EINLEITUNG

Der klassische Ansatz zum Studium von SU(3) und G_2 -Strukturen besteht darin, beide Strukturen durch die Gray-Hervella Komponenten ihrer intrinsischen Torsion zu klassifizieren. Das Verschwinden spezieller Torsionskomponenten übersetzt sich in Gleichungen an die Strukturtensoren [4], welche sowohl im SU(3), als auch im G_2 -Fall durch (stabile) Differentialformen beschrieben werden können [9,10]. Die Grundlagen für diese Beschreibung werden im zweiten Kapitel dieser Arbeit behandelt. Für eine $G \subset O(n)$ -Struktur mit Strukturtensor f korrespondieren die Torsionskomponenten mit speziellen Komponenten von $\nabla^{LC} f$ (vgl. [7]). Strukturen mit verschwindender Torsion werden daher auch als parallel bezeichnet.

Durch die Wahl eines Fixpunktes in der 6-Sphäre, lässt sich SU(3) als Untergruppe von G_2 auffassen. Aus dieser Sicht ist es nicht überraschend, dass eine SU(3)-Struktur auf M bereits eine G_2 -Struktur auf dem Produkt $M \times \mathbb{R}$ induziert. Umgekehrt kann man zeigen, dass eine G_2 -Struktur eine SU(3)-Struktur auf orientierten Hyperflächen induziert. Diese Korrespondenz ist im Fall der sogenannten (nearly) halb-flachen SU(3)-Strukturen und (nearly) parallelen G_2 -Strukturen besonders ausgeprägt. Tatsächlich erhält man beim Übergang zu Hyperflächen von (nearly) parallelen G_2 -Mannigfaltigkeiten, auch (nearly) halb-flache SU(3)-Strukturen [3]. Umgekehrt hat Hitchin in [10] gezeigt, dass sich jede halb-flache SU(3)-Struktur zu einer parallelen G_2 -Strukutur auf $M \times \mathbb{R}$ liften lässt. Die Hitchin-Konstruktion und zugehörige Anwendungen werden im vierten Kapitel genauer erläutert.

Wegen $G_2 \subset SO(7)$ induziert eine G_2 -Struktur stets eine Riemannsche Metrik g, welche im Fall einer parallelen G_2 -Struktur Ricci-flach ist. Für nearly-parallel G_2 -Strukturen kann man zeigen, dass g Einstein ist und konstante Skalarkrümmung besitzt [6]. Dies motiviert die Frage, ob sich auch nearly-parallele SU(3)-Strukturen zu nearly-parallelen G_2 -Strukturen liften lassen. Erstmalig wurde diese Vermutung bereits in [5] formuliert. Tatsächlich wird im fünften Kapitel der vorliegenden Arbeit gezeigt, dass sich die Hitchin-Methode zur Konstruktion von parallelen G_2 -Strukturen auch im nearly-halb-flachen Fall anwenden lässt. Das Hauptresultat dieser Arbeit lautet damit:

Jede nearly-halb-flache SU(3)-Struktur auf M lässt sich zu einer nearly-parallelen G_2 -Struktur auf dem Produkt $M \times I$ (für ein hinreichend kleines Interval I) liften.

Wie auch bei Hitchin, muß M hierzu geschlossen und orientierbar sein. Man entwickelt die auf M gegebene (nearly) halb-flache SU(3)-Struktur mit der Zeit $t \in I$, und erhält somit eine ganze Familie von SU(3)-Strukturen auf M. Diese Entwicklung verläuft nach speziellen Evolutionsgleichungen, welche garantieren, dass die geliftete G_2 -Struktur auf $M \times I$ (nearly) parallel ist.

Abschließend wird im sechsten Kapitel eine Konstruktion von T^2 -Hauptfaserbündeln über Kählerflächen vorgestellt. Diese T^2 -Bündel besitzen wiederum eine halb-flache

 $SU(3)\mbox{-}Struktur, welche sich mit der Hitchin-Methode zu einer parallelen <math display="inline">G_2\mbox{-}Struktur$ liften lässt.

 $\mathbf{2}$

1. G-Strukturen, Zusammenhänge und Holonomie

Der Begriff der G-Struktur bildet ein einheitliches Konzept, um Geometrien auf Mannigfaltigkeiten zu beschreiben. Dabei steht G für eine beliebige Liesche Untergruppe von $GL(n, \mathbb{R})$ und eine G-Struktur ist eine entsprechende Reduktion der Strukturgruppe des Rahmenbündels. Es stellt sich heraus, dass zahlreiche geometrische Strukturen hierdurch beschrieben werden können. Ein bekanntes Beispiel sind O(n)-Strukturen, welche mit der Wahl einer Riemannschen Metrik korrespondieren. Extremale Beispiele sind außerdem $GL^+(n, \mathbb{R})$ - und $\{e\}$ -Strukturen, welche einer Orientierung bzw. einer Parallelisierung der Mannigfaltigkeit entsprechen. Um die rein geometrische Definition mit algebraischem Leben zu füllen, soll besonderer Wert auf die Korrespondenz von G-Strukturen mit Tensorfeldern gelegt werden. Im zweiten Teil wird der Zusammenhang zwischen Holonomiereduktionen und der Existenz spezieller G-Strukturen diskutiert. Diese Strukturen zeichnen sich dadurch aus, dass sie verträglich sind mit einem gegebenem Zusammenhang auf M.

DEFINITION 1.1. Seien E, M und F Mannigfaltigkeiten. Eine surjektive Submersion $\pi : E \longrightarrow M$ heißt Faserbündel über M mit typischer Faser F und Totalraum E, falls eine Überdeckung $\{U_{\alpha}\}$ von M und Diffeomorphismen

$$\Phi_{\alpha} = (\pi, \varphi_{\alpha}) : \pi^{-1}\{U_{\alpha}\} \longrightarrow U_{\alpha} \times F$$

existieren, für welche die Abbildungen $\varphi_{\alpha|\pi^{-1}\{m\}}$ die Fasern $E_m := \pi^{-1}\{m\}$ diffeomorph auf F abbilden. Die Übergangsfunktion $\varphi_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \longrightarrow Diff(F)$ zweier solcher Diffeomorphismen Φ_{α} und Φ_{β} ist definiert durch

$$\varphi_{\beta\alpha}(m) := \varphi_{\beta|\pi^{-1}\{m\}} \circ (\varphi_{\alpha|\pi^{-1}\{m\}})^{-1} : F \longrightarrow F$$

Falls F = V ein endlich-dimensionaler reeller Vektorraum ist und die Übergangsfunktionen Isomorphismen $V \longrightarrow V$ sind, so heißt $\pi : E \longrightarrow M$ ein Vektorbündel über M. Falls F = G eine Lie-Gruppe ist und die Übergangsfunktionen Werte in $L_G := \{L_g : G \longrightarrow G, g' \longmapsto gg'\}$ annehmen, so heißt $\pi : E \longrightarrow M$ ein Hauptfaserbündel über M. Insbesondere erhält man eine freie Rechtswirkung von G auf das Hauptfaserbündel P := E

$$P imes G \longrightarrow P \quad ext{durch} \quad p.g := \Phi_{lpha}^{-1}(\pi(p), \varphi_{lpha}(p)g)$$

Man überlegt sich leicht, dass diese Wirkung wohldefiniert ist und einfach-transitiv auf den Fasern von P wirkt.

BEISPIEL 1.2. Sei $\pi : E \longrightarrow M$ ein Vektorbündel über M mit d := dim(V). Das Rahmenbündel FE von E ist ein GL(V)-Prinzipalbündel und durch die Wahl einer Basis $(v_1, ..., v_d)$ von V, lässt sich eine Basis $p = (X_1, ..., X_d) \in F_m E$ von E_m als Isomorphismus

 $p: V \longrightarrow E_m \quad \text{mit} \quad v_i \longmapsto X_i$

auffassen. Ein Element $g \in GL(V)$ wirkt dann auf $p \in F_m E$ durch $p.g := p \circ g$. Falls E = TM gilt, so heißt FM das Rahmenbündel von M. Ein lokaler Schnitt $s = (X_1, ..., X_n)$ in FM heißt integrierbar, falls paarweise $[X_i, X_j] = 0$ gilt. D.h. genau, dass s lokal von der Form $s = \partial u$ ist, für passend gewählte Karten u von M.

BEISPIEL 1.3. Eine abgeschlossene Untergruppe H einer Lie-Gruppe G ist bereits eine Untermannigfaltigkeit von G und damit eine Liesche-Untergruppe. Weiter existiert nach [lit] genau eine Differentialstruktur auf G/H derart, dass

- (i) Die Projektion $\pi: G \longrightarrow G/H$ differenzierbar ist.
- (ii) Zu jedem $[g] \in G/H$ existient eine Umgebung $U \in Umg([g], G/H)$ und eine differenzierbare Abbildung $s: U \longrightarrow G$ mit $\pi \circ s = id_U$.
- (iii) Die durch g.[g'] := [gg'] definierte Wirkung von G auf G/H ist differenzierbar.

Die Abbildungen s aus (ii) entsprechen lokalen Schnitten in $\pi : G \longrightarrow G/H$, wodurch sich $\pi : G \longrightarrow G/H$ als *H*-Prinzipalbündel über der Basis G/H aufzufassen lässt.

DEFINITION 1.4. Sei $\pi : P \longrightarrow M$ ein *G*-Bündel und *F* eine Mannigfaltigkeit, auf welche *G* durch $(g, x) \longmapsto g.x$ wirkt. Dann ist der Quotient

$$P \times_G F := (P \times F)/(p, x) \sim (pg, g^{-1}x)$$

ein Faserbündel über M mit typischer Faser F. $P \times_G F$ heißt das zu P und Fassoziierte Faserbündel. Die Bündelprojektion ist gegeben durch $\pi([p, x]) := \pi_P(p)$ und lokale Trivialisierungen φ von P induzieren lokale Trivialisierungen von $P \times_G F$ durch $\Phi[p, x] := (\pi[p, x], \varphi(p).x).$

LEMMA 1.5. Schnitte im assoziierten Bündel $P \times_G F$ korrespondieren mit äquivarianten Abbildungen $P \longrightarrow F$, d.h. es gilt

$$\{s \in \Gamma(P \times_G F)\} \xleftarrow{1:1} \{f : P \longrightarrow F \text{ äquivariant}\}$$

1 1

BEWEIS: Zu einem Schnitt $s \in \Gamma(P \times_G F)$ und einem Element $p \in P$ wähle einen beliebigen Repräsentanten $(q, x) \in s(\pi(p))$ und erhalte ein eindeutiges $g \in G$ mit q.g = p. Man überlegt sich nun leicht, dass die Abbildung $p \longmapsto g^{-1}.x$ wohldefiniert und äquivariant ist. Umgekehrt induziert eine Abbildung $f : P \longrightarrow F$ mit $f(p.g) = g^{-1} f(p)$ durch $s(\pi(p)) := [p, f(p)]$ einen Schnitt in $P \times_G F$. Diese Konstruktionen sind offenbar invers zueinander.

DEFINITION 1.6. Eine Darstellung (V, ϱ) der Lie-Gruppe G besteht aus einem endlich-dimensionalen Vektorraum V und einem differenzierbaren Gruppenhomomorphismus $\varrho: G \longrightarrow Aut(V)$. Darstellungen von G auf V korrespondieren offenbar mit Wirkungen $G \times V \longrightarrow V$, für welche $v \longmapsto gv$ eine lineare Abbildung $V \longrightarrow V$ ist. Es bietet sich daher die Notation $gv := g.v := \varrho(g)v$ an. Definiere weiter

- (i) Für $f_0 \in V$ heißt $Stab_G(f_0) := \{g \in G \mid gf_0 = f_0\}$ die Isotropiegruppe von f_0 . $Stab_G(f_0)$ ist eine abgeschlossene Untergruppe von G und damit ebenfalls eine Lie-Gruppe.
- (ii) Sei $\pi : P \longrightarrow M$ ein *G*-Bündel und *V* eine *G*-Dartsellung. Eine äquivariante Abbildung $f : P \longrightarrow V$ heißt ein Tensor auf *M*.

BEISPIEL 1.7. $A \in GL(n, \mathbb{R})$ wirkt auf einen (r,s)-Tensor $f_0 \in T^{rs}\mathbb{R}^n$ durch

$$(A.f_0)(x_1, ..., x_r, \alpha_1, ..., \alpha_s) = f_0(A^{-1}x_1, ..., A^{-1}x_r, \alpha_1 \circ A, ..., \alpha_s \circ A)$$

Fasse $p \in FM$ als Isomorphismus $\mathbb{R}^n \longmapsto T_{\pi(p)}M$ auf und definiere analog $p.f_0$ sowie $p^{-1}.f$ für $f \in T^{rs}_{\pi(p)}M$. Dann ist die Abbildung

 $FM \times_{GL} T^{rs} \mathbb{R}^n \longrightarrow T^{rs} M \quad mit \quad [p, f_0] \longmapsto p.f_0$

eine fasertreu Bijektion mit Umkehrabbildung $f \mapsto [p, p^{-1}.f]$, wobei $p \in F_m M$ beliebig gewählt ist. Daher korrespondieren (r, s)-Tensorfelder auf M mit Schnitten in $FM \times_{GL} T^{rs} \mathbb{R}^n$, d.h. mit äquivarianten Abbildungen $f : FM \longrightarrow T^{rs} \mathbb{R}^n$.

DEFINITION 1.8. Seien P(M, G), Q(M, H) zwei Prinzipalbündel über M mit Strukturgruppen $H \leq G$. Q heißt Unterbündel von P, falls eine äquivariante, fasertreue Einbettung $i : Q \hookrightarrow M$ existiert. Ein solches Unterbündel nennt man auch eine Reduktion der Strukturgruppe. Eine Reduktion des Rahmenbündels FM auf $G \leq GL(n, \mathbb{R})$ heißt eine G-Struktur auf M. Eine G-Struktur $P(M, G) \subset FM$ heißt integrierbar, falls eine Überdeckung von M durch integrierbare Schnitte $s \in \Gamma(U, P)$ existiert. Lokal existieren damit stets Karten u von M, für welche ∂u einen lokalen Schnitt in P definiert.

BEMERKUNG 1.9. Sei P(M,G) ein Prinzipalbündel und $H \leq G$ eine Liesche Untergruppe. Weiter existiere für eine Teilmenge $Q \subset P$ eine Überdeckung von P

mit Trivialisierungen $\Phi: \pi^{-1}\{U\} \longrightarrow U \times G$, welche

$$\Phi(\pi^{-1}(U) \cap Q) = U \times H$$

erfüllen. Dann ist Q in kanonischer Weise ein Unterbündel von P mit Strukturgruppe H.

SATZ 1.10. Ein Prinzipalbündel P(M, G) besitzt genau dann ein *H*-Unterbündel, falls eine Überdeckung von *P* mit lokalen Schnitten existiert, deren Übergangsfunktionen Werte in *H* annehmen.

BEWEIS: Lokale Schnitte s_{α} in P liefern $Q_m := s_{\alpha}(m).H \subset P_m$. Da die Übergangsfunktionen Werte in H annnehmen, ist Q_m unabhängig von der speziellen Wahl des Schnittes s_{α} . Die zugehörigen Trivialisierungen Φ_{α} erfüllen dann offenbar 1.9, weshalb Q zu einem H Unterbündel von P wird. Ist umgekehrt $Q(M, H) \subset P(M, G)$ ein H-Unterbündel, so liefern lokale Schnitte s_{α} in Q bereits lokale Schnitte in P. Schnitte in Q unterscheiden sich jedoch durch Übergangsfunktionen mit Werten in H.

SATZ 1.11. Sei V eine Darstellung der Lie-Gruppe G und $f_0 \in V$. Die $Stab_G(f_0)$ -Unterbündel eines G-Bündels P(M, G) korrespondieren mit Tensoren $f : P \longrightarrow V$, für welche lokal stets Schnitte s von P existieren, so dass $f \circ s \equiv f_0$ gilt. D.h.

$$\{Q(M, Stab_G(f_0)) \subset P\} \xleftarrow{1:1} \{f : P \longrightarrow V \text{ äquivariant, lokal } f \circ s \equiv f_0\}$$

Ist $Q \subset P$ ein solches Unterbündel und f der hierzu korrespondierende Tensor, so gilt außerdem für $q \in P$

$$q \in Q \Leftrightarrow f(q) = f_0$$

BEWEIS: Zu $p \in P_m$ wähle $q \in Q_m$ beliebig und setze

$$f(p) := g^{-1}.f_0$$

wobei $g \in G$ durch p = q.g eindeutig bestimmt sei. Da zwei Elemente in Q sich lediglich durch ein Element in $Stab(f_0)$ unterscheiden, ist f wohldefiniert. Äquivarianz und Loaklitätseigenschaft sind trivial. Insbesondere folgt aus $q \in Q$ sofort $f(q) = f_0$. Ist umgekehrt $f : P \longrightarrow V$ gegeben, mit der Eigenschaft, dass $f \circ s \equiv f_0$ für lokale Schnitte s in P gilt, so folgt aus

$$f_0 = f \circ s_{\alpha}(m) = f(s_{\beta}(m) \cdot s_{\alpha\beta}(m)) = s_{\alpha\beta}(m)^{-1} \cdot f \circ s_{\beta}(m) = s_{\alpha\beta}(m)^{-1} \cdot f_0,$$

dass die Übergangsfunktionen $s_{\alpha\beta}$ zweier solcher Schnitte s_{α} , s_{β} bereits Werte in $Stab(f_0)$ annehmen. Daher lässt sich eine $Stab(f_0)$ -Struktur wie in Satz 1.10 konstruieren. Sei $q \in P_m$ mit $f(q) = f_0$ und $s \in \Gamma(U, P)$ ein Schnitt in P mit $f \circ s \equiv f_0$

und $m \in U$. Wie eben folgt, dass q und s(m) sich duch ein Element in $Stab(f_0)$ unterscheiden. Nach Konstruktion von Q (vgl. 1.10) folgt daher bereits $q \in Q$. Man sieht leicht, dass die obigen Konstruktionen zueinander invers sind.

BEMERKUNG 1.12.

- (i) Seien V und W zwei G-Darstellungen. Für $f_0 \in V$ und $g_0 \in W$, lässt sich $Q(M, Stab(f_0) \cap Stab(g_0)) \subset P(M, G)$ kanonisch als $Stab(f_0)$ und als $Stab(g_0)$ -Unterbündel auffassen und induziert damit Abbildungen f und g wie in 1.11. Der Beweis von 1.11 hat außerdem gezeigt, dass für einen beliebigen Schnitt s in Q bereits $f \circ s \equiv f_0$ und $g \circ s \equiv g_0$ gilt. In diesem Sinne sind f und g simultan von der Getsalt f_0 bzw. g_0 . Sind umgekehrt f und g gegeben, so läßt sich Q wie in 1.11 rekonstruieren.
- (ii) Im Sonderfall P = FM und $V = T^{rs}\mathbb{R}^n$ korrespondieren äquivariante Abbildungen $FM \longrightarrow T^{rs}\mathbb{R}^n$ mit (r, s)-Tensorfeldern f auf M. Die Lokalitätseigenschaft aus 1.11 übersetzt sich dann zu $f = s.f_0$, für lokale Schnitte s von FM.
- (iii) Aus 1.11 folgt sofort, dass eine $Stab(f_0)$ -Struktur f genau dann integrierbar ist, falls eine Überdeckung von M mit lokalen Karten u existiert, für welche $f \circ \partial u \equiv f_0$ gilt.

