t) € F

DO X (o0 {a(1), - ve(1)) = DE X (wo0) (1), - v (0), (1))
(2) k
+ Y DM X (v () {1(t), .., 05 (E), - v (1)}
j=1
holds. Applying Theorem 2.2 (1) to the map DX : U x F x .. x F — F, we get

% DW X (vo () {v1 (1), ., ve ()}

= D(D® X)) (vo(t), .., vi () {D0(t), .., 0k (1)}

= lim - (D(k>X(v0(t) + s00(t)){v1(t) + s01(t), .., v (t) + s0r(t)}

- DX (1) 010400}

and (2) follows, since D®) X is linear in the arguments in {...}, cf. Theorem 2.2
(2). We will now show by induction on k that ¢*)(0) € £ holds. For k = 1 we have
¢(0) = X oc(0) € £ by assumption. Since é(t) = X oc(t) = DO X (c(t)) and ¢(t) € U
for sufficiently small ¢, we can apply (2) to see that ¢(*+1)(t), again for sufficiently

small ¢, can be expressed as a linear combination of

DX (c(t){1(t), -, v;(t)},

where j € {1,..,k+1} and v1(¢), .., v,(t) € {c(l)(t) | 1 <1<k} Since ¢(0) e UNEy,
we get from ¢(1)(0),..,c®)(0) € £ and (1)

DD X (¢(0)){v1(0),..,v;(0)} € &,
and hence ¢*+1(0) € €.
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The following corollary can be regarded as a conservation law for integral curves in

Fréchet spaces.

COROLLARY 2.4. If the curve ¢ : (—¢,e) — F from Proposition 2.3 satisfies for
all t € (—¢,¢)

ct)=>Y_ Edk)(()) € F,
k=0
where the series converges w.r.t. the Fréchet topology in F, then
c(t) —c(0) € &,

for all t € (—¢,¢).

PROOF: From Proposition 2.3 we get ¢(*)(0) € £ for all k > 1 and hence

o0

k
()~ c(0) = 3 %C(k)(()) e,

k=1

since £ C F is closed and the series converges in F.

REAL ANALYTICITY

A formal power series in X = (X7, .., X,,) with coefficients in R is an expression of
the form
S(X)= > a, X,

peN™
where a, € R and X? := X' - .- XP» for p = (p1,..,pn) € N™. Given a formal
power series S(X), we define

I:={r=(r1,...,7) |7 >0 and Z lap| P < o0}
peEN”?
and denote by A the interior of I', called the domain of convergence of the series.
Hence the series
S(z) = Z apz?

peEN™

is for every © = (x1,..,z,) € R” with |z| = (|z1], .., |zn|) € T absolute convergent.

We recall the following result:

PROPOSITION 2.5. Suppose S(X) is a formal power series with domain of con-
vergence A. For T = (Z1,..,Z,) € R™ with |Z| € A and rq, .., 7, with 0 < r; <|Z],
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define
K :={(x1,..,zp) € R" | |2;] <13}
(1) For any subset P C N", the series
Sp(x) := Z apx?
peEP

converges absolutely for all € K. In particular, the series S(x) := ZpEN" apxP
converges absolutely for xz € K.

(2) Suppose that Py C N” is a family of subsets, N € N, such that limy_,cc Py =
N"™. Then

converges uniformly on K to the function S : K — R, z — S(x).

PROOF: Since |Z] € A we can find C' > 0 such that
la,zP| < C, for all p e N™.

Hence for z € K

) g O\ o\ P
|apxp|:\apzf1..,-xzn\ﬁgc R L )
1

Since r;/|Z;| < 1, we can apply the method of majorants to see that Sp(z) converges
absolutely for z € K. To prove uniform convergence consider

sup |S(x) — Sy ()| = sup | Y apa’|
zeK reK pENT\ Py

p1 Pn
1 Tn
< E - T
=¢ (Ii“ll) (Ifinl)

peEN"\ Pyn

3

Di
Given € > 0, we can choose M large, so that Z;LM—H (‘if‘) < e fori =

1,..,n, where

r1 P /T\ " r P
C; = E () . <Z) . (n) < 0o (geometric series).
- |21 |Z4] |Zn
(P1.-Pi--Pn)
enn—1

The notation ~ indicates that the corresponding factor is omitted. Since limy oo Py =
N™ we can find N = N(M), such that {0, .., M}" C Py. Hence

sup |[S(x) = Sn(x)| <C Y <|;11|)p o <|;:|>”

ver pENP\{0..M}"

gci i c; (;)p <e.

=1 p;=M+1
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DEFINITION 2.6. Let U C R™ open and xg € U.
(1) A function f: U — R is called real analytic in 2o € U if there exists a formal
power series S with
flx) = S(x — xo),
for all z in a neighborhood of xg.
(2) A function f: U — R is called real analytic in U if f is real analytic for every
zg € U.
(3) A function F' = (f1,.., fm) : U — R™ is called real analytic in U if each com-

ponent f; : U — R is real analytic in U.

Note that the coefficients of S can be computed in terms of partial derivatives,
which shows that S is uniquely determined by the condition f(x) = S(z — x¢).
Moreover we have the following basic properties, cf. [18] p.123:

LEMMA 2.7.

(1) If f: U — R is real analytic in zy € U, then it is differentiable in a
neighborhood of zg and the derivatives are again real analytic functions
inxzgeU.

(2) If f and g are real analytic in zq, then the product fg is real analytic in x.

(3) If f : U — R is real analytic, then 1/f is real analytic in all points z € U,
where f(x) # 0.

(4) Compositions of real analytic functions are again real analytic.

A manifold M is called real analytic if it admits an atlas with real analytic transi-
tion functions. Similarly to the smooth category one can define real analytic vector
bundles over M.

THE CAUCHY-KOWALEVSKI THEOREM

In this section we will develop a global version of the Cauchy-Kowalevski Theorem,
cf. [12], III. Theorem 2.1:
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THEOREM 2.8. Let ¢t be a coordinate on R, x = (z;) be coordinates on R",
y = (y;) be coordinates on R® and let z = (zf) be coordinates on R™*. Let D C
RxR™xR*xR™ open, and let G : D — R® be a real analytic mapping. Let Dy C R™
be open and f : Dy — R® be a real analytic mapping with Jacobian D f(z) € R™*,
ie. 2/ (Df(x)) = 8fF(x)/dx;, so that {(to,, f(x), Df(z)) | # € Do} C D for some
to € R.

Then there exists an open neighborhood D; C R x Dy of {tg} x Dy and a real
analytic mapping F': D; — R® which satisfies

%(t,$) = G(t,:L‘,F(t,l’), %(t,l’))

F(to,x) = f(xz) forallxz e Dy.

F is unique in the sense that any other real analytic solution of the above initial

value problem agrees with F' in some neighborhood of {¢¢} x Dy.

REMARK 2.9. Since the solution F' = (f;,.., fs) : D1 — R® from Theorem 2.8 is
real analytic, we can develop each component in a convergent power series around
(to,z0) = (0,0) € Dy, ie.

filt,z) = i ( Z aikpa:p> th = i (;'fi(k)(o,motk.
k=0 \peNn k=0 ’

Applying Proposition 2.5 (2) with Py :={0,.., N} x N™ shows that

=3 (X ager ) = 3 g
i B - ikpT - Z k'fl (0733)
0 k=0

k=0 \peNn

converges locally uniformly to the function f;(¢,x), for N — oo. The partial deri-

vatives of a formal power series S(X) are defined by,

aS ~
ax; Y piap X XD XD
? peEN™

The formal power series % has the same domain of convergence A as the formal
' as

power series S. Moreover, the function % - A — R is the partial derivative
of the function S : A — R w.r.t. ;, cf. Satz 3.2 in [18]. Hence we can apply
again Proposition 2.5 (2) to see that all partial derivatives of the function f (¢,x)
converge locally uniformly to the corresponding partial derivative of f;(¢,z). In
summary, the functions

N

tk
Fy(t,z) := Z EF(M (0, z)
k=0 "

converge, as N — 00, locally in C*°-topology to the solution F (¢, x) from Theorem
2.8.
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DEFINITION 2.10. Suppose M is a real analytic manifold and 7 : V — M is a

rank s real analytic vector bundle. We call a map
X :C®(V)— C=(V)

a real analytic first order differential operator if every point of M has a neigh-
borhood U C M, which is the domain of a real analytic chart v : U — R", and
there exists a real analytic trivialization (7,v) : Vi 2 U x R®, together with a real
analytic function

G:D CR" xR®* xR" — R?|
such that for every local section ¢c: U C M — V

3ci
8’11,]'

v(X oc)=G(u,voc, )

holds, where ¢; is the i*"* component of voc: U — R*.

We can now prove the following global version of the Cauchy-Kowalevski Theorem,

THEOREM 2.11. Suppose 7 : V — M is a real analytic rank s vector bundle over
a compact real analytic manifold M. Let X : C*°(V) — C*°(V) be a real analytic
first order differential operator and let cg € C°°(V') be a real analytic section. Then
the initial value problem

é(t) = X oc(t)

c(0) = ¢
has a unique real analytic solution ¢ : (—¢,e) — C®(V), ie. c¢: (—e,e) x M —- V

)
is real analytic. Moreover, the solution c(t) satisfies

—
ct) = Z ECO )
k=0

where the series converges in the C*°-topology on C*° (V).

PROOF: First we prove that local sections ¢; : U C M — V exist, which solve the
initial value problem locally. Secondly, we show that the compactness of M ensures
the existence of a global solution. Eventually we will use the uniqueness part of the

Cauchy-Kowalevski Theorem to prove the uniqueness statement of the Theorem.

By Definition 2.10 we can find a real analytic chart v : U C M — R™ and a
trivialization (7, v) : Vjy 2 U xR®, such that for each local sectionc: U C¢ M — V

8ci

au]' )
holds, where G : D C R™ x R® x R™ — R* is real analytic. The map

(1) v(X oc) =G(u,voc,

f:Dg:=u(U) CR" - R* with f(x):=vocyou ()

31



is real analytic and hence we can find by the Cauchy-Kowalevski Theorem a real

analytic solution F : (—¢,£) x Dy — R* of

%—I;(tw) = G(z, F(Lx), 5% (t x))

F(tg,x) = f(x) forall x € Dy,
where 50 C Dy is open. Let U= u_l(ﬁo) C U and define for t € (—¢,¢)
(2) c(t):UCM—V by cltp)=uv,"oF(tup),

where v, : V,, 2 R? is the isomorphism induced by the local trivialization (m, v). By

definition, the map c¢: (—¢,¢) x UcC M —V is real analytic and satisfies

3) c(0,p) = v, ' o F(0,u(p)) = v, o f(u(p)) = co(p).
Now we have fori=1,..,sand j=1,..,n
d(viocy), . 0 _ o, 0 _
20 = | o) = G| )-(ea)
(1) — 2 weacu)= 2| R,
0% lu(p) 0% |up)
JF;

= T%(tw(p))-

Since by definition v o ¢(¢,p) = F (¢, u(p)) holds, we get from (1), applied to ¢;

é(1,p) = v 0 Clulp), F(1,u(p)), oo (1, u(p))

— iy o Glutr). v o). 25 )

= v, ovy(X oc(t,p)) = X oc(t,p),

i.e. ¢ is the desired local solution of the initial value problem. Moreover, we get by
Remark 2.9

N
c(t.p) = vy o Flt,u(p) = ngnoozkj v)
= lim o vyt o FO(0,u(p) = lim Z C(’c (0,p),
N—oo £~ k! Up N—oo k!
ie.
(5) o = k,cff),
k=0

where the series converges locally in C'*°-topology. Suppose now we apply the above

construction to obtain two local sections

Cl(t)ZU1CM—>V and CQ(t):UQCM_)‘/;
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where t € (—¢,¢), € := min{ey, &2} and Uy N Uy # 0. Since ¢; and ¢y both solve the
initial value problem
¢i(t) = X oq(t)
¢i(0) = co,
1 = 1,2, we see that ¢1(0) = ¢2(0) and ¢1(0) = ¢
the equation ¢;(t) = X o ¢;(t), shows that cgkﬂ)

combination of

(0) on Uy N Us. Differentiating

2
(t) can be expressed as a linear

DD X (ex(t)){or(t), .., v;(1)},
where j € {1,..,k+ 1} and v (¢),..,v;(t) € {c(ll)(t) | 1 <1 <k}, cf. the proof of
Proposition 2.3. Now we obtain by induction cgk)(O) = cgk)(()) on U; N Uy, for all
k € N. Hence (5) implies ¢;1(t) = ca(t) on Uy NUs. If M is compact, we can cover
M by finitely many domains Uy, .., Uy of local sections ¢;(t) : U; C M — V| which
yield a global section c¢(t) : M — V, where t € (—¢,¢) and € := min{ey,..,en}.
From (4) we get

)
o " (&
C(t) - Z k! Co >
k=0
and since M is compact, the series converges in C*°-topology.

To prove uniqueness, suppose that we have two real analytic solutions ci,co :
(—g,6) x M — V of the initial value problem. By (1) we have for ¥ = 1,2 and
xeulU)CR"
Ocy;(t
v(X ocr(t) ou™(z)) = G(x,vo0ck(t) ou™t(z), Ca’f#() ou”(x)).
J

Now Fj(t,x) := voci(t) ou~!(z) satisfies

%(t,x) =voer(t)ouH(x) =vo X ocy(t)ou (z)
and by (4)

acki(t) 1 o 8(1}1 o Ck(t)) 1 o (‘)Fki

“ou; " (z) = T(U (z)) = BTj(t’x)’

fori=1,..,s and j =1,..,n. Hence we showed

aFk - aFki
W(th) = G(.’IJ, Fk(t7.'1/'), Tx‘j(t7x))

Since F; and F, are both real analytic and satisfy
Fi(0,2) =voci(0)ou " (z) =vocpout(z) =vocy(0) out(x) = Fp(0,z),

the uniqueness part of the Cauchy-Kowalevski Theorem yields Fy(t,z) = Fa(t, ),
ie. c1(t) = ea(t).
]
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3. SPECIAL GEOMETRIES

In this chapter we give a detailed description of various G-structures. Most of this
structures are described by stable forms and we compensate the lack of examples
encountered in the previous section on stability. All subsections are organized in a
similar way. First we describe certain model forms ¢ € A*R™ with isotropy group
G € {SU(2),SU(3),Gs,Spin(7)}. Most of this forms turn out to be stable and we
associate to them a volume element £9. This volume element allows us to define

complementary forms 1y € A" *R"™* which satisfy

Yo A\ P = €g.

This equation clearly indicates that the form 1y equals the Hodge dual of g. In fact
these forms coincide in the cases that will be discussed here. The decisive difference
is that we need to know a priori about the existence of a G C SO(n) structure to
define the Hodge dual of ¢g. For instance, if a G-structure is described by a pair
of forms, these forms usually have to satisfy certain compatibility conditions to
actually define the desired G C SO(n) reduction. In contrast, the associated volume
element can be defined solely in terms of the single stable form g. As a consequence,
no compatibility conditions are involved when defining the complementary form .
The definition of the associated volumes in the SU(3) and Gs-case is due to Hitchin
[37] and we develop the corresponding description for the SU(2)-scenario.

In each of the subsections we develop the analogue of the Gray-Hervella [32] (resp.
Fernandez-Gray [27]) classification for the respective structure. In this approach, G-

structures are distinguished by the irreducible components of their intrinsic torsion
TeR™ gt

Although our methods would allow to give a complete list for all possible torsion
types, we only focus on a description of those classes that seem to be relevant for our
work. However, we will take special account of SU(3)-structures. The first reason
is that the description of SU(3)-structures in dimension seven is quite exceptio-
nal compared to the description of SU(n)-structures for n # 3. This is due to the
fact that the Ga-isotropy group of a unit vector equals SU(3). The second reason
for the interest in SU(3)-structures stems from the ambition to find an analogue
of (special) Kahler-structures in dimension seven. Usually Sasakian structures are
considered as the odd-dimensional analogue of Kéhler structures. In Theorem 3.46
we expose Sasakian structures as a certain torsion type and describe a generalized

concept of odd-dimensional Kahler structures, cf. Remark 3.48.
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Throughout the chapter we use the following notation: Let (e, .., e,) be the cano-
nical basis of R” with dual basis (e!,..,e") and volume element

go:=e' A ANe =el™ € ATR™.

The inner product on R" is

go := Z e @el
i=1
and for X,Y € gl(n)
(X,Y) :=tr(XY7T)

defines an inner product on gl(n) = End(R™), where the transpose is defined w.r.t.

go- We denote by
50, =g D g"
the decomposition of so(n) into orthogonal subspaces w.r.t. this inner product. For

n = 2m define

wo 1= el? 4 4 e2mTL2m o \ZRZmx
and Iy € End(R?™) by
wo = go(Lo-,-)-
Since 12 = —id, we obtain a decomposition of R?" @ C into
T .= {z — ilpx | € R*™} = Eig(ly, +i),
TOY .= (¢ + ilpx | © € R®™} = Eig(Iy, —i),
and we define
TAO* . = fa e A'R*™ @ C | a(Z) =0, for all Z e TV}
={a—iaoly|ac R},
7O = {a e AR @ C | a(Z) = 0, for all Z € T}

={a+iaoly|acR¥™}.

Denote by A®9 respectively A(%P), the p" exterior power of T(19)*  respectively
T(O’l)*,

A®0) . App(1,0)%
AOp) . AP(0,1)%

and let A9 .= A®.0) @ A0.9) gych that

MR o C = ) AP,
p+q=k

L —iel OIQ,

Since el +ie? = ¢
Do = (er +ie®) A A (2L ™) e A0
defines a form of type (m,0). We identify C™ = R?™ via z = 2 + iy = (z,y) and

GL(m,C) = {A € GL(2m) | Aly = IoA}.
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Under this identification, the hermitian structure hg : C"*xC™ — C, with ho(z, w) :=
>~ z;wj, equals

ho = go — iwo.

The canonical action of GL(n) on R™ extends to an action of GL(n) on the space
of tensors on R™. In the case of forms, this action is compatible with the wedge
product, i.e.

Alp NY) = Ap N Ay,
for A € GL(n) and ¢, € A*R™*. Moreover,

Agg = det(A™Y)e,

for A € GL(n), and for A € GL(m,C)

Adg = detc(A™HDy.

The isotropy groups of the above model tensors are listed below

Isocr(n)(c0) = SL(n), Isocr(m,c)(Po) = SL(n,C),

Isogr(n)(90) = O(n), IsogL(m,c)(ho) = U(m),
ISOGL(Qm) (IO) = GL(TTL, (C)a ISOGL(Qm) ((‘UO) = Sp(2ma R)

LEMMA 3.1. Consider G C GL(n), acting on A¥R™*. For ¢ € A¥R™*, the map
D, :g— V from Lemma 1.14 is given by

Dy,(A) = — Z e' A Ae; i
i=1

PrOOF: Define pr : R™ @ AF~IR™ — A*R™ by pr(a ® w) = a A w. Then for
T1,.,2, € R?

prla®@w)(z,..,zx) = (@ Aw)(x1,..,28) = Z wler)(ane)(zi, .., zx)
|T|=k—1

k
SN wlenala) (-1 e (0, ., &5, .o k)

|T|=k—1j=1
k
=Y (1) a(a))w(@, . Ty, Tk).
j=1

Hence for ¢ € AFR™ and A € g C gl(n)
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pr(Aa)(z1, .., zk) pr(e’ ® Ae; )

Il
-
s M:
I

k
I+1 1 ~
E J (Aeuxla"v j7"7xk)

Sy

k
( 1)j+1(p(Aij,QZ1, ..,./I\j, ..,llfk) = Z@(xly --;ija 7xk‘)

j=1

<.
Il
i

= DW(A)(xlv"axk)a
i.e.

D, (A) = —pr(ALp) = Ze N Ae;ap.

PROPOSITION 3.2. Let ¢y € A¥R™ with isotropy group G C O(n). An equivari-
ant map ¢ : FM — AFR™ of type g induces a reduction P C F9M with intrinsic
torsion 7 : P — R™ @ gt. Then for X € C*°(TM)

Dy (1(X)) = Vi = Lxp + Dy(V!X).

PRrROOF: The first equation is precisely Proposition 1.18. The second equation

follows from Lemma 3.1 and
#(V9X) Z E'A

= Z E' AV (Xap) + > E'AX (V)

=1 =1

= —d(X2p) — Xdp + Ve
=—Lxp+ Ve

Given two real G-representations V and W, there are canonical isomorphism of

G-modules
(A*V)* = ARV=,
Hom(V,W)=V*@ W,
AV =AYV @ ANV
If V and W have the same dimension n, we define

det : Hom(V, W) — A"V* @ A"W
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by

AVFQA"W@A"W* sdet(K)@e=co K € A"V*,
where 0 # ¢ € A"W™* and we identified A"W @ A"W* = R. This definition is clearly
independent of the choice of €. For g € G we have

det(9Kg ') ®@e=co(9Kg ') =g((cog)oK)=g(det K ®cog) =det K @,

i.e. det(gKg~!) = det K = gdet K is G-equivariant. In the following sections we
will frequently use the above identifications for V=W = R"™ and G C GL(n).

SU(2)-STRUCTURES IN DIMENSION FIVE

In this section we consider the following model forms on R®:

op = el, wy = e 4 645,
wy 1= et — 635, wy = e?® 4 634,
P2 = o A wy = 12t — 135 p3 1= g Awsz = el?® 4 134

and go(I;.,.) := w;, for i = 1,2, 3. They satisfy certain relations, which can be veri-

fied in a direct computation:

LEMMA 3.3. For all z,y € R® and 3 € A'R>*

wj = 20; 62345
x,y)e0 = —(Tow1) A (yawr) A pa.
,y)eo = —(xowr) A (yowr) A ps.

1)

2)

3)

4) 2ap(x)eg = (zap2) A pa.

5) go(z,y)e0 = ap(x)an(y)eo + ap Awr A (zows) A (yows).

6) B(L1z)eg = ap A B A (zows) A ws.
)
)
)
)
)

w;
wo
w3 (T
2

7) wa(liw,y) = —ws(z,y).

8) wa(l1z,y) = wa(x,y).

9) I? =12 = I3 = I ;I3 = —id, on ker(ayp).
0) BAwy = I38 Awy, for B € AMker(ag)*.
(11) BAwz = —I13 Aws, for B € Alker(ag)*.

=~~~ —~ —~ —~

—~

O

Usually a SU(2)-structure on a five dimensional manifold is described by a quadru-

plet of forms (o, w1, ws,ws) which is of model type (ag,w1,ws,ws). This definition
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of SU(2)-structures can for instance be found in [22], [29]. There is an alternati-

ve to the usual definition, which is justified by the last equation in the next Lemma.

LEMMA 3.4.

—
o

Isogr(s) () = {( ) | A€ GL(4) and z € R*}.

BN

T

A
Isogr(s)(w1) < Y ) | A€ Sp(4,R),y € R* and X # 0}.

Isoqr(s) (a0, w1, wa, w3) = (0 sU(2 )>~

1 0
Isogr+(s5) (w1, p2, p3) = 0 sU@)

In particular, the forms «g, w1, we and ws are stable.

T
z A

where A € R, z,y € R* and A € gl(4). Then a(Be;) = A and a(Be;) = y’e;, for
j € {2,..,5}. Hence the stabilizer of the 1-form ag := e! € A'R%* has the above

form.

PrOOF: Write B € GL(5) as

For B € Isogr(s)(wi) and i,5 € {2,..,5} we get wi(es,ej) = wi(Bey, Bej) =
wq(Ae;, Aej), ie. A € Sp(4,R). This yields
0 = w; (Bey, Bej) = wi(Xey + 1z, (y ej)er + Aej) = wi(z, Aej) = wi(A 'z, e5)

and the non-degeneracy of wy, as a form on R*, implies 2 = 0 and proves the second

equation of the lemma.

Now the third equation follows, since we = Re(®p) and ws = Im(®¢), where @y =
(€2 +ie3) A (e* +ie®), and SU(2) = Sp(4,R) N SL(2,C).

To obtain the last equation, we compute for B = (3 i) € Isogr(s)(w1) N
Isogr+(5) (a0 Awz) and i, 5 € {2,..,5}
wa(es, ej) = (ag Awa)(e1, e, e5) = (ag Aws)(Bey, Be;, Bej)
= (ap Awz)(Ner, (yTei)er + Aey, (yTe;)er + Aey)
= (ag A wa)(Ner, Ae;, Aej)
= Awa(Ae;, Aej).
Since the volume element £y = €23%° on R* satisfies

1 1 1
&g = 5(}.}% = 5&)5 = 5&)?%,
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we obtain from A € Sp(4,R) = Isogr,4)(w1)
det(A)eg = A 1gg = A_léwf = o,
i.e. det(A) = 1. Now A twy = A~ twy yields
go = A_léwf = A%,

and since B € GLT(5), we get A = 1. Similarly we get Aws = w3, which yields
A € SU(2). Now
o N\ wy = Bil(OéO A UJQ) = BilOZO N 371WQ
=B lag A A" wy, since eqws =0
5 .
= (aO(Bel)el + Z Olo(Bej)SJ) N wa
j=2

5
= (Oéo—l—zyjej)/\WQ

=2

yields Z?:z yjel Awy =0, ie. y=0.

The stability of aq follows from

5 = dim(A'R*) = dim(GL(5)) — dim(Isogrs)(a0)) = 25 — 20.
Similarly for wq,

10 = dim(AR*) = dim(GL(5)) — dim(Isog ) (w1)) = 25 — 15,

and since wy, w3 € GL(5)w, the Lemma follows.