BEISPIEL 1.13. Sei M eine 2*n*-dimensionale Mannigfaltigkeit, $(e_1, ..., e_{2n})$ die Standardbasis des \mathbb{R}^{2n} mit Skalarprodukt g_0 , komplexer Struktur I_0 und symplektischer Form ω_0 gegeben durch

$$g_0(e_i, e_j) := \delta_{ij}$$

$$I_0(e_j) := e_{j+n} \quad \text{und} \quad I_0(e_{j+n}) := -e_j$$

$$\omega_0 := g_0(I_0, .) = e^1 \wedge e^{n+1} + ... + e^n \wedge e^{2n}$$

Mittels der Einbettung

$$GL(n, \mathbb{C}) \hookrightarrow GL(2n, \mathbb{R}) \cong M(2n, \mathbb{R}), \quad A \longmapsto \begin{pmatrix} Re(A) & -Im(A) \\ Im(A) & Re(A) \end{pmatrix}$$

erhält man bzgl. der $GL(2n, \mathbb{R})$ -Wirkung aus 1.7

 $Stab(g_0) = O(2n) \qquad Stab(I_0) = GL(n, \mathbb{C}) \qquad Stab(\omega_0) = Sp(2n, \mathbb{R})$

Entsprechende G-Strukturen auf Mkorrespondieren daher nach 1.11 mit Tensorfeldern

 $g \in \Gamma(TM^* \otimes TM^*)$ $I \in \Gamma(End(TM))$ $\omega \in \Gamma(\Lambda^2 T^*M)$

 \Box

Die Lokalitätseigenschaft aus 1.11 garantiert, dass g eine riemannsche Metrik, I eine fast-komplexe Struktur und ω eine nicht-entartete 2-Form definieren. Bemerkung 1.12 (iii) liefert nun eine Interpretation des Integrierbarkeitsbegriffes:

- (i) Eine O(2n)-Struktur g ist genau dann integrierbar, falls lokal orthonormale Basisfelder ∂u existieren. Dies ist nach [Lit] äquivalent dazu, dass der Krümmungstensor der O(n)-Struktur verschwindet.
- (ii) Eine $GL(n, \mathbb{C})$ -Struktur I ist genau dann integrierbar, falls M eine komplexe Struktur besitzt.
- (iii) Aus dem Satz von Darboux folgt, dass eine $Sp(2n, \mathbb{R})$ -Struktur ω genau dann integrierbar ist, falls ω eine symplektische Struktur auf M definiert.

Satz 1.11 läßt sich wie folgt auf beliebige abgeschlossene Untergruppen $H \subset G$ verallgemeinern

THEOREM 1.14. Sei P(M, G) ein Prinzipalbündel und $H \subset G$ eine abgeschlossene Untergruppe. Dann gilt:

$$\{Q(M,H) \subset P(M,G)\} \xleftarrow{1:1} \{s \in \Gamma(P \times_G G/H)\}$$

d.h. es existiert eine bijektive Korrespondenz zwischen Unterbündeln $Q(M, H) \subset P(M, G)$ und Schnitten $s \in \Gamma(P \times_G G/H)$.

BEWEIS: Konstruiere zunächst s aus $Q \subset P$ durch s(m) := [q, [e]], wobei $q \in \pi_Q^{-1}(m) \subset Q \subset P$ beliebig gewählt sei. Damit ist $s \in \Gamma(P \times_G G/H)$ wohldefiniert, da sich zwei Elemente aus $\pi_Q^{-1}(m)$ lediglich durch ein Element aus H unterscheiden. Ist umgekehrt s gegeben, so definiere zunächst eine Teilmenge $Q \subset P$ durch

$$Q := \{ p \in P \mid s(\pi(p)) = [p, [e]] \}$$

Sei dann $\gamma_1 \in \Gamma(U_1, P)$ ein beliebiger lokaler Schnitt in P. Definiere $\alpha : U_1 \longrightarrow G/H$ durch $\alpha(m) := [g]$, wobei $[g] \in G/H$ das eindeutig bestimmte Element mit $s(m) = [\gamma_1(m)g, [e]]$ sei. Zu $m \in U$ wähle einen lokalen Schnitt $\gamma_2 \in \Gamma(U_2, G)$ in $\pi_G : G \longrightarrow G/H$ mit $\alpha(m) \in U_2$ wie in 1.3. Wegen $\pi_G \circ \gamma_2 = id_{U_2}$, gilt für $m \in U := U_1 \cap \alpha^{-1}(U_2)$

$$\alpha(m) = [\gamma_2(\alpha(m))] \in G/H$$

Nach Konstruktion von α folgt also

(1)
$$s(m) = [\gamma_1(m).\gamma_2(\alpha(m)), [e]] =: [\gamma(m), [e]],$$

wobe
i $\gamma \in \Gamma(U, P)$ ein lokaler Schnitt in Pist. Se
i $\Phi = (\pi, \varphi) : \pi^{-1}\{U\} \longrightarrow U \times G$ die zugehörige Trivialisierung. Für
 $p \in \pi^{-1}\{m\} \cap Q$ gilt:

$$[\gamma(m).\varphi(p),[e]] \stackrel{Def.\varphi}{=} [p,[e]] \stackrel{p \in Q}{=} s(m) \stackrel{(1)}{=} [\gamma(m),[e]]$$

weshalb $\varphi(p) \in H$ und damit $\Phi(p) \in U \times H$ folgt. Ist umgekehrt $(m, h) \in U \times H$, so setze $p := \gamma(m).h$. Also $\Phi(p) = (m, h)$ und nach (1) gilt s(m) = [p, [e]], d.h. $p \in \pi^{-1}\{m\} \cap Q$. Nach 1.9 ist Q ein H-Unterbündel von P. Die beiden Konstruktion sind offensichtlich zueinander invers.

DEFINITION 1.15. Sei $\pi : P \longrightarrow M$ ein *G*-Bündel und $p \in P$. Das Differential der Abbildung

$$R_p: G \longrightarrow P_{\pi(p)} \subset P \quad \text{mit} \quad g \longmapsto pg$$

in $e \in G$ ist eine Abbildung von der Lie-Algebra $\mathfrak{g} := T_e G$ nach $V_p := T_p P_{\pi(p)} = ker(\pi_{*p})$. Offenbar ist $(R_p)_{*e}$ surjektiv und damit ein Isomorphismus von \mathfrak{g} nach V_p . Für $A \in \mathfrak{g}$ heißt

$$A_p^* := (R_p)_{*e}(A)$$

das zu A assoziierte vertikale Vektorfeld auf P.

DEFINITION 1.16. Ein Zusammenhang auf einem Faserbündel $\pi : E \longrightarrow M$ ist eine differenzierbare Distribution $\mathcal{D} = \{H_p\}_{p \in P}$ von E, welche für alle $p \in E$

$$T_p E = H_p \oplus V_p$$

erfüllt. Dabei sei $V_p := T_p E_{\pi(p)} = ker(\pi_{*p})$. Ein Vektor $X \in T_p E$ lässt sich damit eindeutig in seine horizontale und vertikale Komponente $hX \in H_p$ bzw. $vX \in V_p$ zerlegen. Für $p \in E$ ist die Abbildung

$$\pi_{*p}: H_p \longrightarrow T_{\pi(p)}M$$

offenbar ein Isomorphismus. Der horizontale Lift eines Tangentialvektors $X \in T_m M$ nach $H_p \subset T_p E$ ist dann der eindeutig bestimmte Vektor $hX \in H_p$ mit $\pi_*(hX) = X$. Ein Zusammenhang auf einem Hauptfaserbündel P(M, G) ist eine entsprechende Distribution, welche zusätzlich für alle $p \in P$ und $g \in G$ die Gleichung

$$H_{pg} = (R_g)_* H_p$$

erfüllt, wobei $R_g : P \to P$ die Abbildung mit $p \mapsto pg$ sei. Eine weitere Möglichkeit besteht darin, einen Zusammenhang durch seine Zusammenhangs 1-Form zu beschreiben. Dies ist eine 1-Form \mathcal{Z} auf P mit Werten in der Lie-Algebra \mathfrak{g} von G, welche zusätzlich den Bedingungen

(i)
$$\mathcal{Z}(A^*) = A$$
 für alle $A \in \mathfrak{g}$.
(ii) $R_g^* \mathcal{Z} = Ad(g^{-1})\mathcal{Z}$ für alle $g \in G$

genügt. Nach 1.15 ist die Abbildung $(R_p)_{*e} : \mathfrak{g} \longrightarrow V_p$ ein Isomorphismus. Man erhält \mathcal{Z} als inverse Abbildung hierzu, welche sich (bei gegebener Distribution) durch $\mathcal{Z}(X) := \mathcal{Z}(vX)$ auf ganz T_pP fortsetzen lässt. Umgekehrt kann man jeder \mathfrak{g} -wertigen 1-Form \mathcal{Z} auf P, welche zusätzlich den Eigenschaften (i) und (ii) genügt, durch $H_p := ker(\mathcal{Z}_p)$ einen Zusammenhang zuordnen, welcher \mathcal{Z} als Zusammenhangs 1-Form besitzt. Die Krümmungs 2-Form $\Omega := (d\mathcal{Z})h$ des Zusammenhangs \mathcal{Z} ist eine \mathfrak{g} -wertige 2-Form auf P, welche die Strukturgleichung

$$d\mathcal{Z} = \Omega - [\mathcal{Z}, \mathcal{Z}]$$

erfüllt. Insbesondere misst Ω die Integierbarkeit der horizontalen Distribution. Die Strukturgleichung erhält man aus Teil (i) und (ii) des folgenden

LEMMA 1.17. Für $A, B \in \mathfrak{g}, X, Y \in \Gamma(TM), g \in G$ und $p \in P$ gilt

(i) $[A^*, B^*] = [A, B]^*$ (ii) $[A^*, X^*] = 0$ (iii) $\Omega(X_{pg}^*, Y_{pg}^*) = Ad(g^{-1})\Omega(X_p^*, Y_p^*)$

BEWEIS: Für $\varphi \in C^{\infty}(P)$ rechnet man leicht $[A^*, B^*] \cdot \varphi = [A, B]^* \cdot \varphi$ nach, weshalb (i) gilt. Teil (ii) erhält man sofort aus der Tatsache, dass der Fluss Φ_t von A^* durch $\Phi_t = R_{exp(tA)}$ gegeben ist. Die Strukturgleichung liefert

$$\mathcal{Z}[X^*, Y^*]_p = -\Omega(X^*_p, Y^*_p)$$

Hierau folgt

$$\begin{split} \Omega(X_{pg}^{*}, Y_{pg}^{*}) &= d\mathcal{Z}(R_{g*}X_{p}^{*}, R_{g*}Y_{p}^{*}) \\ &= R_{g*}X_{p}^{*} \cdot \mathcal{Z}(R_{g*}Y^{*}) - R_{g*}Y_{p}^{*} \cdot \mathcal{Z}(R_{g*}X^{*}) - \mathcal{Z}[R_{g*}X^{*}, R_{g*}Y^{*}]_{pg} \\ &= R_{g*}X_{p}^{*} \cdot Ad(g^{-1})\mathcal{Z}(Y^{*}) - R_{g*}Y_{p}^{*} \cdot Ad(g^{-1})\mathcal{Z}(X^{*}) - \mathcal{Z}(R_{g*}[X^{*}, Y^{*}]_{p}) \\ &= -Ad(g^{-1})\mathcal{Z}[X^{*}, Y^{*}]_{p} \\ &= Ad(g^{-1})\Omega(X_{p}^{*}, Y_{p}^{*}) \end{split}$$

DEFINITION 1.18. Eine kovariante Ableitung ∇ auf einem Vektorbündel π : $E \longrightarrow M$ ist eine lineare Abbildung

$$\nabla: \Gamma(E) \longrightarrow \Gamma(T^*M \otimes E),$$

welche für $s \in \Gamma(E)$ und $\varphi \in C^{\infty}(M)$ die Leibniz-Regel $\nabla \varphi s = \varphi \nabla s + d\varphi \otimes s$ erfüllt.

BEMERKUNG 1.19. Seien $\pi : P \longrightarrow M$ ein *G*-Bündel und *F* eine Mannigfaltigkeit, auf welche die Lie-Gruppe *G* von links wirkt. (i) Ein Zusammenhang \mathcal{Z} auf P induziert durch

$$H_{[p,x]}E := \iota_{x*}H_pP$$

einen Zusammenhang auf $E := P \times_G F$. Dabei sei $\iota_x : P \longrightarrow E$ die Abbildung mit $p \longmapsto [p, x]$. Dies ist wegen

$$\iota_{q^{-1}x*}H_{pq}P = \iota_{x*}R_{q^{-1}*}R_{q*}H_pP = \iota_{x*}H_pP$$

wohldefiniert.

(ii) Für eine *G*-Darstellung *V* definiere die kovariante Ableitung von $s \in \Gamma(P \times_G V)$ in Richtung $X \in T_m M$ durch

$$\nabla_X s := [p, df(X_p^*)],$$

wobei $p \in \pi^{-1} \subset P$ beliebig gewählt sei und $f : P \longrightarrow V$ die mit *s* korrespondierende äquivariante Abbildung bezeichnet. Aufgrund der Äquivarianz von *f* gilt $df(X_{pg}^*) = g^{-1}.df(X_p^*)$, weshalb $\nabla_X s$ wohldefiniert ist.

(iii) Eine kovariante Ableitung ∇ auf einem Vektorbündel E mit d-dimensionaler Faser V, induziert einen Zusammenhang auf FE. Für $p \in F_m E$ sei dazu $s = (s_1, ..., s_d) \in \Gamma(U, FE)$ mit $\nabla s_i = 0$ für i = 1, ..., d und s(m) = p. Hierdurch ist s lokal eindeutig bestimmt und

$$H_p := s_*(T_m M) \subset T_p F E$$

definiert einen Zusammenhang in FE.

DEFINITION 1.20. Sei $\pi : E \longrightarrow M$ ein Vektorbündel über M mit einer kovarianten Ableitung ∇ . Diese induziert nach 1.19 einen Zusammenhang auf dem Rahmenbündel FE und damit eine Krümmungs 2-Form Ω auf FE. Definiere den Krümmungstensor $R^{\nabla} \in \Gamma(\Lambda^2 T^*M \otimes End(E))$ von E durch

$$R^{\nabla}(X,Y) := [p, \Omega(X_p^*, Y_p^*)] \in FE \times_{GL(V)} End(V) \cong End(E),$$

wobei $p \in F_m E$ zu $X, Y \in T_m M$ beliebig gewählt sei. Dies ist nach 1.17 (iii) wohldefiniert. Man kann zeigen, dass R^{∇} die bekannte Gleichung

$$R^{\vee}(X,Y)s = [\nabla_X, \nabla_Y]s - \nabla_{[X,Y]}s$$

erfüllt.

DEFINITION 1.21. Sei $Q(M,H) \subset P(M,G)$ ein *H*-Unterbündel. Ein Zusammenhang auf Q lässt sich stets äquivariant zu einem Zusammenhang auf P fortsetzen. Umgekehrt induziert ein Zusammenhang $\{H_p\}_{p\in P}$ auf P nicht stets einem

Zusammenhang auf Q. Hierfür genügt es jedoch zu fordern, dass für alle $q \in Q$

 $H_q \subset T_q Q$

gilt. Man sagt in diesem Fall auch, dass der Zusammenhang auf Q reduziert. Man kann leicht zeigen, dass ein Zusammenhang auf P genau dann auf ein H-Unterbündel $Q \subset P$ reduziert, falls die zugehörige Zusammenhangs 1-Form \mathcal{Z} eingeschränkt auf TQ nur Werte in der Lie-Algebra $\mathfrak{h} \subset \mathfrak{g}$ von H annimmt.

SATZ 1.22. Sei $f: P \longrightarrow V$ ein $Stab_G(f_0)$ -Unterbündel $Q \subset P$ wie in 1.11 mit zugehörigem Schnitt $s \in \Gamma(P \times_G V)$. Ein Zusammenhang \mathcal{Z} auf P induziert nach 1.19 (ii) eine kovariante Ableitung ∇ auf $P \times_G V$ und es gilt

 \mathcal{Z} reduziert auf $Q \quad \Leftrightarrow \quad \nabla s = 0$

BEWEIS: Wegen $Q = f^{-1}{f_0}$ folgt die Behautung direkt aus der Definition von ∇s in 1.19 (ii).

DEFINITION 1.23. Sei P(M, G) ein Prinzipalbündel mit einem Zusammenhang \mathcal{Z} und $c : [0,1] \longrightarrow M$ eine stückweise differenzierbare Kurve in M von $m_0 := c(0)$ nach $m_1 := c(1)$. Für $p \in P_{m_0}$ existiert dann genau eine horizontale Kurve $c_p : [0,1] \longrightarrow P$ mit $c_p(0) = p$ und $\pi \circ c_p = c$. Genauer erhält man c_p als Integralkurve des gelifteten Geschwindigkeitsvektorfeldes \dot{c} [Sal. Lemma 2.3]. Die Parallelverschiebung längs c ist dann die Abbildung

$$\mathcal{Z}_c: P_{m_0} \longrightarrow P_{m_1} \quad \text{mit} \quad p \longmapsto c_p(1)$$

Da für $g \in G$ offenbar $c_{pg} = c_p g$ gilt, erhält man $\mathcal{Z}_c(pg) = \mathcal{Z}_c(p)g$. Für $m_0 = m_1 =: m$ definiere die Holonomiegruppe von \mathcal{Z} durch

$$Hol(m) := \{ \mathcal{Z}_c : P_m \longrightarrow P_m \mid c \in Loop(m) \}$$

Wegen $\mathcal{Z}_m = id_{\pi^{-1}\{m\}}$ und $\mathcal{Z}_{c_1 \circ c_2} = \mathcal{Z}_{c_1} \circ \mathcal{Z}_{c_2}$ ist Hol(m) eine Gruppe mit neutralem Element $c(t) \equiv m$ und $\mathcal{Z}_c^{-1} = \mathcal{Z}_{c^{-1}}$. Falls M zusammenhängend ist, so hängt Hol(m) von der Wahl des Basispunktes $m \in M$ nur bis auf Konjugation ab. Fixiert man hingegen $p \in P_m$, so lässt sich Hol(p) := Hol(m) als Untergruppe der Strukturgruppe G von P auffassen. Definiere dazu

$$Hol(p) \hookrightarrow G \quad \text{durch} \quad \mathcal{Z}_c \longmapsto g,$$

wobei g durch $pg = \mathcal{Z}_c(p)$ eindeutig bestimmt sei. Aus der Äquivarianz von \mathcal{Z}_c folgt, dass diese Abbildung einen Gruppenmonomorphismus definiert, welcher wiederum nur bis auf Konjugation von der Wahl von $p \in P_m$ abhängt. Fasse daher im Folgenden stets $Hol \cong Hol(p) \subset G$ als Untergruppe auf. Es gilt sogar **THEOREM** [SAL THM 2.6] 1.24. $Hol \subset G$ ist eine Liesche-Untergruppe der Strukturgruppe G.

DEFINITION 1.25. Sei P(M, G) ein Prinzipalbündel mit Zusammenhang \mathcal{Z} . Für $p \in P$ sei $Q(p) \subset P$ die Menge aller Elemente aus P, welche aus p durch Parallelverschiebung erzeugt werden können. In vertikale Richtung wird Q(p) also genau durch die Wirkung von $Hol(p) \subset G$ auf p erzeugt. Radiale Kurven (in einem Koordinatensystem auf M) durch $\pi(p) \in M$ lassen sich zu einem lokalen Schnitt in $Q(p) \subset P$ liften, wodurch Q(p) zu einem Hol(p)-Unterbündel von P wird. Q(p) heißt das Holonomiebündel von \mathcal{Z} durch p.

THEOREM 1.26. Seien P(M, G) ein Prinzipalbündel mit einem Zusammenhang \mathcal{Z} und $H \subset G$ eine Liesche-Untergruppe von G. Dann sind äquivalent

- (i) $Hol(p) \subset H$ für ein $p \in P$.
- (ii) Es existiert ein *H*-Unterbündel von *P*, auf welches \mathcal{Z} reduziert.