Since the GL™(5) stabilizer of the triple (w1, p2, p3) is equal to {1} x SU(2), we
expect that, after fixing an orientation for R®, we can reconstruct the forms oy,
wo and ws solely from the triple (wy, p2, p3). The first step is to reconstruct the
volume element ¢p. Then the forms g, wo and ws, as well as the metric gy and the

endomorphism I, can be obtained from the formulas in Lemma 3.3.

LEMMA 3.5. After choosing an orientation for V := R®, there is a homomorphism
e APV A3V @ A3V — APV @AV

of GL™(5)-modules, such that for the model tensors and the canonical orientation
[80] of R5
(w1, pa, p3) = g0 € APV* C A°V* @iV,
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PROOF: Given an orientation [e] for V, represented by an element e, € ASV*,

we can define a map

v AV*R AV ASV* @ APV — ASV* @ iA°V*

by V&1 ® €2 ® €3 @ €4 = v/ A1 2A3\464, where \; € R is defined by &; = ;. This
definition is independent of the choice of representative £, and for A € GLT(5) we
have

VA€1 & AEQ & A<€3 ® AE4 = f/det A74)\1)\2)\3)\4E+ = det A_l \4/ )\1)\2)\3)\4E+.

Now consider the GL(5)-equivariant map
K:NV*oNV oAV - (V'eV)e (V' eV)o AV e AV
defined by

K(w17p27 pS)(xv auyvb) = (P2 ANa A b) ® (p& A (wal) A (yle))v

where 2,y € V and a, b € V*. For the model tensors wy, pa, p3 let Ky := K (w1, p2, p3)-
Then

Ko(z,a,y,b) = <6124 A (aze® 4 ase®) A (bse® + bsed)
— e A (age? 4 age) A (bye? + b4e4)>
® (6134 A (—w3e” + zae5) A (—yse® + yaes)
+ €5 A (z9€3 — z5e?) A (y2e® — y5e4))
= (6124 A (azbse®® — agbze®®) — e'3° A (aghye®* — a4b2624))

® (6134 A (—23y2€®® + 24y3€*®) + €'?° A (—zays5e® + $5y2634)>

=(asbs — agbs + a2bs — asbs)(—x3ys + Tays — T2ys + T5y2) ® 5%-
Taking the trace of the first factor V* ® V', we obtain a map

L=tr(K): N> V*a NV S AV - (Ve V) AV @ A°V*
and for the model tensors we obtain
Lo(y, b) := tr(Ko)(y,b) = (=bays + bsya — bays + bzyz) @ &3,
ie. Ly = I} ® e2. Identifying V* @ V = Hom(V, V), we define

LAV o NV oAV — (VP eV)e (AV*)?

0 0
L= i ® o
0 _ldRzL

and so
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Taking again the trace, we obtain a map
tr(L?) : A2V @ A3V* @ A3V — (APV*)?
with tr(L3) = —4ed. Hence
1
£:= —Ztr(L2) CAPVE @ ARV @ AV — APV @AY

is the desired equivariant map.

DEFINITION 3.6. Suppose V = R® is equipped with a fixed orientation. For
(w1, p2,p3) € A2V* @ A3V* @ A3V* we call

€ :=e(wy, p2, p3) € A°V*
from Lemma 3.5 the associated volume element. Whenever ¢ # 0, we define

2a(x)e = (xap2) A pa,

wa(z,y)e = —(row1) A (yowi) A pa,

ws(z,y)e = —(zaw1) A (ywi) A ps,
9(@,y)e = a(z)a(y)e + a Aw A (zaw2) A (yws),
B(lix)e == a AP A (xiwz) Aws.

PROPOSITION 3.7. Consider V = R® with the canonical orientation and
(wl, P2, pg) % S¥ A3V* ® A3V*

with € # 0. Then (w1, p2, p3) lies in the GL™(5) orbit of the model forms (w1, p2, p3)
if and only if the tensors from Definition 3.6 satisfy a A w? > 0, g(x,2) > 0, for
x # 0, and

(1) w1 /\a)g:wl /\wgiu)2/\W3:0,
(2) wi =wi = wi,

(3) p2 = aAws and p3 = a Aws.

In this case, the associated volume is given by 2e = a A w? > 0.

PRrROOF: The relations can be easily verified if (w1, p2, p3) lies in the GLT(5) orbit
of the model forms. Conversely, condition (1) implies that g from Definition 3.6 is

symmetric
aNwy A (xows) A (yows) = za(a Awr) Aws A (Yoaws)
=—zi(aAwr) Aws A (yaws)

=aAwi A (yaws) A (2ws).
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Conditions (1), (2) and (3) also yield
wo(lz,y)e = —a A (yows) A (Towe) A ws
= aA (yows) Aws A (2aws3)
=aA (yowr) Awy A (2aws)
= —a A (ywr) A (Towr) A ws

= (zow1) A (yowr) A a Aws

= —ws(z,y)e.
and
ws(liz,y)e = —a A (Yyows) A (zows) A ws
= —a A (ywr) Awr A (zaws)
(5) =aA (yuwr) A (zowr) Aws

—(2w1) A (yowr) A a A ws
= wa(z,y).
By definition we have oo I; = 0 and hence
gLz, [hy)e = a Awi A (Lizows) A (L1yaws)
= —aAwi A (zaws) A (yaws)
) = g, 2)e — a(@)aly)e
= (9(z,y) — a(x)a(y)

)e,

Similarly,
G122, y)e = a Awy A (IEows) A (y.iws)
") = —aAwr A () A (yws)
= (—9(z,y) + a(z)a(y))e
and
wi(liz,y)e = —a A (Yyowr) A (zows) A ws
(8) = o Awi A (yows) A (5.40)

= (—g(z,y) + a(z)a(y))e.

By (6) and (7) we have I?x = —z and g(I1z, I;y) = g(x,y), for 2,y € ker(a). Hence

we can find a g-orthonormal basis for ker(«) of the form
(a2, a3 = Las, a4,a5 = lay).

Since a # 0 and o Iy = 0, we have ker(I;) # {0}. So we can find 0 # a1 € ker(I;)
with a(a1) = 1, since a(a;) = 0 and (6) would imply 0 = I?a; = —a;. By (4) and

(5) we have x_wy = zuws = 0, for = € ker(Iy), and so

(a1,a2,a3 = Iaz,a4, a5 = I1a4)
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is a g-orthonormal basis for R5. If we define A € GL(5) by
Aa; =e€;, fori=1,..,5,

we have

0 =1
Aa=qp, Ag=go and AL A 'e;=Ioe; =1 e;11 ,i even

—e;—1 ,1o0dd

From (8) and a0 I; = 0 we get in addition

Aw = — Zwl(IfA_lei,A_lej)eij = Zg([lA_lei,A_lej)eij

1<j i<j

2 ij 23 45
= gO(Iloei,ej)eJ =e“" +e s
1<j

ie. w; = a?® + a*®. In particular,
det(A HNa Awi = A(a Aw?) =260 >0
shows that A € GLT(5) holds, since a A w? > 0. Equation (4) and (5) imply
(x4 ilz)s(ws + iw3) = Tows — ix w3 + (w3 — T_wy = 0,

i.e. wy +iwz € AZDker(a)* w.r.t. the almost complex structure I;. So we can find
z € C with

wo + iwg = 2P,
where ® = (a2 +ia®) A (a* +ia®). Since ® A ® = 4a?3%°, we get from (2)
422" =a AN 2@ A 20 = a A (W5 +wd) = 20 Aw? = 4]z]%a’P.

So z € S! and for
0
z

S =

B = e {1} x U(2)

= o O

0 0
we have BA € GL*(5). Then BAa = Be! = ¢!, BA® = B®; = 27 '®; and hence
BA(wsy + iws) = ®¢. This yields

BApy = 124 — 135 and  BApy = 125 4 134
and from B € {1} x U(2), we have
BAw; = B(e® +¢*) = 3 + %,
The GL™(5)-equivariance of the map ¢ from Lemma 3.5 yields eventually

2e(wi, p2, p3) = 2(BA)teg = a A wi.
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From Proposition 1.2, Lemma 3.4 and Proposition 3.7 we obtain

COROLLARY 3.8. Suppose M is a five dimensional manifold with a fixed orienta-
tion. Then SU(2)-structures on M which are compatible with the given orientation

correspond to triplets of forms
(w1, p2. p3) € (M) @ Q3(M) @ Q¥ (M)

with € # 0, and for which the tensors from Definition 3.6 satisfy a A wf > 0,
g(X,X) >0, for X #0, and

(1) wi Aws =w; Awz =wy Awz =0,
(2) Wi =wj=wi,
(3) p2 = aAws and p3s = a A ws.

In this case, the associated volume is given by 2e = a A w? > 0.

O

We will now describe the Lie algebra of SU(2) and U(2) as subgroups of SO(5).

LEMMA 3.9. A= (a;j) € s05 is an element of uy C so5 if and only if a;; = 0 and
ags +azy = 0, a4 — agzs = 0.

Moreover, A € sus if in addition
az3 + ags = 0.

Equivalently,
Uy = {A € 505 | Ae; =0 and AL = IlA},
SUg = {A € 505 | A61 =0 and AIZ = IiA, for i = 1,2,3}.

The orthogonal complements in so5 are given by

0 — T
uj:{( Z)|xeR4andAeRIQ@RI?,:u;cs%},
T
1 0 —af 4 1L
suy ={ A | z € R* and A € RI; @RI ® RI3 = suy C 504}
T

PrOOF: Since U(2) = GL(2,C) N SO(4), we have
u(2) =gl(2,C)Nso(4) = {A €so0(4) | Al = I A},

which can easily be seen to be described by the first two relations. Now A = B+iC' €
su(2) if tre(A) = 0, ie. tr(B) = tr(C) = 0. Using the embedding gl(2,C) C gl(4)

which is induced by I, we have tr(B) = 3tr(A) = 0, since A is skew-symmetric,
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and tr(C) = ag23 + a45, yielding the third relation. The description of sus follows
from
SL(2,C)={A € GL(2,C) | A(ws + iw3) = wo + iws}
and w; = go(Z;.,.). For A € so4 we compute
tr(AIl) = 72(0,23 —+ a45),
tr(AIQ) = 2(@35 — CL24),
tr(AI3) = —2(@25 + a34),

and the Lemma follows.

PROPOSITION 3.10. The following decompositions of SU(2)-modules are irredu-
cible:

suy = RI; @RI, ® RI3,
504 = suo ORI BRI, P ng,
End(]R4) = (Rld D Ilﬁu(Q) () IQHLL(Q) D 13511,(2)) () (EUQ D Rll D RIQ D RI3)

The SU(2)-module A% := A2R** decomposes accordingly into
A? :A% @ Rw; @ Rwy @ Rws, where

A2={we A |wAw; =0, fori=1,2,3} = su,.

PROOF: The decomposition suy = RI; @ RI, @ RI3 is clearly irreducible. Since
su, and hence I;sus, is irreducible, we see that the decomposition of End(R*) is
SU (2)-irreducible.

O

LEMMA 3.11. The maps D,,, : End(R*) — A?R** i = 1,2, 3, define isomorphisms

between certain submodules of End(R*) and A2R**,

| | Rid | Lisu(2) | Lsu(2) | Issu(2) [ s | R | RE | RI |

D, || Rwy | A2 0 0 0| 0 |Rws|Rw,
Dw2 RLUQ 0 A% 0 0 ng, 0 Rwl
l)w3 pr, 0 0 A% 0 ng Rwl 0

PROOF: By Lemma 3.1 we have for A € End(R%)

5
Dwi (A) = — Zei AN AeiJwi = —2prAz (IiA)
=2

46



With this formula we can compute D, (A), for A € End(R?) in a particular sub-
module, and obtain the above table.
O

DEFINITION 3.12. Let M be a five dimensional oriented manifold equipped with a
SU (2)-structure (wy, p2, p3) with intrinsic torsion 7 : P — R>* ® su(2)+. According

to the decomposition
RS* ®5u§_ —_ (RS* ® ]R4) o) RS*Il o RS*IQ D RS*IQ,

we decompose 7 into a linear map F : TM — ker(«) and three 1-forms 7,72 and

713, such that
T(X)=a® F(X)—-F(X)ig®&+m(X)1 + n2(X) Iz + n3(X) I3,

where £.g := . Explicitly,

F(X) =7(X)¢,
ni(X) = i(T(X),IZ), since (I;, I;) = 4.

PROPOSITION 3.13. Let M be a five dimensional oriented manifold equipped
with a SU(2)-structure (w1, p2, p3) with intrinsic torsion 7 = F'+n; + 12 +n3. Then

VIE =F,
Viw; =2(ns @wa — N2 @ ws) — a A (Fowy),
Viwy =2(m Qws —1m3 @ wi) — a A (Faws),
Viws =22 @ w1 — 1 @wsa) — a A (F_ws)

and

da = 2pry2 (F),

dwi = 2(n3 Awz —n2 Aws) — aA Dy, (F),
dwy =2(m ANws —n3 Awy) — a A Dy, (F),
dws = 2(n2 Awy —n1 Aws) — a A Dy (F).

ProOF: By Proposition 1.18 we have

vg{ (Oé, w1, w2, ws, P2, p3) = D(a,wlaWZaW37p2,P3) (T(X))

Since SO(5) acts on each factor of A @ A2 @ A2 @ A? @ A3 @ A3 separately, the
corresponding equation holds for each of the forms «,wi,ws,ws, ps and ps. Let

(E1,..E5) be a local Cayley frame for the SU(2)-structure. Applying Lemma 3.1,
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we find

9(V%&,Y) = (V&)Y = D, ZE’/\T VE;ja0)Y

5
- Z a(r(X)E)E'(Y) = —a(r(X)Y) = g(r(X)€,Y)

Using B’ A (I; E;w;) = —E* A E' = 0, we get

5
V%wi = Dy, (1(X)) = — Z E'AT(X)Ejw
= —a AF(X)aw — Z E' A (2(X) LE; + n3(X) I3 E;) awy

= —aAF(X)iw — Z E' A (2(X) B sws — 13(X) E; ws)

= —aAF(X)aw; —2(n(X)ws — n3(X)ws),
and similarly the equations for VIwsy and V9ws. Now
5 5
da = ZEl AVE o= ZEZ N F(E;)ag = 2pry2(F)
i=1 i=1
and

5
dwi = Z E' A ngiwl

5 5
A (Z E' A F(E;)wt) + 2 Z E' A (n3(Ei)wz — n2(Ei)ws)

=—aA Dy, (F)+2(n3 Aws —n2 Aws).

The remaining equations are obtained similarly.

By Proposition 3.10 we have the following decomposition into irreducible SU(2)-

modules
R%* ® suy = R>™ @ (R* @ RI} @ RI, @ RI3)
=R*@End(RY) @ (ROR*) @ (RO RY™) @ (RO RY™)
=R* & (Rid & I15u(2) & Lrsu(2) & I35u(2))
@ (suz @RI ®RL & RI;) & (RS RY) & (R R™) & (R RY)

and hence there are 2'5 different types of SU(2)-structures in dimension five. We

are only interested in two particular classes of SU(2)-structures:
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THEOREM 3.14. Let (w1, p2, p3) be a SU(2)-structure on M with intrinsic torsion
T F+4m+n2+n;3 and 0 # XA € R. Furthermore, decompose 7; = 1;0 + 1;(§)« and
F = Fo+a®F(£). In the following table we list different types of SU(2)-structures,
the related torsion types and the corresponding equations for the structure tensors.

Name ‘ Torsion ‘ Characterization ‘

nearly hypo | Fy + 2AI5 € Irsuy @ Issus @ sup @ RI; dps + 4 w? =0
n2 = A, n3 = 0 and 2119 = [1(F(£)ag) dwi +6Ap3 =0
hypo Fy € Isuy @ I3sus @ sus @RI dwy = dpy =dps =0
ne =n3 = 0 and 2119 = I1(F(§)a9).

PRrROOF: Since aAD,, (F) = aAD,, (Fy) and 2pr 2 (F) = 2prp2 (Fo)+an(F(€)ag),

we obtain from Proposition 3.13
dwy = 2(n30 Awz — n20 Aws) — a A (Do, (Fo) — 2n3(§)wz + 2n2(§)ws),

1
dps = 2pr p2 (Fo) A wo — 2a N\ (’1710 ANws — N30 Nwy — §(F(§)Jg) A\ wg),

1
dpg = 2pr)» (Fo) ANwsg —2a N (’1720 ANwi —Nio N wa — §(F(5)Jg) A\ w;),).

Hypo case: The conditions dw; = dps = dps = 0 are equivalent to
(1) 0=1mn30Awa2 —1n20 ANws
(2) 0= Dy, (Fo) — 2n3(§)w2 + 2m2(§)ws
(3)  0=prpe(Fo) Aws
(4)  0=r110Aws — 130 Awy —%(F(f)Jg)sz
(5)  0=pry=(£o) Aws
(6) 0=m90 Awr —nloAWQ—%(F(f)Jg)/\W?,.

With Lemma 3.3 and Lemma 3.11 we see that the conditions on the torsion com-
ponents yield dwy = dps = dps = 0. Conversely, equation (3) and (5) imp-
ly prg,, (Fo) € sup @ RI;. Wedging equation (2) with wy, Lemma 3.11 yields
0 = n3(&)wi, ie. n3(¢) = 0. Similarly, wedging (2) with ws, yields 72(£) = 0 and
hence D,,, (Fy) =0, i.e.

Fy € Irsus @ I3sus @ sus d RI.
With Lemma 3.3, equation (1) yields 0 = (930 + I1720) A w2 and hence
n30 = —I1720-
Similarly (4) and (6) become
0= —Iimo+ Islin — %F(é)w,

1
0 = I3ng0 — Mo + §Il(F(§)J9>-
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So 20 = 130 = 0 and 2m19 = 11 (F(§)19).
Nearly hypo case: The conditions dps +4 w? = 0 and dw; +6Ap3 = 0 are equivalent
to (1), (4) and

(7) 0 =pryz(Fo) Aws + 2Xw?,

(8) 0= le (Fo) - 2773(5)&12 + 2772(6)&]3 — 6 ws.
Hence the conditions on the torsion components imply dps + 4 \w? = 0 and dw; +
6Ap3 = 0. Conversely, we obtain from A # 0 equations (5) and (6). From (5) we get

Prg,, (Fo) € sup @RI} @RI, and, wedging (8) with ws, yields together with Lemma
3.11, 13(€) = 0. So

0 = Dy, (Fo) + 2n2(§)ws — 6 w3 = Dy, (Fo) + Dy, (3A2 — n2(§)12),

ie.
EFy+ (BA —m2(€)) 12 € Izsug @ Izsug @ sus ® RIG
and hence A = 12(&) by (7). Equations (1), (4) and (6) yield, like in the hypo case,

2110 = 11 (F(§)ag) and nzo = 130 = 0.
O

SU(3)-STRUCTURES IN DIMENSION SIX

In this section we consider the following model forms on RS:

wo = 812 + e34 + 656, oo 1= 61234 + 61256 + 63456,

po = 6135 _ 6245 _ 6236 _ 61467 ﬁO = 6136 _ 6246 + 6235 + 6145

and go(Iy.,.) := wp. They satisfy certain relations, which can be verified in a direct

computation:

LEMMA 3.15. For all z,y € RS and 3 € A'R®*

(1) wo A pg=woApy=0.

(2) po A po = 4eo.

(3) 200 = wi.

(4) wd = 6eg

(5) po A (zapo) = po A (xapo) = —2Ipxe0.
(6) 28(Iow)eo = po A (z2po) A B.

(7) 2g0(z,y)e0 = (xapo) A (Ypo) N wo.

(8) Iospo = —po-
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(9) (2p0) A (2p0) = (30) A (@3p0) = 22 ((w9) A 00)

LEMMA 3.16. After choosing an orientation for V := RS, there are homomor-

phisms

e AV = NSV @ iASYH
and

e APV = ASV* @ iASVH

of GL™(6)-modules, such that for the model tensors and the canonical orientation

[80] of RS
g(00) = (po) = &(po) = €o.

PROOF: Given an orientation, we can define a GL*(6)-equivariant map /- like in

Lemma 3.5. The wedge product yields a homomorphism of GL(6)-modules
h: AV = A2V @ ASV* — ASV @ (ASV*)3 = (ASV*)2.
Hence
AV* S0 e(o) = § éh(a) € A°V* @inSV™
is GL™(6)-equivariant and for the model tensor we compute

h(o) = h(D_eij ® €7 Nog) = h((e1 + esa + €56) @ &0)

i<j
= 6e1. ¢ ® €p,
so €(0g) = €. Now consider the GL(6)-equivariant map
K:ANV* - (V*eV)e A V*

defined by
K(p)(@,8) = p A (zap) A,
where x € V and 8 € V*. For the model tensors we obtain by Lemma 3.15

K(po)(z,8) = K(po)(z,8) = 28(Iyz)eo-

Hence
K2 N3V = (V* V)@ (ASV*)?
satisfies K2(po) = K?(po) = —4idy ® €3 and

1
AV* 3 pe(p) =14 —2—4tr(K2) € AV* @ iNSV™

is the desired map.
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LEMMA 3.17.
Isog L+ (6) (o) = Isogr+(6) (Po) = SL(3, C).
Isocr+6)(00) = Sp(6,R).
Isoar+(6)(po,70) = SU(3).

In particular, the forms pg, pp and o are stable.

PrROOF: For A € Isogr+(6)(po) we obtain Aeg = €o, by Lemma 3.16. Hence the
formula for Iy from Lemma 3.15 yields AlpA~! = Iy, i.e. A € GL(3,C). Again
by Lemma 3.15 we have py = Iy_po and hence A(py + ipo) = (po + ipo), yielding
A € SL(3,C). The same arguments hold for py.

For A € Isogr+(6)(00) Lemma 3.16 gives Aeg = €9. Now

oo = Zeij ® (e A ag) = (e12 + €31 + e56) @ o
1<J

yields Awy = wp and hence Isogr+(6)(00) = Sp(6,R).

The last equation follows form SU(3) = SL(3,C) N Sp(6,R). To prove stability, we

compute
dim(GL(6)/SL(3,C)) = 36 — 16 = dim(A’R%*),
dim(GL(6)/Sp(6,R)) = 36 — 21 = dim(A?R®*).

DEFINITION 3.18. Suppose V = RY is equipped with a fixed orientation. For
o € AV* and p € A3V* we call £(0) and &(p) from Lemma 3.16 the associated
volume elements.

(1) Whenever (o) # 0, we define

w:i= %a(w*) € AV,
where w* € A%V is defined by 0 = w* ® e(0) € A’V ® A*V* and o is considered as
an element o € A2V* @ A?V* = Hom(A%V, A2V*).
(2) Whenever (p) # 0, we define I(p) € End(V) by

28(I(p)x)e(p) == p A (zap) A B
and
5= —I(p)op.

(8) Whenever (o) # 0 and e(p) # 0, we define

9(z,y) = w(z, Iy).
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PROPOSITION 3.19. Consider V = RS with the canonical orientation. For o €
GL*(6)og and p € GLT(6)py we have e(c),e(p) > 0 and (o, p) € GL*(6)(00, po)
holds if and only if the tensors from Definition 3.18 satisfy g(x,z) > 0, for x # 0,
and

(1) wAp=0 and (2) e(o) =e(p).

PROOF: The above relations are clearly satisfied for (o, p) € GL*(6)(00, po). Con-
versely, for A € GL1(6) and o = Aoy, Definition 3.18 (1) yields w(o) = Aw(op) =

Awg. Hence

1 1
o= Aoy = §(Aw0)2 = §w2

and ) )
e(o) = Aeg = gA(wO Nag) = gw A 0.

By definition of g and (1) we have
29(x,y)e(p) = 2w(z, Iy)e = p A (yop) A (zaw)
= p A (@ap) A (yw) = 29(y, z)e(p).

Hence g is symmetric and defines a metric on V, since g(z,z) > 0, for = # 0. By
definition of I(p) we have for A € GL™(6)

26(I(Apo)x)e(Apo) = Apo A (z14Ape) A B = A(po A (A wapo) A AT B)
= 2(A_1ﬁ)(10A_1J?)AEQ = 26(A10A_1$)€(Ap0),

i.e. I(Apg) = AIpA~! and for p = Apo
1 ~
e(p) = Ao = 2 A(po A o)

= 7%(/) A A(lospo) = *i(ﬂ/\ (Iop))

s
=P NP

In particular, we have for p € GL*(6)po

This yields
g(Iz,Iy) = —w(lz,y) = g(y,z) = g(z,y)

and hence we can find an orthonormal basis for g of the form
(a1,a2 = Iay,..,a5,a6 = Ias).
If we define A € GL(6) by
Aa; =¢;, fori=1,..,6,

we obtain

Aw=wy and Ag= go.
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Hence
1 2
Ao = i(Aw) =09
and . )
det(A™Ne(o) = Ae(o) = gA(w No) = Fwo Nog=¢9>0

implies A € GL*(6), since (o) > 0. By definition we have p = —I p, and I? = —id
yields p = Ip. Hence

(z +ilz)s(p+1p) =0,
ie. p4ip € ABOV* wr.t. the almost complex structure I. So we can find z € C
with

p+ip =22,
where ® := (a! +ia?) A .. A (a® +ia®). Now (2) and ® A & = —8ia'"6 imply
8|z|%e(p) = 8|z|%c(0) = 8]z|%a'® = i|z]PPA D =i2d A 20 =2p A p = 8(p),

ie |z =1.So

B:= e U(3)

S O
o = O
_ o O

satisfies BA(p + ip) = zBA® = zB®; = ®( and hence
BAp = po.