BEWEIS: Für $p \in P$ mit $Hol(p) \subset H$ sei Q(p) das Holonomieunterbündel von P. Es genügt zu zeigen, dass für $q \in Q(p)$ stest $H_q \subset T_qQ(p)$ gilt. Sei $X \in H_q$ und c ein beliebiger Weg in M mit $\dot{c}(0) = \pi_*X$. Für den horizontalen Lift c_q von c gilt dann $\pi_*\dot{c}_q(0) = \dot{c}(0) = \pi_*X$, weshalb $\dot{c}_q(0) = X$ folgt. Nach Konstruktion besteht Q(p) genau aus denjenigen Punkten von P, welche mit p durch einen horizontalen Weg verbunden werden können. Daher ist $X = \dot{c}_q(0) \in T_qQ(p)$. Sei umgekehrt $Q(M, H) \subset P(M, G)$ ein H-Unterbündel, auf welches \mathcal{Z} reduziert. Wähle $p \in Q$ und $g \in Hol(p) \subset G$ beliebig. Nach Definition von Hol(p) existiert dann ein $c \in Loop(\pi(p))$ mit $c_p(1) = pg$. Da \mathcal{Z} auf Q reduziert, verläuft der horizontale Lift c_p von c nach $p \in Q$ ganz in Q. Damit ist $c_p(1) \in Q$ und aus $c_p(1) = pg$ folgt $g \in H$.

2. Stabilität

Im ersten Kapitel wurde gezeigt, dass Tensoren zur Beschreibung spezieller G-Strukturen eine wesentlich Rolle spielen. Es stellt sich heraus, dass mittels spezieller Differentialformen, SU(3)- und G_2 -Strukturen sehr elegnat charakterisiert werden können. Diese sogenannten stabilen Formen sind Thema dieses Kapitels, für welches die Arbeit [Hitchin] als Grundlage dient. Zunächst werden stabile 2, 3 und 4 Formen auf einem 6-dimensionalen (reellen oder komplexen) Vektorraum beschrieben. Wesentlich ist hierbei, dass solchen Formen ω ein Volumenelement $\epsilon(\omega)$ zugeordnet werden kann, welches im Fall der stabilen 2-Formen gerade dem bekannten Liouville-Volumen entspricht. Besonderes Interesse gilt außerdem den stabilen 3-Formen, da diese eine komplexe Struktur auf dem zugrundeliegenden Vektorraum induzieren. Im Folgenden sei $(e_1, ..., e_n)$ die Standardbasis des \mathbb{R}^n . Die zugehörige Dualbasis sei mit $(e^1, ..., e^n)$ bezeichnet. Identifiziere außerdem $\Lambda^n := \Lambda^n \mathbb{R}^n \cong \mathbb{R}$ und $\Lambda^k := \Lambda^k \mathbb{R}^n \cong \mathbb{R}^{\binom{k}{n}}$ durch

$$\epsilon_0 := e^1 \wedge .. \wedge e^n = 1 > 0$$
 und $\omega = [\omega(e_I)]_{I \in Q_{k,n}}$

Dabei seien $Q_{k,n}$ die lexikographisch angeordneten k-Tupel aus $\{1, ..., n\}$ und $\omega(e_I) := \omega(e_{i_1}, ..., e_{i_k})$ für $I = (i_1, ..., i_k) \in Q_{k,n}$. Ein Element $A \in GL := GL(\mathbb{R}^n)$ wirkt auf $\omega \in \Lambda^k$ durch

$$A.\omega := \omega(A^{-1}., .., A^{-1}.)$$

Damit wird Λ^k zu einer GL-Darstellung, d.h.

$$\varrho_A := (\omega \longmapsto A.\omega) \in Aut(\Lambda^k)$$

Die Wirkung ist außerdem verträglich mit dem äußeren Produkt und operiert auf Λ^n durch Multiplikation mit $det(A^{-1})$. D.h. es gilt [Anhang]

$$A.(\omega \wedge \mu) = (A.\omega) \wedge (A.\mu)$$
 und $A.\epsilon = det(A^{-1})\epsilon$

für beliebige Formen $\omega \in \Lambda^k$, $\mu \in \Lambda^l$ und $\epsilon \in \Lambda^n$.

DEFINITION 2.1. Eine k-Form $\omega \in \Lambda^k$ heißt stabil, falls ihr Orbit $GL.\omega \subset \Lambda^k$ offen ist. Entsprechend heißt eine k-Form $\omega : FM \longrightarrow \Lambda^k$ stabil, falls für alle $p \in FM$ die k-Form $\omega(p) \in \Lambda^k$ stabil ist. Die Menge der stabilen k-Formen auf M sei mit $\Omega_{st}^k(M)$ bezeichnet.

BEMERKUNG 2.2. Sei $\omega \in \Lambda^k$ mit Stabilisator $H := Stab_{GL}(\omega)$. Der Quotient GL/H besitzt eine natürliche differenzierbare Struktur, für welche gilt [Anhang]

$$f: GL/H \longrightarrow \Lambda^k \quad \text{mit} \quad [A] \longmapsto A.\omega \quad \text{ist eine Immersion}$$

Falls zusätzlich $dim(GL/H) = dim(\Lambda^k)$ gilt, so ist [DG1 2.19] f eine offene Abbildung und

$$GL.\omega = f(GL/H) \subset \Lambda^k$$
 offen.

Insbesondere ist also $GL.\omega$ eine reguläre Untermannigfaltigkeit von Λ^k , weshalb f als Abbildung $F: GL/H \longrightarrow GL.\omega$ eine Immersion bleibt [DG1 2.23]. Die Abbildung

$$GL.\omega \longrightarrow GL/H, \quad A.\omega \longmapsto [A]$$

ist offenbar wohldefiniert und invers zu F. Damit ist F eine bijektive Immersion zwischen gleichdimensionalen Mannigfaltigkeiten, d.h. ein Diffeomorphismus. Da meist $\binom{n}{k} > n^2$ gilt, tritt Stabilität nur für hinreichend kleine Dimensionen auf. Der folgende Satz motiviert das Studium stabiler Formen:

SATZ 2.3. Seien $\omega : FM \longrightarrow \Lambda^k$ eine stabile Differentialform auf einer zusammenhängenden Mannigfaltigkeit M und $\omega_0 \in Im(\omega) \subset \Lambda^k$ beliebig. Dann existiert auf M eine $Stab_{GL}(\omega_0)$ -Struktur.

BEWEIS: Zeige zunächst

(1)
$$\forall m \in M \; \exists p = p(m) \in F_m M : \; \omega(p) = \omega_0$$

Konstruiere mit (1) nun leicht einen Schnitt

$$s: M \longrightarrow FM \times GL/Stab(\omega_0), \quad m \longmapsto [p(m), [e]],$$

wobei p(m) wie in (1) beliebig gewählt sei und $e \in GL$ das neutrale Element bezeichne. Da sich zwei Basen wie in (1) offenbar duch ein Element aus $Stab(\omega_0)$ unterscheiden, ist dieser wohldefiniert, und liefert nach Theorem 1.14 die gewünschte $Stab(\omega_0)$ -Struktur. Zum Beweis von (1) betrachte die Menge

$$W := W(\omega_0) := \{ m \in M \mid \exists p \in F_m M : \omega(p) = \omega_0 \}$$

Zu $m \in W$ wähle einen lokalen Schnitt $s \in \Gamma(V, FM)$ über $V \in Umg(m, M)$. Wegen der Stabilität von ω ist

$$m \in (\omega \circ s)^{-1}(GL.\omega) \subset V$$

offen. In einer Umbgebung U von m hat also $\omega \circ s$ Werte in $GL.\omega_0$, d.h. $\omega(s(m)) = A.\omega_0$ für ein $A \in GL$. Damit gilt aber $\omega(s(m).A) = \omega_0$, d.h. $U \subset W$. Ist umgekehrt $m \in M \setminus W$, so wähle $\omega'_0 := \omega(p')$ mit $p' \in F_m M$ beliebig, und wie eben eine Umgebung $U \subset W(\omega'_0)$ von m in M. Angenommen es existiert ein $p \in FU$ mit $\omega(p) = \omega_0$ (d.h. $U \cap W(\omega_0) \neq \emptyset$), so folgt insbesondere $GL.\omega_0 = GL.\omega(p)$. Nach Konstruktion von U gilt aber auch $GL.\omega(p) = GL.\omega'_0$, weshalb $GL.\omega_0 = GL.\omega'_0$ folgt. Damit also

$$\Omega(p') = \omega_0' = A.\omega_0$$

für ein passendes $A \in GL$, weshalb $\omega(p'.A) = \omega_0$ folgt, im Widerspruch zu $m \in M \setminus W$. D.h. es gilt bereits $U \subset M \setminus W$. Damit ist $W \neq \emptyset$ offen und abgeschlosssen, weshalb bereits W=M und damit (1) gelten muß.

DEFINITION 2.4. Definiere die folgenden Formen auf \mathbb{R}^6

(1) $\omega_0 := e^{14} + e^{25} + e^{36}$ (2) $\varphi_0 := e^{123} - e^{156} + e^{246} - e^{345}$ (3) $\sigma_0 := \frac{1}{2}\omega_0^2 = e^{1425} + e^{1436} + e^{2536}$

So wie auf \mathbb{R}^7

(4)
$$\psi_0 := \omega_0 \wedge e^7 + \varphi_0 = e^{147} + e^{257} + e^{367} + e^{123} - e^{156} + e^{246} - e^{345}$$

Die 3-Form φ_0 ist der Realteil von

(5)
$$\alpha_0 := (e^1 + ie^4) \land (e^2 + ie^5) \land (e^3 + ie^6) \in \Lambda^3 \otimes_{\mathbb{R}} \mathbb{C}$$

und ψ_0 beschreibt die kanonische 3-Form, welche durch das \mathbb{R}^7 -Kreuzprodukt induziert wird. Setze außerdem

(6)
$$\varphi_1 := e^{123} + e^{456}$$

(7) $\widehat{\varphi_0} := Im(\alpha_0) = e^{126} - e^{135} + e^{234} - e^{456} = -I_0.\varphi_0$

Definiere weiter für eine 6-dimensionale Mannigfaltigkeit M

$$\Omega_{\omega_0}(M) := \{ \omega : FM \longrightarrow GL. \omega_0 \subset \Lambda^2 \text{ äquivariant} \} \subset \Omega^2(M)$$

Analog: $\Omega_{\varphi_0}(M) \subset \Omega^3(M)$ und $\Omega_{\sigma_0}(M) \subset \Omega^4(M)$.

DEFINITION 2.5. Definiere folgende Abbildungen

(i)
$$n=6, k=3$$
:

$$\begin{split} K:\Lambda^3 \longrightarrow Hom(\mathbb{R}^6,\mathbb{R}^6\otimes\Lambda^6) \quad \mathrm{durch} \quad K_\varphi(x)(\alpha) &:= \frac{1}{2}\alpha \wedge (x \lrcorner \varphi) \wedge \varphi \in \Lambda^6 \\ \mathrm{und} \\ \lambda:\Lambda^3 \longrightarrow (\Lambda^6)^2 \quad \mathrm{durch} \quad \varphi \longmapsto \frac{1}{6}tr(K_\varphi^2) \end{split}$$

$$K: \Lambda^4 \longrightarrow Hom(\mathbb{R}^{6*}, \mathbb{R}^6 \otimes \Lambda^6) \quad \text{durch} \quad K_{\sigma}(\alpha)(\beta) := \beta \wedge \alpha \wedge \sigma \in \Lambda^6$$

und

$$\lambda : \Lambda^4 \longrightarrow (\Lambda^6)^4 \quad \text{durch} \quad \sigma \longmapsto det(K_\sigma)$$

(iii) n=7, k=3:

 $K: \Lambda^3 \longrightarrow Hom(\mathbb{R}^7, \mathbb{R}^{7*} \otimes \Lambda^7) \quad \text{durch} \quad K(\psi)(x)(y) := -\frac{1}{6}(x \lrcorner \psi) \land (y \lrcorner \psi) \land \psi$ und

 $\lambda : \Lambda^3 \longrightarrow (\Lambda^7)^9 \quad \text{mit} \quad \psi \longmapsto det(K_{\psi})$

Man beachte, dass in (ii) und (iii) tatsächlich $det(K_{\sigma}) \in (\Lambda^6)^4 := \Lambda^6 \otimes .. \otimes \Lambda^6$ bzw. $det(K_{\psi}) \in (\Lambda^7)^9$ gilt [Anhang].

LEMMA 2.6. Die Abbildungen K und λ sind in allen drei Fällen äquivariant.

BEWEIS: Exemplarisch für den Fall (i):

$$2K(A.\varphi)(x)(\alpha) = \alpha \wedge (x \lrcorner A.\varphi) \wedge A.\varphi$$

= $\alpha \wedge A.(A^{-1}x \lrcorner \varphi) \wedge A.\varphi$
= $det(A^{-1})A^{-1}.\alpha \wedge (A^{-1}x \lrcorner \varphi) \wedge \varphi$
= $det(A^{-1})2K(\varphi)(A^{-1}x)(A^{-1}.\alpha)$
= $2(A.K(\varphi))(x)(\alpha)$

Damit folgt außerdem $\lambda(A.\varphi) = det(A^{-1})^2\lambda(\varphi)$, d.h. die Äquivarianz von λ .

BEISPIEL 2.7. Die 2-Form ω_0 ist die kanonische symplektische Form auf \mathbb{R}^6 und erfüllt daher

$$Stab_{GL}(\omega_0) = Sp(6, \mathbb{R})$$

Es folgt

$$dim(GL) - dim(Stab(\omega_0)) = 36 - 21 = dim(\Lambda^2)$$

Nach 2.2 ist also ω_0 stabil. Sei nun $\omega \in \Lambda^2$ eine beliebige nicht-entartete Bilinearform. Bekanntlich gilt

 $\omega \text{ nicht-entartet } \Leftrightarrow \quad \omega^3 \neq 0 \quad \Leftrightarrow \quad \omega \in GL.\omega_0$

Damit ist $Stab_{GL}(\omega)$ konjugiert zu $Sp(6,\mathbb{R})$, weshalb ω stabil ist. Zum Nachweis der Rückrichtung betrachte das Liouville-Volumen

$$\epsilon:\Lambda^2\longrightarrow\Lambda^6,\quad\omega\longmapsto-\frac{\omega^3}{3!}$$

Unter der obigen Identifikation $\Lambda^2 \cong \mathbb{R}^N$, $\Lambda^6 \cong \mathbb{R}$ entspricht dieses offenbar einem Polynom $\epsilon : \mathbb{R}^N \longrightarrow \mathbb{R}$. Angenommen, es existiert eine stabile Form ω mit $\epsilon(\omega) = 0$. Dann folgt, dass bereits $\epsilon_{|GL.\omega} \equiv 0$ gilt. Da jedoch $GL.\omega$ offen ist, muß sogar $\epsilon \equiv 0$

$$\omega$$
 ist stabil $\Leftrightarrow \omega \in GL.\omega_0$

Die stabilen 2-Formen stimmen daher genau mit den nicht-entarteten 2-Formen überein und es gilt

$$\Omega_{st}^2(M) = \Omega_{\omega_0}(M)$$

LEMMA 2.8. Für die 3-Form φ_0 rechnet man leicht nach, dass

$$K_{\varphi_0}(e_j) = \begin{cases} +e_{j+3} \otimes \epsilon_0 & \text{, falls } j \in \{1, 2, 3\} \\ -e_{j-3} \otimes \epsilon_0 & \text{, falls } j \in \{4, 5, 6\} \end{cases}$$

gilt. Daher ist $K_{\varphi_0} \in Hom(\mathbb{R}^6, \mathbb{R}^6 \otimes \Lambda^6)$ gegeben durch

$$K_{\varphi_0} = \begin{pmatrix} 0 & -id_3 \\ id_3 & 0 \end{pmatrix} \otimes \epsilon_0$$

Es folgt $K^2_{\varphi_0} = -id_{\mathbb{R}^6} \otimes \epsilon_0^2$ und somit

$$\lambda(\varphi_0) = -\epsilon_0^2 < 0$$

Für die Identitätskomponente $Stab_0(\varphi_0)$ des Stabilisators von φ_0 in GL gilt

$$Stab_0(\varphi_0) = SL(3, \mathbb{C}) \subset GL$$

Damit folgt $dim(GL) - dim(Stab_{GL}(\varphi_0)) = 36 - 16 = dim(\Lambda^3)$, we shalb $\varphi_0 \in \Lambda^3$ stabil ist.

BEWEIS: Anhang.

LEMMA 2.9. Für die 4-Form σ_0 rechnet man leicht nach, dass

$$K_{\sigma_0}(e^j) = \begin{cases} +e_{j+3} \otimes \epsilon_0 & \text{, falls } j \in \{1, 2, 3\} \\ -e_{j-3} \otimes \epsilon_0 & \text{, falls } j \in \{4, 5, 6\} \end{cases}$$

gilt. Somit also

$$\lambda(\sigma_0) = \epsilon_0^4$$

Für die Identitätskomponente $Stab_0(\sigma_0)$ des Stabilisators von σ_0 in GL gilt

$$Stab_0(\sigma_0) = Sp(6, \mathbb{R}) \subset GL$$

Damit folgt $dim(GL) - dim(Stab_{GL}(\sigma_0)) = 36 - 21 = dim(\Lambda^4)$, we shalb $\sigma_0 \in \Lambda^4$ stabil ist.

BEWEIS: Anhang.

LEMMA 2.10. Für die 3-Form ψ_0 berechnet man

$$K_{\psi_0}(e_i, e_j) = \delta_{ij}\epsilon_0 \quad \text{und} \quad \lambda(\psi_0) = \epsilon_0^9$$

Weiter gilt nach [Salamon Lemma 11.1]

$$Stab_{GL}(\psi_0) = G_2$$

Wegen $dim(GL(7, \mathbb{R})) - dim(G_2) = 49 - 14 = 35 = dim(\Lambda^3 \mathbb{R}^{7*})$ ist also ψ_0 stabil.

BEWEIS: Anhang.

DEFINITION 2.11. Definiere die folgenden Gegenstücke zum Liouville-Volumen

(1) $\epsilon : GL.\omega_0 \longrightarrow \Lambda^6$ durch $\omega \longmapsto -\frac{1}{3!}\omega^3$ (2) $\epsilon : GL.\varphi_0 \longrightarrow \Lambda^6$ durch $\varphi \longmapsto (-\lambda(\varphi))^{\frac{1}{2}}$ (3) $\epsilon : GL.\sigma_0 \longrightarrow \Lambda^6$ durch $\sigma \longmapsto (\lambda(\sigma))^{\frac{1}{4}}$ (4) $\epsilon : GL.\psi_0 \longrightarrow \Lambda^7$ durch $\psi \longmapsto (\lambda(\psi))^{\frac{1}{9}}$

Beachte dabei, dass nach 2.8 und 2.9 gerade $\lambda(\varphi_0) < 0$ und $\lambda(\sigma_0) > 0$ gilt. Aufgrund der Äquivarianz transformiert λ auf $GL.\varphi_0$ bzw. $GL.\sigma_0$ mit der zweitenbzw. vierten Potenz der Determinate und ändert somit das Vorzeichen nicht. Nach Konstruktion gilt stets

$$\epsilon(\rho_0) = \epsilon_0,$$

für jeden Modelltensor $\rho_0 \in \{\omega_0, \varphi_0, \sigma_0, \psi_0\}$. Die Äquivarianz von λ überträgt sich wie folgt

$$\epsilon(A.\rho) = \begin{cases} A.\epsilon(\rho) &, \text{ falls } \rho \in GL.\omega_0 \text{ oder } \rho \in GL.\psi_0\\ sgn(A)A.\epsilon(\rho) &, \text{ falls } \rho \in GL.\varphi_0 \text{ oder } \rho \in GL.\sigma_0 \end{cases}$$

Dabei bezeichne sgn(A) das Vorzeichen der Determinate von $A \in GL$.