Since B € U(3), we have BAo = Bog = 0 and since BA € GL'(6), the proposi-
tion follows.
]

From Proposition 1.2, Lemma 3.17 and Proposition 3.19 we obtain

COROLLARY 3.20. Suppose M is a six dimensional manifold with a fixed orienta-
tion. Then SU (3)-structures on M, which are compatible with the given orientation,
correspond to forms o € Q*(M) and p € Q3(M), of type oo and py, respectively,
such that the tensors from Definition 3.18 satisfy g(X, X) > 0, for X # 0, and

(1) wAp=0 and (2) e(o) =¢<(p) > 0.

O

We will now describe the Lie algebra of SU(3) and U(3) as subgroups of SO(6).

LEMMA 3.21. A= (a;j) € sog is an element of uz C so¢ if and only if

azs —age =0, ags +aze =0, a — a5 =0,

a1 + ass =0, a1z —agq4 = 0, a14 + a3 = 0.
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Moreover, A € sug if and only if in addition
a1z +azq +ase = 0.
Equivalently,
ug = {A €s0(6) | Aly = IpA},
sug = {A € 50(6) | Aly = IpA and (ALgo) Aog = 0}.
The orthogonal complements in sog are given by
uy = {A €50(6) | Aug = xapo, for some x € R},

su?f = u§ @ Rlp.

PROOF: Since U(3) = GL(3,C) N SO(6), we have
u(3) = gl(3,C) Nso(6) = {A € 50(6) | Ay = A},

which can easily be seen to be described by the first six relations. Now A = B+iC €
su(3) if tre(A) = 0, ie. tr(B) = tr(C) = 0. Using the embedding gl(3,C) C gl(6)
which is induced by Iy, we have tr(B) = 3tr(4) = 0, since A is skew-symmetric,
and
tr(C)eo = (a12 + asa + ase)eo = (Aag) A oo,
yielding the last relation. Since for A € ug
po(z, Aloy, loy) = po(x, IoAy, Ioy) = po(loAy, Ioy, x)
= —po(Ay, loy, x) = po(y, Ay, )
= _pO(-ra Ail/» y>7

we obtain for B € s0(6) with B.g = z.po, for some z € RS,
tI‘(BA) = Z go(BAei, Cz‘) + go(BAfoei, Ioei)
i=1,3,5
Z po(z, Ae;,e;) + po(z, Aloes, Toe;)
i=1,3,5
=0.

This proves
{A € 50(6) | Aug = zpo, for some z € R} C uz

and, counting dimensions, we see that those spaces coincide. The description of suz
follows from
tr(IoA) = —a12 — a34 — Q56 — 0,

for A € sug.

PROPOSITION 3.22. The following decompositions of SU(3)-modules are irredu-
cible:
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suy =uzy G RI,
506 = SuU3 @ 113L ® R
End(R®) = (Rid & Iosu(3) & S7,) @ (sus @ uy @ RIp), where
S%, ={A € S? | IhA+ Al, = 0}.
The above decomposition of End(R®) is actually a decomposition into symmetric

and skew-symmetric endomorphisms, refined by a further decomposition into en-

domorphisms which (anti)commute with Ij:

Iy Iy
S2(R%) | Rid & Tosu(3) | S2,
506 RIo ®su(3) | uz

The SU(3)-modules A* := A*R* decompose into the following irreducible submo-

dules, where the lower index denotes the dimension of the submodule:

Al = A}
A% = A? @ A2 @ AZ, where
A% = RWO,

AZ = {xpo | © € RO},

A ={aeA|arp =0 and aAocy=0}=sus
ABZA%@A%@A%@A‘I’% where

A} =Rpo,

A} = Rpp,

A} ={aAwy|ae A} ={zi00]| xR},

Ay ={a €A |wyAa=poAa=pyAa =0}
A* = At @ A & A§, where

A} = Roy,

A3 = {x(zpo) | ¢ € R} = {aAfio | a € A1} ={anpo | a €A},

A ={aeA|xaApy=0 and *aAoy=0}.
A® = AL

PROOF: Since SU(3) acts transitively on the unit sphere, we see that A}, A2, A2
and Ag are irreducible. Since A2 2 sug, the irreducibility of A2 follows. Hence we
see that the decompositions of A? and A* are irreducible, using the Hodge operator.
For the irreducibility of the submodule A3, see [19] formula (2) and table 1.

The map D, : End(R®) — A3 satisfies ker(D,,) = s[(3,C) by Lemma 1.14 and
Lemma 3.17. Hence

5%, Nker(D,,) = {0}
and, since the decomposition of A? is irreducible, it follows 0 # D, (S%,) = A3,. In

particular, S%, is irreducible by the irreducibility of A3,. Since also suz and ug are
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irreducible, the Proposition follows.

LEMMA 3.23. The maps D,,, Ds,, D,, and Dj, define isomorphisms between
certain submodules of End(R®) and A?2R%*, A*R%* and A®R®*, respectively:

’ H Rid ‘ Tosu(3) ‘ S%, ‘ su3 ‘ uy ‘ RI, ‘

D, || A2 | A2 0| 0 |AZ] 0
Dy, || A | Al 0| 0 |A2] 0
D,, || A3 0 [A3 | 0 | AZ] A3
Ds | A1 0 AL [ 0 [A2] A3

ProoF: Using Lemma 3.1 we can easily compute the images of Rid and RIj. In
the proof of Lemma 3.22 we have already seen that D, (Si,) = A3, holds. The
same argument yields D5, (S%,) = A%, and by Schur’s Lemma we get D, (S%) =
0 = D,,(5%,). Now Lemma 1.14 yields

ker(D.,) = ker(D,,) = sp(6,R) and ker(D,,) = ker(D5,) = sl(3,C).
Since sug C sp(6,R) and dim(sp(6,R)) = 21, we get
sp(6,R) = RIy @ suz @ S%,
and, since dim(s[(3,C)) = 16,

sl(3,C) = Ipsu(3) @ su(3).

DEFINITION 3.24. Let M be a six dimensional oriented manifold equipped with
a SU(3)-structure (o, p) with intrinsic torsion 7 : P — R%* @ suz. According to the
decomposition
R%* @ su3 = (R%* @ uz) ® RS* I,
we decompose 7 into 7 € C*°(End(TM)) and n € Q' (M), such that
9(r(X)Y, Z) = p(T(X),Y, Z) + n(X)w(Y, Z).

If we choose a Cayley frame (E4,.., Eg) for the SU(3)-structure and let A;.g :=
FE;p, then

T(X) = EZ@(X), AVE;, since (Aq, A;) = 4
n(X) = é(T(X),I), since (I, 1) = 6.
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PROPOSITION 3.25. Let M be a six dimensional oriented manifold equipped with
a SU(3)-structure (o, p) with intrinsic torsion 7 2 7 + 7. Then

Viw = —2T Jp, dw = 2D5(T),
Vo = —=2(T1p) Aw, do =2D;(T) A
VIp=-2T7T 0+ 3n®p, dp = 2D, (T)+377/\p,
VIp=—-2IT .0 —3nQ p, dp =2D,(IT) — 3n A p.

PRrOOF: By Proposition 1.18 we have for the intrinsic torsion 7 : P — R%* @ sug
of the SU(3)-structure

Vig(w a,p,p) = D(wopp)( 7(X)).

Since SO(6) acts on each factor A2 x A* x A® x A3 separately, the corresponding
equation hold for each of the tensors w, o, p and p. Let (E1, .., Eg) be a local Cayley
frame for the SU(3)-structure. Applying Lemma 3.1, we find

6 6
V4w = Dy(m(X)) = — ZE ANT(X)Eiw =— Y g(IT(X)E;, E;)EY

i,j=1
=2 g(r(X)Ei, IE)EY = Y (p(T(X), E;, IE;) + (X )w(E;, [E;)) EY

i,j=1 i,j=1

6 6
= Z p(T(X)7EZaIE])E” = - Zﬁ(EJvT(X)7EZ)E”

i,j=1 i=1
= -2 pT(X),E;, E;)EY = =27 (X)_p.
1<j

Using that 20 = w?, the same computation yields
V%o =—-2(T(X)ip) ANw

Similarly, with Lemma 3.15

6
V%p = D,( ZE’ ANT(X)Eip=— Y g(r(X)E;, E;)E' A Ejp

ij=1

2.

6
=1

i,

J
6

(P(T(X), By, Bj) + (X )w(Ei, Ej)) E' A Ejp
(B, T(

p X)) NEjap+3n(X)p

j=1

6
1
_IZE_Ip/\E ap) +3n(X)p

j=1
==27T(X)io+3n(X)p
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and

V4h=— Zp )N Ejip—3n(X)p

=—ZpE IT(X),.) A Ejop = 30(X)p

Ma

:ffIT ) E; pANE;ip) —3n(X)p

j:l
= =217 (X)a0 — 3n(X)p.

Now the exterior derivatives are
6 6
do =Y E'AVhw=-2) E' ANT(E;)p=2DsT).
i=1 i=1

do =2D;(T) Nw.

6
dp=> E'AVY p=2Dy(T)+3nAPp.

i=1

6
dp=Y E'AVYp=2D,(IT)-3nAp.

=1

DEFINITION 3.26. The Nijenhuis tensor of an almost complex structure I on M
is defined by

Ni(X,Y) = [X,Y]+ I[IX,Y] + I|X,IY] — [IX, IY].

The Newlander-Nirenberg Theorem states that Ny = 0 is actually equivalent to the

integrability of the almost complex structure I.

By Proposition 3.22 we have the following decomposition into irreducible SU(3)-

modules
R%* @ suy = R®* ® (u3 @ Rly) = End(R®) @ R%*
= (Rid @ Tpsu(3) ® S) & (susz ® uz & RIy) & R

and hence there are 27 different types of SU(3)-structures in dimension six. Before

we characterize some of these classes, we need

LEMMA 3.27. For A € End(R®) we have

Va,y € RS po(Az,z,y) =0 < Va,y €RS po(Az,2,9) =0 < A= Nd+uly
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PRrROOF: It suffices to prove the second equivalence, since po(Ip.,.,.) = po. If A =
Aid + ply, we clearly have
po(Al', €T, y) = Apo(l‘, €, y) - /Jﬁo(x, &€, y) =0.

Conversely, suppose that po(Az,z,y) = 0 holds for all 7,y € RS. For y = e; we
get 0 = (3% —

a6 = agq. Repeating this argument for y = e, .., g shows that

e*0)(Az, x) and choosing = € {e3, ey, e5,¢6} yields 0 = azs = as3 =

Ar 0 O

i bi
A=\ 0 Ay 0 |, where 4; := <a )
C; dz
0 0 As

0=po(Aler +e3),e1 +e3,y)

Computing

= aipo(er,es,y) + cipolez,es,y) + azpoles,er,y) + capoles, e1,y),

for y = eg and y = es, yields ¢; = ¢2 and a1 = ag. Similarly we get eventually
b
Aj = Ay = Ay = A= (“ )
c d

0=po(A(e1 + es),e1 + €4,7)

Then

= apo(e1, e, y) + cpo(ez; e1,y) + bpo(es, e1,y) + dpo(es, €1, ),
yields A :=a =d, for y = eg, and p := c = —b, for y = es5.

We are interested in the following classes of SU(3)-structures:

THEOREM 3.28. Let (0,p) be a SU(3)-structure on M with intrinsic torsion
72T +nand 0# A € R. In the following table we list different types of SU(3)-
structures, the related torsion types and the corresponding equations for the struc-

ture tensors.

Name ‘ Torsion Characterization ‘
Nearly Hypo IT 4+ {M € §? dp = \o

n=20
Hypo IT € 52 do=dp=0

n=20
Nearly Parallel IT = \id dw = 6X\p and dp = —4 w?.
(nearly Kéhler) n=20 Equivalently: For all X € TM

(V4I)X =0 and dp = 0.

Parallel T=0 dw=dp=dp=0
(Calabi-Yau) n=0
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Complex T € S%duz Nr=0
Kéhler 7=0 Ny =0and dw =0.
Equivalently,
Viw = 0.

PROOF: From Proposition 3.22 and Schur’s Lemma we see that
ker(w A . : A® — A%) = A @ A3 @ AD,.
Now Lemma 3.23 and Proposition 3.25 give
dv=0 & T e lysus® sus.
do=0 < T ecRid® lhsu(3) D S%, @ suz @RI,
dp=0 < T €S dsu3duy @RIy and
2Do(pry+ (7)) +3nAp=0.
dp=0 & IT e S?% @suz®uy @RI and
2D, (pry: (IT)) = 3n A p=0.

With this characterizations, and the non-degeneracy of p, the description of hypo

structures and parallel structures follows.

Nearly hypo case: By Proposition 3.25 the condition dp = Ao holds if and only if
(1) Ao =2D,(T) + 3n A p.

Since D,(id) = —40 by Lemma 3.1, we see that the condition on the torsion
components imply dp = Ao. Conversely, A # 0 yields do = 0 and hence (1) is
equivalent to n = 0 and
T € Rid ® S7, @ sus & Rl
and ) A
Ao = 2D, (prpiq7) = 2Dg(6tr(’f)id) = —gtr(T)U.
So ) )
S, @sus ®RIH > T — 6tr(T)id =7+ gAid
and since I(S%, ®suz®RIy) = S?, the description of nearly hypo structures follows.
Complex case: Using that [X,Y] = VY —V{ X and (V41)Y = V4 IY —I(V%Y),
we get
Ni(X,Y)=1(V%ID)Y — (V)Y — (V5. 1) X + (Vi ])X.
Since V4w = (V%I).g, we get from Proposition 3.25

(V4 )Y, Z2) = 2T X p)(Y, Z) = —20(T X, Y, 2)
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and hence
9INI(X,Y), Z) = —g(V&D)Y,12) — g(Vix )Y, Z)
+9((VY DX, 1Z) + g((Viy 1) X, Z)
— (T X,Y,12) + 2p(TIX,Y, Z)
—25(TY, X, 12) — 25(T 1Y, X, Z)
=2(TX,Y,Z) - 2p(ITIX,Y, Z)
—20(TY, X, Z) + 2p(IT1Y, X, Z)
= 2(p(T = ITDX,Y, Z) — p((T — ITI)Y, X, Z))
= 4(plpr+(T)X,Y, Z) — p(pr+(T)Y, X, Z)),

where pr;; denotes the projection on the space of endomorphisms which commute
with I. It follows immediately N; = 0, for 7 € S%, @uz = [, cf. Proposition 3.22.
Conversely, Ny = 0 yields

0=g(N(X,Y),Y) = —4p(pr;+ (7)Y, X,Y),

which is by Lemma 3.27 equivalent to pr;4+(7) = Ad + pl, for some functions
A M — R. Then Ny = 0 yields

ie. A\=p=0andso pr;+(7)=0,ie 7 € S, ®us = I, cf. Proposition 3.22.

Ké&hler case: This follows immediately from the characterization of Ny = 0 and

dw = 0, Proposition 3.25 and the fact that p is non-degenerated.

Nearly Parallel case: The equations dw = 6\p and dp = —4\w? translate into

2) —2D,(IT) = 6)p,

(3) 2D,(IT) —3n A p=—8\o.

Since D,(id) = —3p and D, (id) = —4o, the conditions on the torsion imply dw =
6Ap and dp = —4 w?. Conversely, A # 0 yields dp = 0 and do = 0, which gives
n=0and T € S%, ® suz ® Rly. Hence I7 € S? and (2) yields

IT e Rid @ Ipsug and  — 2D, (prriq(I7)) = 6XAp.

Now (3) gives
IT ¢ Rid and 2D, (prp;q(I7)) = —8Ao.

Writing I7 = fid, for some f: M — R, we get

6Ap=6fp and —8\o = —8fo,
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i.e. I7T = Xid. For the second characterization observe that by Proposition 3.25 and
Lemma 3.27

(VIDX =0 < HpTX,X,)=0 & T=uid+ol,

for some functions u,v : M — R. Hence it suffices to show that 7 = wid + vl
and dp = 0 imply n = 0 and I7 = \id, for some constant \. First observe that
T = uid 4 v yields do = 0. Next

0=dp=—-8uc+3nAp
gives u = 0 and n = 0. So dp = 8vo and
O=dvAho

shows that dv = 0, i.e. A := —wv is constant and I7 = Aid.

O
G9-STRUCTURES IN DIMENSION SEVEN
In this section we consider the following model forms on R”:
o = €246 _ 356 _ 34T _ (25T | (123 | 145 | (16T
Yo = 2345 4 (2367 | AS6T _ 1247 | (1357 _ 1346 _ 1256
They satisfy certain relations, which can be verified in a direct computation:
LEMMA 3.29. For all z,y € R”
(1) @o At = Teo.
(2) 6go(z,y)e0 = (zap0) A (y=0) A po.
(3) (xapo) A (zapo) = 223((xag0) A o).
(4) (yszapo) A (zapo) = —(yago) A (za((z290) A o))
O

LEMMA 3.30. (1) For V := R7 there is a homomorphism
e A3V 5 ATV

of GL(7)-modules, such that £(¢g) = &o.

(2) After choosing an orientation for V', there is a homomorphism

e ATV S ATVF @AV
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of GL*(7)-modules, such that for the model tensor and the canonical orientation
£() = &o holds.

PRrOOF: For part (1) consider the GL(7)-equivariant map

1
K :AV* = Hom(V,V* @ ATV*)  with K(p)(z,y) = Pl ANyap A p.

Since
det(K(¢)) € A"V* @ AT(V* @ ATV™)

=AV*QAV*® (ATV*)T

= (ATV*)°,
we get an equivariant map

det(K) : A3V* — (ATV*)°.
Even without a fixed orientation for V' we can define
e AV* = ATV by e(p) i= Y/det(K(p))

and for the model tensor we have by Lemma 3.29

e(po) = v/det(go ® €g) = &o.

For part (2) identify ¢ € A*V* = A3V @ A"V* and consider the G L(7)-equivariant
map
K : A*V* — Hom(V*,V @ (ATV*)?)
with
K@) (a,pB) := é(aﬂp ABap Ap) € ATV @ (ATV*)? = (ATV*)2,

Since
det(K(¢)) € ATV @ A"(V & (ATV*)?)

— AV @AV @ (AT

— (ATV)12,
we get an equivariant map

det(K) : A*V* — (ATV*)12,
Given an orientation for V', we can define
e AV S ATV @AV by e(y) = ¥/det(K (),

cf. Lemma 3.5. For the model tensor ¢y = ¢j ® €9 we compute

K (¢0)(, B) = go(a, B)eh
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and hence (1) = Vep? = eo.

LEMMA 3.31.
Isogr(7)(¢0) = Ga.
Isogr+(7)(0) = Ga.

In particular, the forms @y and vy are stable.

PROOF: A proof of the first statement can be found in [47], Lemma 11.1. For
the second part observe that Asg = &9 by Lemma 3.30, for A € Isogr+(7) (o). In

addition, we have seen in the proof of Lemma 3.30 that

K(¢0)(av 6) = gO(aa 6)5(2)
holds. Hence Agg = go, i.e. A € SO(7). Now observe that ¥y = *qpg, where xq is
the Hodge operator w.r.t. go and the canonical orientation for R”. So

*0p0 = A x0 o = *0Apo
shows that A € Isoqr(7)(¢o) = Ga. Conversely, A € Go C SO(7) satisfies Ay =
*0Apo = 1g. Since dim(G2) = 14, stability follows from

dim(GL(7)/Gy) = 49 — 14 = dim(A*R™) = dim(A*R™).

DEFINITION 3.32. Suppose V = R” is equipped with a fixed orientation. For
¥ € GLT(T)g C A*V* we call e(¢p) € ATV* from Lemma 3.30 the associated
volume element and define

@ = *y1h € A3V*,
where *, is the Hodge operator associated to the volume ¢(1)) and the metric given
by K (¥)(a, 8) = g(a, B)e(1)?, cf. Lemma 3.30.

From Proposition 1.2 and Lemma 3.31 we obtain

COROLLARY 3.33. Suppose M is a seven dimensional manifold with a fixed orien-
tation. Then Gy-structures on M, which are compatible with the given orientation,
correspond to forms 1 € Q*(M) of type 1o, such that £(z)) > 0.
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We will now describe the Lie algebra of Go C SO(7).

LEMMA 3.34. A= (a;j) € s07 is an element of go C so7 if and only if

a3 + ass +agr =0, age —asr —ai3 =0, —ass — as7 +aj2 =0,
—age +azr —ais =0, age+azyr +ayy =0, a4 — ags —ay7 =0,

—a34 — ags + ajg = 0.

Note that the i** equation corresponds to ax;pir = 0. The orthogonal complement

in so7 is given by

gQL = {A € s07 | Aug = zpg, for some z € R7},

Proor: By Lemma 1.14 we have
gdo = ker(D% 1507 — A3R7*)

and Lemma 3.1 yields A € go if and only if

7 7
0= Z@i A Aei_lgﬁo = Z al—jei A €;51P0-
i=1 i,j=1
This system translates into the seven equations for the coeflicients a;;. Hence for

A€ g
7

> _elei Acjie;) =2 Jajupler, exej) =0

j=1 i<k
and we see that BLg := e; o defines an element B € g3 . Since dim(gy) = 7, the

Lemma follows.
O

PROPOSITION 3.35. The following decompositions of Ga-modules are irreducible:

507 = g2 D gy
End(R") = (Rid @ S3) & (g2 @ g3), where
S ={A €S| tr(A) =0}

The G-modules A¥ := A*R™* decompose into the following irreducible submodules,

where the lower index denotes the dimension of the submodule:

A= AL
A? = A2 @ A3, where

Az = {zpo |2 €RT},

A2, ={we A | Yo Aw=0} gy,
A3 = A3 A3 @ A3, where

A} = Ry,
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A3 = {zp | x € RT},

A3 = {w € A® [y Aw =0 and ¢ Aw = 0},
A* = Af @ A2 @ A3,, where

At =Ry,

A7 ={aApo|acAY,

A} ={we A | po Aw=0and pg A *w = 0},
A5 = A2 & A3, where

A} ={a At |acA},

Aj, ={w € A® | g A xow = 0},
A® — AC.

PrOOF: The decompositions of A* into irreducible submodules can be found in
[43], formulae 2.14-2.17 and 2.19-2.24. The map D, : End(R") — A? satisfies
ker(D,,) = g2 by Lemma 1.14 and Lemma 3.31. Hence Rid N ker(D,,,) = {0}
and, by irreducibility, Dy, (Rid) = A%. This yields similarly Dy, (g3) = A2 and
D,,(53) = A3;. In particular, S7 is irreducible by the irreducibility of A3,, which
proves that the above decomposition of End(R”) is irreducible.

O

LEMMA 3.36. The maps D, : End(R”) — A®R™ and Dy, : End(R7) — AR™
define isomorphisms between certain submodules of End(R*) and A3R"*, respec-
tively A‘R7*:

N ENEArrT
Dy, || AY | AJ; | 0 | AF
Dy, || AT | AS; | 0 | A2

0

Proor: We proved this already in Lemma 3.35 for D,,. The proof for Dy, is

similar.
O

DEFINITION 3.37. Let M be a seven dimensional oriented manifold equipped
with a Go-structure 1 with intrinsic torsion 7 : P — R™ ® go-. We identify 7 with
an element 7 € C*°(End(TM)), such that

9(r(X)Y, 2) = ¢(T(X),Y, Z).

If we choose a Cayley frame (F1, .., E7) for the Ga-structure and let A; g := E; s,

then

7
> (r(X), A E;, since (A;, A;) = 6.
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PRrROPOSITION 3.38. Let M be a seven dimensional oriented manifold equipped

with a Ga-structure ¢ with intrinsic torsion 7 2 7. Then

Vo = =3T ), dp =3Dy(T),
VI = 3(T 19) A @, dip = 6prp2(T) A .

PROOF: By Proposition 1.18 we have for the intrinsic torsion 7 : P — R™ @ g
of the Ga-structure

V& (@,1) = D) (1(X)).
Since SO(7) acts on each factor A% x A* separately, the corresponding equation hold
for ¢ and 1. Let (E4, .., E7) be a local Cayley frame for the Ga-structure. Applying
Lemma 3.1 and Lemma 3.29, we find

7
Vi = Do(r(X)) = = S B Ar(X)Eigp
i=1
7

=— > g(r(X)Ei,E;)E' N Ejsp

ij=1

= - Z QD(T(X)?E‘MEJ)EZ N Ejap

ij=1
7
== @(E;, T(X),) A Ejp
j=1
1 7
= —§T(X)_:; E; o NEjop
— 3T (X))
and
7
Vit ==Y ¢(E;, T(X),) AE;
=1

7
= (T(X)29) A (Z Bju(E7 A )

=3(7T(X)ag9) N .

Hence the exterior derivatives are given by

7 7
dp = E'ANV,o=-3> E' AT(E;)s)

=1 =1

=3Dy(T)
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and
dp =Y E'AVEY=3> E' A(T(E;)ag) Ay
=1 i=1

=6prpa=(7) A .

By Proposition 3.35 we have the following decomposition into irreducible Gs-

modules
R™ ® gy = R™ ® R” = End(R")
= (Rida® S§) @ (92 97)

and hence there are 2% different types of Ga-structures in dimension seven. We are

interested in the following classes:

THEOREM 3.39. Let ¢ be a Ga-structure on M with intrinsic torsion 7 = 7 and
0 # X € R. In the following table we list different types of Ga-structures, the related

torsion types and the corresponding equations for the structure tensors.

’ Name ‘ Torsion ‘ Characterization ‘
Hypo T e 5? dyp =0
Nearly Parallel | 7 = f%/\id dp =\
Parallel T7=0 dy=dp =0

PROOF: By Proposition 3.38 we have di) =0 < prp2(7) A = 0. Since p A . :

A? — AP is an isomorphism, we actually have
dip =0 < pry2(7)=0.
With Lemma 3.36 we see that dp = A is equivalent to
T eRid®ge and 3Dy(prgyg) = .

Since Dy (id) = —44, the condition on the torsion implies dp = Ay. Conversely,
X # 0 yields 7 € S? and hence T = fid, for some function f : M — R. Then
M) = 3Dy (fid) = —12f1 shows that
1
T = ——\id.
12)\1(1

By Proposition 3.38 and Lemma 3.36, dp = di) = 0 is equivalent to pry2(7) = 0
and 7 € go, i.e. 7 = 0.
O
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SU(3)-STRUCTURES IN DIMENSION SEVEN

In this section we consider the following model tensors on R7:

o = 6246 _ 6356 _ 6347 _ 6257 + 6123 =+ 6145 + 6167,

¢0 — 62345 + 62367 + 64567 _ 61247 + 61357 _ 61346 _ 61256

)

1
=€, L=e
and on RS = ker(ap)
23 | 45 | 67
wo = &oapg = e + e + e,

1 ]
SwE = 2345 | (2367 | 4567

gy = 9 ’

D0 = Po — g A wp = €246 _ 356 _ 34T _ 25T
~ 247 357 | 346 , 256
po=—opo =€ — e+ + e,

as well as go(lo., .) := wo. Since the G-stabilizer of a unit vector in R” equals SU(3),
the description of SU(3)-structures in dimension seven is much simpler than the

description of SU(2)-structures in dimension five. Namely, Lemma 3.31 yields

LEMMA 3.40.
Isogr 7y (@0, wo) = SU(3).
ISOGL+(7)(a0, wo) = SU(?))

PROPOSITION 3.41. Consider V = R7 with the canonical orientation and let
€ GLT (7)Y and a € A'V*. Then

(w’a) € GL+(7)(¢07040) A g(ava) = 1;

where g is the metric induced by .

PROOF: The Lemma follows immediately from the fact that the group Go acts
transitively on S% C R”.
d

From Proposition 1.2, Lemma 3.40 and Proposition 3.41 we obtain

COROLLARY 3.42. Suppose M is a seven dimensional manifold with a fixed

orientation. Then SU(3)-structures on M, which are compatible with the given
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orientation, correspond to pairs of forms (a, 1) € QY(M) x Q*(M), where ¥ is of
type 1o with e(y) > 0 and « satisfies g(a, &) = 1, w.r.t. the metric induced by .

d

For a compact seven dimensional manifold M we have x(M) = 0 and hence M
admits a nowhere vanishing vector field. Hence any Gs-structure on M can be re-

duced to a SU(3)-structure by choosing a particular unit vector field.

We will now study the Lie algebra of SU(3) C SO(T7).

LEMMA 3.43. A = (a;;) € so7 is an element of ug C so7 if and only if Ae; =0

and

age —as7r =0, ase+agr =0, azr—ag =0,

agr +aszs =0, aga —azs =0, ags +azs =0.
Moreover, A € sug if and only if in addition
ao3 + ags + agr = 0.

Equivalently,
us = {A S 50(7) | Ae; =0 and Aly = I()A},
suz = {A €50(7) | Ae; =0 and Aly = IpA and (A.gg) A og = 0}.

The orthogonal complements in so; are given by

uy = { 0 —t |z € RS and A € uz C sog}
oUW A 3 o

1 0 —a 6 1
suz = { s A | z € R® and A € suz C sog}.

PrOOF: The Lemma follows immediately from Lemma 3.21.

DEFINITION 3.44. Let M be a seven dimensional oriented manifold equipped
with a SU(3)-structure (1, ) with intrinsic torsion 7 : P — R™ ® suz. According

to the decomposition
R™ @suy = R™@R%) @ (R™ @ui) @ R™
we decompose 7 into linear maps F,7 : TM — ker(a) and a 1-form 7, such that

9(r(X)Y, Z) = a(Y)g(F(X), Z) = a(Z2)g(F(X),Y) +p(T(X),Y, Z) + n(X)w(Y, Z).
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If we choose a Cayley frame (E1, .., E7) for the Go-structure and let A;Lg := E;p,
for i = 2,..,7, then

F(X) = m(X)E,
7
T(X) = % D (r(X), A E;, since (A;, A;) = 6,
=2
n(X) = %<T(X),I>, since (I,I) =6

PROPOSITION 3.45. Let M be a seven dimensional oriented manifold equipped
with a SU(3)-structure (v, «) with intrinsic torsion 7 = F' + 7 + 1. Then

Via = F g,

Viw =—a A F_w — 27 Jp,

Vio = —a A (Fao) —2(7T 1p) Aw,

Vip=—-aAFip—2T10+3nQ P,

VIp=—-aANF_p—2IT .0 —3nQp
and

do = 2pr 2 (F),

dw = —a A Dy(F) + 2D5(T),
do = —a A Dy(F) +2D5(T) A
dp=—aAND,(F)+2D, (T)+377/\p,
dp = —aNDs(F)+2D,(IT) —3n A p.

PRrOOF: By Proposition 1.18 we have for the intrinsic torsion 7 : P — R™* ® sug
of the SU(3)-structure

Vg((aa w,o,p, ﬁ) = D(a,w,a,p,ﬁ) (T(X))

Since SO(7) acts on each factor separately, the corresponding equation hold for «,

w, o, p and p. Let (£ = Ey, .., E7) be a local Cayley frame for the SU(3)-structure.
Applying Lemma 3.1, we find

|
-
2
\]

V4%a=D

7
' =3 g(r(X)6 E)E

7
=> g(F(X),E)E" = F(X).g,
i=1
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and, using that g(F(X),§) =0,
T 7 -
Vhw =Dy(r(X)) ==Y E'AT(X)Eiw =Y g(r(X)E;, IE;)E"
i=1 i,j=1
7 ‘ 7 -
=> g(r(X)&,IE))a NET + Y g(r(X)E;, IE;)EY
j=2 4,j=2
=Y 9FX)IE)anE + Y (p(T(X), Ei, 1E;) + (X)) E”
j=2 i,j=2
7 ..
=—aAF(X)w— Y pT(X),E; E;)E"
i,j=2
=—aAF(X)w—2T(X)ip.
The same computation yields
V%o =—aA(F(X)w)ANw—2(T(X)ip) Nw

and similarly we obtain
7
Vp=Dy(r(X)) == g(r(X)Ei, E;)E' N E;p
i,5=1
7 7 )
== g(r(X)&, Ej)aNEjop— Y g(r(X)E;, E;)E' A Ejp
j=2 i,j=2
7 .
=—aAF(X)ap— Y (o(T(X),Ei, Ej) +n(X)w(E:, E;))E' A Ejp

i,j=2
7 7
1 ,
= —aAF(X)ip— §T(X)J(Z Ejup AEjop) — (X)) E'AIE;p
j=2 =2

=—aAF(X)ip—2T(X)io+3n(X)p

and
7 .
Vip= —anF(X)D— S (AT (X), B, By) + n(X)wlEs, ) E' A By p
i,j=2
7 .
= —aAF(X)p—3n(X)p— > pUIT(X),Ei, E;)E' NEjp
i =2

7
N 1 N R
=—aAF(X)ip-3n(X)p— §IT(X)J( E E; p A Ejp)

j=2
=—aAF(X)ip—-3n(X)p—2IT(X)_o.
Now the exterior derivatives are given by

7
da = ZEl AV, o= 2prya (F)

i=1
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and
do=> E'AVEw=Y E'A(—aAF(E;)w— 2T (E;)Jp)
i=1 i=1
= —a A Dy(F) +2D5(T).
Hence do = —a A Dy (F') 4+ 2D5(7T ) A w, and similarly
7 , 7 ]
dp = Z E' A V%Lp = Z E'A (—a A\ F(EZ)J/) — ZT(EZ')JO' + Sn(Ez)ﬁ)
i=1 i=1
= —aAD,(F)+2D,(T)+3nAp
and
dp=> E'AVLp=Y_ E' A(—aAF(E;)p—2IT(E;)a0 - 3n(E;)p)
i=1 =1

= —aND;(F)+2Ds(IT) —3n A p.

THEOREM 3.46. Let (¢, ) be a SU(3)-structure on M with intrinsic torsion
T2 F+7+mnand 0 # A € R. In the following table we list different types of
SU(3)-structures, the related torsion types and the corresponding equations for

the structure tensors. For this let

']6 = ﬂker(a) € End(ker(a)) and o ‘= 77|ker(a) € Ql(ker(a))'

Name Torsion Characterization ‘
Nearly Hypo 17y + %)\I € 5? dp = Ao on ker(a).

no=20
Hypo IT, € S? do = dp = 0 on ker(a).

no =0
Nearly Parallel 17y = Aid dw = 6Ap on ker(a) and
(nearly Kéhler) no =10 dp = —4)w? on ker(a).

Equivalently: For all X € ker(«)
(V%I)X =0 and
dp = 0 on ker(a).

Parallel To=0 dw = dp = dp = 0 on ker(a).

(Calabi-Yau) n =0

Complex Ty € S, Duz Ny =0 on ker(a).

Kéhler To=0 N; =0 and dw = 0 on ker(a).
Equivalently,

VIw = 0 on ker(a).
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Sasakian T=0 I =V9¢ and
=1 (VXY =g(£,Y)X — g(X,Y)E,
forall X, Y € TM.

PROOF: The equations for the exterior derivatives of the structure tensors from
Proposition 3.45 and Lemma 3.1 give
dp\ker(a) = QDJ(T)\ker(a) + 3(77 A ﬁ)\ker(a)

7
=-2 Z(El A TEiJU)\ker(a) + 310 A //)\\ker(a)
=1
7
= _QZEW A %EiJJ\ker(a) + 310 A ﬁ\ker(a)v for B' = o
=2

= 2D er(or (Z0) + 310 A Dlrer(a)-
Similarly we obtain formulae for the restriction of dw, do and dp to ker(a). The

resulting equations are precisely the equations from the six dimensional case, cf.

Proposition 3.25. For the covariant derivatives we obtain again by Proposition 3.45

(VQ(U) |ker(a) = _27?) —‘ﬁ|ker(o¢) ;

which was required in the proof of Theorem 3.28 to characterize the condition
N; = 0. With this observation, we can reduce all computations to ker(«) and

repeat arguments from the proof of Theorem 3.28.

For the description of Sasakian structures we use Proposition 3.45 to find I =
V9¢ = F and hence
(V5w)(Y, Z) = (—a A F(X)w — 2T(X) 5)(Y, Z)
=(aANXig—-2T(X)p)Y,2)
Now the characterization follows, since 7 (X) € ker(a) and p is non degenerated on
ker(a).
O

REMARK 3.47. M. Cabrera [14] studies SU(3)-structures on hyper surfaces which
are induced by certain types of ambient G3-structures. The only case where the in-
duced structure is actually Kéhler (i.e. of type W5 in the notation of [14]) occurs
in Table 2 of [14]. Cabrera shows that in this case, the ambient Ga-structure must

be parallel and the hyper surface has to be totally geodesic. However, Cabrera only
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studies ambient Ga-structures which are of one of the four canonical Gray-Hervella
types. A generic SU(3) C G structure with Zyey(o) = 0 does not belong to one of
these four types.

REMARK 3.48. Sasakian structures in dimension 2n+1 are {1} x U(n) structures
which satisfy the integrability conditions

[=V% and (V4I)Y =g(£,Y)X — g(X,Y)E.

Hence a SU(3)-structure on a seven dimensional manifold satisfies these conditions
if and only if the underlying {1} x U(3) structure is a Sasakian structure, cf. [8].
Sasakian structures are usually considered as the odd-dimensional analogue of Kéh-
ler structures. From this point of view, Sasakian structures which are compatible
with a topological Ga-structure can be regarded as the analogue of SU(3)-Kéhler
structures, i.e. Kdhler structures with ¢; = 0. By Yau’s proof of the Calabi con-
jecture, such a Kéhler structure admits a unique Ricci flat Kéhler structure within
its cohomology class. But a Sasakian structure can neither be Ricci flat, nor allow
parallel forms.

Another reason why the term ’analogue’ should be used with caution, is the fact
that it is used with respect to a certain embedding of the {1} x U(n) structure into
an even dimensional space. In the Sasakian case the ambient space is the metric
cone over the odd dimensional manifold M, but different choices for the ambient
space will lead to different notions of what one should call an odd dimensional
"analogue’ of Kéahler structures.

To avoid the choice of an ambient space, it seems natural to call a {1} x U(n)
structure Kéhler if the U(n)-structure on ker(«) is Kéahler, i.e. 7 = 0 on ker(a).

This notion can be refined by requiring the distributional part F to live in a certain

pe (0 0 |
RS  End(RS)

where End(R®) decomposes as an SU(3)-module into

submodule of

It 1~
S2(R%) | Rid @ Iosu(3) | 52,
506 RIo ®su(3) | uz

So the possible notions of ’analogue’ Kéhler structures are parameterized by the
distributional part F'. Theorem 3.46 states that SU(3)-Sasakian structures are pre-
cisely those types of Kéhler structures for which F =T € Rl and 7 (£) = 0 holds.
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SPIN(7)-STRUCTURES IN DIMENSION EIGHT

In this section we consider the following model form on R#:

_ 1
Yo =10 +e Agg
_ 3456 | BATS | S6TS _ 2358 | 2468 _ 2457 _ 2367

+ 61357 _ 61467 _ 61458 _ 61368 + 61234 + 61256 + 61278.

This form satisfies certain relations, which can be verified in a direct computation:

LEMMA 3.49. For all z € R®
( ) Vo AUy = 14ey.

(2) xWo = Uy.

(3) *0((xago) A Up) = zuTy.
(4) *o(x2Wo A Wg) = Txago.

The isotropy group of ¥y can be identified with the Lie group Spin(7), cf. [47]
Lemma 12.2.

LEMMA 3.50.

Isogr(s) (Up) = Spin(7).

Since dim(GL(8)/Spin(7)) = 64—21 < 70 = dim(A*R®*), the form W is not stable.

Nevertheless, we have by Proposition 1.2

COROLLARY 3.51. Spin(7)-structures on an eight dimensional manifold M cor-
respond to forms ¥ € Q*(M) of type Uy.

d

We will now describe the Lie algebra of Spin(7) C SO(8).
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LEMMA 3.52. A = (a;j) € sog is an element of spin,; C sog if and only if

a23 + ags5 + aer =0, ag6 — as7 — a1z + a2 =0,
—as6 — a47 +a12 +a13 =0, —age +azr —ais +ay =0,
+ase + ag7r + a14 + a5 =0, G24 — G35 — a17 + a6 = 0,

—a34 — ags +aig +ayr = 0.

Note that the i*" equation corresponds to ay;pix + a1; = 0. The orthogonal com-

plement in sog is given by

sping = {A € sog | Aug = zpo + €' A (z1g0), for some = € R¥}.

Proor: By Lemma 1.14 we have
spin, = ker(Dy, : sog — A'R™)

and Lemma 3.1 yields A € spin; if and only if

8

8
0= Zei A A@in)O = Z aijei A\ Gde)().

i=1 i,5=1
This system translates into the seven equations for the coefficients a;;. Hence for

A € spin; and B;g := e;000 + €' A (€;19)
8
tr(BzA) = Z(gpo(ei, Aej, ej) + %15” — ajiéjl)
J=1
= QZa‘jk@O(eiﬂ ek7ej) + ;1 — A1

= 2a1i — 2a1i =0

and we see that B; defines an element B; € spiny. Since dim(spiny) = 7 and
By =0, the Lemma follows.
]

ProprosITION 3.53. The following decompositions of Spin(7)-modules are irre-
ducible:

s0g = spin; @ spiny
End(R®) = (Rid @ S}) @ (spin, ® spiny), where
Sz ={AeS?|tr(A) =0}.
The Spin(7)-modules A* := A*R®* decompose into the following irreducible sub-

modules, where the lower index denotes the dimension of the submodule:

Al = A}
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A? = A2 @ A3, where
A2 ={w e A? | x(Vg Aw) = 3w},
A2, ={w € A? | %(¥g Aw) = —w} = spin,,
A3 = A3 @ Alg, where
Ag = {.’ITJ\I/O | HARS Rg},
Adg ={w e A® | ¥y Aw =0},
A* = Al @ A & A3, & A4, where
A% = R,
AL = {Zle e A Ae; 1 Wo — (Aejago) A (e;0%0) | A € spiny },
Ay, ={we A |w=xw, ¥VgAw=0and A2 C ker(wA .)},
Ad = {w e A* | xow = —w},
A% = A3 @ Alg, where
Al ={a ATy |acAl}
Ay = {w € A% | ¥y A xw = 0},
A% = AS @ AS,, where
AS = {w € AS | ¥y A xow = 3w},
AS; = {w € A8 | ¥y A xow = —w},
AT =A%

PRrROOF: The decompositions of A¥ into irreducible submodules can be found in
[43], formulae 4.7-4.10 and 4.12-4.19. The map Dy, : End(R®) — A* satisfies
ker(Dy,) = spin; by Lemma 1.14 and Lemma 3.50. Hence Rid N ker(Dy,) = {0}
and Dy, (Rid) is a one dimensional submodule of A*. By irreducibility, we see that
0 # Dy, (Rid) = A}. This yields similarly Dy, (spiny) = A% and Dy, (S2) = Ads.
In particular, S? is irreducible by the irreducibility of A4;, which proves that the
above decomposition of End(R®) is irreducible.

(]

LEMMA 3.54. The map Dy, : End(R®) — A*R®* defines an isomorphism between
certain submodules of End(R®) and A*R®*:

’ H Rid ‘ S ‘ spin, ‘ spins ‘
(Do [ T[] 0 [ A7 |

PrROOF: We proved this already in Lemma 3.53.

Consider the map

8
fu, : R¥* @ spins — APR®™  with 7 Z e A Dy, (7(e:)).
i=1
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This definition is independent of the choice of gg-orthonormal basis (eq, .., es) and
hence Lemma 1.14 shows that fg, is Spin(7) C SO(8) equivariant. From Lemma
3.1 we get
fuo(m) = — Z Tijke”? A ey,
i3,k
which can be used to show that fg, is injective and hence an isomorphism. Since
A5 = A3 @ Alg, we obtain a corresponding decomposition into irreducible Spin(7)-

modules
8% U
R ® sping = Ws @ Wig
and hence there are 22 different types of Spin(7)-structures in dimension eight:
THEOREM 3.55. Let ¥ be a Spin(7)-structure on M with intrinsic torsion 7. In

the following table we list different types of Spin(7)-structures, the related torsion

types and the corresponding equations for the structure tensors.

Name ‘ Torsion ‘ Characterization ‘
Balanced TEWss | ©:=(xdU AT) =0
(Lee form)
Locally conformal parallel | 7 € Wy d¥ = %@ AT
Parallel T7=0 d¥v =0

PROOF: From Proposition 1.18 we get fy(7) = d¥ and, since fy is an isomor-
phism, we have d¥ =0 < 7 = (. By Proposition 3.53 we have

TEWR & dVelly & 0=0

and similarly
TEWs & dVelAl & dV=aAV,

for some 1-form «. Using Lemma 3.49, we get
O =*(xd¥ ANV) = (£ AT) = Ta,

where {19 1= a.
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4. EMBEDDING THEOREMS FOR SPECIAL GEOMETRIES

In [36] N. Hitchin introduces a flow equation for hypo Ga-structures on a manifold
M, whose solutions yield parallel Spin(7)-structures on I x M, for some interval
I C R. In this sense, a solution of the flow equation embeds the initial Gs-structure
into a manifold with a parallel Spin(7)-structure and is therefore called a solution
of the embedding problem for the initial structure. Similar equations are known
for embedding SU(2)-structures in dimension five and SU(3)-structures in dimen-
sion six into manifolds with a parallel SU(3) and Ga-structure, respectively, cf.
[21],[22],]23],[28],[29]- R. Bryant shows in [11] that in the real analytic category,
the embedding problem for hypo SU(3) and Ga-structures can be solved. Bryant
also provided counterexamples in the smooth category. The embedding problem for
SU (2)-structures in dimension five was solved by D. Conti and S. Salamon in [22],
cf. also [21].

In this section we describe a unifying approach to all of the above embedding
problems. We reduce the SU(2) and SU(3) embedding problem to the Ga-case,
which will be studied in terms of gauge deformations. Since the structure tensor
¢ € Q3(M) of a Ga-structure is stable, any smooth deformation ; can be described
by a family of gauge deformations A, € C*°(Aut(T'M)) via ¢, = A, cf. Theorem
1.6. In the Ga-case, the intrinsic torsion 7 takes values in the Ga-module gl(7) and
can therefore be regarded again as an (infinitesimal) gauge deformation. We prove

that the intrinsic torsion flow for Ga-structures
At =T oA

can be regarded as a generalization of Hitchin’s flow equation, and hence as a ge-
neralization of the SU(2), SU(3) and Ge-embedding problem, cf. Proposition 4.12.
In Theorem 4.13 we determine the evolution of the metric and the intrinsic torsion
under the intrinsic torsion flow. Using the Cheeger-Gromoll Splitting Theorem, we
prove in Theorem 4.14 and Corollary 4.15 that there are no nontrivial longtime

solutions for the embedding problem.

GENERALIZED CYLINDERS

Let £ be a unit vector field on (M, g), such that dae = 0, where « := £.g. On the
integral manifolds i : N < M of the distribution ker(«), we denote by gy := i*g
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the induced metric. Conversely, the collection of metrics on all integral manifolds
determines the ambient metric via
g=a®a+{gn},
where {gny} := pr*g and pr : TM — ker(«) is the projection pr(X) := X — a(X)¢&.
The Weingarten map
W = V¢
defines a symmetric endomorphism on (M, g) with

(ng)(X, Y) = 29(WX’ Y)

and W (&) = 0. This shows that the integral curves of £ are geodesics on (M, g)
and that W reduces to a symmetric endomorphism Wy on each integral manifold
N C M. We will now express the curvature quantities R, ric and scal on M in

terms of the curvature quantities Ry, ricy and scaly on N C M.

ProposITION 4.1. For X,Y,U,V € T,N C T,M we have
g(R(U, X)Y,V) = gn(Rn(U,X)Y,V)
+gnWNU, Y )gnWN X, V) — gn(WN X, Y ) gy (WU, V)

- L)X, Y)

9(R(U, Y, V) = gn (VI W)Y, U) — gn (V¥ W)V, U)
ric(X,Y) =rieny (X, Y) —trOWn) gy Wn X, Y)
+ 298 (WN X, WNY) — %(ng)(x, Y)

rie(6, ) = (V) — 5r,(I20)
ric(X, &) = diviWn)(X) — X - tr(Wn)
scal = scaly + 3tr(Wy) — tr(Wn)? — trg(LZg)

ProOF: Tt suffices to consider vector fields X with L¢ X = 0, so that V{X = W(X)
and

§-9(X,Y) =29(WX,Y).
The first and third equation can be found in this form in [46], 4.2. Theorem 3 and
4, respectively. From [46] 4.2 Theorem 2 we get the second equation,

R(E X, Y,€) = —gOVX, WY) — g((VIW)X,Y)
=—gWX,WY)-¢-gWX,Y) + g(WX, VgY) + g(VgX, WY)
= GOVX, WY) — 36+ (€ 9(X,Y))

1

=gWX,WY) 5 (Lig)(X,Y).
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Now let (¢, Es, .., E,,) be a local orthonormal basis with V% E; = 0 at a fixed point.
Then at this point

ric(X, €) = ZR (B;, X, €, E;) ZREl,g E;, X)

=2

—gn (VR WN)E;, Ei) + gn (VR WN) X, E;)

[
. "
Mﬁ

[\

s
||
N

-X- gN(WNEia El) + le(WN)(X)

|

=2

=—-X -tr(Wp) + diviWpn )(X).

The remaining equations are obtained similarly.

LEMMA 4.2. Suppose ¢ is a k-form on M such that £ = 0. Then ¢ = {on}
and
de ={den} +an Lep,

where dpn denotes the exterior derivative of ¢ on the integral manifold N C M.

PRrOOF: Fix Ny C M and choose local coordinates {vs, .., v, } for Ny. The flow @
of £ defines a diffeomorphism
&y : Ng — Ny,

where N; := ®,(Ny) is again an integral manifold of ker(«). For
geU = U . (No)
te(—e,e)
exists a unique p € Ny and ¢ € (—¢,¢) such that ¢ = ®;(p). Now we obtain

coordinates on U by
ur(®e(p)) :==t and u;(P(p)) := v;i(p), for i > 2,

with
0

5u1

d

= LTt 5,0(p) = S ers(p) = €0 Bulp)

@+ (p)

Hence %JQO = 0 and computing dy at p € Ny yields

Yy 2

9 ) (duy A du) ()
Ouy

0
o, — ) (du; A duy)(p) + Z 8u1

1¢J i=2 P 1¢.J P
0
—ZZ “ong ( 5 —)(dv; Advy)(p /\Zf\ duJ(p)
g i=2 Vilp J 1¢J
= (den, ) (p )A€, dUJ( )
1¢.J
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where we used that the flow of % stays in Ny, for ¢ > 2. Now

Lgdui = deduZ = dﬁJdUi =0

6u1
gives
0 0
Lep = L&(Z @(W)dw) = Zf : @(W)dw,
1¢J J 1¢J J
i.e.

dp(p) = (dpn,)(p) + a(p) A (Lew) (D).