DEFINITION/LEMMA 2.12. Auf der offenen Menge $GL.\varphi_0$ definiere die folgende Abbildung

$$I: GL.\varphi_0 \longrightarrow End(\mathbb{R}^6) \quad \text{durch} \quad \varphi \longmapsto \frac{1}{\epsilon(\varphi)} K(\varphi)$$

Für die kanonische komplexe Struktur I_0 auf \mathbb{R}^6 und $A \in GL$ gilt dann

(i)
$$I(\varphi_0) = I_0$$

(ii)
$$I(A.\varphi) = sgn(A)A.I(\varphi)$$

(iii) $I(\varphi)^2 = -id_{\mathbb{R}^6}$

BEWEIS: Teil (i) folgt direkt aus 2.8 und $\epsilon(\varphi_0) = \epsilon_0$. Aus der Äquivarianz von K und ϵ folgt sofort (ii). Schließlich ergibt sich aus (i) und (ii)

$$I(\varphi)^{2} = I(A.\varphi_{0})^{2} = (sgn(A)A.I_{0})^{2} = A \circ I_{0} \circ A^{-1} \circ A \circ I_{0} \circ A^{-1} = -A.id_{\mathbb{R}^{6}} = -id_{\mathbb{R}^{6}}$$

DEFINITION/LEMMA 2.13. Auf der offenen Menge $GL.\psi_0$ definiere die folgende Abbildung

$$g: GL.\psi_0 \longrightarrow \mathbb{R}^{7*} \otimes \mathbb{R}^{7*} \quad \text{durch} \quad \psi \longmapsto \frac{1}{\epsilon(\psi)} K(\psi)$$

Für die eukilidische Metrik g_0 auf \mathbb{R}^7 und $A \in GL$ gilt dann

- (i) $g(\psi_0) = g_0$
- (ii) $g(A.\psi) = A.g(\psi)$
- (iii) $g(\psi)$ definiert eine Metrik auf \mathbb{R}^6

BEWEIS: Aus 2.10 folgt (i). Teil (ii) ergibt sich wiederum aus der Äquivarianz von K und ϵ . Symmetrie, Bilinearität und Positivität von g_0 übertragen sich durch (i) und (ii) auf $g(\psi)$.

BEMERKUNG 2.14. Aus 2.13 (und $\lambda(A.\psi) = det(A^{-1})^9\lambda(\psi)$) folgt

$$Stab_{GL}(\psi_0) = G_2 \subset SO(7)$$

Eine Reduktion auf G_2 induziert also eine Reduktion auf SO(7), welche durch die Metrik $g(\psi)$ und die Volumenform $\epsilon(\psi)$ explizit gegeben ist. Ähnliches lässt sich im Fall der 3-Form φ_0 beobachten. Hier gilt nach 2.8

$$Stab_0(\varphi_0) = SL(3, \mathbb{C}) \subset GL(3, \mathbb{C})$$

Die Tatsache, dass lediglich die Identitätskomponente des Stabilisators eine Reduktion auf $GL(3, \mathbb{C})$ induziert, spiegelt sich im Transformationsverhalten von $\epsilon(\varphi)$ und $I(\varphi)$ wider. Wie oben gezeigt, sind I und ϵ nur für $A \in GL^+$ äquivariant. Eine Reduktion auf $GL(3, \mathbb{C})$ ist also allein mit der 3-Form ψ nicht möglich. Sie lässt sich

20

jedoch nach Wahl einer Orientierung erreichen und ist dann durch die Abbildung I aus 2.12 explizit gegeben. Genauer erhält man:

KOROLLAR 2.15. Sei M eine 7-dimensionale Mannigfalltigkeit und $\psi \in \Omega_{\psi_0}(M)$. Dann sind

(1)
$$\epsilon(\psi) : FM \longrightarrow \Lambda^7 \quad \text{mit} \quad p \longmapsto \epsilon(\psi(p))$$

(2) $g(\psi) : FM \longrightarrow \mathbb{R}^{7*} \otimes \mathbb{R}^{7*} \quad \text{mit} \quad p \longmapsto g(\psi(p))$

äquivariante Abbildungen und definieren eine Volumenform bzw. eine Metrik auf M.

KOROLLAR 2.16. Sei M eine 6-dimensionale Mannigfaltigkeit mit Orientierung $F^+M \subset FM$ und $\varphi \in \Omega_{\varphi_0}(M)$. Dann sind

(1) $\epsilon(\varphi) : F^+M \longrightarrow \Lambda^6 \quad \text{mit} \quad p \longmapsto \epsilon(\varphi(p))$ (2) $I(\varphi) : F^+M \longrightarrow End(\mathbb{R}^7) \quad \text{mit} \quad p \longmapsto I(\varphi(p))$

 GL^+ -äquivariante Abbildungen, welche sich kanonisch zu GL-äquivarianten Abbildungen auf ganz FM fortsetzen lassen. Damit definiert $\epsilon(\varphi)$ eine Volumenform und $I(\varphi)$ eine fast-komplexe Struktur auf M. Ist zusätzlich $\omega \in \Omega_{\omega_0}(M)$ eine stabile 2-Form auf M, so heißt das Paar (ω, φ) positiv, falls für $X \neq 0$ stets $\omega(X, I(\varphi)X) > 0$ gilt.

BEMERKUNG 2.17. Für $\rho_0 \in \{\omega_0, \varphi_0, \sigma_0, \psi_0\}$ ist $GL.\rho_0 \subset \Lambda^k$ offen und die Abbildung $\epsilon : GL.\rho_0 \longrightarrow \Lambda^n$ ist offenbar differenzierbar. Aus der Äquivarianz folgt für $t \in \mathbb{R} \setminus \{0\}$

$$\epsilon(t^k \rho) = t^n \epsilon(\rho)$$

Damit ist ϵ homogen vom Grad $\frac{n}{k}$ und nach Euler gilt

$$D_{\rho}\epsilon(\rho) = \frac{n}{k}\epsilon(\rho)$$

Das Dachprodukt liefert einen Isomorphismus $\Lambda^{n-k} \cong Hom(\Lambda^k, \Lambda^n)$. Wegen $D\epsilon$: $GL.\rho_0 \longrightarrow Hom(\Lambda^k, \Lambda^n)$, existiert daher für $\rho \in GL.\rho_0$ genau ein $\widehat{\rho} \in \Lambda^{n-k}$ mit

$$D_{\rho}\epsilon(.) = \frac{1}{2}\widehat{\rho}\wedge.$$

Insbesondere gilt damit

$$\epsilon(\rho) = \frac{k}{2n} \widehat{\rho} \wedge \rho$$

LEMMA 2.18. Für $\rho \in GL.\rho_0$ und $A \in GL$ gilt

$$\widehat{A.\rho} = \begin{cases} A.\widehat{\rho} &, \text{ falls } \rho \in GL.\omega_0 \text{ oder } \rho \in GL.\psi_0 \\ sgn(A)A.\widehat{\rho} &, \text{ falls } \rho \in GL.\varphi_0 \text{ oder } \rho \in GL.\sigma_0 \end{cases}$$

BEWEIS: Für $\dot{\rho} \in T_{A,\rho}GL.\rho_0 \cong \Lambda^k$ gilt

$$\begin{aligned} D_{A,\rho}\epsilon(\dot{\rho}) &= \lim_{t \to 0} \epsilon(A,\rho + t\dot{\rho}) \\ &= sgn(A)det(A^{-1})\lim_{t \to 0} \epsilon(\rho + tA^{-1}.\dot{\rho}) \\ &= sgn(A)det(A^{-1})D_{\rho}\epsilon(A^{-1}.\dot{\rho}) \end{aligned}$$

Dabei tritt sgn(A) nur im Fall $\rho_0 \in \{\varphi_0, \sigma_0\}$ auf (vgl. 2.11). Hiermit folgt

$$\begin{split} \widehat{A.\rho} \wedge \dot{\rho} &= D_{A.\rho} \epsilon(\dot{\rho}) \\ &= sgn(A)det(A^{-1})D_{\rho} \epsilon(A^{-1}.\dot{\rho}) \\ &= sgn(A)A.(\widehat{\rho} \wedge A^{-1}.\dot{\rho}) \\ &= sgn(A)A.\widehat{\rho} \wedge \dot{\rho} \end{split}$$

und damit die Behauptung.

SATZ 2.19. Die Formen $\hat{\rho}$ haben die folgende Gestalt

(1)
$$\widehat{\omega} = -\omega^2$$

(2) $\widehat{\varphi} = -I(\varphi).\varphi$
(3) $\widehat{\sigma} = -\omega$, falls $\sigma = \frac{1}{2}\omega^2 \in GL.\sigma_0$.

Insbesondere erhält man für $\rho \in \Omega_{\rho_0}(M)$ (nach eventueller Wahl einer Orientierung auf M) eine ebenfalls stabile Form $\hat{\rho} \in \Omega(M)$.

BEWEIS: Für Teil (1) berechnet man sofort

$$D_{\omega}\epsilon(\dot{\omega}) = -\frac{1}{3!}3\omega^2 \wedge \dot{\omega} = -\frac{1}{2}\omega^2 \wedge \dot{\omega}$$

Teil (2) und (3) erhält man [Anhang], indem man zunächst die Gleichungen für die Modelltensoren φ_0 bzw. σ_0 überprüft und anschließend Lemma 2.18 benutzt.

DEFINITION/LEMMA 2.20. Für $\varphi \in GL.\varphi_0$ definiere eine komplexwertige 3-Form durch

$$\alpha(\varphi) := \varphi + i\widehat{\varphi}$$

Aus 2.17, 2.18 und 2.19 folgt sofort

(i)
$$\alpha(\varphi_0) = \alpha_0$$

(ii) $\alpha(A.\varphi) = \begin{cases} A.\alpha(\varphi) & \text{, falls sgn}(A) > 0\\ A.\overline{\alpha(\varphi)} & \text{, falls sgn}(A) < 0 \end{cases}$
(iii) $\epsilon(\varphi) = \frac{1}{8}i\alpha \wedge \overline{\alpha}$

LEMMA 2.21. Für $\varphi \in GL.\varphi_0$ und $\omega \in GL.\omega_0$ gilt

$$\omega \wedge \varphi = 0 \quad \Leftrightarrow \quad \omega(., I(\varphi)) \text{ ist symmetrisch } \Leftrightarrow \quad \omega \wedge \widehat{\varphi} = 0$$

BEWEIS: Wähle eine Basis bzgl. welcher φ von der Gestalt φ_0 ist. Entwicklung von ω nach dieser Basis und anschließende Berechnung von $\omega \wedge \varphi$ bzw. $\omega \wedge \hat{\varphi}$ liefert die Behauptung.

	_	

LEMMA 2.22. Sei M eine kompakte orientierte Mannigfaltigkeit und $\rho_0 \in \{\omega_0, \varphi_0, \sigma_0, \psi_0\}$. Dann ist $\Omega_{\rho_0}(M) \subset \Omega^k(M)$ offen und die Abbildung

$$V: \Omega_{\rho_0}(M) \longrightarrow \mathbb{R} \quad \text{mit} \quad \rho \longmapsto \int_M \epsilon(\rho)$$

ist differenzierbar mit

$$D_{\rho}V(\dot{\rho}) = \int_{M} D_{\rho}\epsilon(\dot{\rho}) = \frac{1}{2}\int_{M}\widehat{\rho}\wedge\dot{\rho}$$

Weiter gilt für $F \in Diff_{\pm}(M)$

$$F^* \rho \in \Omega_{\rho_0}(M)$$
 und $V(F^* \rho) = \pm V(\rho)$

BEWEIS: Sei $p \in FM$ mit $\varrho(p) = \varrho_0$. Dann folgt

$$(F^*\varrho)(F^{-1}_*p) = \varrho(F_*F^{-1}_*p) = \varrho_0$$

Also ist $F^*\varrho\in\Omega_{\varrho_0}(M)$ und aus der Transformationsformel erhält man sofort

$$V(F^*\varrho) = \int_M \epsilon(F^*\varrho) = \int_M F^*(\epsilon(\varrho)) = \pm V(\varrho)$$

Die Differenzierbarkeit von V wird im Anhang überprüft.

BEMERKUNG 2.23. In 2.7 wurden die stabilen 2-Formen auf einer 6-dimensionalen Mannigfaltigkeit M durch $\Omega_{st}^2(M) = \Omega_{\omega_0}(M)$ klassifiziert. Für stabile 3-Formen erhält man [Hitchin] eine ähnliches Resultat, welches für diese Arbeit jedoch nicht von wesentlicher Relevanz sein wird:

$$\Omega^3_{st}(M) = \Omega_{\varphi_0}(M) \sqcup \Omega_{\varphi_1}(M)$$

Eine 3-Form liegt genau dann in der ersten bzw. zweiten Komponente, falls $\lambda < 0$ bzw. $\lambda > 0$ gilt. Die Eigenschaft $\lambda(\varphi) < 0$ wurde bei der Definition der Volumenform $\epsilon(\varphi)$ und der fast-komplexen Struktur $I(\varphi)$ wesentlich benutzt. Im Folgenden sei daher mit einer stabilen 3-Form φ stets eine Form mit $\lambda(\varphi) < 0$ gemeint.

ERWEITERUNG 2.24. Hitchin Theoreme 1,5 und 6. Klassifikation von 3-Formen ausführen?

3. Darstellung von SU(3)-Strukturen durch stabile Formen

Eine G_2 -Struktur auf einer 7-dimensionalen Mannigfaltigkeit M besteht nach 1.11 und 2.10 aus einer stabilen 3-Form ψ , welche lokal von der Gestalt ψ_0 (siehe 2.4) ist. Die Ergebnisse des letzten Kapitels ermöglichen nun ebenfalls die Beschreibung von SU(3)-Strukturen durch stabile k-Formen. Diese Darstellung bildet die Basis für die Konstruktion von parallelen G_2 -Strukturen. In der zweiten Hälfte dieses Kapitels wird ein Verfahren diskutiert, welches die Konstruktion einer ganzen Familie von SU(3)-Strukturen aus einer gegebenen SU(3)-Struktur ermöglicht. Eine Anwendung hierzu findet sich in Kapitel 6.

LEMMA 3.1. Für die Form $\alpha_0 := (e^1 + ie^{n+1}) \wedge .. \wedge (e^n + ie^{2n}) \in \Lambda^{2n} \otimes_{\mathbb{R}} \mathbb{C}$ und $A \in GL(n, \mathbb{C})$ gilt

$$A.\alpha_0 = det_{\mathbb{C}}(A^{-1})\alpha_0$$

Daher folgt $Stab_{GL(n,\mathbb{C})}(\alpha_0) = SL(n,\mathbb{C}).$

BEWEIS: Wegen $A^{-1} \in GL(n, \mathbb{C})$ besitz A^{-1} die Gestalt

$$A^{-1} = \begin{pmatrix} B & -C \\ C & B \end{pmatrix} \cong B + iC \in GL(n, \mathbb{C})$$

Da außerdem für die Basis $a_j := Ae_j$

$$A \cdot e^{j} = a^{j} = \sum_{k=1}^{2n} a^{j}(e_{k})e^{k} = \sum_{k=1}^{2n} e^{j}(A^{-1}e_{k})e^{k} = \sum_{k=1}^{2n} a_{jk}^{-1}e^{k}$$

gilt, folgt hieraus

$$A.(e^{j} + ie^{j+n}) = \sum_{k=1}^{2n} (a_{jk}^{-1} + ia_{j+n,k}^{-1})e^{k} = \sum_{k=1}^{n} (b_{jk} + ic_{jk})(e^{k} + ie^{k+n})$$

und damit

$$A.\alpha_0 = det_{\mathbb{C}}(B+iC)\alpha_0 = det_{\mathbb{C}}(A^{-1})\alpha_0$$

- 6		٦
		н

BEISPIEL 3.2. Sei M eine 2n-dimensionale Mannigfaltigkeit. Nach 1.11 korrespondiert eine U(n)-Struktur auf M, wegen

$$U(n) = GL(n, \mathbb{C}) \cap O(2n, \mathbb{R}) = Stab(I_0) \cap Stab(g_0),$$

mit einer fast-komplexen Struktur I und einer Metrik g auf M, welche in dem Sinne kompatibel sind, dass lokale Schnitte s von FM existieren mit

$$I \circ s = I_0$$
 und $g \circ s = g_0$

Da beide Gleichungen für denselben Schnitt
s gelten, erhält man g(I, I) = g. Die zugehörige Kähler-Form
 $\omega := g(I, .)$ ist dann eine nicht-entartete 2-Form auf M, welche den Bedingungen

(1)
$$\omega(X, IY) = \omega(Y, IX)$$

(2)
$$\omega(X, IX) > 0$$
, für $X \neq 0$.

genügt. Ist umgekehrt ein Paar (ω , I), bestehend aus einer nicht-entarteten 2-Form ω und einer fast-komplexen Struktur I gegeben, welche (1) und (2) erfüllen, so definiert $g(X,Y) := \omega(X,IY)$ eine Metrik auf M. Induktiv konstruiert man lokale orthonormale Basisfelder der Gestalt

$$s = (X_1, ..., X_n, IX_1, ..., IX_n),$$

für welche offenbar $I \circ s = I_0$ und $g \circ s = g_0$ gilt. Damit ist gezeigt

$$\{P \subset FM \mid U(n)\text{-Struktur}\} \xleftarrow{1:1} \{(\omega, I) \text{ mit } (1) \text{ und } (2)\}$$

Sei nun $P = (\omega, I)$ eine fest gewählte U(n)-Struktur. Nach Konstruktion sind ω und I auf P konstant vom Wert ω_0 bzw. I_0 . Weiter folgt aus 3.1

$$Stab_{U(n)}(\alpha_0) = SL(n, \mathbb{C}) \cap U(n) = SU(n)$$

Nach 1.11 korrespondieren daher SU(n)-Reduktionen von P mit äquivarianten Abbildungen $\alpha : P \longrightarrow \Lambda^3 \otimes_{\mathbb{R}} \mathbb{C}$, für welche lokale Schnitte s von P existieren mit $\alpha \circ s \equiv \alpha_0$. Aus der Äquivarianz von α und 3.1 folgt, dass für alle $p \in P$ ein $\lambda(p) \in S^1 \subset \mathbb{C}$ existiert mit $\alpha(p) = \lambda(p)\alpha_0$. D.h. es gilt

$$(3) \qquad \qquad \alpha \in S^1 \alpha_0$$

Ist umgekehrt α mit dieser Eigenschaft gegeben, so ist wegen $\lambda(p) \in S^1$

$$A(p) := \begin{pmatrix} \overline{\lambda(p)} & 0\\ 0 & id_{n-1} \end{pmatrix} \in U(n)$$

und es folgt

$$\alpha(p.A(p)) = A(p)^{-1} \cdot \alpha(p) = \lambda(p)A(p)^{-1} \cdot \alpha_0$$
$$= \lambda(p)det_{\mathbb{C}}(A(p))\alpha_0 = |\lambda(p)|^2\alpha_0$$
$$= \alpha_0$$

Damit ist gezeigt

$$\{Q \subset FM \quad \mathrm{SU(n)}\text{-}\mathrm{Struktur}\} \xleftarrow{1:1}{\longleftrightarrow} \{P(\omega, \ I), \ \alpha \ \mathrm{mit} \ (1), \ (2) \ \mathrm{und} \ (3)\}$$

Im Fall n=3 lassen sich SU(3)-Strukturen mit Hilfe von stabilen Formen beschreiben: Definiere auf der SU(3)-Struktur $Q = (P(\omega, I), \alpha)$ eine äquivariante Abbildung

$$\varphi: Q \longrightarrow \Lambda^3 \quad \text{durch} \quad q \longmapsto Re(\alpha(q))$$

Nach Konstruktion ist α auf Q konstant vom Wert α_0 , weshalb $\varphi_{|Q} \equiv \varphi_0$ gilt. Damit lässt sich φ durch $\varphi(q.A) := A^{-1}.\varphi(q)$ äquivariant auf FM fortsetzen und liefert somit eine stabile 3-Form mit fast-komplexer Struktur $I(\varphi)$ und Volumenform $\epsilon(\varphi)$, auf der durch ω orientierten Mannigfaltigkeit M. Da $Q \subset P$ ist die ursprüngliche fast-komplexe Stuktur I auf Q konstant vom Wert I_0 . Ebenso ist mit φ auch $I(\varphi)$ auf Q konstant vom Wert I_0 , weshalb $I(\varphi)$ mit I übereinstimmt. Gleichungen (1) und (2) sind daher nach 2.21 und 2.16 äquivalent zu