Let I C R be an open interval, {g: }+cs a family of metrics on N, M :=1 x N and
®, the flow of the vector field £ := d/dt on M. We extend the family {g;}:cs to a
(2,0)-tensor {g:} on M by

49} =0 and {g}(Pn X, PrY) := (X, Y),
for all X,Y € TN C TM. With this definition,

. . d d
{96 (@4 X, @1.Y) = (X, Y) = %gt(Xv Y)= g{gt}(q’t*){v 1Y)
d

d
— Dy X, D16 Y) = —
ds o {gt}( t+ t+ ) ds o

= (Le{9:}) (21 X, @1.Y),

(@{9:H)(P1 X, ©1.Y)

{9¢} = Le{ge}-

The Riemannian manifold
M:=1xN with g:=dt*+{g:}

is called a generalized cylinder.

LEMMA 4.3. Let M = I x N be a generalized cylinder with metric g = dt*> + {g;}.
Then (M, g) is complete if and only if I =R and (N, g¢) is complete, for all ¢ € I.

PRrOOF: We use the Hopf-Rinow Theorem and denote by (M, d,) the metric space
associated to (M, g). If M is complete, we get I = R, since ¢(t) = (t,p) € M is
a geodesic. To see that (N, g;) is complete, it suffices to show that any closed and
bounded subset is compact. If A C (N, d,,) is closed and bounded, A is also closed
and bounded as a subset of (M, d,). Hence A C M is compact and since N C M is

closed, we see that A C N is compact.

Conversely, let (¢,,p,) be a Cauchy sequence in the metric space (M,dy). Then

t, defines a Cauchy sequence in I = R and hence we can assume that ¢, — t, as

84



n — oo. Now (¢,py,) is still a Cauchy sequence in ({t} x N,d,,) and hence we can
find a convergent subsequence of (¢, py,).
]

The Weingarten map W := V9¢ of a generalized cylinder (M, g) = (Ix N, dt>+{g;})
induces a family of ¢g;-symmetric endomorphisms W; on TN by

Wi X :=pr,oWo ®., X,

where pr: I x N — N is the canonical projection.

LEMMA 4.4. Let g; be a family of metrics on N. Denote by ric; the Ricci tensor
of the metric g; and by ric the Ricci tensor of the metric g = dt? + {g;} on I x N.
Then

gt(X7 Y) = 29t(WtXa Y)a
g X,Y) =r1icy(X,Y) — ric(®, X, DY) — tr(W) g (Wi X, Y),
for all X,Y € TN.

ProoF: For XY € TN we compute
(X, Y) = (Le{9:}) (20X, ©0.Y) = (Leg) (P1a X, 1Y)
— 2g (WD, X, B,.Y) = 2g,(W, X, Y).
Similarly, (ng) (P X, D4 Y) = §:(X,Y) and by Proposition 4.1

riC((I)t*X, (I)t*Y) = I'iCt (X, Y) - tI'(Wt)gt (WtX, Y)

1.
+ 29 W X, WiY) — §gt(X7 Y).

Now the second equation follows from

1d . d
iﬁgt(X’Y) = %gt(WtXa Y)
= gt(WtX, Y) + gt(WtX, Y)

=29, W, X, W,Y) + ;W X, Y).

1.
igt(Xv Y) -

Like for a family of metrics, we can lift a family of forms {:}ter on N to a single

form {¢:} on M =1 x N with L¢{¢:} = {¢+}. Hence Lemma 4.2 translates into

LEMMA 4.5.
d{pi} = {dpi} +dt NP}
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EvoLUTION EQUATIONS

For notational reasons we define
SU(2) for k=5.
SU(3) for k=6.

Gy =
Go for k=17.

Spin(7) for k = 8.

The inclusions Gy C Gg41, obtained by regarding Gy as the isotropy group of a
unit vector under the natural action of Gy41, allow us to lift any Gj, structure on
MP* to a G4 structure on R x M¥. More generally, we can lift whole families of

structures on M*, parameterized by ¢ € I, to a structure on
MM =T x M*.

In order for the resulting structure to be (nearly) parallel, the underlying family
has to be (nearly) hypo and must evolve according to certain evolution equations.
In fact, (nearly) hypo structures are precisely those type of structures which are

induced on hypersurfaces by (nearly) parallel structures on the ambient space.

For instance, a family of Ga-structures 1, on M7 defines a 4-form ¥ := {tp:} +dt A
{p¢} of model tensor type Wg, and hence a Spin(7)-structure on M® := I x M".

For notational simplicity we will suppress the bracket notation and call
Ui=+dt A gt
the lift of ¢y to I x M”. With Lemma 4.5 we get
AW = d"y + dt Ay — dt Ad oy = dTy + dt A (Y — dTpy),

where d’, d® denotes the exterior derivative on M7, M8, respectively. Hence the
Spin(7)-structure is parallel if and only if d7¢; = 0 and ¢); = dg;. The second equa-
tion can be regarded as an evolution equation for the initial structure ¢ := p;—¢.
If the initial structure is hypo, the evolution equation guarantees that the hypo
condition d"1; = 0 is preserved in time. In the following Proposition we list the
lifting maps for the SU(2), SU(3) and Gy-case, the (nearly) hypo condition for the
initial structure and the evolution equations to obtain (nearly) parallel structures
on I x MF.

PROPOSITION 4.6. Let M* be a manifold of dimension k € {5,6,7}, equipped
with a family of G-structures. Then the lift in the following table defines a G4 1-
structure on M*+1 .= T x M*.

86



] k H Lift Initia] Condition | Evolution

S5llwi=w +dt N\« 0=dwy +6Ap3 | w1 =da+ 6w
U::%w%—&—dt/\a/\wl 0=dp2+4)\w% p2 = dws — 8 A\ wy
pi=—p3+dt Nwy 0 = dps p3 = —dws
pi=pa+dt Aws

6| p=p+dthw 0=dp— Ao p=dw—N\p
Yi=c—dtA\p 0=do oc=—dp

T o :=gp+dAgp 0=dy ¥ = do

(1) The structure on M*+! is parallel if and only if the initial structure is hypo

(i.e. A =0) and evolves according to the evolution equations from the table.

(2) The structure on M**! is nearly parallel if and only if the initial structure
is nearly hypo (i.e. A # 0) and evolves according to the evolution equations from
the table.

(3) The metric of the Gy 1-structure on I x M* is given by
9= dt2 =+ G,

where g; is the family of metrics induced by the family of G-structures on M*.

PROOF: Choosing a Cayley frame (Es(t), .., Ex(t)) for the family of G-structures,
we obtain a Cayley frame for the lift by

(%,Eg(t), - Ex(1)).

This proves that the lift actually defines a Gy1-structure and that the metric is
given by the formula in (3). Since we already proved the case k = 7, we only have

to consider the cases k =5 and k = 6:

k=5: By Lemma 4.5 we have

dw = dwy + dt A (w1 — da),

dp = —dps — dt N (p3 + dwg),

dp =dps + dt A (pg — dwg),
and we see that the SU(3)-structure is parallel, i.e. dw = dp = dp = 0, if and
only if the whole family of SU(2)-structures is hypo and satisfies the evolution
equations from the table with A\ = 0. Since the evolution equations preserve the

hypo condition, it suffices to require the initial SU(2)-structure to be hypo. The
SU(3)-structure is nearly parallel if and only if

dw =6Ap = —6Ap3 +6Adt Awy and dp = —4 \w? = —4 w? — 8\dt A a Awy,
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for some A\ # 0. Hence it suffices to show that the evolution equations preserve
0 = dw; + 6)\p3 and 0 = dpy + 4 w?. This follows from

%(dwl + 6/\,03) = 6Adwy — 6 w2 =0

and, using w; Aws =0,

d
a(dpg + 4 w?) = —8Xd(a Awy) + 8wy Ada) = 8 a A dwy = —64\%a A p3 = 0.

k=6: By Lemma 4.5 we have

dp =dp+dit A (p— dw),

dp =do +dt A (6 + dp).
Hence the Ga-structure is parallel, i.e. dp = di) = 0, if and only if the whole family
of SU(3)-structures is hypo and satisfies the evolution equations from the table
with A = 0. Since the evolution equations preserve the hypo condition, it suffices to
require the initial SU(3)-structure to be hypo. The Ga-structure is nearly parallel
if and only if

do = M) = Ao — Adt A p,
for some A # 0. Since the evolution equations imply
d
%(dp —Ao)=-=Mdp+ Mdp=0,

the Proposition follows.

DEFINITION 4.7. Let M* be a manifold of dimension k € {5, 6, 7}, equipped with
a (nearly) hypo Gg-structure. A family of Gg-structures which solves the evolution
equations from Proposition 4.6 and equals the initial structure at ¢ = 0 is called a

solution of the embedding problem for the initial G-structure.

THE Hypo LIFT

The lift from Proposition 4.6 does not preserve the hypo condition. This motivates

DEFINITION 4.8. Let M* be a manifold of dimension k € {5,6}, equipped with
a (GG-structure. We call
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k=5 [ k=6
w:=w3+diNa p:i=—p+diNw
U:z%u}%—&—d@/\pg Yi=0c—diANp
pi=p2 —do Nw;

pi=—aAw —diAws

the hypo lift of the Gj-structure to S* x MF¥. Conversely, given a G i-structure
on a manifold M**! of dimension k+ 1, we obtain a Gj-structure on every oriented
hypersurface i : M* — M*+1 by

k=5 k= |
wy = —i*(ZGap) | pi= =i (F5)
p2:=1"p o :=1i"

ps = 1" (£ 0)

where % is a global vector field along i : M* < MP*+! which is orthonormal to

MP*. We call the G-structure the structure induced by the G 1-structure and %.

Note that we just applied the lifts from Proposition 4.6 to the structures
(Oé, w3, —W1, _WQ) = A(O{, Wi, w2, w3)a

respectively,
(wa 72)\7 p) = I((.«J, P ﬁ)7
where A € GL*(5) is defines by

Aleq,..,e5) == (e1,€3,€4,€2,€5).

LEMMA 4.9. The hypo lift maps hypo structures to hypo structures.

PrOOF: In the SU(2)-case, we obtain dp = 0 if dw; = dpy = 0. The compatibility
condition w3 = w? and dp3 = 0 imply do = 0. For a hypo SU(3)-structure we
obtain immediately diy = do + df A dp = 0.

O

We will now study the compatibility of the hypo lift with the evolution equations

from Proposition 4.6.
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LEMMA 4.10. (1) Suppose v is a family of Ga-structures on M7 = St x M® which
is the hypo lift of some family of SU(3)-structure (p, o) on MS. Then

. ) = d,
Y=dp {’.’ <
6 =—dp

(2) Suppose (p, o) is a family of SU(3)-structures on M® = S x M® which is the
hypo lift of some family of SU(2)-structure (w1, p2, p3) on M5. Then

w1 = da
p=dw R - p2 = dws
o= —dp ﬁg = —duJQ

PRrROOF: By assumption we have ¢ = o — df A p and ¢ = —p + df A\ w. Hence

b=6-dIAp and dp=—dp—doAdw

and part (1) follows. Similarly for part (2),

w=ws+diAa, azéwg—l—dﬁ/\pg,
p=p2—di Awy, p=—aAw —diAwsy
gives
p=p2—di Nuwr,
dw = dws — df A da,
and

1
o= (QW?Z,)' +db A ps,
—dp=d(aAwy) —dO N dws.

LEMMA 4.11. Let ¢ be a Gy-structure on M7 with metric g.
(1) If M7 = S' x M5, then 9 is the hypo lift of some SU(3)-structure on M9 if

and only if
Lo D s 0 0, _
Loy =0, 5L TM® and  g(55 55) = 1.

(2) If M7 = S3 x S] x M?, then 1 is the hypo lift of some SU(2)-structure on M?
if and only if
0

0
La(gi’(/}:(L %LQTM5 and g¢g(

fori,j=1,2.
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PRrROOF: If 4 is the hypo lift of some SU(2) or SU(3)-structure, we get Lotyp=0
and the orthogonality condition on the S'-directions. Conversely, we define forms
o and p on M7 by

0
N—_——
=0 =i—p

Since & is orthonormal to M and G acts transitively on S6, we can find a Caley
frame for which o and p are of type o and pg. Hence (o, p) defines a SU (3)-structure

on each hypersurface {e?} x M6. Since
OZLgafde/\Lgp
a6 a6

implies L 20 = L 2p= 0, we see that o and p are actually constant along the flow
of %. Part (2) of the Lemma follows similarly, using that G acts transitively on

pairs of orthonormal vectors.

O

THE MODEL CASE G5 C SPIN(7)

Lemma 4.10 and 4.11 motivate the conjecture that the embedding problem for hypo
SU(2) and SU(3)-structures might be reduced to the embedding problem for Ga-
structures. The reduction to the G5 case has the advantage that no compatibility
conditions are involved. To solve the embedding problem for hypo structures we

consequently focus on studying the evolution equation
e = depy

on a compact seven dimensional manifold M7. Motivated by Theorem 1.6 we try

to find a solution of the form

e 1= A,
where 1 is the initial hypo Ga-structure and A; € C*°(Aut(TM)) is a family of
gauge deformations with Ay = id. First we translate the above evolution equation

into an equation for the family of gauge deformations.

PROPOSITION 4.12. Suppose 9, = A is a family of Ga-structures on M7,
described by a family of gauge deformations A; € C°(Aut(TM7)). If 7, = T (Aw))

is the torsion endomorphism of vy, then

’(/.Jt = d(pt <~ Dwt(At o A;l) = SDwt('];)
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PrOOF: By Lemma 1.16 and Proposition 3.38 we have
Uy = Dy, (Ay 0o A7Y)  and  dp; = 3Dy, (T7)

and the Proposition follows.

We can now compute the evolution of the metric and the torsion endomorphism.

THEOREM 4.13. Let 1, be a family of hypo Ga-structures on M7, which evolves
under the flow z/}t = dy;. Then the evolution of the underlying metric g; and the

torsion endomorphism 7; are given by
gt(Xv Y) = _6gt(7;X7 Y)?
. 1

where Ric; = Ric(g;) is the Ricci tensor of the metric g;.

PrOOF: By Theorem 1.6 we can describe the evolution by a family of gauge
deformations t; = A and Proposition 4.12 yields Dy, (A; o A;Y) = 3Dy, (T7).
Since the evolution v, = dy, preserves the hypo condition dif; = 0, or equivalently

T, € S? wa.t. g;, we get from Lemma 3.36
prg=(A; 0 A7) = 37,.
Now Lemma 1.16 gives
gu(X,Y) = Dy, (A 0 AT (X,Y) = =204 (prgz(As 0 A7) X, Y) = —6g,(T.X,Y).
By Lemma 4.4 we see that W; = —37; and hence
—3g:(T.X,Y) = ricy(X,Y) — 9t(T;)g:(T X, Y),

where we used that the metric g = dt? + g, on I x M7 has holonomy contained in
Spin(7) and hence is Ricci flat.
O

The following theorem shows that the flow will not produce complete metrics with
special holonomy. In particular we can not expect to obtain periodic solutions which
would lead to compact manifolds with special holonomy. In fact, the observation is
that the length of the existence interval could be characteristic for the type of the

initial structure.

THEOREM 4.14. Suppose 1 is a hypo Ga-structures on a compact manifold M.
Then the flow &t = dpy is defined for all times ¢ € R if and only if the initial
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structure is already parallel.

PrROOF: The metric on the product M® := R x M7 has holonomy contained in
Spin(7) and hence is Ricci flat. Since g = dt? + g;, the first factor actually defines
a line and M?® is complete by Lemma 4.3. Now we can apply the Cheeger-Gromoll
Splitting Theorem and see that M?® splits as a Riemannian product. Note that the
line, i.e. the first factor of M?, is actually the one dimensional factor that splits
off in the decomposition as a Riemannian product, cf. Lemma 6.86 in [7]. Hence
gt = go is constant and Theorem 4.13 yields 7; = 0.

O

In Lemma 4.10 (1) we showed that a longtime solution of the SU(3) embedding
problem would yield a longtime solution for the G2 embedding problem. Combining
part (1) and (2) of Lemma 4.10, shows that a longtime solution of the SU(2)
embedding problem would also yield a longtime solution for the G5 embedding
problem if in addition the equation (w3) = d(a A wy) is satisfied. If the initial

SU(2)-structure is hypo, we have dw; = 0, for all times ¢. So

1 1
(iwg) = (§w%) =w; Awp =wi Ada =d(aAw)

and we obtain the following SU(2) and SU(3)-analogue of Theorem 4.14.

COROLLARY 4.15. There are no non-trivial longtime solutions for the hypo SU(2)
and SU(3) embedding problem on compact manifolds.

O

In the nearly hypo case we can give a similar argument to show that there are no
non-trivial longtime solutions of the embedding problem. Namely such a solution
would yield a complete metric on the non-compact manifold R x M with positive

Ricci curvature, which contradicts Myer’s Theorem.

In view of Proposition 4.12, the following theorem yields solutions of the G5 em-

bedding problem.

THEOREM 4.16. Let 9 be a real analytic hypo Ga-structure on the compact

manifold M7. Then the intrinsic torsion flow
At =3T,0 A,
Ap=id
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has a unique real analytic solution A : (—e,e) x M — End(T'M). Moreover, the

solution A; is of the form
AN
A=) 54
k=0

where the series converges in the C*°-topology on C*°(End(T'M)).

Proor: To apply Theorem 2.11 we have to show that the map
X :C*¥(Awt(TM)) —» C*°(End(TM)) with XoA:=3T(Ap)o A

is a real analytic first order differential operator in the sense of Definition 2.10. For
this choose local coordinates v : U € M — R, for which ¢ is real analytic. These
coordinates induce a local trivialization (7, v) of the bundle 7 : End(TM) — M via

7
v(A) :={api}ki=1.7, where A= Z aprduy ® i € End(TM).
’ k=1 O

For a fixed local section A =" apduy ® 6%[ : U — Awt(TM) write

7
0
XoA=3T(Ap)o A= E:ﬂwma®5£.
a,b=1
Now it suffices to find an expression
Oayy

1 ab — Ga ) v o
(1) Jab b(u, ap an)

for the coefficients fyp : U — R, where Gg : D C R” x R* x R3*3 — R is real
analytic. The formula

VA9 A = —3T (Ag)5(Av)
from Proposition 3.38 shows that the intrinsic torsion is a first order invariant of the
Go-structure and hence we can find an expression of the form (1) that is actually

polynomial in a; and %“L’il , and real analytic in u, since the initial structure is real
J

analytic.
O

LEMMA 4.17. Suppose 1 is a Ga-structure on M and F € Diff(M). Then the

intrinsic torsion satisfies

T(F™) = F*T($) = F7 T($)Fe.

ProoFr: By Koszul’s formula we have

F.(VY9Y) =V (FY.
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Hence we get
(VE 9P ) (X1, X2, X3, X4)
= X - (F*¢)(X1, X2, X3, X4)
— (F*) (VR 9X1, Xp, X3, X4) — (F*)(X1, VE 9X,, X3, X4)
— (F*9)(X1, X, VE 9X3, X4) — (F ) (X1, X2, X3, VE 9X,)
= F.X -(F. X1, F,Xs, F. X3, F,X4)
— (Ve x P X1, Fu X2, Fu X3, FuXy) — O(F X1, Vi x Fu X2, Fu X3, FuX4)
— P(F X1, P X0, VY X5, FuX4) — O(F X1, Fu Xo, Fu X3, VY F.X4)
= (V% x¥)(F. X1, F Xo, FL X3, F.Xy)
= F* (V4 x¥) (X1, X2, X3, Xy).
From Proposition 3.38 we know that V% = 3(7 (¢)1g) A ¢ holds, which gives
3(T(F )X F*g) N Fro = Vi 9(F*y) = F* (V% )
=3F"((T (V) Fi X g9) A )
=3(F7 ' T(Y)F.X1F*g) A F*op

and the Lemma follows from the non-degeneracy of F™*p.

LEMMA 4.18. Suppose 1 is a Ga-structure on M7 = S x .. x §* x M7~* which
is the hypo lift of some SU (4 — k)-structure on M7~*. Then the Ricci tensor Ric
of the metric g = g(¢) satisfies for each S!-direction %

. .0 .
L%Rlc:Rlc%:dﬂoRlc:O.

The intrinsic torsion 7 satisfies

7]

and df o T = 0 if the structure is hypo.

PROOF: If 1 is the hypo lift of some structure on M7~* then g = df? + .. + d@,% +
g7, for some metric g7_p on M7~F. Hence the Ricci tensor satisfies Ric% =0,
df o Ric = g(%,Ric) = g(Ric%, )=0
and
d

. f Ty _d C ey d . _
L 4 Ric = Ts - ®*Ric(g) = Ts . Ric(®rg) = Ts - Ric(g) = 0.

From Proposition 3.2 and Lop = Vg% = 0, we get T(%) =0, ie. T% = 0.
Lemma 4.17 and L%w = 0 imply L%T = 0. If the structure is hypo, i.e. 7 is
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symmetric, we get in addition
0 0

@90 T = g5, T) = 9(T 55

90 =0

LEMMA 4.19. Suppose ¢ is a Ga-structure on M7 = S x .. x ST x M7=* which is
the hypo lift of some SU (4 — k)-structure on M7—%. If A € C°(Aut(TM)) satisfies

0 0
aei:a—ei, df; o A=4df; and LaagiAzo,

then At is still the hypo lift of some SU(4 — k)-structure.

PROOF: By Lemma 4.11 we have L o (At)) =0 and

a6

i

(49) g ) = gl A7) = B, (A7 X) = d,(X) = g 3=, ).

Now the Lemma follows from Lemma 4.11.

We can now state the main result of this section.

THEOREM 4.20. Suppose 1 is a real analytic hypo Gy-structure on M = S x
. x ST x M"*_ which is the hypo lift of some SU (4 — k)-structure on M7~*. Then
the solution A; of the intrinsic torsion flow from Theorem 4.16 satisfies
0 0
At% = 6701" d&l o At = d92 and Laaei At =0.

In particular, A% is the hypo lift of some family of SU (4 — k)-structures on M7—F.

PRrROOF: We apply Corollary 2.4 with the following dictionary,
(1) F:=C°>°End(TM)) x C°(End(TM))

(2) U = C®(Aut(TM)) x C=(End(TM))

3) £€={(B,T)eF|0=Lo B=L_o T and

B 9
0= Bagi =T =db;(B) =db;(T)}

(4) X :U — F is defined w.r.t. the initial metric g,
Xla1) = (3T 0 A, —3Ric(Ag) + 3tx(T)T).

(5) ct) = (A, To).

Note that & C F is open by Example 2.1. X is smooth and £ C F is closed, since
differential operators are smooth by Example 3.6.6. in [34]. By Proposition 4.12,
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Theorem 4.13 and the definition of A, the curve c¢(t) is an integral curve of the
vector field X. From Lemma 4.18 we get ¢(0) = (id, 7y) € &5, where f := (id,0) € F.
Now it suffices to show that X is tangent to U N &y, i.e.

Xiung; :UNEs — E.
For (A=1id+ B,7) € U N &y we have
0 0
ael 2879717 d@zoA:d@ and LaiglA:O
By Lemma 4.19 we see that A is still the hypo lift of some SU(4 — k)-structure
and Lemma 4.18 yields

. . 0
Lae;i Ric(Ag) = Ric(Ag) 26,

Now we can easily verify that X(A,7) € €,

= df; o Ric(Ag) = 0.

e Lo (ToA)=0and L o (—3Ric(Ag) + 3tr(T)T) =0,

2
04

)
a6, ]

eTo Aa%i =0 and (—1Ric(Ag) + 3tx(T)T) a(zi =0,

e d6;(T o A) = 0 and db;(—1iRic(Ag) + 3tr(T)T) =0

and the Theorem follows.

REMARK 4.21. The property L 2 A; = 0 from Theorem 4.16 is a consequence
of the diffeomorphism invariance of the evolution equation A; = 37; o A;. In fact,
Lemma 4.17 shows that B, := ®%A; also solves Ay = 3T, 0 A;, where ®, is the
flow of %. Since @4 is real analytic, the uniqueness part of Theorem 4.16 yields
Ay = DA, de. L%At =0.

We can now solve the embedding problem for real analytic hypo SU (4—k)-structures
on M™% by reducing it to the embedding problem for real analytic hypo Ga-
structures on M = S' x .. x S' x M7%. Namely, the hypo lift of the initial
SU (4 — k)-structure yields a real analytic hypo Ga-structures on M. Theorem 4.16
yields a solution A; of the intrinsic torsion flow. By Theorem 4.20 the family of
Go-structures ¢, = Ay is still the hypo lift of some family of SU (4 — k)-structures.
Now Lemma 4.10 proves that the family of SU(4 — k)-structures is a solution of
the embedding problem.

COROLLARY 4.22. For any real analytic hypo SU(2), SU(3) and G-structure on

a compact manifold, the embedding problem admits a unique real analytic solution.

97



Moreover, the solution can be described by a family of gauge deformations

[e'e) tk .
A=Y EAg ),
k=0 """

where the series converges in the C*°-topology on C*°(End(T'M)).

An alternative to solve the Ga-embedding problem is to apply the Cauchy Kowa-
levski Theorem 2.11 directly to the initial value problem z/}t = dpy with ¢y = ¢. To
obtain a solution for the SU(2) and SU(3) embedding problem, it suffices to prove
that the family of metrics g; = g(1);) leaves S*-directions orthonormal, cf. Lemma
4.11. With Lemma 3.29 this condition can be translated into

%Jwt ANX o N = gdf)(X)got A Py
But this condition is nonlinear and hence we can not apply Corollary 2.4, which
was tailor-made to prove that certain linear conditions are preserved. Considering
instead the system 4.13 allows us to express the requirement on the S!-directions

in terms of the linear condition ’]}% =0.

THE NEARLY Hyro CASE

In this section we study the embedding problem for nearly hypo SU(2) and SU(3)-
structures. Like in the hypo case, one would expect that the nearly hypo evolution
equations for SU(3)-structures correspond under the hypo lift to the nearly hypo
evolution equations for SU(2)-structures. A direct computation shows that this is
not the case, which is due to the particular coefficients in the SU(2) evolution equa-
tions, coming from the nearly K&hler condition. Due to this deficit we will treat

both scenarios separately, starting with the SU(3)-case.

THEOREM 4.23. For any real analytic nearly hypo SU(3)-structure (o, p) on a
compact manifold, the embedding problem admits a unique real analytic solution.
Moreover, the solution is of the form
Lk o Lk
&k £ )
or=> o0 and pr=3 np,
k=0 k=0

where the series converge in the C'*°-topology.
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PROOF: We can apply the Cauchy-Kowalevski Theorem 2.11 directly to the SU(3)-
evolution equations from Proposition 4.6. To see this, note that the components of
the tensors w and p can be computed as polynomials in the components of o and
p, and that in local coordinates, the exterior derivative can be expressed as poly-
nomials in the directional derivatives. Now Theorem 2.5 from [49] shows that the

evolution equations already guarantee the SU(3)-compatibility conditions.
O

Similarly, we can apply the Cauchy-Kowalevski Theorem 2.11 directly to the SU(2)-

evolution equations from Proposition 4.6 and obtain

THEOREM 4.24. For any real analytic nearly hypo SU(2)-structure (wq, p2, p3)

on a compact manifold, the evolution equations
w1 = da + 6Aws,
p2 = dws — 8 a A wr,
p3 = —dws

admit a unique real analytic solution. Moreover, the solution is of the form
~tF & ~tF (k
wit) =3 i) and  paylt) = Y Sl 0),
k=0 k=0

where the series converge in the C'*°-topology.

To solve the embedding problem for nearly hypo SU(2)-structures one has to show
that the family of tensors from Theorem 4.24 actually defines a family of SU(2)-
structures, i.e. (w1, p2,ps) has to satisfy the compatibility conditions from Pro-
position 3.7. Since this conditions are nonlinear, we can not apply Corollary 2.4.
Nevertheless, one might ask whether there is an analogue of Theorem 2.5 [49] for
the SU(2)-case. The main difference between the SU(2) and SU(3)-case is that
a reduction to SL(3,C) in dimension six can be described by a single 3-form p
and hence involves no compatibility conditions. In dimension five, reductions to
SL(2,C) correspond to triples (o, ws,ws) which have to satisfy certain compatibili-
ty conditions. Another SU(3)-specific ingredient in the proof of Theorem 2.5 [49] is
that w A p = 0 is actually equivalent to w A p = 0. Therefore we can not expect that
the evolution equations in the SU(2)-case imply all of the desired compatibility

conditions.
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5. Riccl FLOW FOR (G3-STRUCTURES

By Yau’s proof of the Calabi conjecture, every Kéhler structure (w, g) on a complex
manifold (M, I) with ¢; = 0, admits a unique Ricci flat Kéhler structure (@, g) with
[©] = [w]. The restricted holonomy group of a Ricci flat Kéhler structure is contai-
ned in SU(n) and hence the Calabi-Yau theorem can be regarded as an existence
result for manifolds with special holonomy. Cao [17] gave an alternative proof of the
Calabi conjecture, using Hamilton’s Ricci flow. We use gauge deformations to ex-
tend the K&hler-Ricci flow to a deformation of SU(3)-structures and characterize in
Theorem 5.13 the conditions for the flow to converge to a parallel SU(3)-structure.
Today a Calabi-Yau theorem is still missing for the G2-case. The only result in this
direction is a theorem due to Joyce, which is tailor made to prove the existence
of parallel Go-structures on certain resolutions of 77/T", cf. [39] Thm. 11.6.1 and
Chap. 12.

The condition ¢; = 0 is equivalent to the existence of a (topological) SU(n)-
reduction of the Kéhler structure. From this point of view, the candidates to apply
the Calabi-Yau Theorem in dimension six are SU(3)-structures with intrinsic torsi-
on 7 2 1, i.e. the Kéhler part 7 of the intrinsic torsion vanishes, cf. Theorem 3.28.
This observation suggests that for Gs-structures the condition ¢; = 0 is already
encoded in the topological reduction to the structure group G>. So the actual task
at hand is to find the analogue of Kéhler SU(3)-structures for the Ga-case. Joyce
calls Kéhler SU(3)-structures almost Calabi-Yau structures, cf. [38] Def. 8.4.3. His
proposal for a Ga-analogue are almost Ga-structures, satisfying dp = 0, cf. [38]
Def. 12.3.3. In our opinion, this is a disputable choice, since by Lemma 3.36 and
Proposition 3.38 we have

dp=0 <& T €ga,

whereas for the SU(3)-case the Kéhler condition becomes 7 = 0. The proof of
Theorem 3.28 actually shows that

dw=dp=0 < T €sug and n =0,

which should therefore be regarded as the SU(3)-analogue of dp = 0. A second
glance at the intrinsic torsion shows that it is difficult to exhibit a Fernandez-Gray
class of Ga-structures that corresponds to Kéhler SU(3)-structures. The reason for
this is that the structure tensor ¢ of a Ga-structure contains information about the
Kahler form w, but as well about the complex volume element p. This is manifested
in the formula ¢ = p + df A w and suggests that it is not advisable to translate
dw =0 or Ny = 0 into conditions like dy = 0 or di) = 0.

Another reason why Ga-structures with dp = 0 are inappropriate candidates for

Kahler Ga-structures is a result due to Bryant, Cleyton and Ivanov. Namely, any
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Ricci flat Go-structures with dp = 0 is already parallel. In contrast, Ricci flat Kéh-
ler structures have only restricted holonomy contained in SU(3). All this assures
the suspicion that non of the Ferndndez-Gray types is a an appropriate candidate.
Instead of searching a Kéahler Ga-analogue, one can more generally ask for Kahler
structures in dimension seven. In chapter four we already discussed that Sasakian
structures are at least not a natural choice for Kéhler structures in odd dimension.
Sasakian Ga-structures are even less suitable as Kdhler Go-structures, since they do
not allow parallel tensors or Ricci flat metrics. The only remaining candidates are
Kahler SU(3)-structures from Theorem 3.46, which do not belong to a particular
Fernandez-Gray type.

In this chapter we find a unifying description for the Ricci flow, the Ké&hler-Ricci
flow and the extension of the K&hler-Ricci flow to SU(n)-structures. This descripti-
on extends naturally to G and Spin,-structures and allows us to define a universal
Ricci flow. We prove existence and uniqueness of this flow. Another result is the
description of a fibrewise Kéhler-Ricci flow, whose limit metrics can be resembled

to a Ricci flat metric on the ambient sevenfold.

KAHLER GEOMETRY

Let (M, I) be a 2n-dimensional manifold, equipped with an almost complex struc-
ture I. If we extend I to an endomorphism of the complexified tangent bundle

TM ® C, we obtain a decomposition of TM ® C into eigenspaces of I:

TOEONM .= {X —iIX | X € TM} = Eig(I,1),
TOYNM .= {X +iIX | X € TM} = Eig(I, —i).
Moreover, we define
TEO*M . ={a e 'T*M ® C | a(Z) =0, for all Z € TV M}
={a—iaol|ae€A'T*M},
TOY N . ={a e A'T*M @ C | a(Z) = 0, for all Z € T M}
={a+tiaol|ac A'T*M}.
Note that if we consider I as an endomorphism of T*M via
Ia:=—aol,
we have T(1:0* M = Eig(I, —i) and T®V* M = Eig(I,). Denote by A9 respec-
tively A(©P) the p'" exterior power of T(19* M | respectively T(0D* M,

AP = APT@EO* A and AOP) .= APTOD*pp
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and let APD := AP0 @ A9 such that
M MeC= AP
pta=k
Sections of A9 are called (p, q)-forms and the bundle
K = A™0)

is called the canonical line bundle of (M, I).

We now turn to the case where the almost complex structure is integrable, i.e.
N; = 0. By the Newlander-Nirenberg theorem, the condition N; = 0 is equivalent
to the existence of an atlas of complex charts with holomorphic transition functions.
Given such a chart z =z +1iy : U — C", defined on some open domain U C M, we
define:

where
Zj = ({; = ;(({; zaayj) e TN,
Z; = (,Zj = ;(a‘; + zi) e 7OV,
since 9 9 9
oy oy M oy T T

N7 = 0 is also equivalent to the condition that the exterior derivative defines a map
d: COO(A(P"J)M) N C’OO(A(”H"?)M e A(P,q+1)M)7

for all 0 < p,q < n. The projection onto the (p + 1,q) (resp. (p,q + 1)) component
defines operators  (resp. ) such that

d=0+0.
Moreover, we define the operator

¢ = i(d - 9),

which is actually a real operator, i.e. d°« is a real (k + 1)-form if « is a real k-form.

The following formulas are an easy consequence of d> = 0 and the above definitions,

9?=09*>=00+ 00 =0,
(d°)? = dd° + d°d = 0,
1 = 1 3
9 — §(d+idc), 0= 5(d— id®) and dd° = 2i00.
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Note also that for f: M — R always
Idf = 1(0f + 0f) = —idf +i0f = d°f

holds.

LEMMA 5.1. Let 5 be any 1-form on the complex manifold (M, I). Then d°n =0
if and only if d(In) = 0. In particular, d°-closed 1-forms are locally d®-exact.

PROOF: Write ) = 110+701 according to the decomposition A'T*M = ALOT* M@
AODT*M. Then d°n = i(d — d)n = 0 if and only if
(1) Ao = dnor = o1 — dmo = 0.

Since In = —inyg + ino1, we see that dIn = (0 + 9)In = 0 is also equivalent to (1)
and the first part of the Lemma follows. Now for d°n = 0, we have by the Poincaré

Lemma In = du, for some local function v : U C M — R. Hence

n=—Idu=d°(—u).

A proof of the next lemma can for instance be found in [3].

LEMMA 5.2. Let (M, I) be a complex manifold and w a real (1,1)-form on M.

(i) w is closed, if and only if each point in M has an open neighborhood U,
such that
W = i00u,

for some real function u : U — R.
(ii) Suppose that M is compact. Then w is exact, if and only if
w = i00u

for some real function u : M — R.

For a compact Kihler manifold M, the equation 0u = 0 implies that u is constant.
Hence the second part of Lemma 5.2 states that the Kahler metrics on a compact
complex manifold (M, I'), within a fixed K&hler class, are parameterized by smooth

real valued functions on M.

From VY9I = 0, we see that the curvature operator of a Kéhler structure satisfies

R(X,Y)IZ =IR(X,Y)Z,
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and hence
R(IX,IY,Z,U)=R(X,Y,Z,U)=R(X,Y,I1Z IU),

forall X,Y, Z,U € C°°(TM). Then the Ricci tensor ric(X,Y) = 2321 R(E;, X,Y,E;)
satisfies
ric(IX,1Y) =ric(X,Y) and Ricol =1TIoRic,

which shows that
o(X,Y) :=ric(IX,Y)

defines a 2-form on M, which is called the Ricci form of the Kéhler structure.

PROPOSITION 5.3. Let (g,w, ) be a Kéhler structure on M with Ricci form p.

In local coordinates z : U — C" we have
0= —i0dIn det(g;z) and ric = —90In det(g;z)-

Moreover, dp = 0 and [9/27] = ¢1(T'M) equals the first real Chern class of M.

ProOOF: VY9I =0 implies
VY, 2y =V% Zr =0
and the unmixed Christoffel symbols are defined by

VY, 2= Tz and VY Zy=> T2,
l l

Since
Rip = R(Z;, Zi, Z)) = —V%kV%jZl — Z (c’%c T3) Zs,
we have
1) Ry == T,
Writing G := (g,3), we compute
iln det(G) = tr( G G

aZj (“sz

and

oG _,_ _ =\ e s -
(aG l)kz = Z(Z )Gy = ZQ(VngZkvzr)Grll = erkGSTGrll = Fé’k?
J r T8

i.e.

o
(2) 5o det(G) = >k
l

J

Putting together (1) and (2) we obtain

0 o 0
. I S l _ l _
(3) ric;j = ricg; = % Ry, =— El B T = “ 95 az; In det(G).
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Since ric(I., I.) = ric, we see that ric;; = ricj; = 0 and hence

0= ZZ ric;pdz; A dzy,
jk

[ 771 . =
’LZ 2 02, n det(G)dz; A dzy

= 268111 det(Q)
— —i9dn det(G).

The identities for the operators 9 and 0 show that in particular dp = 0 holds. Since
tr(A + iB) = itr(B), for an element A +iB € u(n), we obtain for the curvature,
regarded as a u(n) valued 2-form,

R(X,Y) —@Zg (X,Y)E;, IE;).
Now the first Bianchi identity gives

o(X,Y) =ric(IX,)Y) = zn:g(R(Ej,IX)Y, E;)+ g(R(IE;,IX)Y,IE;)
= Zg(R(Ej,IX)IY, IE;) — g(R(IE;,IX)IY,E;)

= Zg(R(IX, E;))IE;, 1Y)+ g(R(IE;,IX)E;,IY)

j=1
=—> g(R(E;,IE))IX, 1Y) = =Y g(R(E; IE;)X,Y)
j=1 j=1

= - g(R(X,Y)E;,IE;) = itr(R(X,Y))

and hence

& (TM) = [-tx(R)] = [l

PROPOSITION 5.4. Let (g,w, I) be a Kihler structure on M with canonical bundle

K. The curvature of the Levi-Civita connection on K satisfies
R(X.Y)® = io(X,Y)®,

for all sections ® € C°(K) and vector fields X,Y € C°°(TM). In particular,

ie] = [l

(k) = | =
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ProOF: The Levi-Civita connection induces a connection on A"T*M ® C and,
since V91 = 0, a connection on K C A"T*M ® C. The curvature R of the Levi-
Civita connection on A*T*M ® C acts by derivation, i.e.

d
X, Y)w= —
R(X,Y)w g

exp(tR(X,Y))w,
t=0

for w € C°(A*T*M ® C). Hence we get for a complex volume form ® € C*°(K)
R(X,Y)® = 4
’ Cdt
d
— detc(exp(—tR(X,Y))®
dt|,_o
= —tr(R(X,Y))®

= io(X,Y)d,

exp(tR(X,Y))®
t=0

as we have seen in the proof of Proposition 5.3.

PROPOSITION 5.5. Suppose (g,w, I) is a Kéhler structure on M with Ricci form
o and first real Chern class ¢ (T'M). Then

(1) a(TM)=0 < [o=0 < (g9,w,I)isa Kihler SU(n)-structure
(t5) ric=0 & =0 < Holg(g) C SU(n)

PROOF: By Proposition 5.3 and 5.4, we have ¢;(TM) =0 < ¢1(K) < [o] = 0.
Since the first Chern class is a complete invariant for complex line bundles, i.e. the
first Chern class ¢; € H%(M;Z) classifies the line bundle up to isomorphism, we see
that ¢; (K) = 0 is equivalent to the existence of a global section ® = p+ip € C*(K)
of unit length. Such a section corresponds to a further reduction of the Kéahler
structure to a (topological) SU (n)-structure.

For the second equivalence in (ii) recall that ig is the curvature of K by Proposition
5.4 and that the vanishing of the curvature is equivalent to the existence of local
parallel sections in K. This can be seen as follows: Fix p € M and an element
®( € K, of unit length. For U C M open and simply connected, we define a local
section @ : U — K as follows: For ¢ € U choose a curve ¢ : [0,1] — M with ¢(0) =p

and c(1) = ¢. Parallel translation of ®, € K, along c gives an element
®(q) € K.

Since ric = 0, the canonical bundle has Holy = {1} by Proposition 5.3 and the
Ambrose-Singer Theorem. Therefore ®(¢) € K, is independent of the choice of ¢
and we obtain a well-defined section ® : U — K, which is of unit length and par-
allel.

O
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CA0’S SOLUTION OF THE CALABI CONJECTURE

Let (g,w) be a K&hler structure on a compact complex manifold (M, I) with Ricci
form ¢ and first real Chern class ¢y (TM). Hamilton shows in [35] that the initial
metric can be evolved under the Ricci flow g¢ = —2ric; for a short time ¢t € [0,T).
Hamilton [35] also mentions that the solution of the Ricci flow actually yields a who-
le family of Kdhler metrics {g:} on (M, I). In order to prove the Calabi-Conjecture,

Cao [17] considers the following Kéhler-Ricci flow on the complex manifold (M, I)
gt = —2rict — QT(I, .),
1
( ) wt = _2Qt + 2T7

where T is a real (1,1)-form such that [T/27] = ¢;(TM) = [p/27]. By Lemma 5.2
(ii) we can find f : M — R such that

(2) T — o = id0f.

To solve (1), we try to find a solution of the form
(3) g := g —i00us(1.,.),
or equivalently,

(4) Wi := w + i00uy,

where u; : M — R is a smooth family of functions on M. Note that 2i00u; = dd u,
is actually a real (1,1)-form and that w; — w is exact, i.e. [wy] = [w]. In local

coordinates we have

= o 0
5 := —i00In det(gt(=—, =—
) 00 = 00 det{gy(5—, 52)
and we see that w; = —2p; + 2T becomes
901, = 200In det(g,7, + s, 9m ug) — 200In det(g;z) + 200 .

Equivalently, by the maximum principle,

. 0 0
(6) iy = 2In det(g;; + 9z o5 “ug) — 2In det(g;z) + 2f.

So (1) can be reduced to the scalar equation (6), which is actually a complex
Monge-Amperé equation. Cao studies this equation in [17] and his main result can

be summarized in the following

THEOREM b5.6. Suppose (g,w) is a K&hler structure on the complex manifold
(M, I) and that T/27 is a closed real (1,1)-form which represents the first real
Chern class ¢; (T M) of M. Then the solution of

gt == —2rict - 21—'(17 )
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exists for all times ¢ € [0,00). As t — o0, the solution ¢g; converges in the C°-
topology to a Kéahler metric g, within the same Kéahler class as the initial metric.

Moreover, §; converges in the C'°*°-topology to zero.

REMARK 5.7. Since g; converges in C*°-topology to the metric g, the Ricci
tensor ric; = ric(g:) converges to the Ricci tensor of the metric ¢go.. Taking the
limit of g = —2ric; — 2T'(1.,.), we conclude that the Ricci form of the metric g is
equal to T'. Hence Cao’s Theorem can be used to prove the existence statement of

the Calabi conjecture.

AN EXTENSION OF CA0’s RESULT TO SU(n)-STRUCTURES

From Proposition 5.5 we know that Kihler SU (n)-structures are precisely the Kah-
ler structures with vanishing first Chern class. In this case Cao’s Theorem yields
a Ricci flat K&hler metric. On the other hand, Proposition 5.5 also tells us that
Ricci flat Kéhler structures are precisely the Kdhler structures with local holonomy
contained in SU(n). This brings up the question whether the Ricci flow for U(n)-
structures in Theorem 5.6 can be extended to a deformation of SU(n) structures,
such that the limit structure has holonomy contained in SU(n). In the following

we will discuss an approach to extend the Kéhler-Ricci flow to SU(n) structures.

DEFINITION 5.8. (i) Suppose that (g, w;) is the solution of the Kéahler-Ricci flow
on (M, I) with initial data (g,w). By Example 1.8 we can find a gauge deformation

A; which is symmetric and positive w.r.t. ¢ and satisfies
(9tswi, I) = As(g,w,1).
We call A; the corresponding gauge deformation for the Ricci flow (g¢, wy, I).
(i) If the initial structure is a K&hler SU(n)-structure (g,w,p), we obtain a 1-
parameter family of Kéhler SU (n)-structures by
pt = Agp.

We call (g¢,wr, pt) the canonical extension of the Kéhler-Ricci flow to the SU(n)-
Kihler structure (g,w, p). From A, = IA; and p € AG9 wr.t. I, we get

pr = Arp = dete(A; ),

where detc(A; ') € R, since A, is hermitian.
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An alternative to the canonical extension of the Kéahler-Ricci flow is motivated by

the following observation: Since
2n
D, (Ric) = — ZEl ARic(E;)w = —2pr,2(I o Ric) = —2p,
i=1

the evolution equation w; = —2p; can be reformulated as
wt = Dy, (Ricy).
Similarly, D,, (Ric;) = —2ric; gives
g+ = Dy, (Ricy).
Hence any initial SU(3)-Kéhler structure (g,w, p) should evolve according to

(gt7 wt, pt) = (Dgt (Rict)’ Dwt (Rict)’ DPt (Rlct)) = D(gt,wt,Pt)<RiCt)

and indeed we have

THEOREM 5.9. The canonical extension (g, ws, p:) of the Kéhler-Ricci flow to
SU(3)-structures satisfies

(g.“wt’p.t) = D(gtywt7pt)(RiCt).

PrOOF: We have already seen that the equations ¢, = D, (Ric;) and w, =
D, (Rict) hold for the canonical extension (g¢,wt, pt) = Ai(g,w, p) of the Kéahler-

Ricci flow. By Lemma 1.14, Lemma 1.16 and Lemma 3.23 we have
gt = Dy, (Ricr) & Dy, (AA7) = Dy, (Ricy)

& prg= (A A1) = Ricy,
Wy = Dy, (Ricy) ¢ Dy, (AiA7") = Dy, (Ricy)

< Pryt (A4A7") = 0 and Pryige rosus (AeAr ) = Prrige e, (Ric),
where all projections are taken w.r.t. the structure (g, ws, p¢). Similarly, the equa-
tion g, = D,, (Ric;) is equivalent to
(1) Prytorn, (ArA; ') =0 and  pregesz (AiA; ") = prygesz, (Rict).

By Example 1.8 we have A;] = [ A; and AT = A; w.r.t. the initial metric g. Since

the complex structure is preserved, we get
prag, (AAr ) = (AAT L 1) = —te(AA ) = —tr((A,41D)T)
=tr(TA; 1 Ay) = tr(A; M TAy) = tr(A A7)
= _erIU(AtAt_l)'
So prgy, (At A; ') = 0 and since already prg»(A;A; ') = Ric; and PryL (A A7) =0

holds, the evolution equation g, = D,, (Ric;) follows from (1).
O
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LEMMA 5.10. Let A; be the gauge deformation corresponding to the Ricci flow
(g9t,we) on (M, I). Then for local holomorphic coordinates z on M

o 0 o 0
— —)) = A2 _—
dete(gn(- 5) = dete(A7) detelo( 5 -

PROOF: First observe that

0 1 0 0
=g, =—) == g(, =) —igi(., =) oI ) € T*EO 01
Q| gt( ) 62k) 2 <gt( ’ a.’L'k) th( ’ axk) © > €

and that for ®; := ;1 A .. Ay, € AOT*M

0 0 0 o 0

—_— ., ) = —)) = det _—
82’1’ ’azn) detc(atﬂf( )) de C(gt(azja 82]@

@ 0z;
j

)

holds. From ¢; = A,g and A; € S? w.r.t. g, we get

_ 4 0 _ 0
O = Q(At 1~7At 137513) = Q(At 2» 87216) = Afaka
ie. & = A?® = detc(A;%)® and hence
g 0 0 0 o 0
— —)) =detc(AH)P(—, .., —) = detc(A; 2 _—
det(c(gt(azj? 82]@)) de C( t ) (821’ 7821”) € (C( t )detc(g(azja 85]€

LEMMA 5.11. Let A; be the gauge deformation corresponding to the Ricci flow
(g9¢,we) on (M, T). Then the Ricci form p; of the metric g; satisfies

0 — 0y = ddIn detc(A;1).

PRrROOF: By Proposition 5.3 and Lemma 5.10 we have in local coordinates
0y = —i00In detc(g, jz)
= —i9dln (det(c(AtQ) detc(gjk)>
= —2i9dIn (detc(A; 1)) — i0dIn detc(g,z)
= —ddIn detc(4; ") + 0.

LEMMA 5.12. Suppose (g,w,p) is a Kdhler SU(3)-structure on (M, I) with int-

rinsic torsion 7, cf. Definition 3.24. Then the Ricci form satisfies
0 = —3dn.
ProOF: The Lemma is a special case of Lemma 3.3 in [15]. The Kéhler condition

¢ = 0 (in the notation of [15]) yields Ric = —3df), where 7 & —n in our notation,
since the intrinsic torsion is defined in [15] by V = V + 7 + &, where V is the
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covariant derivative of the characteristic SU(3)-connection and V is the Levi-Civita
connection. Since Cabrera and Swann use the opposite sign convention for the

curvature tensor, we obtain in our notation

o(X,Y) =ric(IX,Y) = —ric(X, IY) = 3dn(X, I*Y) = —3dn(X,Y).

We can now describe the condition under which the canonical extension of the
Kahler-Ricci flow yields a parallel SU(3) structure:

THEOREM 5.13.  Suppose (g,w, p) is a SU(3)-Kéhler structure on (M, I) with
intrinsic torsion 7, cf. Definition 3.24. Then the canonical extension of the Kéahler-

Ricci flow converges to a parallel SU(3)-structure on M if and only if d°n = 0.