(I)
$$\omega \wedge \varphi = 0$$

(II)
$$(\omega, \varphi)$$
 ist positiv

Da ω auf P konstant vom Wert ω_0 ist, gilt für $p \in P$ und $\alpha(p) = \lambda(p)\alpha_0$

$$\epsilon(\varphi(p)) = \frac{1}{8}i\alpha(p) \wedge \overline{\alpha(p)} = |\lambda(p)|^2 \epsilon_0 = |\lambda(p)|^2 \epsilon(\omega(p))$$

Die Forderung $\alpha \in S^1 \alpha_0$ ist daher äquivalent zu

(III)
$$\epsilon(\omega) = \epsilon(\varphi)$$

(IV)
$$\alpha \in \mathbb{C}\alpha_0$$

Sind umgekehrt zwei stabile Formen ω und φ mit (I), (II) und (III) gegeben, so gilt für $I := I(\varphi)$ wie in 2.16 bereits (1) und (2). Damit ist $P(\omega, I(\varphi))$ eine U(3)-Struktur. Konstruiert man anschließend eine U(3)-äquivariante Abbildung $\alpha : P \longrightarrow \Lambda^3 \otimes_{\mathbb{R}} \mathbb{C}$ aus der stabilen 3-Form φ wie in 2.20, so gilt bereits (IV): Zu $p \in P$ existiert aufgrund der Stabilität von $\varphi(p)$ ein $A \in GL(6, \mathbb{R})$ mit $\varphi(p) = A.\varphi_0$. Falls det(A) < 0, so ersetze A durch AJ_0 , wobei

$$J_0 := \begin{pmatrix} id_3 & 0\\ 0 & -id_3 \end{pmatrix} \in GL(6, \mathbb{R})$$

Dann gilt noch stets $AJ_0.\varphi_0 = A.\varphi_0 = \varphi(p)$, jedoch ist $det(AJ_0) = -det(A) > 0$. Gelte daher ohne Einschränkung det(A) > 0. Aus 2.12 folgt

$$A.I_0 = I(A.\varphi_0) = I(\varphi(p)) = I_0$$

D.h. $A \in GL(3, \mathbb{C})$, we shall b nach 3.1 und 2.20

$$\alpha(p) = \alpha(A.\varphi_0) = A.\alpha_0 = det_{\mathbb{C}}(A^{-1})\alpha_0 \in \mathbb{C}\alpha_0$$

Damit ist gezeigt:

THEOREM 3.3. Sei M eine 6-dimensionale Mannigfaltigkeit. Dann gilt

 $\{Q \subset FM \quad \text{SU(3)-Struktur}\} \xleftarrow{1:1} \{(\omega, \varphi) \text{ stabil mit (I), (II) und (III)}\}$

THEOREM 3.4. Sei M eine 6-dimensionale Mannigfaltigkeit mit einer SU(3)-Struktur (ω, φ) . Für $\theta \in \mathbb{R}$ sei $\varphi_{\theta} := \cos(\theta)\varphi - \sin(\theta)\widehat{\varphi}$. Dann definiert $(\omega, \varphi_{\theta})$ ebenfalls eine SU(3)-Struktur auf M mit

(i)
$$\widehat{\varphi}_{\theta} = \cos(\theta)\widehat{\varphi} + \sin(\theta)\varphi$$

(ii) $\epsilon(\varphi_{\theta}) = \epsilon(\varphi)$
(iii) $I(\varphi_{\theta}) = I(\varphi)$

BEWEIS: Die SU(3)-Struktur (ω, φ) korrespondiert mit einer U(3)-Struktur $P(\omega, I)$ und einer 3-Form $\alpha = \varphi + i\widehat{\varphi}$ wie in 3.2. Die Forderung (3) aus 3.2 bleibt dann für $\alpha_{\theta} := e^{i\theta}\alpha$ erhalten, weshalb $(P(\omega, I), \alpha_{\theta})$ ebenfalls eine SU(3)-Struktur auf M definiert. Diese korrespondiert wiederum mit $(\omega, Re(\alpha_{\theta}) = \cos(\theta)\varphi - \sin(\theta)\widehat{\varphi})$ und insbesondere erhält man $\widehat{\varphi}_{\theta} = Im(\alpha_{\theta}) = \cos(\theta)\widehat{\varphi} + \sin(\theta)\varphi$. Aus 2.17 folgt hieraus

$$\epsilon(\varphi_{\theta}) = \frac{1}{4}\widehat{\varphi}_{\theta} \wedge \varphi_{\theta} = \frac{1}{4}\widehat{\varphi} \wedge \varphi = \epsilon(\varphi)$$

Gleichung (iii) erhält man aus 2.12 und einer direkten Rechnung in lokalen Koordinaten [Anhang].

DEFINITION 3.5. Eine SU(3)-Struktur (ω, φ) heißt

nearly-Kähler : $\Leftrightarrow \quad d\omega = 3\varphi \quad \text{und} \quad d\widehat{\varphi} + 2\omega^2 = 0$ halb-flach : $\Leftrightarrow \quad d\varphi = 0 \quad \text{und} \quad d\omega^2 = 0$ nearly-halb-flach : $\Leftrightarrow \quad d\varphi + \lambda\omega^2 = 0$ für ein $\lambda \in \mathbb{R} \setminus \{0\}$.

Jede nearly-Kähler Struktur (ω, φ) ist also halb-flach und die zugehörige SU(3)-Struktur $(\omega, \widehat{\varphi})$ ist nearly-halb-flach. Die Bezeichnung ist dadurch motiviert, dass sich die Dimension der Torsionskomponenten $\tau \in \mathbb{R}^{n*} \otimes \mathfrak{su}^{\perp}(3)$, einer halb-flachen SU(3)-Struktur, genau um die Hälfte reduziert [Chi].

DEFINITION 3.6. Eine G_2 -Struktur ψ heißt

 $\begin{array}{lll} \text{parallel} & :\Leftrightarrow & d\psi = 0 \quad \text{und} \quad d \ast \psi = 0 \\ \text{nearly-parallel} & :\Leftrightarrow & d\varphi = \lambda \ast \psi \text{ für ein } \lambda \in \mathbb{R} \setminus \{0\}. \end{array}$

Die Begriffswahl erklärt das folgende

THEOREM [SALS.164 LEM11.5] 3.7. Eine G_2 -Struktur ψ besitzt genau dann Holonomie G_2 , falls $d\psi = 0$ und $d * \psi = 0$ gilt.

SATZ 3.8. Sei (ω, φ) eine SU(3)-Struktur auf M und $F \in \Gamma(Aut(TM))$. Dann definiert

$$\omega_F := F.\omega : FM \longrightarrow \Lambda^2 \quad \text{mit} \quad p \longmapsto F(p).\omega(p)$$
$$\varphi_F := F.\varphi : FM \longrightarrow \Lambda^3 \quad \text{mit} \quad p \longmapsto F(p).\varphi(p)$$

ebenfalls eine SU(3)-Struktur auf M.

BEWEIS: Nach Definition sind die Abbildungen ω_F und φ_F äquivariant. Falls $\omega(p) = \omega_0$ gilt, so erhält man

$$\omega_F(p.F(p)) = F(p)^{-1} . \omega_F(p) = F(p)^{-1} . F(p) . \omega_0 = \omega_0$$

und somit die Stabilität von ω_F bzw. φ_F . Damit bleiben die Kompatibilitätsbedingungen aus 3.3 zu überprüfen. Man erhält sofort

$$\omega_F \wedge \varphi_F = B.(\omega \wedge \varphi) = 0$$

sowie

$$\epsilon(\omega_F) = F^{-1} \cdot \epsilon(\omega) = F^{-1} \cdot \epsilon(\varphi) = \epsilon(\varphi_F)$$

Für die induzierte fast-komplexe Struktur gilt außerdem

$$I(\varphi_F) = F.I(\varphi) = F \circ I(\varphi) \circ F^{-1}$$

und damit

$$\omega_F(X,I(\varphi_F)X)=\omega(F^{-1}X,I(\varphi)\circ F^{-1}X)>0,$$
falls $F^{-1}X\neq 0,$ d.h.
 $X\neq 0.$

THEOREM 3.9. Sei (ω, φ) eine SU(3)-Struktur auf M mit zugehöriger Metrik g, und $\xi \in \Gamma(TM)$ ein Vektorfeld auf M mit $\|\xi\| = 1$. Dann definiert

$$\begin{split} \omega_{\xi} &:= \xi \wedge I\xi + \xi \lrcorner \varphi \\ \varphi_{\xi} &:= -\varphi + \xi \wedge (\xi \lrcorner \varphi) + \xi \wedge \omega \\ \widehat{\varphi}_{\xi} &:= -\widehat{\varphi} + I\xi \wedge (I\xi \lrcorner \widehat{\varphi}) + I\xi \wedge \omega \end{split}$$

ebenfalls eine $SU(3)\mbox{-}Struktur auf <math display="inline">M.$ Identifiziere dabe
i $TM\cong T^*M$ mittels der Metrikg.

BEWEIS: Zerlege TM bzgl. der Metrik g in

$$V := Spann\{\xi, I\xi\} \quad \text{und} \quad H := V^{\perp} \subset TM$$

Seien pr_V und pr_H die zugehörigen Projektionen und

$$F := pr_V + \frac{1}{\sqrt{2}}(pr_H \circ I + \xi \lrcorner \varphi) \in \Gamma(End(TM))$$

Nach Wahl einer SU(3)-Basis

$$p = (\xi, X_2, X_3, I\xi, IX_2, IX_3)$$

mit $\varphi(p) = \varphi_0, \, \omega(p) = \omega_0 \text{ und } I(p) = I_0$, identifiziere $T_{\pi(p)}M \cong \mathbb{R}^6$ durch $V \cong Spann\{e_1, e_4\}$ und $H \cong Spann\{e_2, e_5, e_3, e_6\}$. Damit folgt

$$F(p)e_1 = e_1 \qquad F(p)e_2 = \frac{1}{\sqrt{2}}(e_5 + e_3) \qquad F(p)e_3 = \frac{1}{\sqrt{2}}(e_6 - e_2)$$
$$F(p)e_4 = e_4 \qquad F(p)e_5 = -\frac{1}{\sqrt{2}}(e_6 + e_2) \qquad F(p)e_6 = \frac{1}{\sqrt{2}}(e_5 - e_3)$$

Wegen $g(p) = g_0$, folgt hieraus, dass $g(p)(F(p)e_i, F(p)e_j) = \delta_{ij}$ gilt. Außerdem berechnet man, dass $det(F(p)e_i) = 1$ gilt, weshalb $F \in \Gamma(Isom^+(TM))$ folgt. Nach 3.8 definiert dann

$$\omega_{\xi} := F.\omega \quad \text{und} \quad \varphi_{\xi} := F.\varphi$$

eine SU(3)-Struktur auf M und mittels der Formeln für $F(p)e_i$ berechnet man

$$\begin{split} \omega_{\xi}(p) &= F(p).\omega_{0} = e^{14} + e^{23} - e^{56} = (\xi \wedge I\xi + \xi \lrcorner \varphi)(p) \\ \varphi_{\xi}(p) &= F(p).\varphi_{0} = e^{125} + e^{136} + e^{345} - e^{246} = (-\varphi + \xi \wedge (\xi \lrcorner \varphi) + \xi \wedge \omega)(p) \\ \widehat{\varphi}_{\xi}(p) &= F(p).\widehat{\varphi}_{0} = e^{135} - e^{126} - e^{245} - e^{346} = (-\widehat{\varphi} + I\xi \wedge (I\xi \lrcorner \widehat{\varphi}) + I\xi \wedge \omega)(p) \end{split}$$

BEMERKUNG 3.10. Nach Konstruktion von ω_{ξ} in 3.8 gilt

$$\epsilon(\omega_{\xi}) = \epsilon(F.\omega) = F.\epsilon(\omega) = det(F^{-1})\epsilon(\omega) = \epsilon(\omega)$$

und damit $\omega_{\xi}^3 = \omega^3$.

4. HITCHINS THEOREM

LEMMA 4.1. Sei $(\omega_t, \varphi_t)_{t \in I}$ eine Familie von SU(3)-Strukturen auf einer 6dimensionalen Mannigfaltigkeit M^6 , welche differenzierbar von t abhängt. Setze die Formen ω_t und φ_t kanonoisch auf $M^7 := M^6 \times I$ fort und definiere eine 3-Form auf M^7 durch $\psi_{(m,t)} := \omega_{t,m} \wedge d_{(m,t)}t + \varphi_{t,m}$ für $(m,t) \in M^7$. D.h.

$$\psi := \omega \wedge dt + \varphi$$

Dann definiert ψ eine G_2 -Struktur auf M^7 und induziert damit nach 2.15 eine Metrik und eine Orientierung auf M^7 , für welche gilt

(1) $*\psi = -\widehat{\varphi} \wedge dt - \frac{1}{2}\omega^2$ (2) $d^7\psi = (d^6\omega - \dot{\varphi}) \wedge dt + d^6\varphi$ (3) $d^7*\psi = (-d^6\widehat{\varphi} - \omega \wedge \dot{\omega}) \wedge dt - \omega \wedge d^6\omega$

Mit d^7 bzw. d^6 sei dabei die äußere Ableitung auf M^7 bzw. M^6 bezeichnet und $\dot{\omega}$ bzw. $\dot{\varphi}$ steht für $\frac{\partial \omega_t}{\partial t}$ bzw. $\frac{\partial \varphi_t}{\partial t}$.

BEWEIS: Da (ω_t, φ_t) eine SU(3)-Struktur auf M definiert, existieren lokale Schnitte s_t von FM^6 , längs derer ω_t und φ_t konstant vom Wert ω_0 bzw. φ_0 sind. Offenbar definiert dann $s(m,t) := (s_t(m), \frac{\partial}{\partial t}|_{(m,t)})$ einen lokalen Schnitt in FM^7 , für welchen $\psi \circ s \equiv \psi_0$ gilt. Nach Konstruktion von $g(\psi)$ in 2.15, sind diese Schnitte orthonormal, weshalb

$$(*\psi) \circ s = *(\psi \circ s) = *\psi_0 = -\widehat{\varphi}_0 \wedge e^7 - \frac{1}{2}\omega_0^2$$

und damit (1) folgt. Sei x := (u, t) eine lokale Karte von $M^7 = M^6 \times I$. Da φ trivial auf M^7 fortgesetzt wurde, gilt

$$\varphi = \sum_{I \in Q_{3,6}} \varphi(x_I) x^I$$

Damit folgt

$$d^{7}\varphi = \sum_{I \in Q_{3,6}} \left[\sum_{i=1}^{0} \frac{\partial \varphi(x_{I})}{\partial x_{i}} x^{i} \wedge x^{I} + \frac{\partial \varphi(x_{I})}{\partial t} dt \wedge x^{I}\right] = d^{6}\varphi - \dot{\varphi} \wedge dt$$

Entsprechend erhält man für die 2-Form ω und die 3-Form $\widehat{\varphi}$ die Gleichungen

$$d^7\omega = d^6\omega + \dot{\omega} \wedge dt$$
 und $d^7\widehat{\varphi} = d^6\widehat{\varphi} - \widehat{\varphi} \wedge dt$

Gleichung (2) erhält man dann aus

$$\begin{split} d^{7}\psi &= d^{7}(\omega \wedge dt + \varphi) = d^{7}\omega \wedge dt + d^{7}\varphi \\ &= (d^{6}\omega + \dot{\omega} \wedge dt) \wedge dt + d^{6}\varphi - \dot{\varphi} \wedge dt \\ &= (d^{6}\omega - \dot{\varphi}) \wedge dt + d^{6}\varphi \end{split}$$

und ebenso Gleichung (3)

$$d^{7} * \psi = d^{7}(-\widehat{\varphi} \wedge dt - \frac{1}{2}\omega^{2}) = -d^{7}\widehat{\varphi} \wedge dt - \omega \wedge d^{7}\omega$$
$$= -d^{6}\widehat{\varphi} \wedge dt - \omega \wedge (d^{6}\omega + \dot{\omega} \wedge dt)$$
$$= (-d^{6}\widehat{\varphi} - \omega \wedge \dot{\omega}) \wedge dt - \omega \wedge d^{6}\omega$$

- 6		_	

BEISPIEL 4.2. Sei (ω, φ) eine SU(3)-Struktur auf M^6 mit zugehöriger Metrik g. Für $t \in \mathbb{R}_{>0}$ definiere

$$\omega_t := t^2 \omega \quad \text{und} \quad \varphi_t := t^3 \varphi$$

Offenbar ist (ω_t, φ_t) eine Familie von SU(3)-Strukturen auf M^6 und die zugehörige G_2 -Struktur auf $M^7 := M^6 \times \mathbb{R}_{>0}$ ist gegeben durch $\psi := \omega \wedge dt + \varphi$. Mit $g(\psi)$ bzw. g_t sei die zugehörige Metrik der G_2 -Struktur auf M^7 bzw. der SU(3)-Struktur auf M^6 bezeichnet. Zunächst gilt für $A(t) := t^{-1}id \in GL(6, \mathbb{R})$ und $p \in FM$ nach 2.12

$$I(t^{3}\varphi)(p) = I(t^{3}\varphi(p)) = I(A(t).\varphi(p)) = A(t) \circ I(\varphi(p)) \circ A(t)^{-1} = I(\varphi)(p)$$

und damit $g_t = \omega_t(., I(\varphi_t).) = t^2 \omega(., I(t^3 \varphi).) = t^2 g$. Aus dem nächsten Satz erhält man daher

$$g(\psi) = t^2 g + dt^2$$

Die induzierte G_2 -Metrik ist also genau die Kegelmetrik auf $M^6 \times \mathbb{R}_{>0}$.

SATZ 4.3. Sei $(\omega_t, \varphi_t)_{t \in I}$ eine Familie von SU(3)-Strukturen auf M^6 mit zugehöriger Metrik $g_t = \omega_t(., I(\varphi_t).)$ und ψ die in 4.1 definierte G_2 -Struktur auf $M^7 := M^6 \times I$. Dann ist M^7 ein verallgemeinerter Zylinder, d.h. für die Metrik $g(\psi)$ der G_2 -Struktur gilt

$$g(\psi) = g_t + dt^2 = \omega_t(., I(\varphi_t).) + dt^2$$

BEWEIS: Für eine Familie $(\omega_t, \varphi_t)_{t \in I}$ von SU(3)-Strukturen existieren Basen $p_t \in FM$ mit $\omega_t(p_t) = \omega_0$ und $\varphi_t(p_t) = \varphi_0$. Für $\hat{p}_t := (p_t, \frac{\partial}{\partial t})$ gilt daher $\psi(\hat{p}_t) = \psi_0$ und nach 2.10 ist $g(\psi)(\hat{p}_t) = g_0$. Da außerdem

$$(g_t + dt^2)(\hat{p}_t) = \omega_t(p_t)(., I(\varphi_t(p_t)).) + e^7 \otimes e^7 = g_0^6 + e^7 \otimes e^7 = g_0$$

gilt, folgt die Behauptung.

BEMERKUNG 4.4. Wegen 4.1 liegt es nahe, die Gleichungen $d^6\omega = \dot{\varphi}$ und $d^6\hat{\varphi} + \omega \wedge \dot{\omega} = 0$ zu untersuchen. Im Beispiel 4.2 übersetzen sich diese nach einer kurzen Rechnung in

$$d^6\omega = 3\varphi$$
 und $d^6\widehat{\varphi} + 2\omega^2 = 0$

Eine nearly-Kähler Struktur (ω, φ) lässt sich also als Familie $(t^2\omega, t^3\varphi)$ zu einer parallelen G_2 -Struktur liften. Im Folgenden wird gezeigt, dass sich bereits halb-flache SU(3)-Strukturen zu G_2 -Strukturen mit Holonomie G_2 liften lassen. Dabei stimmt die Konstruktion im nearly-Kähler Fall mit der obigen Konstruktion überein. Halbflache Strukturen sind (im Vergleich zu nearly-Kähler Strukturen) relativ einfach zu konstruieren, weshalb die Abschwächung der nearly-Kähler Voraussetzung auf Halbflachheit sehr stark ist.