ProOF: By Cao’s Theorem the Kihler-Ricci flow converges to a Ricci flat K&hler
structure (goo,woo) on (M, I). If Ao denotes the corresponding gauge deformation,

we have
poo = detc (AL )p.
The SU(3)-structure is parallel if and only if dps, = 0 holds. By Proposition 3.25

we have

d(dete(AL)) A p+ detc (AL )dp
d(detc(A)) A p+ 3detc(A ) n A p
d(detc (A1) A p — 3dete (AN In A p.

dpso

(
(

From the non-degeneracy of p we see that dp., = 0 is equivalent to
0 = d(detc(AZ})) — 3detc (A In
(1) & 0=d(detc(ALY)) + 3detc (Al )n
& 0=dIn(detc(A)) + 3n.

So dpss = 0 implies d°n = 0. If conversely d°n = 0 holds, we can find by the Poincaré
Lemma 5.1 a local function u : U C M — R such that n = d°u. By construction,

the metric g, is Ricci flat and hence we obtain form Lemma 5.11
0 = dd‘In detc(AL).

By Lemma 5.12 we have o = —3dn and so

1 1
ddu = dn = —30= fgddcm detc(AZL).
Hence —3u = In detc(AL!) + ¢, for some constant ¢ € R. So —3n = —3d°u =

d°In detc(AZ!), which yields (1).
O
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UNIVERSAL Riccit FLow

In the previous section we have seen that the Ricci flow for O(n) and U(n)-
structures, as well as the canonical extension to SU(n)-structures, can be described

in a unified way, using the map from Lemma 1.14:

O(n) : g+ = Dy, (Ricy)
U(n) : (G, W) = D(g, w,)(Ricy)
SU(’IL) : (gt,wt,ﬁt) = D(Qmwupt)(RiCt)

This motivates the conjecture that for a given Ga-structure ¢ on M with sufficiently

small torsion, the flow
(1) ¢t = Dy, (Ricy)

should converge to a Ricci-flat Ga-structure. Similar flow equations can be conside-
red for Spin,-structures, or more generally, for any G C O(n) structures, described
by certain structure tensors. Like in the proof of Theorem 4.13, we see that the
metric of the underlying structure evolves according to the Ricci flow g, = —2ric;.
In contrast to the Ga-case, the orbit of the model tensor is not open in the Spin,-
case. Hence it is not obvious that a Spin-structure evolving according to (1) ac-
tually defines a whole family of Spin,-structures. To avoid this problem, we can
translate the above flow equation into an equation for a corresponding family of
gauge deformations. By Lemma 1.16 we have D, (AtAt_l) = ¢y, for ¢ = Ayp.
Hence a solution of A; = Ric; o A; yields a solution p; = Az of (1).

THEOREM 5.14. Let (M, g) be a compact Riemannian manifold. Then there exists
a unique solution A; € C*°(Aut(T'M)), t € [0,T), of the initial value problem

At = RiCt o At
Ap=1id

PROOF: Since M is compact we can find a solution g, t € [0,T"), of the usual Ricci

flow

(1) g = —2ric;  with  g4—¢ = go.

Given an orthonormal basis p = (E1, .., E,) for g, we can solve the linear ODE
(2) E;(t) = Ric, 0 E;(t) with E;(0) = E;

fori=1,..,nand t €[0,7). From (1) and (2) we get

@ (g (But), B3 (1)) = ~2ricu(Bi(0), By (1) + vica (Ei(t), E; (1)) + vics (Ei(t), By (1)

dt
= O’
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ie. p == (Eq(t),.., En(t)) is actually an orthonormal basis w.r.t. the metric g;.
Modifying the initial basis p by an element B € O(n) yields a new basis pB given
by

Ei = pBei = Zb”EJ
j=1

Hence E;(t) := > i—1 bij E;(t) satisfies E;(0) = E; and
d - - : L
pn E;, = Z bijRic; o E;(t) = Ricy o E;(t).

J=1

Since the solution of (2) is unique, we get
(3) (pB): = pB,
for all B € O(n). For t € [0,T") define
Ay FIM — Aut(R™) by  Ay(p) :=p top.
Equation (3) shows that A; is equivariant,
Ay(pB) = (pB) topioB=Btoptop,oB=B"1Ap)

and hence corresponds to an element A; € Aut(T M), given by

AE; = E;i(t).
Now
(Aego) (Ei(1), Bj(1)) = go(A;  Ei(t), Ay E4(t))
= 9o(Ei, Ej)
= g:(Ei(t), E;(1))
shows that
(4) Ago = g1

holds. From (3) we get Ric; = Ric(g¢) = Ric(Aigo) and (2) becomes
E,L(t) = RlC(Atgo) o El(t) 54 Ath = RlC(Atgo) o AtEi7

i.e. At = RlC(Atgo) o At.

DEFINITION 5.15. Let (M, g) be a compact Riemannian manifold of dimension

n and let A; be the unique solution of
At = RiCt ] At
Ay =id

from Theorem 5.14.
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(1) We call A; the universal Ricci flow for (M, g).

(2) If n = 7 and g = g(p), where ¢ is a Ga-structure on M, then we call
¢ := Az the Ricci flow for .

(3) If n =8 and g = g(¥), where ¥ is a Spin,-structure on M, then we call
W, := A; V¥ the Ricci flow for W.

Note that the Ricci flow satisfies by Lemma 1.16

G2 : (‘bt = Dsat (RiCt),
Spiny : ¥, = Dy, (Ric;).

In contrast to the usual Ricci flow equation, the equation A; = Ricy o A; is not
invariant under the full diffeomorphism group of M. Nevertheless, A, = Ric; 0 A, is
invariant under the group Isom(M, g) and hence any isometry of the initial metric

is preserved under the flow.

REMARK 5.16. We proved in Theorem 5.9 that the canonical extension of the

Kahler-Ricci flow already satisfies the evolution equation

(g.t’wt’pt) = D(guwz,Pt)(RiCt)’

This brings up the question whether the Ricci flow for a metric g, coming from

some Ga-structure ¢ on M, can be extended canonically to a solution ¢; of
th = DLPt (RlCt)

Like in the SU(3)-case we can write g; = A;g for the solution of the Ricci flow.
Here A; is symmetric and positive w.r.t. the initial metric g. Then the canonical
extension of the Ricci flow to the whole Ga-structure would be ¢, := A;p. However,
the proof of Theorem 5.9 does not carry over to the Gs-case. One critical ingredient
in the proof of Theorem 5.9 was the fact that the corresponding gauge deformation
preserves the complex structure. This property stems from the assumption that
the initial structure is actually Kédhler. For a generic Ga-structure, the family of
gauge deformations A;, describing the Ricci flow, do not necessarily contain enough
symmetries to reproduce the proof of Theorem 5.9.

As a consequence, a Ga-structure for which the Ricci flow converges to a Ricci flat
Go-structure, should have the property that the canonical extension yields a solu-
tion of ¢y = D, (Ric).
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FIBREWISE Ricci FLow

Given a SU(3) structure (o, ¢) on a compact seven dimensional manifold M with
doa = 0, we obtain a fibration of M into compact integral manifolds of ker(«). On a
fixed integral manifold ¢ : N < M, the Ga-structure ¢ induces a SU(3)-structure
by

gy =1i"g, wy:=i"w and py:=ip.
Conversely, the collection of metrics {gn} on all integral manifolds N C M deter-
mines the metric on M by

g={gn}+a®a.

Similarly we have

w={wn} and ¢={pn}+ar{wn}

In this section we will evolve the induced SU(3)-structures under the Ricci flow
and resemble the evolved structures to a SU(3)-structure on M. To obtain again a
smooth structure on M, we need the following Lemma, which states that the Ricci

flow depends smoothly on the initial metric.

LEMMA 5.17. Let M be a compact manifold and g5 a smooth 1-parameter family

of metrics on M. Denote by g4(t) the unique solution of

%gs (t) = —2ric(gs(t))
gs(o) = Ys;
for t € [0,T,) and T :=T(g°) > 0. Then g,(¢) depends smoothly on s.

PROOF: Let F be the vector bundle over M, whose fibres consist out of symmetric
bilinear maps T,M x T,M — R and denote by U C F' the subset of positive

symmetric bilinear maps. Then
U:=C*M x[0,1,U) c C>*(M x [0,1], F) =: F

is an open subset of the Fréchet space F, cf. Example 2.1. Hamilton applies the

Nash-Moser inverse function theorem to the operator

E:UCTF — FxC®M,F)

df
[ <E = E(f), figt=0}),
where E(f) := —2ric(f), cf. the proof of Theorem 5.1, p.263 in [35]. The Nash-

Moser inverse function theorem states that £ is locally invertible and each (local)
inverse is a smooth tame map, cf. [35] III Theorem 1.1.1. Now the solution for the
Ricci flow with initial data f(0) € C°°(M, F) is given by f := £71(0, £(0)), where
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E~1 is the local inverse of £, defined in some neighborhood of (0, f(0)). Since €1
is smooth, we see that a smooth variation s — f5(0) of the initial value yields a
solution f, := £71(0, f5(0)) that depends smoothly on s.

O

On a fixed (compact) integral manifold N C M we can evolve the metric gy under
the Ricci flow for some time ¢ € [0,7x) C R. Since M is compact, we can find
0 < T < oo such that the Ricci flow exists on each integral manifold for at least
time T'. Lemma 5.17 can be used to show that the solutions of the Ricci flow on

each integral manifold can be resembled to a smooth tensor on M.

LEMMA 5.18. Suppose that the Ricci flow gy (¢) exists on each integral manifold
N C M for at least time ¢t € [0,7), 0 < T < o0.
(1) The tensor

gri={gn{)} +a®a

defines a family of smooth metrics on M.

(2) Let An(t) be the gauge deformation from Example 1.7 such that gn(t) =
AN(t)gN. Then
Ay ={Anv@®)} +a®¢

is smooth and satisfies g: = A:g.

PRrROOF: We first prove the smoothness of g;: Fix an integral manifold N C M and
let Ns := ®4(N), where @ is the flow of . Extending X,Y € C*°(T'N) under the
flow ®, via

X =&, X[, and

(s,p) (s,p)
yields smooth local vector fields on M. We will show that

M 3 (s,p) — {gn(O}(X

= P, Y|p

)eR

(sp) l(s.p)

is smooth. To see this, observe that
gs(t) := gn, (1)
defines a family of metrics on N which satisfies
59s(1) = —2ric(gs(1))
9s(0) = ®ign, .
So

(s,p) — {an (O} X ) = gn, (1) (®se X[, Psn Y],) = g5(6)(X],,, Y1)

() l(sp)
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is smooth in s by Lemma 5.17, and smooth in p, since gs(t) is a smooth metric on
N. Choosing local coordinates like in the proof of Lemma 4.2, we see that {gn(¢)}

is smooth, which implies the smoothness of g;.
Now we prove that A; is smooth: Since A; is symmetric w.r.t. g, we have
At oA =gt o(Ayg) =g tog : TM — TM.

Now A;Q is smooth, since g~! : T*M — TM is smooth by assumption and g; :
TM — T*M is smooth as we have just seen. Since A;Q is positive w.r.t. g, we see
that A; = exp(—3In(A;?)) is smooth, where the logarithm is defined w.r.t. g. Since

clearly
gt ={AN({t)gn} ta@a=A({gn} +a®@a) = Aig

holds, the Lemma follows.

Similar to Definition 5.8, the gauge deformations Ay (t) from Example 1.7 can be
used to define a whole family of SU(3)-structures on each integral manifold N C M:

gn(t) = An()gn, wn(t) == An()wy and  pn(t) == An(t)pn.

This families can again be resembled to a family of Gs-structures on M:

PROPOSITION 5.19. For any ¢ € [0,T),

er:={pn ()} + o A {wn (1)}
defines a Gy-structure on M with metric g = {gn(¢)} + @ ® a and dual ¢, =
{on(®)} —an{pn(t)}.
PRrROOF: From Lemma 5.18 we see that

A ={An(t)} +a® & e C(Aut(TM))
for any t € [0,T). Hence
pr = Avp = Ai({pn} + o AMwn})

= A{pn} +a N Adwn}

={An®)pn} +a N {An(t)wn}

={on(®)} +an{wn(t)}

defines a Go-structure with metric gt = A;g = {gn(t)} + @« ® @ and dual ¢, =

Ay ={on(t)} —an{pn(D)}-
O

We now turn to the case where the initial structure («, ¢) is Kéhler, i.e. the induced

SU(3)-structures on each integral manifold are K&hler, cf. Theorem 3.46. In this
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case the Kéhler-Ricci flow on N can be described by a gauge deformation Ay (¢)
with

(gn (), wn (t), 1) = AN (t)(gn, wn, T).
Note that Ay (t) is actually the same gauge deformation used in Lemma 5.18 and
Proposition 5.19, but satisfies in addition Ay (t)In = INAn(t), cf. Example 1.8.

REMARK 5.20. If the initial structure («, ) is Kéhler, Cao’s theorem states that
the Ricci flow converges on each integral manifold N to a Ricci flat metric ¢3¢ in
C°-topology. In Lemma 5.18 we have seen that for finite time ¢, the metrics gy (t)
can be resembled to a metric g; on the ambient space M. The convergency of gy (t)
in C"*°-topology would still guarantee the smoothness of g, in fibre direction, but

it seems difficult to ensure the smoothness of the limit metric g, transverse to the
fibres.

DEFINITION 5.21. Let ¢ be a Ga-structure on M and £ a unit vector field with
dual « := £.g and flow ®;. We say that the vector field £ is a Kéhler field for the
Go-structure ¢ if

(1) doo =0 and VI(€ap) = 0 on ker(a).

(2) For all integral manifolds N C M of ker(«a)
[wn] = [®iwn,] and Iy =Ply,,

where Ny := O (N).

Note that Theorem 3.46 ensures that the induced SU(3)-structures on the integral
manifolds are Kéhler. Hence dwy = 0 and condition (2) states that the flow of the

vector field & preserves the cohomology class and the complex structure.

The next result is essentially due to the uniqueness part of the Calabi-Yau theorem

and solves in particular the problem encountered in Remark 5.20.

THEOREM 5.22. Suppose £ is a Kéhler vector field for the Ga-structure ¢. Then

the Ricci flow limit metrics and Kéhler forms satisfy
gn(00) = ®gn,(00)  and  wy(oo) = Plwn, (o0),

for each integral manifold N C M. In particular, goo = @ ® a4+ {gn(0c0)} defines a

smooth metric on M with

Legoo =0 and VI~ =0.
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So the fibrewise Ricci flow tightens the fibres N C M:

fibrewise
—_—

Ricci flow

PRrROOF: On a fixed integral manifold N C M we have the Kéahler structure
(g5 (00), wn (0), In)
obtained by the Ricci flow and the K&hler structure
(®5gn, (00), Piwn, (00), PiIN, = IN).
By Cao’s theorem both structures are Ricci flat,
Ric(®{gn, (00)) = ®(Ric(gn, (00)) = 0.
Since the Ricci flow and the flow of £ preserve cohomology classes, we get
[wn(0)] = [wn] = [®Swn,] = ifwn,] = ESlwn, (00)] = [PSwn, (00)]-

Then the uniqueness part of the Calabi-Yau theorem states that the two structures
coincide. For the smoothness of g, choose local vector fields X, Y € C*°(T'N) and
extend them to local vector fields on M by

X

=0, X[, and Y =d,, Y|

(s,p) P’

(s,p)

Now observe that

{gn(00) (X

is constant and hence smooth in s. Let pr : TM — ker(a)) be the map X —
X —a(X)§. Then Lea = 0 yields for X € T,M

) = g (00)(Pss X, P Y,)) = gn(00) (X1, Y,)

(sp) l(s.p)

pr(®sX) = @0 X — (@5 X) €lg_ () = Pox X — (X)) Py €], = Py (prX).
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Hence for X,Y € T,M

D {gn (00) HX,Y) = gn, (00) (pr(Psx X), pr(®s+Y)) = g, (00) (P (prX), @5 (prY))
= (2T gn, ) (prX, prY) = {&Fgn, }(X,Y)
= {gn(o0)}(X,Y),

ie. Le{gn(o0)} = 0 and so Le¢goo = 0. Since also d(§1ge) = da = 0, it follows

Vg = 0.
O

COROLLARY 5.23. The metric obtained by fibrewise Ricci flow in Theorem 5.22
is Ricci flat,
Ric(goo) = 0.

PrOOF: By Cao’s theorem, the metrics gy (o0) on the fibres are Ricci flat. Hence
Proposition 4.1 with goe = @ ® a + {gn(00)} and Wo = Lggoo = 0 yields
Ric(gso) = 0.

O

The fibrewise Ricci flow can be extended to a deformation of the ambient Go-
structure . For this choose a gauge deformation A, like in Example 1.7 such that
Joo = Axog, where g = g(¢) is the initial metric and g, is the metric obtained by

fibrewise Ricci flow from Theorem 5.22. Then we have

COROLLARY 5.24. Suppose £ is a Kéhler vector field for the Ga-structure ¢ on
M. Then the fibrewise Ricci flow yields a Ricci flat Ga-structure o, := Ao on M.

COROLLARY 5.25. The metric obtained by fibrewise Ricci flow in Theorem 5.22

satisfies
HOlo(goo) C {1} X SU(3) C Gs.

In particular, the full holonomy group Hol(gs) is always a proper subgroup of Gs.

PROOF: Since V9=¢ = 0, we get from the DeRham splitting theorem

Holp(goo) = {1} x Holp(gn (00)).

By Proposition 5.5, the restricted holonomy of the integral manifold N C M is con-
tained in SU(3) and the first part of the corollary follows. Since the restricted ho-
lonomy group is the identity component of the full holonomy group, Hol(g.) = G2
would imply Holy(goo) = G2, which is impossible as we have just seen.

O
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COROLLARY 5.26. Suppose £ is a Kéhler vector field for the Ga-structure ¢ on
M. Then the fundamental group of M is infinite.

PROOF: Let (M, Joo) be the universal cover of (M, goo). By Corollary 5.25 we have
Hol(joo) = Holg(goo) C {1} x SU(3) C Go.

If 1 were finite, the universal cover would be compact. But a compact manifold
with holonomy contained in G and finite fundamental group has holonomy group

equal to Ga, cf. [39] Prop. 10.2.2.
O
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6. EXAMPLES

In this chapter we describe classes of manifolds, admitting certain types of SU(2),
SU(3) and G-structures. Typically this manifolds are the total space of some bund-
le over a base manifold that carries an additional structure. In quite a few cases
the structure is real analytic and can be embedded into a space with a parallel
structure. We do not describe any explicit solutions for the embedding problems,
but some can for instance be found in [9],[24],[25].

Of special interest is a new construction of R. Albuquerque [1]. Albuquerque con-
structs a Ga-structure on the unit tangent bundle T'M*. This structure is hypo
if and only if the underlying metric on M* is Einstein. We extend Albuquerque’s
approach to construct a family of Spin(7)-structures ¥, on TM* \ {0} and show
that this structure is balanced if and only if the underlying metric is Einstein with

ric = Ag.

G2 AND SPIN(7)-STRUCTURES ON TM*

Given an oriented four dimensional manifold (M, g), we describe a construction due
to Albuquerque [1], which yields a Ga-structure on the unit tangent bundle T M.
It turns out that the Einstein condition for M is encoded in the Lee form © of the
Go-structure. Although the Lee form corresponds in general only to the vectorial
part ga of the intrinsic torsion, the vanishing of © implies in this particular case
that the Ga-structure is actually hypo, i.e. the g3 @ go component of the intrinsic
torsion vanishes. Let €7 be the induced volume form on (M,g) and 7 : TM — M
be the tangent bundle. For every u € T'M, the Levi-Civita connection induces a
splitting
T.TM =V, ® H,

of the tangent space of T M into a vertical space V,, = ker(m,,) and a horizontal
space H, = 7Ty, M. In particular, we may consider the vertical and horizontal
lift of X € T,y M to u € TM, denoted respectively by

v, (X)eV, cT,TM and h.(X)e€ H, CT,TM.
The connection map

K :T,TM — TyyM is now given by  K(X) := J,(X"),
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where J, : Vi, — Tr,)M is the inverse of the vertical lift v,,. The Sasakian metric
on T'M is defined via

9(X,)Y) == g(KX,KY) + g(m. X, 7.Y).

It is well known that the curvature tensor of the Levi-Civita connection on M mea-
sures the integrability of the horizontal distribution. More generally we have by
Lemma 2 in [26]

LEMMA 6.1. Let R be the Riemannian curvature tensor of the Levi-Civita connec-
tion V9 on M. For any vector fields X,Y on M and v € TM we have

(i) [A(X), h(Y)]u = ha([X, Y]) = vu(R(X, Y)u),

In order to establish a Ga-structure on the unit tangent bundle 7' M, we make the

following

DEFINITION 6.2. (i) For notational reasons we introduce the map
r:TM\{0} =R by ur v/g(u,u)=|ul.

(ii) The map
0:T,TM -V, with X v,(mX)

rotates the horizontal onto the vertical space and annihilates vertical vectors. As a
map 0 : TTM — TTM, we may ask for the adjoint of § with respect to g and find

0T = ho K,

i.e. for X € T, TM we have 07 (X) = h,(KX). Hence 07 00 = idy and 0007 = idy .
(iii) The decomposition TTM = TM & TM equips T'M with a natural symplectic

structure w. In terms of the map 6, we have
w(X,Y):=9(IX,Y),

where
I:=0"-¢
satisfies I? = —id. It is well known that w is actually a closed 2-form on T M.

(iv) The g-gradient of r is given by

N :TM\{0} -V with wuw~ T(l—u)vu(u)
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Using the map I from (iii), we may define the horizontal counterpart of NV by
NMTM\ {0} = H, urs IN°(u) = —

We denote the dual 1-forms of NV and N respectively by
p'(X):=g(N", X) and  p"(X):=g(N" X).

Note that N is the outer normal vector field on each sphere bundle T"M C T M,
for r > 0.
(v) The volume element ), on M lifts to a volume element K*ejs on the vertical
distribution and a volume element 7*&,; on the horizontal distribution. Contracting
this pull-backs, we obtain forms
a(X,Y,Z) =eyq (KN, KX, KY,KZ7),
B(X,Y,Z) :=ep(m N" 7, X, 7Y, 7, 2),
for X,Y, Z € T,,T M. Define additional 3-forms on T'M by
p(X,)Y,Z) :=a(X,Y,Z) — a(0X,0Y,2) — a(0Y,02,X) — a(0Z,0X,Y),
X, Y, Z):=a(0X,Y,Z)+a0Y,Z,X)+ a(0Z,X,Y) — B(X,Y, Z).
(vi) In the following we construct a local frame field (E4, .., Eg) on TM \ {0}. First
we have two globally defined vector fields on T'M \ {0}

E;:=N" and E,:=IF, =N"

The remaining vector fields will be defined only locally. Choose a local positive
orthonormal basis {ej,..,eq} of TM and denote by v(e;) the vertical lift to V' C
TTM, i = 1,..,4. For 0 # u € TM we write A\;(u) := g(u,e;) € R, such that
u =Y A;(u)e; holds. This yields

1 1

Fi) = () = o) = o SNl
Now we define an orthonormal basis E;, Es, Es, By for V by
Bafu) 1= s (Shalu)un(en) + M (1w (ez) = Mau)onen) + Aol (),
Bifu) = s (Al (e1) + Ma(w)e) + Aa ()0 (e3) = Do e)
Br(u) = s (=Ma(u)va(er) = dau)unen) + dafu)onlea) + s (w)oulen)

and complete it to an orthonormal basis for TTM via

Ey=1E;, Eg=1IEs, Es=IEs.

Uu

In particular, we may choose eq,..,eq € T, M such that e; = Tl holds, for a fixed
u € T,M \ {0}. This yields

Egi(u) = hu(el) and Egi_l(u) = vu(ei).
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By choosing local normal coordinates around p, we may extend ey, .., e4 via parallel

translation to a local basis field. Then
(VZej)p =0 and hence [e;ej], =0

hold at p. We refer to the corresponding basis field (F1, .., Eg) as an adapted frame

at u.

LEMMA 6.3. In terms of the dual basis (E!, .., E®) of (FEy,.., Eg), the forms from
Definition 6.2 are locally given by

E12 +E34 +E56 +E78,

1) w=
(2) a= E37,

@) 5= £

(4) p= E957 _ E368 _ [pA6T _ pass
(5) = 367 4 E358 4 pi5T _ 68,
(6) p* =FE' and pt = E%

O

DEFINITION 6.4. From the previous Lemma we see immediately that the restric-

tion of the forms
1 .
o=p+p"Aw and ¢:= §w27u“/\uh/\wf,uh/\p

to T1M defines a Ga-structure on T M. Moreover, we obtain a Spin(7)-structure
on TM \ {0} via

1 .
Wi= o+ pt Ap = gwl = p AD+ " Ap.

To study the type of structure that is induced by the forms ¢ and ¥, we compute

the exterior derivative of the dual 1-forms E* of an adapted frame at w.