LEMMA 4.5. Sei M eine n-dimensionale kompakte, orientierte Mannigfaltigkeit und $\omega \in \Omega^k(M)$. Dann gilt

$$(\forall \eta \in \Omega^{n-k}(M) : \int_M \omega \wedge \eta = 0) \quad \Rightarrow \quad \omega = 0$$

BEWEIS: Nach Wahl einer Metrik, ist der zugehörige Hodge-Operator * definiert durch

$$0 = \int_M \omega \wedge \eta = < *\omega, \eta >,$$

wobei <,> das durch die Metrik auf $\Omega^{n-k}(M)$ induzierte Skalarprodukt bezeichne. Die Nicht-Entartetheit von <,> liefert damit * $\omega = 0$, d.h. $\omega = 0$.

DEFINITION 4.6. Sei M eine geschlossene, orientierte Mannigfaltigkeit. Weiter seien $\varphi \in \Omega^3(M), \, \sigma \in \Omega^4(M)$ geschlossen. Fasse die Kohomologieklassen

$$\mathcal{A} := \varphi + \Omega^3_{ex}(M) \cong [\varphi] \in H^3_{dR}(M)$$
$$\mathcal{B} := \sigma + \Omega^4_{ex}(M) \cong [\sigma] \in H^4_{dR}(M)$$

als affine Unterräume von $\Omega^3(M)$ bzw. $\Omega^4(M)$ auf und identifiziere damit

$$T_{\varphi}\mathcal{A} = \Omega^3_{ex}(M) \quad \text{und} \quad T_{\sigma}\mathcal{B} = \Omega^4_{ex}(M)$$

Definiere eine nicht-entartete schiefsymmetrische Bilinearform Ω auf $\mathcal{A} \times \mathcal{B}$ durch

$$\Omega\begin{pmatrix} d\alpha_1 \\ d\beta_1 \end{pmatrix}, \begin{pmatrix} d\alpha_2 \\ d\beta_2 \end{pmatrix}) := \int_M \alpha_1 \wedge d\beta_2 - \alpha_2 \wedge d\beta_1$$

Wegen $\partial M = \emptyset$, ist diese nach dem Satz von Stokes wohldefiniert. Die Nicht-Entartetheit folgt ebenfalls aus dem Satz von Stokes, zusammen mit 4.5.

DEFINITION 4.7. Sei (ω, φ) eine halbflache SU(3)-Struktur auf einer geschlossenen Mannigfaltigkeit M. Definiere offene Teilmengen $A \subset \mathcal{A}$ und $B \subset \mathcal{B}$ durch

 $A := \mathcal{A} \cap \Omega_{\varphi_0}(M)$ und $B := \mathcal{B} \cap \Omega_{\sigma_0}(M)$

Dabei seien $\mathcal{A} := [\varphi]$ und $\mathcal{B} := [\sigma := \frac{1}{2}\omega^2]$. Definiere damit eine Abbildung

 $H: A \times B \longrightarrow \mathbb{R} \quad \text{durch} \quad (\varphi, \ \sigma) \longmapsto 2(V(\varphi) - V(\sigma))$

Da $A \subset \mathcal{A}$ und $B \subset \mathcal{B}$ offen sind, gilt $T_{\varphi}A = T_{\varphi}\mathcal{A}$ bzw. $T_{\sigma}B = T_{\sigma}\mathcal{B}$. Damit definiert Ω aus 4.6 eine nicht-entartete 2-Form auf $A \times B$ und nach [Lang Prop 2.1 S.496] existiert genau ein Vektorfeld X auf $A \times B$ mit

$$\Omega(X,.) = DH$$

Sei dann $I \subset \mathbb{R}$ ein offenes Intervall um 0, so dass der Fluss Φ von X durch (φ, σ) $\in A \times B$ für alle $t \in I$ definiert sei. Setze schließlich

$$(\varphi_t, \sigma_t) := \Phi_t(\varphi, \sigma)$$

Nach Konstruktion gilt $\sigma_t \in B \subset \Omega_{\sigma_0}(M)$. Definiere daher wie in 2.19 eine stabile 2-Form durch

 $\omega_t := -\widehat{\sigma}_t$

Es gilt das folgende

THEOREM (HITCHIN) 4.8. Für ein hinreichend kleines Intervall I definiert $(\omega_t, \varphi_t)_{t \in I}$ eine Familie von SU(3)-Strukturen auf M und die zugehörige G_2 -Struktur $\psi = \omega \wedge dt + \varphi$ auf $M \times I$ besitzt Holonomie G_2 .

BEWEIS: Da (ω, φ) eine SU(3)-Struktur definiert, gilt zur Zeit t=0 die Positivitätsbedingung (II) aus 3.2. Aufgrund der Kompaktheit von M, lässt sich *I* soweit verkleinern, dass die offene Bedingung (II) für alle $t \in I$ gilt [Anhang]. Nach Konstruktion sind (ω_t, φ_t) stabil. Daher definiert (ω_t, φ_t) eine SU(3)-Struktur, falls die übrigen Kompatibilitätsbedingungen (I) und (III) aus 3.2 zu jeder Zeit $t \in I$ erfüllt sind. Zum Nachweis von (I) betrachte für ein beliebiges Vektorfeld Y auf M die folgende Abbildung

$$\mu_Y: A \times B \longrightarrow \mathbb{R} \quad \text{mit} \quad (\varphi, \ \sigma) \longmapsto \int_M (Y \lrcorner \sigma) \land \varphi$$

Für $\sigma \in B$ sei $\omega := -\hat{\sigma}$. Nach 2.19 ist ω eine stabile 2-Form auf M mit $\sigma = \frac{1}{2}\omega^2$ und

$$\mu_Y(\varphi,\sigma) = \int_M (Y \lrcorner \omega) \land \omega \land \varphi$$

Die nicht-Entartetheit von ω garantiert, dass sich jede 1-Form auf M als $Y \lrcorner \omega$ darstellen lässt, wobei Y ein passend gewähltes Vektorfeld auf M sei. Mit Lemma 4.5 folgt daher

(1)
$$(\forall Y \in \Gamma(TM) : \mu_Y(\varphi, \sigma) = 0) \Leftrightarrow \omega \land \varphi = 0$$

Da dies zur Zeit t = 0 bereits gewährleistet ist, genügt es

(2)
$$d\mu_Y(\dot{\varphi}_t, \dot{\sigma}_t) = 0$$

für alle $Y \in \Gamma(TM)$ zu zeigen. Aus der Geschlossenheit von $(\varphi, \sigma) \in A \times B$ folgt

(3)
$$L_Y(\varphi, \sigma) := \begin{pmatrix} L_Y \varphi \\ L_Y \sigma \end{pmatrix} = \begin{pmatrix} d(Y \lrcorner \varphi) \\ d(Y \lrcorner \sigma) \end{pmatrix} \in T_\varphi A \times T_\sigma B$$

Damit gilt für ${d\alpha \atop d\beta} \in T_{\varphi}A\times T_{\sigma}B$ nach Stokes und wegen $\varphi\wedge d\beta=0$

$$\Omega\begin{pmatrix} d\alpha \\ d\beta \end{pmatrix}, L_Y(\varphi, \sigma)) = \int_M \alpha \wedge d(Y \lrcorner \sigma) - (Y \lrcorner \varphi) \wedge d\beta$$
$$= \int_M (Y \lrcorner \sigma) \wedge d\alpha - (Y \lrcorner \varphi) \wedge d\beta$$
$$= \int_M (Y \lrcorner \sigma) \wedge d\alpha + (Y \lrcorner d\beta) \wedge \varphi$$
$$= d\mu_Y \begin{pmatrix} d\alpha \\ d\beta \end{pmatrix})$$

Das Hamiltonvektorfeld von μ_Y ist also $-L_Y$ und es gilt

(4)
$$d\mu_Y(\dot{\varphi}_t, \dot{\sigma}_t) = \Omega(X \circ (\varphi_t, \sigma_t), L_Y(\varphi_t, \sigma_t)) = D_{(\varphi_t, \sigma_t)} H(L_Y(\varphi_t, \sigma_t))$$

Der Fluss Ψ_s von Y sei für $|s|<\epsilon$ definiert. Für $(\varphi_t,\sigma_t)\in A\times B$ betrachte den Weg

$$c:] - \epsilon, \epsilon [\longrightarrow A \times B \quad \text{mit} \quad s \longmapsto \Psi_s^*(\varphi_t, \sigma_t)]$$

Da $\Psi_s \in \mathrm{Diff}(\mathbf{M})$ homotop zur Identität ist, bleiben die Kohomologieklassen von φ_t und σ_t erhalten. Für hinreichend kleines ϵ verläuft daher c
 ganz in $A \times B$ und es gilt

$$c(0) = (\varphi_t, \sigma_t)$$
 und $\dot{c}(0) = L_Y(\varphi_t, \sigma_t)$

Mit (4) folgt daher (2) aus

$$d\mu_Y(\dot{\varphi}_t, \dot{\sigma}_t) = DH(L_Y(\varphi_t, \sigma_t))$$

= $(s \longmapsto H \circ c(s))'(0)$
= $(s \longmapsto \underbrace{H(\Psi_s^*(\varphi_t, \sigma_t))}_{H(\varphi_t, \sigma_t) \text{ nach } 2.22})'(0) = 0$

Damit ist die Kompatibilitätsbedingung (I) gezeigt und insbesondere gilt nach 2.21

(5)
$$\omega_t \wedge \widehat{\varphi_t} = 0$$

für alle $t \in I$. Aus 2.22 und 2.17 folgt weiter

$$D_{(\varphi_t,\sigma_t)}H\begin{pmatrix}d\alpha\\d\beta\end{pmatrix}) = 2\left[\int_M D_{\varphi_t}\epsilon(d\alpha) - \int_M D_{\sigma_t}\epsilon(d\beta)\right]$$
$$= \int_M \widehat{\varphi}_t \wedge d\alpha - \widehat{\sigma}_t \wedge d\beta$$
$$= \int_M d\widehat{\varphi}_t \wedge \alpha + d\widehat{\sigma}_t \wedge \beta$$
$$= \int_M d\widehat{\varphi}_t \wedge \alpha - d\omega_t \wedge \beta$$

Nach Konstruktion gilt $X \circ (\varphi_t, \sigma_t) = (\dot{\varphi}_t, \dot{\sigma}_t)$ und damit

$$\begin{split} D_{(\varphi_t,\sigma_t)}H(\begin{pmatrix} d\alpha\\d\beta \end{pmatrix}) &= \Omega(X \circ (\varphi_t,\sigma_t), \begin{pmatrix} d\alpha\\d\beta \end{pmatrix}) \\ &= \int_M -\dot{\varphi}_t \wedge \beta - \dot{\sigma}_t \wedge \alpha \\ &= \int_M -\dot{\varphi}_t \wedge \beta - \omega_t \wedge \dot{\omega}_t \wedge \alpha \end{split}$$

Wählt man speziell $\alpha = 0$ bzw. $\beta = 0$, so erhält man hieraus mit 4.5 die beiden folgenden Gleichungen

(6)
$$d\omega_t - \dot{\varphi}_t = 0$$

(7)
$$d\widehat{\varphi}_t + \omega_t \wedge \dot{\omega}_t = 0$$

Zum Nachweis der Kompatibilitätsbedingung (III) betrachte nun

$$\frac{d}{dt}(\epsilon(\omega_t) - \epsilon(\varphi_t)) = D_{\omega_t}\epsilon(\dot{\omega}_t) - D_{\varphi_t}\epsilon(\dot{\varphi}_t)$$
$$= \frac{1}{2}(\hat{\omega}_t \wedge \dot{\omega}_t - \hat{\varphi}_t \wedge \dot{\varphi}_t)$$

Da jedoch

$$\widehat{\omega}_t \wedge \dot{\omega}_t = -\omega_t^2 \wedge \dot{\omega}_t \stackrel{(7)}{=} \omega_t \wedge d\widehat{\varphi}_t \stackrel{(5)}{=} -d\omega_t \wedge \widehat{\varphi}_t \stackrel{(6)}{=} -\dot{\varphi}_t \wedge \widehat{\varphi}_t = \widehat{\varphi}_t \wedge \dot{\varphi}_t$$

gilt, ist $\epsilon(\omega_t) - \epsilon(\varphi_t) = 0$ konstant. Damit ist gezeigt, dass $(\omega_t, \varphi_t)_{t \in I}$ eine Familie von SU(3)-Strukturen auf M definiert. Gleichungen (6) und (7) sowie die Geschlossenheit der Formen φ_t und $\sigma_t = \frac{1}{2}\omega_t^2$ liefern nach 4.1 bereits $d\psi = 0$ und $d * \psi = 0$, weshalb die G_2 -Struktur tatsächlich Holonomie G_2 besitzt.

BEMERKUNG 4.9. Falls die Ausgangsstruktur (ω, φ) sogar nearly-Kähler ist, so sind $\omega_t := t^2 \omega$ und $\varphi_t := t^3 \varphi$ stabile Formen, welche nach 4.4 bereits die Gleichungen (6) und (7) erfüllen. Die nearly-Kähler Bedingungen $d\hat{\varphi} + 2\omega^2 = 0$ und $d\omega = 3\varphi$ liefern außerdem die Exaktheit von $\sigma - \sigma_t = \frac{1}{2}(\omega^2 - \omega_t^2)$ und $\varphi - \varphi_t$. Die Kohomologieklassen von $\sigma_t = \frac{1}{2}\omega_t$ und φ_t bleiben also konstant, weshalb (σ_t, φ_t) tatsächlich eine Lösung der Flussgleichung liefert. In diesem Sinne ist die Hitchin-Konstruktion in 4.8 eine Verallgemeinerung der Konstruktion von G_2 -Strukturen aus nearly-Kähler-Strukturen, welche sich wie folgt umkehren lässt:

SATZ 4.10. Sei $i: M^6 \hookrightarrow M^7$ eine orientierte Untermannigfaltigkeit der G_2 -Mannigfaltigkeit (M^7, ψ) . Definiere

$$\omega := i^*(n \lrcorner \psi) \quad \text{und} \quad \varphi := i^* \psi,$$

wobei n eine Einheitsnormale (bzgl. der von der G_2 -Struktur induzierten Metrik g) längs M^6 sei. Dann gilt

- (i) (ω, φ) definiert eine SU(3)-Struktur auf M^6
- (ii) Falls die G_2 -Struktur parallel ist, so ist die induzierte SU(3)-Struktur halbflach, d.h.

$$(d\psi = 0 \text{ und } d * \psi = 0) \Rightarrow (d\varphi = 0 \text{ und } d\omega^2 = 0)$$

(iii) Falls die G_2 -Struktur neraly-parallel ist, so ist die induzierte SU(3)-Struktur nearly-halb-flach, d.h.

$$d\psi = \lambda * \psi \quad \Rightarrow \quad d\varphi + \frac{\lambda}{2}\omega^2 = 0$$

In [cab] findet man eine ausführliche Analyse darüber, welche Arten von G_2 - Strukturen und Hyperflächen spezielle Arten von SU(3)-Strukturen induzieren. Ein Sonderfall dieser Situation ist $M^7 = \mathbb{R}^7$ (versehen mit der kanonischen G_2 -Struktur). Folglich besitzt jede orientierte Hyperfläche $M^6 \subset \mathbb{R}^7$ eine (kanonische) halb-flache SU(3)-Struktur, welche sich wiederum mittels der Konstruktion aus 4.8 zu einer parallelen G_2 -Struktur auf $M^6 \times \mathbb{R}$ ausdehnen lässt.

BEWEIS: Zum Nachweis von (i) wähle zu $m \in M^6 \subset M^7$ eine Basis $p = (X_1, ..., X_7) \in F_m M^7$ mit $\psi(p) = \psi_0$. Identifiziere hiermit

$$T_m M^7 \cong \mathbb{R}^7$$
 $X_i \cong e_i$ $n \cong n_0 := \sum_{i=1}^7 g(n, X_i)e_i$

Da G_2 transitiv auf S^6 wirkt, existiert ein $A \in G_2$ mit $Ae_7 = n_0$ und

$$(p.A)(e_7) = p \circ Ae_7 = p(n_0) = n$$

Damit ist die Basis p.A von der Gestalt $p.A = (Y_1, ..., Y_6, n)$ und wegen $\psi(p.A) = A^{-1}.\psi(p) = A^{-1}.\psi_0 = \psi_0$ ist p.A orthonormal, weshalb $q := (Y_1, ..., Y_6) \in F_m M^6$ gilt. Aus

$$\omega_0 \wedge e^7 + \varphi_0 = \psi_0 = \psi(p.A)$$
$$= \sum_{1 \le i < j \le 6} \psi(Y_i, Y_j, n) e^{ij7} + \sum_{1 \le i < j < k \le 6} \psi(Y_i, Y_j, Y_k) e^{ijk}$$
$$= \omega(q) \wedge e^7 + \varphi(q)$$

erhält man $\omega(q) = \omega_0$ und $\varphi(q) = \varphi_0$. Damit definiert (ω, φ) nach 3.3 tatsächlich eine SU(3)-Struktur und aus $*\psi_0 = -\widehat{\varphi}_0 \wedge e^7 - \frac{1}{2}\omega_0^2$ folgt

$$i^* * \psi = -\frac{1}{2}\omega^2$$

Damit erhält man (ii) aus

$$d\varphi = i^* d\psi = 0$$
$$d\omega^2 = d(-2i^* * \psi) = -2i^* d * \psi = 0$$

und (iii) aus

$$d\varphi = i^* d\psi = \lambda i^* * \psi = -\frac{\lambda}{2}\omega^2$$

_	_	_	

BEISPIEL 4.11. Mit den Methoden aus 4.8 lassen sich Mannigfaltigkeiten mit Holonomie G_2 konstruieren. Grundlage ist der Artikel [cho], welcher auf Resultaten aus [Hit] aufbaut. Betrachte die Mannigfaltigkeit

$$M := S^3 \times S^3$$

Wähle auf den beiden S³-Faktoren 1-Formen ($\sigma_1, \sigma_2, \sigma_3$) bzw. ($\Sigma_1, \Sigma_2, \Sigma_3$) mit

(1) $d\sigma_1 = -\sigma_2 \wedge \sigma_3$ und $d\Sigma_1 = -\Sigma_2 \wedge \Sigma_3$ (+ zyklische Gleichungen)

Weiter seien $m, n \in \mathbb{R}$ und für $i \in \{1, 2, 3\}$ seien $x_i, y_i : I \longrightarrow \mathbb{R}$ differenzierbare Funktionen auf einem offenem Intervall I um $0 \in \mathbb{R}$. Definiere damit eine Familie von 3- und 4-Form auf M durch

$$\varphi_t := n\Sigma_{123} - m\sigma_{123} + x_1(t)d(\sigma_1\Sigma_1) + x_2(t)d(\sigma_2\Sigma_2) + x_3(t)d(\sigma_3\Sigma_3)$$

und

$$\sigma_t := y_1(t)d(\sigma_1 \Sigma_{23}) + y_2(t)d(\sigma_2 \Sigma_{31}) + y_3(t)d(\sigma_3 \Sigma_{12})$$

Aus (1) folgt $d\varphi_t = 0$ und $d\sigma_t = 0$. Außerdem bleiben für $t \in I$ die Kohomologieklassen von φ_t und σ_t konstant. Zunächst müssen einige Bedingungen an die Parameter n und m, sowie an die Funktionen x_i und y_i gestellt werden, um eine Familie von SU(3)-Strukturen zu erhalten. Die Forderung

$$(2) y_i > 0$$

erlaubt es $\sigma_t = \frac{1}{2}\omega_t^2$ zu schreiben, wobei

$$\omega_t := \sqrt{\frac{y_2 y_3}{y_1}} \sigma_1 \Sigma_1 + \sqrt{\frac{y_3 y_1}{y_2}} \sigma_2 \Sigma_2 + \sqrt{\frac{y_1 y_2}{y_3}} \sigma_3 \Sigma_3$$