LEMMA 6.5. For the horizontal 1-forms we have at u

1
dB? = - (B3 + E°° + E™),

r
1

dE4 _ ;(E23 +E58 +E67)7

dE6 _ }(E25 _ E38 _ E47)7
r
1

dES _ *(E27 +E36 +E45).
T
The analogue for the vertical forms involves the curvature R of (M, g). Let
Qo1 1 = Ria1n B** + Ris1 E*® + Ry E*

+ Ro311 E* + Rog1x B*® + R3411, E®,
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then we have at u

dE' =0,
3 Loz 2 57
dE = ’I“Qg —|— *E + *E 5
r r
5 L5 2 37
dE° =rQs + —-E° — —E°',
r r

1 2
dE" = rQ7 + -E'" + ZE%.
r r

ProOF: First note that dEX(E;, E;) = —E*[E;, E;] holds. For E* horizontal we
find the following:
(i) By integrability of the vertical distribution we get immediately dE*(E;, E;) = 0,
for Ej;, E; vertical.
(ii) Suppose E;, E; are both horizontal. Recall that A;(u) = g(u,e;) holds by
Definition 6.2 (vi). By construction of the local vector fields e;, we see that \; is

invariant under parallel transport, which yields

Similarly, r is invariant under parallel transport, hence h,,(e;)-r = 0. Now extending
the Lie-bracket [E;, E;] by using the linear combination for FE;, E; from Definition
6.2 (vi), we obtain essentially summands of the form [h(e;), h(e;)]u = hu([ei, €5]) —
vy (R(e;, ej)u) = —v,(R(e;, ej)u). Here we used Lemma 6.1 and that [e;, e;] = 0 at
p := 7m(u). Then the horizontality of E* yields again dE*(E;, E;) = 0.

(iii) Now let E; be horizontal and E; be vertical. First observe that

vu(er) - Me g(u+tey, ex) = o

ot

holds. Since u = r(u)e;, we get

d
vu(ey) - r = 7 \/g(u—|—tel,u—|—tel)=5u,
t=0
yielding
A 1
(2) vy (eg) - Tk = ;((;lk — 01101k)-

Using (2) and Lemma 6.1 together with (VY e;), = 0, we computes at u,

[Eq, Es] =0, [E1, E4) =0, [Eq, Eg] =0, [Ey, Eg] =0,

[Ea, Es) = —1Ey, [Ey, Es)=—1Fs, [Ea2,Eql=—1Es, [E3 E4=—1F,,
[E3, Eg) = —+Egs, [Fs,Fs]=1Es, |E4,Es|=—1Fs, [E4,E7]= 1Fs,
[Es,E¢| = —1E, |Es,Es)=—1E,, [Eg E7]=—1Es, [Er,Es)=—1F,,

and obtain the above formulas for the horizontal forms.

Now consider the case where E* is vertical.

(iv) Applying Lemma 6.1 we get for horizontal Eg;(u) = hy(e;) and Eaj(u) =
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where we used that For_1(u) = v,(ex) and u = r(u)e;.

(v) The mixed terms are
dE* (Bzi(u), Baj-1(u)) = dE"(hu(ei), va(e)))
= hu(ei) - B*(v(e;)) = vuley) - B*(he,) = B*[h(e:), v(e;)]u
=0,
since E*(v(e;)) is horizontally constant by (1), E*(h.,) = 0 and [h(e;),v(e;)], =0
by Lemma 6.1.

(vi) Vertical terms can be computed by formula (2) and
dEP* Y (Byio1 (u), Bajo1(u)) = vales) - B (v(e))) — vuley) - B (v(er))

The values for dE**~1(Ey;_1(u), E2j_1(u)) are listed in the following table:

| Bnioy | By || dE" | dE® | dEP | dET |

E, E; 0 || 0] O
E; E; 01 0 |wm]| O
E, E; 01 0|0 |
Ej E; 0] 0| 0 |35
E; E; 0] 0 |51 0
E; E; 0 |z 0] 0

Now we can easily verify the above formulas for the vertical forms.

COROLLARY 6.6. In an adapted frame we compute at uw € TM \ {0}

dp’ = 0, moreover p¥ = dr.

dw =0,

dp=71(Q3 ANET — Q5 A E 4+ Q. A E3%) + rrici p A B
2 v 2 h 1 v 2 h -~

+-p"Na——pt AB+—p’ Ap——p" Ap,
r r T T
1, 2 3,
dp=—p* Np—a)+ —p" AP+ )+ —p" Na

+ 7(ricio B® 4 ricis E® + riciy ET) A B+ rul A Q,
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where
Q := Rig1a(E*7 + E*®) 4 Rigi3(E**® — E°) + Ryp14(E°™® — E*%)
+ Ri313 (E368 + E467) + R1314(E456 — E478) + R1414(E368 + E458),

and ric is the Ricci tensor of (M, g). Moreover, the Lee form of the Spin(7)-structure

is given by

O := #(*dV¥ A ¥) = 2r(ric;y B' + ricio B® + rici3E® + rici,4 E7).

PRrROOF: The equation pu¥ = dr is easily verified, and implies du” = 0, which
corresponds to dE' = 0 in Lemma 6.5. The formula for dE? may be rewritten as
dp” = L(w — p A ph), which yields

dw = dr A dp" — p° A dp” = 0.

The formulas for dp, dp and © are verified in a direct computation, using Lemma
6.5 and the local form for p, p and ¥ from Lemma 6.3.
d

In particular we found an interpretation of Ricci flatness in terms of special geome-
tries. Namely, the vanishing of the Lee form O yields ricy; = 0 for any orthonormal
basis {e1, .., e4}, and hence ric = 0. Therefore the Spin(7)-structure from Definition
6.4 on TM \ {0} is balanced, i.e. © =0, if and only if (M, g) is Ricci flat.

We can modify this result to give a characterization of Einstein manifolds (M, g)
with arbitrary Einstein constant A € R. First observe that changing the Cayley
frame to E;(\) = e~ 3" E;, corresponds to changing the structure tensors and

Hodge operator into

’1"2

A2
2" * .

ioN
1

2 ~ ~
Uy =M 0, gy=e2" g and x\=c¢€

Then d¥), = 2)\re)""2u” AT 4+ QT = M (2 rp? At + dP) and *\d¥, =
e%TQ(%rap + *dW¥), since ¥ A ¢ = TE?345678_ Now the Lee form satisfies

112,22

Ox = A(AdUNA W) =€ 2" (77" * (o AY) + #(xdT A D))

11X ,.2

=e2 " (=2\ru’ +©)

11

= 2re T (= Ap? + ricy B + ricio B3 + ricis B + rici, E7)

and we proved:

THEOREM 6.7. (M, g) is Einstein with ric = A\g if and only if the Lee form of the
Spin(7)-structure ¥y := > ¥ on TM \ {0} vanishes. In particular, (M, g) is Ricci
flat if and only if the Lee form of ¥ vanishes.
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For the rest of this section we will study the induced Ga-structure ¢ on the unit
tangent bundle ¢ : T*M C TM. Since 1) = i*¥, the Lee form of the G5 structure is
given by Corollary 6.6 by the formula

0 == x(xdip A1p) = i*O = 2(ric;o E® + rici3 E® + rici, E7).
Hence the Ga-structure has vanishing Lee form if and only if (M, g) is Einstein.
Surprisingly, § = 0 automatically implies the vanishing of the gso-component of the
intrinsic torsion. In fact we get from Corollary 6.6 and since dw = 0 and dp" Ap =0
1., N ~ "
dip = d(5i W= " Ap) = —dp Ap+ i A dp
= uh A (ric12E3 + rici3 B + ricl4E7) A B
1
=" NONB.
2
Therefore (M, g) is Einstein if and only if the Ga-structure is hypo. Computing
dp = dp + dp" N i*w = dp + i*W?
= Q3 AET — Qs AE3 + Q7 A E® 4 rici g A
— A= 2u A+ i WP
= Q3 AEYT — Qs A B3 + Q7 A E3 4 (ricy; — 2)u" A B + 29,

shows that neither dp = 0 nor dp = AY is possible. The Rid-component of the
Go-structure corresponds to dg A ¢. To see this, observe that dy = 3D, (7) by
Proposition 3.38 and that the Rid-component is mapped to A}, which is identified
via o A . : A* — A7 with A7 by Schur’s Lemma. Now The first Bianchi identity
yields

dp N = (Q3 A E57 — Qs A B3 4 Q7 A E35) A + (ricy; + 12)E234567
= (Ri221 + Ri331 + Riaa1 + Raao1 + Rasz1 + Rogay + ricyy + 12) E?34567
= 2(ricyy + 6) E34507,

In summary we have, cf. [1] Thm. 3.3,

THEOREM 6.8. The Go-structure ¢ on T*M with intrinsic torsion 7 satisfies
pishypo < 7T cRid®Ss
& TeRidgS2ag,
< (M, g) is Einstein.

Moreover, 7 € S if and only if (M, g) is Einstein with A\ = —6. The structure is

never parallel or nearly parallel.
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If (M, g) is Einstein, then there exists an atlas for M with real analytic transition
functions, so that the metric g is real analytic in each chart, cf. Theorem 5.26 in
[7]. Hence any adapted frame from Definition 6.2 (vi) is real analytic, which pro-

ves that the hypo G-structure ¢ on T M is real analytic. Now Corollary 4.22 yields

THEOREM 6.9. Every compact Einstein manifold (M*, g) admits a parallel Spin(7)-

structure on I x T'M*, for some interval I C R.

SU(2) and SU(3)-Structures on T M3

In this section we will describe a construction which yields certain SU (2)-structures
on T*M and SU(3)-structures on TM \ {0}, where (M, g) is a 3-dimensional Rie-
mannian manifold with tangent bundle 7 : TM — M. Like in the previous section,
the Einstein condition for (M, g) is encoded in certain torsion components of the
structures. Since M is 3-dimensional, the Einstein condition is of course much more
restrictive than in the 4-dimensional case. The tensors K, g, 0, I, w, r, u*, u", N?

and NV are defined like in Definition 6.2 from the previous section.

DEFINITION 6.10. Let €ps be the induced volume form on (M, g). We define the
following forms on T'M \ {0}:

B2(X,Y) :=enm (KN, KX, KY),
B3(X,Y) = ep(m N" 1. X, 7,Y),
wo 1= P2 — B3,
w3(X,Y) == B2(0X,Y) — B2(0Y, X),
pi=p’ Awy — " Aws,
pi=p Aws + " Aws.

Moreover, we define forms on i : T*M < TM by

DEFINITION 6.11. For a given basis field {ej,ea,e3} on U C M, we wish to

associate a basis field on the open subset

U:={uer Y (U)| A2+ X2 #0, where u = \je; + Agea + Azez} € TM \ {0}.
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For u € U with u = > e, let

El(u) = ﬁ(/\lvu(el) + )\21)“(62) —+ )\311“(63)),
1
Eg(’u,) = \/ﬁ( — )\gvu(el) + /\ﬂju(eg)),
Bs(u) = —————(— Ahvaler) — Asdgva(ea) + (A2 + AD)va(es).

r(u)\/ A3 + A3

Then F1, E5 and Es are orthonormal and we obtain an orthonormal basis field via
E2 = IEl, E4 = IE3 and E6 = IE5

Note also that F(u) = ﬁvu(u) = NV(u) and Es(u) = IN?(u) = N"(u) holds.
In particular, we may choose e1, ez, e3 € T, M such that e; = ﬁ holds, for a fixed
vector u # 0. This yields

E2i ('LL) = hu(el) and Egi,l(u) = vu(ei).

By choosing local normal coordinates around p, we may extend eq, e, e3 via parallel

translation to a local basis field. Then
(Viej)p =0 and hence [e;ej], =0

hold at p. We refer to the corresponding basis field (E1, .., Eg) as an adapted frame

at u.

The following Lemma can be easily verified:

LEMMA 6.12. In terms of the dual basis (E!, .., E) of (E1, .., Eg), the forms from
Definition 6.2 and 6.10 are locally given by

p= E135 _ E146 _ E245 _ E236,
ﬁ: E145 —|—E136 4 E235 _ E246.

O

DEFINITION 6.13. From the previous Lemma we see immediately that the re-
striction of (o, w;,ws,ws) to T*M defines a SU(2)-structure on T*M. Moreover,

(w, p) defines a SU(3)-structure on TM \ {0}.

131



To study the type of these structures, we have to compute the analogue of Lemma
6.5:

LEMMA 6.14. Fix u € TM \ {0} and let E, .., Es be an adapted frame at u with
dual frame E', .., ES. Then the following formulas hold at wu:
1

dE? = =(E* 4+ E™),
r

dE* = 1E%,
r

dES = 1%,
r

The exterior derivative of the vertical forms involves the curvature R of (M, g). Let
Qo1 := Ri21 B> + Ri31x E*® + Roz 1 B,

then we have at u
dE* =0,

1
dE? = rQ3 + —E*3,
T

1
dE® = rQs + —E".
T

PROOF: The proof is completely analogue to the proof of Lemma 6.5. We use
dEk(El, EJ) = 7Ek[E7;, EJ] and

hu(ei) T = hu(e,) . )\j = 0,
vu(ei) r = 512’ and vu(ei) . )‘j = (;7;]‘,

which imply

a 1
vy(e;) - - ;(61(1 —01:014),
Aa 1
vules) -~ = ~(%ia — S1i61a),
O T e e
Aa b 1
V(€4 '7:*(51'(15 +5i5a_25a6 51
() T\/m T( 1b b01 1a91b 1)

Now we obtain

[E1, Ep] =0, [E1, Eq) =0, [Ey, Eg] =0,
[Ey, B3| = —1E,, [Es, Es|= —1Es, [Es By = —1E;,
[Eg,Eg} = 0’ [E47E5] = Oa [E5;E6} = _%E27

which yields the desired formula for dE?*. To compute dE**~!, observe that

dE** "1 (Ey_1,F;) =0
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and by Lemma 6.1
dE*" 1 (Ei(u), Eaj(u)) = dE* ! (hy(ei), hu(ey))
= hu(ei) - E®*7 1 (h(ey)) = hule;) - B**7 1 (h(es))
— E?* 7 h(es), h(e;)]u
= —E*~'h(e:), hes)u
= E* ! (vu(R(ei, ¢5)u)

e
e

= 7(u)Rij1k-
Using
dE* Y (Eaio1(u), Bgj o1 () = dE* ! (v, (e;), vu(es))
= vu(ei) - B> (v(eg)) — valey) - B (v(es)
— B o(eq), v(e;)]u
= vu(e:) - B> (v(es)) — valey) - E*(v(es),

we compute

| By | Eajy | dBY | dE® | dE® |
E, E; 0 | 41| 0
E; E; 0 | 0 |
E; Es 0] 0

and obtain the above formulas for the vertical forms.

We can now compute the exterior derivatives of the forms from Definition 6.10.

PROPOSITION 6.15. Let Ey, .., Eg be an adapted frame at w € TM \ {0} and let
Qop—1 = Rio1e B> + Ri31x E*° + Roz1, E*°,

where R is the curvature tensor of g. If ric denotes the Ricci tensor of R, then the

following formulas hold at u:
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1 2
dw2:’I’(Qg/\E57E3/\Q5)7*Oz/\W3+*,LLU/\ﬂ2,
T T
. 2 L,
dws = —rriciia A B3 + —a A Ba + —p¥ A ws,
T r
2
dlaAwy) = —ra A (Q3AE> —E>AQs) 4+ Zp’ Aa A Ba,
r
1
dlaANws) = —pu” A a A ws,
r

dp=rp’ A (E3AQs — E5 AQ3),
dp = rrici " Aa APz —raA(Q3AE° — E*AQs).

PROOF: The first three equations follow immediately from Lemma 6.14, since
dw = —p’ NdE? +d(E** + E°°) = —p" AdE* +d(rdE?) = —pu° AdE? + i AdE? = 0.
For the other equations we compute dw; = dr A da = % wl A wi,
dwy = d(E* — E*9)
5, 1135 3 L5 Loose | 1425
=rQQ3ANE°+-F —F /\(TQ5+*E )—7E + —-F
T T T T

1 2
=r(QAE> —FE3AQ5) — —aAws+ ~p’ ABs
T T

and
dws = d(FE3¢ 4+ E*)
Lo 13 6  Logos | 1035 4 [
=3+ —-E°)NE®>— —E>* +-E* —E*AN(rQs + -E"°)
r r r r
2 1
:T(Qg/\E6—E4/\Q5)+*a/\ﬂQ"‘F*Mv/\wg
r r
. 2 1
= —rricna A B3+ —a A [Py + - A ws.
r r
Since w1 Aws = wy Aws = 0, we get d(aAws) = —aAdws and d(aAw3) = —aAdws

and hence the seventh and eighth equation. Eventually,
p=p"ANwy — p" Aws and p=p’ Aws+ p" Aw;
yield
dp = —p’ A dws — d(a A ws)
= —rp’ A(Q3 A EP —E3/\Q5)+%u“/\a/\w3 — %,u”/\a/\wg

=ru’ A(E3 A Qs — E° AQ3)
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and
dp = —p® A dws + d(a A wa)
=rric p’ Aa A B3 — %u”/\a/\ﬁg—ra/\(Qg/\E5—E3AQ5)+§MUA04A52
=rricypu’ Aa APy —raA(QsAE° — E3AQs).
O

We can now study the SU(3)-structure (w,p) on TM \ {0} from Definition 6.13.
Since always dw = 0 holds, the intrinsic torsion satisfies by Lemma 3.23 and Pro-
position 3.25
T € Ipsu(3) @ su(3).
From the proof of Theorem 3.28 we see that
Tesu@B)andn=0 < dp=0,
Tehsu@B)andn=0 < dp=0.
By Proposition 6.15 we have
dp =1’ A (B> AQs — E° AQ3)
= r(Riog1 B2 4+ Ryggy B2 Ryny 3 B1346
+ Ri201 E"% — Ry301 B0 + Ry31, EM)
and hence dp = 0 is equivalent to ric = 0. Similarly,
dp =rriciip’ ANa A Bs —ra A (Qs A E>—E3 A 05)
= r(vicy B8 4 Ryy12 E450 — Ry, 5 £2346)
=0

is equivalent to ric = 0. Hence we showed

COROLLARY 6.16. The SU(3)-structure on TM \ {0} from Definition 6.13 is
always of type T € Ipsu(3) @ su(3) and

TesuB),n=0 < Telhsu@3),n=0 & T=0n=0 < R=0,

where R is the curvature tensor of (M, g).

Now consider the SU(2)-structure (o, wy,ws,ws) on T1M from Definition 6.13. By
Proposition 6.15
dwy =0 and d(aAws)=0
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always hold and
dwy = Qs NE? —E3 A Q5 — a Aws
= —R1201 E**® + Ri301 E*®° — Ro31, E*%

— R1231 E*** — Ry331 E**® + Rp13 B0

_ 236 _ p2as
Hence the equation dws = A(a A wz) = AN(E* + E?%5), for some constant ), is
equivalent to ric = —2(1 + \)g. Moreover,

dla Awy) = —a A (Q A E°> — E3AQ5)
— Ry319 E?%56 _ Ry E2346 — 0

is equivalent to ricig = rici3 = 0, i.e. (M, g) being Einstein. Note also that

dws = —ricjia A B3 + 2a A By # 0,

i.e. the structure is never parallel.

COROLLARY 6.17. The SU(2)-structure on T*M from Definition 6.13 always

satisfies dw; = 0 and d(a A ws) = 0. Moreover,
dlaNwe) =0 <& (M,g) is Einstein.
dwy = MaAws) & (M,g) is Einstein with ric = =2(1 + \)g.

The structure is never parallel.

Go-Structures on S!-Bundles over M

Let (M®, g,w, I) be a Kiihler manifold with canonical S'-bundle
7 K c ABOT*MC — MO,

In this section we define a Ga-structure on the total space K. Our approach is
motivated by Example 1, p.84 from [5]. In addition to the result from [5], we study
the possible torsion types and show that the Ga-structure is always hypo and hence
a candidate to solve the corresponding embedding problem.

The connection 1-form Z9 on K, induced by the Levi-Civita connection, is a u; = iR

valued 1-form and satisfies by Proposition 5.4

dZ9 =in*p,
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where ¢ is the Ricci form of g. We denote by & the vertical lift of 7 € uy, i.e.
§o = Raui,
for all ® € K. Then we obtain a metric g on K by
366 =1, G&RX):=0 and GhIX,hTY) = g(X,Y),

where X, Y € TM® and h9 denotes the horizontal lift to K w.r.t. the connection
29, Since Z9(§) =1, the dual « := g of £ is given by

a=—129.

The Kéhler form pulls back to a 2-form

wi=T7'w
on K and we set
_ 1,4
0:=—-w
2

There are tautological 3-forms on K, defined by
p(U, V,W) := Re(®)(m.U, 7.V, m,. W),
p(U, V, W) := Im(®) (. U, 7.V, m. W),

for U,V,W € TsK. Lifting a Cayley frame for the Kihler structure on M% to K
and extending the lift by the vector field £, yields a Caley frame for the Gs-structure

DEFINITION 6.18.

Note that the metric of this structure is just g(¢) = g. To compute the torsion type

of this structure we need to compute the exterior derivatives of the tensors p and

p. Using
3
d U07'7U3 :Z Ul;-aUka'7U3))
k=0
+ Z k+l Uk:aUl] Ul»--aUk7"7Ul7"7U3)a
0<Ek,l1<3

together with Lemma 1.11 and £.1p = 0, we get
LEMMA 6.19.

dp=1iZI9Np=—aAp,
dp=—iZ9Np=aAp.
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The Kéhler condition yields
do=do=0 and da=7"p.
Hence we compute
dp=—-rm"oANpt+ahalp
= -0 A p.

Since 79 is a (1,1) form w.r.t. the pullback of I to the horizontal distribution
on K, and p+ ip is a (3,0) form, we see that on the six-dimensional horizontal
distribution the (4,1) form 7*p A (p + ip) vanishes. Since the Ricci form 7% is a
real form, we obtain
TroNp=7"oNp=0
and, in particular, diyp = 0. Now
dp=—aNAp+r oA
shows that dp # 0 and we compute
dp = A
& —aAp+T(0Aw) =X —daAp
~ 1
sA-1DaArp+1(oAw— 5)\W2) =0

1
< A=1 and g/\wziwz.

By Schur’s Lemma, wA : A2T*M® — A*T*MC defines an isomorphism. Hence

dy = A\ is equivalent to A =1 and p = %w. In summary we have, cf. [5] Example
1, p.84:

THEOREM 6.20. The Ga-structure ¢ on K from Definition 6.18 is always hypo,
but never parallel. The structure is nearly parallel with dp = 1 if and only if the

underlying Kahler structure is Einstein with ric = % g.

SU(3)-Structures on S! x S'-Bundles over M*

Let (M*, g,w,I) be a Kihler manifold with canonical S!-bundle

7 s K ¢ AROT* 04— Mt
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The connection 1-form Z9 on K, induced by the Levi-Civita connection, is a u; = iR

valued 1-form and satisfies by Proposition 5.4
dZ9 =imyp,

where o is the Ricci form of g. More generally, every closed 2-form gop on M* such

that

55] € HX (M Z),

corresponds, up to isomorphism, to a S'-bundle 7p : P — M?*, together with a
connection 1-form Zp, such that
dZP = Z'7Tf;. op

holds, cf. [44]. Given such a form gp, we define a SU(3)-structure on the total space
of m: KAP — M*, where

KAP :={(2,0) | rx(®) =7p(¥)}

is the fibre product of K and P. Like in the previous section we have tautological

2-forms on K, given by
wo(U, V) := Re(®)(m, U, V),
w3 (U, V) :=Im(®)(m.U, m. V),
for U,V € Tg K, which satisfy
dws = 129 N ws,

dw’g, = —iZ9 N wa.

We denote by &, &p the vertical lift of (¢,0), (0,7) € u; x uy to K, P, respectively.
Then we obtain a metric g on KAP by

9(&,&) ==g(&p.Ep) =1
9(§,¢ép) =0,

g(& hX) = g(€p, hX) =0,
g(hX,nY) = g(X,Y),

where X,Y € TM* and h denotes the horizontal lift to K AP w.r.t. the connection
(29, Zp). Then the dual 1-forms for £ and {p satisfy

a:=¢.g=—iZ29 and ap:=E&pug=—iZp,

where we consider Z9 and Zp as forms on KAP via the pull back under the
canonical projections KAP — K, P. Hence the pull back of the tautological forms
wo and ws to KAP satisfy

dws = —a A\ ws,

dws = a A ws
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and for the exterior derivatives of & and ap we obtain
da=7"0 and dap=7"pp.

We can easily find a Cayley frame to prove that

DEFINITION 6.21.

w:i=apNo+ws,

pi=ap AT'w —a Aws,

pi=apAwy+aATw,
defines a SU (3)-structure on KAP. Since m*g(p) is a (1,1) form w.r.t. the pullback
of I to the horizontal distribution on K AP, and ws+iws is a (2,0) form, we see that

on the four dimensional horizontal distribution the (3,1) form 7*g(py A (w2 + iws)

vanishes. Since the Ricci form 7*p is a real form, we obtain
W*Q(p) Nwg = W*Q(p) Aws = 0.

Then
do=7"opNa—ap AT o+aAws #0

shows that the structure is never parallel, but satisfies
diwo Nw =0,
since we A wg = 0. The K&hler condition dw = 0 yields
dp =7"(op ANw) — T o Awa = 7" (gp A w).

Hence the structure is hypo if op Aw = 0. In contrast to the Gs-case, the structure

turns out to be never nearly Kéhler. In summary we have

THEOREM 6.22. The SU(3)-structure on K AP from Definition 6.21 always sa-
tisfies dw A @ = 0. Moreover, the structure is hypo if in addition pp A w = 0 holds.

The structure is never parallel or nearly parallel.
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