Damit ist σ_t stabil und es gilt $\omega_t \wedge \varphi_t = 0$. Insbesondere erhält man

$$\epsilon(\sigma_t) = \epsilon(\omega_t) = -\frac{1}{6}\omega_t^3 = \sqrt{y_1 y_2 y_3} \ \sigma_{123} \Sigma_{123} \cong \sqrt{y_1 y_2 y_3}$$

Weiter berechnet man [Anhang]

$$4\lambda(\varphi_t) = m^2 n^2 - 2mn(x_1^2 + x_2^2 + x_3^2) - 4(m+n)x_1x_2x_3$$
$$+ x_1^4 + x_2^4 + x_3^4 - 2(x_1^2x_2^2 + x_2^2x_3^2 + x_3^2x_1^2)$$

Die Forderung

(3)
$$\lambda(\varphi_t) = -y_1 y_2 y_3$$

liefert $\epsilon(\varphi_t) = \epsilon(\sigma_t)$ und garantiert wegen $\lambda(\varphi_t) < 0$ nach 2.23 die Stabilität von φ_t . Die Berechnung [Anhang] von $\omega_t(., I(\varphi_t))$ zeigt, dass die Forderungen

(4)
$$mx_1 + x_2x_2 > 0$$
 und $nx_1 + x_2x_2 > 0$ (+ zyklische Gleichungen)

die Positivität von (ω_t, φ_t) gewährleisten. Damit ist (ω_t, φ_t) eine Familie von SU(3)-Strukturen auf M und die G_2 -Metrik ist gegeben durch

$$g(\psi) = \omega_t(., I(\varphi_t).) + dt^2$$

= $\frac{1}{y_1} [(mx_1 + x_2x_2)\sigma_1^2 + (nx_1 + x_2x_2)\Sigma_1^2 + (mn + x_1^2 - x_2^2 - x_3^2)\sigma_1 \otimes \Sigma_1]$
+ zyklisch + dt^2

Nach Konstruktion von φ_t und σ_t gilt

$$\frac{\partial H(\varphi,\sigma)}{\partial x_i} = D_{(\varphi,\sigma)} H \begin{pmatrix} d(\sigma_i \Sigma_i) \\ 0 \end{pmatrix} \quad \text{und} \quad \frac{\partial H(\varphi,\sigma)}{\partial y_i} = D_{(\varphi,\sigma)} H \begin{pmatrix} 0 \\ d(\sigma_i \Sigma_{jk}) \end{pmatrix}$$

Dabei seien $j, k \in \{1, 2, 3\}$ mit $sgn\binom{ijk}{123} = +1$. Aus der Definition 4.6 der Bilinearform Ω folgt

$$\Omega(\begin{pmatrix} \dot{\varphi} \\ \dot{\sigma} \end{pmatrix}, \begin{pmatrix} d(\sigma_i \Sigma_i) \\ 0 \end{pmatrix}) = \dot{y}_i c \quad \text{und} \quad \Omega(\begin{pmatrix} \dot{\varphi} \\ \dot{\sigma} \end{pmatrix}, \begin{pmatrix} 0 \\ d(\sigma_i \Sigma_{jk}) \end{pmatrix}) = -\dot{x}_i c$$

Dabei sei $c := \int_M \sigma_{123} \Sigma_{123}$. Die Flussgleichung $D_{(\varphi,\sigma)} H\begin{pmatrix} d\alpha \\ d\beta \end{pmatrix} = \Omega(\begin{pmatrix} \dot{\varphi} \\ \dot{\sigma} \end{pmatrix}, \begin{pmatrix} d\alpha \\ d\beta \end{pmatrix})$ entspricht damit (und nach (1)) folgendem Differentialgleichungssystem

$$\dot{x}_i c = -\frac{\partial H(\varphi,\sigma)}{\partial y_i} \quad \text{und} \quad \dot{y}_i c = \frac{\partial H(\varphi,\sigma)}{\partial x_i}$$

Wegen

$$H(\varphi,\sigma) = 2(V(\varphi) - V(\sigma)) = (\sqrt{-4\lambda(\varphi)} - \sqrt{4y_1y_2y_3})\sigma$$

erhält man

(5)
$$\dot{x}_1 = \sqrt{\frac{y_2 y_3}{y_1}}$$
 und $\dot{y}_1 = \frac{x_1 (mn - x_1^2 + x_2^2 + x_3^2) + (n+m)x_2 x_3}{\sqrt{y_1 y_2 y_3}}$

Die entsprechenden Gleichungen für \dot{x}_i und \dot{y}_i erhält man durch zyklisches Vertauschen der Indizes. Nach Konstruktion liefern Lösungen dieses Systems, welche zusätzlich den obigen Forderungen (2), (3) und (4) genügen, eine Metrik $g(\psi)$ mit Holonomie G_2 . Der hier gemachte Ansatz verallgemeinert das Vorgehen aus [Brandhuber][Cvetic][Gukov] in dem Sinne, dass die dort aus $d\psi = 0$ und $d * \psi = 0$ entwickelten Differentialgleichungssysteme, sich stets als Spezialfälle des Systems (5) ergeben [cho]. Entsprechend übertragen sich die in [Brandhuber][Cvetic][??] gefundenen Lösungen.

5. Lift von nearly-halb-flachen SU(3)-Strukturen zu nearlyparallelen G_2 -Strukturen

Bisher wurde gezeigt, dass eine nearly-Kähler Struktur bereits eine parallele G_2 -Struktur induziert. Diese Konstruktion konnte mittels des Hitchin-Theorems auf halb-flache Strukturen verallgemeinert werden. Umgekehrt induziert eine (nearly) parallele G_2 -Struktur eine (nearly) halb-flache-SU(3)-Struktur auf orientierten Hyperflächen. Es stellt sich nun die Frage, ob sich nearly-halb-flache Strukturen zu nearly-parallelen- G_2 -Strukturen liften lassen. Einen Hinweis darauf, dass dies tatsächlich möglich ist, liefert die folgende Konstruktion:

BEISPIEL 5.1. Sei M eine 6-dimensionale Mannigfaltigkeit mit einer SU(3)-Struktur (ω, φ) und zugehöriger Metrik g. Für $t \in]0, \pi[$ definiere

$$\omega_t := \sin^2(t)\omega$$
 und $\varphi_t := \sin^3(t)(\sin(t)\widehat{\varphi} + \cos(t)\varphi)$

Bezeichnet $(\omega, \varphi_{\theta})$ die SU(3)-Struktur aus 3.4 mit $\theta := -t$, so gilt also

$$\omega_t = \sin^2(t)\omega$$
 und $\varphi_t = \sin^3(t)\varphi_\theta$

und somit $(\omega_t, \varphi_t) = A(t).(\omega, \varphi_\theta)$, wobei $A(t) := \sin(t)^{-1}id \in GL(6, \mathbb{R})$ sei. Daher definiert (ω_t, φ_t) eine Familie von SU(3)-Strukturen auf M und nach 3.4 gilt

$$\widehat{\varphi_t} = \widehat{A(t)}.\widehat{\varphi_\theta} = A(t).\widehat{\varphi_\theta} = A(t).(\cos(t)\widehat{\varphi} - \sin(t)\varphi)$$
$$= \sin^3(t)\cos(t)\widehat{\varphi} - \sin^4(t)\varphi$$

Setzt man zusätzlich voraus, dass die Struktur (ω,φ) ne
arly-Kähler ist, so erhält man

$$d\varphi_t + 2\omega_t^2 = 0$$
 und $d\omega_t - \dot{\varphi}_t = -4\hat{\varphi}_t$

Die induzierte G_2 -Struktur $\psi = \omega \wedge dt + \varphi$ auf $M \times]0, \pi[$ ist dann nach 4.1 nearlyparallel mit $d\psi = 4 * \psi$. Aus 3.4 folgt $I(\varphi_t) = A(t).I(\varphi_\theta) = I(\varphi)$ und nach 4.3 ist die Metrik $g(\psi)$ der G_2 -Struktur gegeben durch

$$g(\psi) = \omega_t(., I(\varphi_t).) + dt^2 = \sin^2(t)g + dt^2$$

KOROLLAR 5.2. Sei M eine 6-dimensionale Mannigfaltigkeit mit einer SU(3)-Struktur (ω, φ) und ψ sei die G_2 -Struktur auf $M \times]0, \pi[$ aus 5.1. Dann gilt

$$(M, \omega, \varphi)$$
 ist nearly-Kähler $\Leftrightarrow (M \times]0, \pi[, \psi)$ ist nearly-parallel mit $d\psi = 4 * \psi$

BEWEIS: Lediglich die Rückrichtung bleibt zu zeigen: Nach 5.1 und 4.1 gilt

$$d^{7}\psi = (d\omega_{t} - \dot{\varphi}_{t}) \wedge dt + d\varphi_{t}$$

= $(\sin^{2} d\omega - 4\sin^{3} \cos \widehat{\varphi} + 4\sin^{4} \varphi - 3\sin^{2} \varphi) \wedge dt + \sin^{3} (\sin d\widehat{\varphi} + \cos d\varphi)$
 $4 * \psi = -4\widehat{\varphi}_{t} \wedge dt - 2\omega_{t}^{2}$
= $(-4\sin^{3} \cos \widehat{\varphi} + 4\sin^{4} \varphi) \wedge dt - 2\sin^{4} \omega^{2}$

Die Gleichung $d\psi = 4 * \psi$ liefert damit $d\omega = 3\varphi$ und $d\widehat{\varphi} + 2\omega^2 = 0$.

LEMMA 5.3. Sei $(\omega_t, \varphi_t)_{t \in I}$ eine Familie von SU(3)-Strukturen auf einer Mannigfaltigkeit M und $\lambda \in \mathbb{R} \setminus \{0\}$. Die induzierte G_2 -Struktur $\psi = \omega_t \wedge dt + \varphi_t$ auf $M \times I$ ist genau dann nearly-parallel mit $d\psi = \lambda * \psi$, falls die beiden folgenden Gleichungen gelten

(1)
$$d\varphi_t + \frac{\lambda}{2}\omega_t^2 = 0$$

(2)
$$d\omega_t - \dot{\varphi}_t = -\lambda \widehat{\varphi}_t$$

BEWEIS: Die Behauptung folgt direkt aus Lemma 4.1.

DEFINITION/LEMMA 5.4. Mittels Gleichung (1) aus 5.3 lässt sich ω aus φ konstruieren. Betrachte dazu

$$\mathcal{A} := \{ \varphi \in \Omega^3(M) \mid d\varphi = -\frac{\lambda}{2}\omega^2 \text{ für ein } \omega \in \Omega_{\omega_0}(M) \}$$

Falls (ω, φ) eine nearly-halb-flache SU(3)-Struktur auf M ist, so ist $\emptyset \neq \mathcal{A} = (-\frac{1}{\lambda}d)^{-1}(\Omega_{\sigma_0}(M)) \subset \Omega^3(M)$ offen, we shalb

$$T_{\varphi}\mathcal{A} = \Omega^3(M)$$

gilt. Sei $\widehat{\ }\colon \Omega_{\sigma_0}(M) \longrightarrow \Omega_{\omega_0}(M)$ die Abbildung aus 2.19 und

$$\pi: \mathcal{A} \longrightarrow \Omega_{\omega_0}(M) \quad \text{mit} \quad \varphi \longmapsto - \quad (-\overbrace{-\lambda}^{-1} d\varphi)$$

Dann gilt

(i)
$$-\frac{\lambda}{2}\pi(\varphi)^2 = d\varphi$$

(ii) Für $\dot{\varphi} \in T_{\varphi}\mathcal{A} = \Omega^3(M)$ gilt $\pi(\varphi) \wedge \pi_{*\varphi}(\dot{\varphi}) = -\frac{1}{\lambda}d\dot{\varphi}$
(iii) Für $F \in Diff_{\pm}(M)$ gilt $\pi(F^*\varphi) = F^*\pi(\varphi)$.

BEWEIS: Teil (i) folgt direkt aus 2.19. Damit erhält man (ii) durch Differentation und schließlich folgt (iii) aus $dF^*\varphi = F^*(-\frac{\lambda}{2}\omega^2) = -\frac{\lambda}{2}(F^*\omega)^2$ und 2.19.

DEFINITION/LEMMA 5.5. Sei (ω, φ) eine nearly-halb-flache SU(3)-Struktur auf einer geschlossenen Mannigfaltigkeit M mit $d\varphi = -\frac{\lambda}{2}\omega^2$ für ein $\lambda \in \mathbb{R} \setminus \{0\}$. Definiere eine schiefsymmetrische nicht-entartete Bilinearform Ω auf der offenen Menge $A := \mathcal{A} \cap \Omega_{\varphi_0}(M)$ durch

$$\Omega(\dot{\varphi}_1, \dot{\varphi}_2) := \int_M \dot{\varphi}_1 \wedge \dot{\varphi}_2$$

$$H: A \longrightarrow \mathbb{R} \quad \text{durch} \quad \varphi \longmapsto 2\lambda(V(\varphi) - V(\pi(\varphi)))$$

Nach 5.4 (iii) und 2.22 gilt für $F\in Diff_{\pm}(M)$

$$H(F^*\varphi) = \pm H(\varphi)$$

Sei dann X das Hamiltonvektorfeld von H bzgl. Ω auf A, d.h.

$$\Omega(X, .) = DH$$

und $I \subset \mathbb{R}$ ein offenes Intervall um 0, so dass der Fluss Φ von X durch $\varphi \in A$ für alle $t \in I$ definiert sei. Setze schließlich

$$\varphi_t := \Phi_t(\varphi)$$

Nach Konstruktion ist $\varphi_t \in A \subset \mathcal{A}$ stabil und

$$\omega_t := \pi(\varphi_t)$$

definiert eine ebenfalls stabile 2-Form auf M. Tatsächlich erhält man

THEOREM 5.6. Für ein hinreichend kleines Intervall *I* definiert $(\omega_t, \varphi_t)_{t \in I}$ eine Familie von SU(3)-Strukturen auf M und die zugehörige G_2 -Struktur $\psi = \omega \wedge dt + \varphi$ auf $M \times I$ ist nearly-parallel mit $d\psi = \lambda * \psi$.

BEWEIS: Die Formen (ω_t, φ_t) sind nach Konstruktion stabil und nach 5.4 (i) gilt bereits die Gleichung

(1)
$$d\varphi_t + \frac{\lambda}{2}\omega_t^2 = 0$$

Nach 5.3 genügt es daher die Gleichung

(2)
$$d\omega_t - \dot{\varphi}_t = -\lambda \hat{\varphi}_t$$

zu zeigen. Damit (ω_t, φ_t) tatsächlich eine Familie von SU(3)-Strukturen definiert, müssen außerdem die Kompatibilitätsbedingungen

$$\omega_t \wedge \varphi_t = 0$$
 und $\epsilon(\omega_t) = \epsilon(\varphi_t)$

überprüft werden. Die offene Positivitätsbedingung (II) aus 3.2 ist hingegen auf der kompakten Mannigfaltigkeit M für ein hinreichend klein gewähltes Intervall I stets erfüllt [Anhang]. Für $Y \in \Gamma(TM)$ definiere

$$\mu_Y: A \longrightarrow \mathbb{R} \quad \text{durch} \quad \varphi \longmapsto \int_M (Y \lrcorner (-\frac{1}{\lambda} d\varphi)) \land \varphi$$

Für $\varphi \in A$ gilt $d\varphi = -\frac{\lambda}{2}\omega^2$ und damit

$$\mu_Y(\varphi) = \int_M (Y \lrcorner \omega) \land \omega \land \varphi$$

Die Stabilität von ω garantiert, dass sich jede 1-Form als $Y \lrcorner \omega$ darstellen lässt. Nach 4.5 ist daher $\omega_t \land \varphi_t = 0$ äquivalent dazu, dass $\mu_Y(\varphi_t) = 0$ gilt, für alle $Y \in \Gamma(TM)$. Da dies zur Zeit t = 0 bereits gewährleistet ist, genügt es

(3)
$$d\mu_Y(\dot{\varphi}_t) = 0$$

für alle $Y \in \Gamma(TM)$ zu zeigen. Erhalte aus dem Satz von Stokes

$$\begin{split} \Omega(L_Y\varphi_t, X \circ \varphi_t) &= \int_M L_Y\varphi_t \wedge \dot{\varphi}_t \\ &= \int_M d(Y \lrcorner \varphi_t) \wedge \dot{\varphi}_t + (Y \lrcorner d\varphi_t) \wedge \dot{\varphi}_t \\ &= \int_M - (Y \lrcorner \varphi_t) \wedge d\dot{\varphi}_t + (Y \lrcorner d\varphi_t) \wedge \dot{\varphi}_t \end{split}$$

Wegen $0 = \varphi_t \wedge d \dot{\varphi}_t$ erhält man weiter

$$\begin{split} \Omega(L_Y\varphi_t, X \circ \varphi_t) &= \int_M -\varphi_t \wedge (Y \lrcorner d\dot{\varphi}_t) + (Y \lrcorner d\varphi_t) \wedge \dot{\varphi}_t \\ &= \int_M (Y \lrcorner d\dot{\varphi}_t) \wedge \varphi_t + (Y \lrcorner d\varphi_t) \wedge \dot{\varphi}_t \\ &= -\lambda d\mu_Y(\dot{\varphi}_t) \end{split}$$

Damit folgt

$$\lambda d\mu_Y(\dot{\varphi}_t) = \Omega(X \circ \varphi_t, L_Y \varphi_t) = D_{\varphi_t} H(L_Y \varphi_t)$$

Der Fluss Ψ_s von Y sei für $|s|<\epsilon$ definiert. Für $\varphi_t\in A$ betrachte den Weg

$$c:]-\epsilon,\epsilon[\longrightarrow A \quad \mathrm{mit} \quad s\longmapsto \Psi^*_s \varphi_t$$

Da $dc(s) = \Psi_s^* d\varphi_t = -\frac{\lambda}{2} (\Psi_s^* \omega_t)^2$ gilt, verläuft c für hinreichend kleines ϵ ganz in A mit $\dot{c}(0) = L_Y \varphi_t$. Aus 5.5 folgt schließlich

$$\lambda d\mu_Y(\dot{\varphi}_t) = D_{\varphi_t} H(L_Y \varphi_t)$$
$$= (s \longmapsto H \circ c(s))'(0)$$
$$= (s \longmapsto \underbrace{H(\Psi_s^* \varphi_t)}_{\equiv H(\varphi_t)})'(0) = 0$$

und somit (3). Damit gilt $\omega_t \wedge \varphi_t = 0$ für alle $t \in I$ und nach 2.21 gilt ebenfalls

(4)
$$\omega_t \wedge \widehat{\varphi}_t = 0$$

für alle $t\in I$. Wegen $\epsilon(\pi(\varphi))=-\frac{1}{6}\pi(\varphi)^3$ folgt aus der Flussgleichung $\Omega(X,.)=DH$ für alle $\dot{\varphi}\in T_{\varphi_t}A=\Omega^3(M)$

$$\int_{M} \dot{\varphi}_{t} \wedge \dot{\varphi} = \Omega(\dot{\varphi}_{t}, \dot{\varphi}) = \Omega(X \circ \varphi_{t}, \dot{\varphi}) = D_{\varphi_{t}} H(\dot{\varphi})$$
$$= 2\lambda \int_{M} D_{\varphi_{t}} \epsilon(\dot{\varphi}) + \frac{1}{2} \pi(\varphi_{t})^{2} \wedge \pi_{*}(\dot{\varphi})$$

Mittels 2.17 und 5.4 (ii) erhält man daher

$$\int_{M} \dot{\varphi}_{t} \wedge \dot{\varphi} = 2\lambda \int_{M} \frac{1}{2} \widehat{\varphi}_{t} \wedge \dot{\varphi} + \frac{1}{2} \omega_{t} \wedge \left(-\frac{1}{\lambda} d\dot{\varphi}\right)$$
$$= \int_{M} \lambda \widehat{\varphi}_{t} \wedge \dot{\varphi} - \omega_{t} \wedge d\dot{\varphi}$$
$$= \int_{M} (\lambda \widehat{\varphi}_{t} + d\omega_{t}) \wedge \dot{\varphi}$$

und nach 4.5 folgt hieraus (2). Weiter erhält man

$$2(D\epsilon(\dot{\omega}_t) - D\epsilon(\dot{\varphi}_t)) = \hat{\omega}_t \wedge \dot{\omega}_t - \hat{\varphi}_t \wedge \dot{\varphi}_t$$

$$\stackrel{(2)}{=} -\omega_t^2 \wedge \dot{\omega}_t - \hat{\varphi}_t \wedge (\lambda \hat{\varphi}_t + d\omega_t)$$

$$= -\omega_t^2 \wedge \dot{\omega}_t - \hat{\varphi}_t \wedge d\omega_t$$

$$\stackrel{(4)}{=} -\omega_t^2 \wedge \dot{\omega}_t - d\hat{\varphi}_t \wedge \omega_t$$

$$\stackrel{(2)}{=} -\omega_t^2 \wedge \dot{\omega}_t - \frac{1}{\lambda} d\dot{\varphi}_t \wedge \omega_t$$

$$\stackrel{(1)}{=} 0$$

Da zur Zeit t = 0 bereits $\epsilon(\omega_t) = \epsilon(\varphi_t)$ gilt, folgt hieraus die Behauptung.

BEMERKUNG 5.7. Falls die Ausgangsstruktur $(\omega, \hat{\varphi})$ von einer nearly-Kähler Struktur (ω, φ) stammt, so erfüllt die Familie (ω_t, φ_t) von SU(3)-Strukturen aus 5.1 bereits die Gleichungen

$$d\varphi_t + 2\omega_t^2 = 0$$
 und $d\omega_t - \dot{\varphi}_t = -4\widehat{\varphi}_t$

Daher löst φ_t die Flussgleichung $\Omega(X, .) = DH$ und es gilt $\omega_t = \pi(\varphi_t)$. Die Konstruktion von nearly-parallelen G_2 -Strukturen aus nearly-Kähler Strukturen aus 5.1 ist damit ein Spezialfall der Konstruktion aus 5.6.

6. SU(3)-Strukturen auf Torusbündeln

Ausgehend von einer Kählerfläche M und einem Repräsentanten $\left[\frac{\omega_P}{2\pi}\right] \in H^2_{dR}(M,\mathbb{Z})$ einer ganzzahligen Kohomologieklasse, lässt sich ein T^2 -Hauptfaserbündel X über M konstruieren. X besitzt wiederum eine SU(3)-Struktur, welche selbst zwar nicht halb-flach ist, sich jedoch, unter zusätzlichen Forderungen in eine halb-flache Struktur transformieren lässt. Wählt man speziell $\omega_P = 0$, so induziert jede Kähler-Fläche ein T^2 -Hauptfaserbündel X mit einer halb-flachen SU(3)-Struktur. Die Wahl von $\omega_P = 0$ trivialisiert dabei einen der S^1 -Faktoren des T^2 -Bündels.

DEFINITION 6.1. Die Ricc-Form ρ einer Kälermannigfaltigkeit (M^{2m}, g, I, ω) ist eine 2-Form $\rho \in [\Lambda^{1,1}]$ auf M, definiert durch

$$\rho(X,Y) := Ric^g(IX,Y)$$

Man kann zeigen, dass $\left[\frac{\rho}{2\pi}\right] \in H^2_{dR}(M,\mathbb{Z})$ gilt.

DEFINITION 6.2. Das kanonische komplexe Linienbündel einer Kälermannigfaltigkeit (M^{2m}, g, I, ω) ist definiert durch

$$E := \Lambda^{(m,0)} T^* M$$

Wegen $\nabla^{g}I = 0$ reduziert der Levi-Civita Zusammenhang nach 1.22 auf die zugehörige U(m)-Struktur $P \subset FM$ und induziert damit eine kovariante Ableitung auf $E = P \times_{U(m)} \Lambda^{(m,0)}$. Für den zugehörigen Krümmungstensor $R_E \in$ $\Gamma(\Lambda^2 T^*M \otimes End(E))$ und $\alpha \in \Gamma(E)$ gilt nach [Ballmannn S.54]

$$R_E(X,Y)\alpha = i\rho(X,Y)\alpha$$

LEMMMA 6.3. Die kovariante Ableitung auf E induziert einen Zusammenhang \mathcal{Z}_E auf $\pi : FE \longrightarrow M$ mit Krümmungs 2-Form Ω_E und es gilt

$$d\mathcal{Z}_E = \Omega_E = i\pi^*\rho$$

Identifiziere dabei $End(\mathbb{C}) \cong \mathbb{C}$ durch $\Omega_E \cong \Omega_E(1)$.

BEWEIS: Für $X, Y \in T_m M$ gilt nach Definition von R_E in 1.20

$$R_E(X,Y) = [\alpha, \Omega_E(X^*_{\alpha}, Y^*_{\alpha})] \in FE \times_{GL(1,\mathbb{C})} End(\mathbb{C}),$$

wobe
i $\alpha \in E_m \setminus \{0\} \subset F_m E$ beliebig gewählt ist. D.h. $R_E(X,Y)$ ist als Endomorphismus von
 E_m gegeben durch

$$R_E(X,Y) = \alpha \circ \Omega_E(X^*_\alpha, Y^*_\alpha) \circ \alpha^{-1},$$

wobei $\alpha: E_m \longmapsto \mathbb{C}$ durch $\alpha \longmapsto 1$ definiert ist. Damit folgt

$$i\rho(X,Y)\alpha = R_E(X,Y)\alpha = \alpha \circ \Omega_E(X^*_{\alpha},Y^*_{\alpha})(1) \cong \alpha \circ \Omega_E(X^*_{\alpha},Y^*_{\alpha})$$

Anwendung von α^{-1} auf diese Gleichung liefert $i\rho(X,Y) = \Omega_E(X^*_{\alpha},Y^*_{\alpha})$. Hieraus erhält man aufgrund der Vertikalität von Ω_E die zweite Gleichung und da $GL(1,\mathbb{C})$ Abelsch ist, folgt die erste Gleichung aus der Strukturgleichung in 1.16.

LEMMMA 6.4. Der Zusammenhang \mathcal{Z}_E auf FE reduziert auf das U(1)-Bündel

$$K := \{ \alpha \in E \mid |h(\alpha, \alpha)| = 1 \} \subset FE$$

Dabei sei h das hermitesche Skalarprodukt auf den Fasern von E, welches von g induziert wird. Damit erhält man eine Zusammenhangs 1-Form $i\mathcal{Z}_K$ auf $\pi_K : K \longrightarrow M$ mit Werten in $\mathfrak{u}(1) \cong i\mathbb{R}$. Weiter erfüllt $i\mathcal{Z}_K$ die Gleichung

$$d\mathcal{Z}_K = \pi_K^* \rho$$

BEWEIS: Für $\alpha_0 \in K_{m_0}$ ist der Horizontalraum gegeben durch $H_{\alpha_0} = \alpha_* T_{m_0} M$, wobei $\alpha \in \Gamma(E)$ ein lokaler Schnitt mit $\nabla \alpha = 0$ und $\alpha(m_0) = \alpha_0$ ist. Damit ist $|h(\alpha, \alpha)|$ konstant vom Wert $|h(\alpha_0, \alpha_0)| = 1$ und es folgt $H_{\alpha_0} \subset T_{\alpha_0} K$. Also definiert $i \mathcal{Z}_K := \iota^* \mathcal{Z}_E$ eine Zusammenhangs 1-Form auf $\iota : K \hookrightarrow FM$ und aus 6.3 folgt

$$d(i\mathcal{Z}_K) = \iota^* d\mathcal{Z}_E = \iota^* i\pi^* \rho = i\pi_K^* \rho$$

Eine Verallgemeinerung dieser Konstruktion ist

THEOREM [K] 6.5. Für jedes Element $\left[\frac{\omega_P}{2\pi}\right] \in H^2_{dR}(M,\mathbb{Z})$ existiert ein U(1)-Hauptfaserbündel $\pi_P : P \longrightarrow M$ mit einem Zusammenhang $i\mathcal{Z}$, welcher $d\mathcal{Z} = \pi^*_P \omega_P$ erfüllt.

In Folgenden sei $(M, \tilde{g}, \tilde{I}, \tilde{\omega})$ eine gegebene Kählerfläche (m = 2) mit zugehörigem U(1)-Bündel $\pi_K : K \longrightarrow M$. Der Zusammenhang $i\widetilde{Z}_K$ auf K erfüllt nach 6.4 die Gleichung $d\widetilde{Z}_K = \pi_K^* \rho$. Falls außerdem $[\frac{\omega_P}{2\pi}] \in H^2_{dR}(M, \mathbb{Z})$ mit $\omega_P \in [\Lambda^{(1,1)}]$ gegeben ist, so erhält man nach 6.5 ein weiteres U(1)-Hauptfaserbündel $\pi_P : P \longrightarrow M$ mit einem Zusammenhang $i\widetilde{Z}_P$, welcher $d\widetilde{Z}_P = \pi_P^* \omega_P$ erfüllt. Das Faserprodukt

$$\pi: X := K \times_{\Delta} P = \{(\alpha, p) \in K \times P \mid \pi_K(\alpha) = \pi_P(p)\} \longrightarrow M$$

$$\pi_{XK}: X \longrightarrow K \quad \text{und} \quad \pi_{XP}: X \longrightarrow P$$

erhält man eine Zusammenhangs 1-Form auf X durch

$$(i\mathcal{Z}_K, i\mathcal{Z}_P) := (i\pi_{XK}^*\widetilde{\mathcal{Z}}_K, i\pi_{XP}^*\widetilde{\mathcal{Z}}_P)$$

Für diese gilt

$$d\mathcal{Z}_K = \pi^*_{XK} d\widetilde{\mathcal{Z}}_K = \pi^*_{XK} \pi^*_K \rho = \pi^* \rho$$

und entsprechend $d\mathcal{Z}_P = \pi^* \omega_P$. Seien weiter ξ_K bzw. ξ_P die vertikalen Vektorfelder zu (i, 0) bzw. $(0, i) \in \mathfrak{u}(1) \times \mathfrak{u}(1)$, d.h.

$$\begin{pmatrix} \mathcal{Z}_K(\xi_K) & \mathcal{Z}_K(\xi_P) \\ \mathcal{Z}_P(\xi_K) & \mathcal{Z}_P(\xi_P) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Definiere hiermit

• eine Metrik g auf X durch

$$g(\xi_K, \xi_P) := 0$$
 $g(\xi_K, \xi_K) = g(\xi_P, \xi_P) := 1$

auf der vertikalen Komponente V_x und

 $g(X^*, Y^*) := \widetilde{g}(X, Y)$

auf der horizontalen Komponente H_x von $T_x X = V_x \perp H_x$.

• eine fast-komplexe Struktur I auf X durch

 $I\xi_K := \xi_P \qquad I\xi_P := -\xi_K$

auf der vertikalen Komponente und

$$I(X^*, Y^*) := I(X, Y)^*$$

auf der horizontalen Komponente von $T_x X$.

Insbesondere gilt damit $\mathcal{Z}_K = g(\xi_K, .)$ und $\mathcal{Z}_P = g(\xi_P, .)$.

SATZ 6.6. Durch (g, I) wird eine U(3)-Struktur auf $\pi : X \longrightarrow M$ definiert und die zugehörige Kählerform $\omega = g(I, .)$ ist gegeben durch

$$\omega = \pi^* \widetilde{\omega} + \mathcal{Z}_K \wedge \mathcal{Z}_P$$

BEWEIS: Eine U(2)-Basis $(X, Y, \widetilde{I}X, \widetilde{I}Y)$ von $(M, \widetilde{g}, \widetilde{I})$ induziert offenbar eine

 $U(3)\text{-Basis}~(X^*,Y^*,\xi_K,IX^*,IY^*,\xi_P)$ von (X,g,I).Nach Definition der Kählerform ω gilt

$$\omega(\xi_K, \xi_P) = g(\xi_P, \xi_P) = 1 = det \begin{pmatrix} \mathcal{Z}_K(\xi_K) & \mathcal{Z}_K(\xi_P) \\ \mathcal{Z}_P(\xi_K) & \mathcal{Z}_P(\xi_P) \end{pmatrix}$$
$$= (\pi^* \widetilde{\omega} + \mathcal{Z}_K \wedge \mathcal{Z}_P)(\xi_K, \xi_P)$$

Für horizontale Vektorfelder X^*, Y^* erhält man ebenfalls

$$\omega(X^*, Y^*) = g((\widetilde{I}X)^*, Y^*) = \widetilde{g}(\widetilde{I}X, Y) = (\pi^*\widetilde{\omega} + \mathcal{Z}_K \wedge \mathcal{Z}_P)(X^*, Y^*)$$

und damit offenbar die gewünschte Gleichung.

DEFINITION 6.7. Definiere eine komplexwertige 2-Form $\eta = \eta_+ + i\eta_-$ auf $\pi : X \longrightarrow M$ durch

$$\eta_{(\alpha,p)} := \pi^* \alpha,$$

für $(\alpha, p) \in X = K \times_{\Delta} P$. Da $\alpha \in K \subset \Lambda^{2,0} T^*_{\pi(\alpha,p)} M$ gilt, ist η bzgl. der U(3)-Struktur auf X ebenfalls eine (2, 0)-Form, für welche gilt

LEMMA 6.8.

(i)
$$\xi_K \lrcorner \eta = \xi_P \lrcorner \eta = 0$$

(ii) $\eta_+ \land \eta_- = 0$
(iii) $d\mathcal{Z}_K \land \eta = d\mathcal{Z}_P \land \eta = 0$
(iv) $d\eta = i\mathcal{Z}_K \land \eta$

BEWEIS: Die Vertikalität von ξ_K und ξ_P garantiert (i). Da η punktweiser Pullback einer (2,0)-Form ist, erhält man (ii). Weiter gilt $\rho, \omega_P \in [\Lambda^{(1,1)}]$, weshalb wegen $d\mathcal{Z}_K = \pi^* \rho$ und $d\mathcal{Z}_P = \pi^* \omega_P$ Gleichung (iii) folgt. Damit bleibt (iv) zu zeigen: Für $\xi \in \{\xi_K, \xi_P\}$ und $U, V \in \Gamma(TX)$ gilt nach (i)

$$d\eta(\xi, U, V) = \xi \cdot \eta(U, V) - \eta([\xi, U], V) - \eta([V, \xi], U)$$

Falls U und V vertikal sind, so ist (iv) offenbar erfüllt. Da U(1) Abelsch ist, erhält man für vertikales U die Gleichung $[\xi, U] = 0$ und damit (iv). Für horizontale Lifts von $X, Y \in \Gamma(TM)$ gilt $[\xi, X^*] = 0$ und $[\xi, Y^*] = 0$. Damit folgt

$$d\eta(\xi, X^*, Y^*) = \xi \cdot \eta(X^*, Y^*)$$

Sei nun $c(t) = (\alpha(t), p(t))$ eine Integralkurve des vertikalen Vektorfeldes ξ , welche ganz in einer Faser $X_m \subset X$ verläuft. Dann folgt

$$(d\eta)_{c(t)}(\xi, X^*, Y^*) = (t \longmapsto \eta_{c(t)}(X^* \circ c(t), Y^* \circ c(t)))'$$
$$= (t \longmapsto \alpha(t)(\pi_* X^* \circ c(t), \pi_* Y^* \circ c(t)))'$$
$$= (t \longmapsto \alpha(t)(X \circ \pi \circ c(t), Y \circ \pi \circ c(t)))'$$
$$= (t \longmapsto \alpha(t)(X(m), Y(m)))'$$
$$= \dot{\alpha}(t)(X \circ \pi, Y \circ \pi)$$
$$= \dot{\alpha}(t)(\pi_* X^*, \pi_* Y^*)$$

Weiter gilt für $\xi = \xi_K$ nach Definition

$$(\dot{\alpha}, \dot{p}) = \dot{c} = \xi_K \circ c = R_{c*}(i, 0) = (s \longmapsto (e^{is}\alpha, p))'(0) = (i\alpha, 0)$$

und damit

$$(d\eta)_{c(t)}(\xi_K, X^*, Y^*) = i\alpha(t)(\pi_*X^*, \pi_*Y^*) = i\eta_{c(t)}(X^*, Y^*)$$
$$= (i\mathcal{Z}_K \land \eta)_{c(t)}(\xi_K, X^*, Y^*)$$

Ebenso gilt für $\xi = \xi_P$

$$(\dot{\alpha}, \dot{p}) = \dot{c} = \xi_P \circ c = R_{c*}(0, i) = (s \longmapsto (\alpha, p.e^{is}))'(0)$$

also $\dot{\alpha}=0$ und damit

$$(d\eta)_{c(t)}(\xi_P, X^*, Y^*) = 0 = (i\mathcal{Z}_K \wedge \eta)_{c(t)}(\xi_P, X^*, Y^*)$$

Mittels lokaler Trivialisierungen des kanonischen Bündels zeigt man [Anhang], dass $d\eta$ keine rein horizontalen Komponenten besitzt.

SATZ 6.9. Die 2-Form η definiert durch

$$(\mathcal{Z}_K - i\mathcal{Z}_P) \wedge \eta$$

eine SU(3)-Struktur auf (X, g, I). Die zugehörigen stabilen 3-Formen sind also gegeben durch

$$\varphi := \mathcal{Z}_K \wedge \eta_+ + \mathcal{Z}_P \wedge \eta_-$$
$$\widehat{\varphi} := \mathcal{Z}_K \wedge \eta_- - \mathcal{Z}_P \wedge \eta_+$$

BEWEIS: Nach Definition ist η punktweiser Pullback einer (2,0)-Form. Für eine induzierte U(3)-Basis $(X^*, Y^*, \xi_K, IX^*, IY^*, \xi_P)$ von (X, g, I) ist daher η lokal von der Gestalt $(e^1 - ie^4) \wedge (e^2 - ie^5)$. Damit ist $(\mathcal{Z}_K - i\mathcal{Z}_P) \wedge \eta$ lokal von der Getsalt $(e^1 - ie^4) \wedge (e^2 - ie^5) \wedge (e^3 - ie^6)$.

50

_	_	

$$d\varphi = \mathcal{Z}_K \wedge \mathcal{Z}_P \wedge \eta_+$$

Kontraktion mit ξ_K und ξ_P zeigt, dass $d\varphi \neq 0$ gilt. Die SU(3)-Struktur ist also nicht halb-flach. Für $(\alpha, \beta) \in S^1$ definiere ein normiertes Vektorfeld ξ auf X durch

$$\xi := \alpha \xi_K + \beta \xi_P$$

Transformiert man die SU(3)-Struktur (ω, φ) längs ξ wie in 3.9, so erhält man eine SU(3)-Struktur $(\omega_{\xi}, \varphi_{\xi})$ mit:

SATZ 6.11.

$$\omega_{\xi} = \mathcal{Z}_{K} \wedge \mathcal{Z}_{P} + \alpha \eta_{+} + \beta \eta_{-}$$
$$\varphi_{\xi} = (\alpha \mathcal{Z}_{P} - \beta \mathcal{Z}_{K}) \wedge (\beta \eta_{+} - \alpha \eta_{-}) + (\alpha \mathcal{Z}_{K} + \beta \mathcal{Z}_{P}) \wedge \pi^{*} \widetilde{\omega}$$

und

$$d\omega_{\xi} = d\mathcal{Z}_{K} \wedge \mathcal{Z}_{P} - \mathcal{Z}_{K} \wedge d\mathcal{Z}_{P} + \mathcal{Z}_{K} \wedge (\beta\eta_{+} - \alpha\eta_{-})$$

$$d\varphi_{\xi} = -\alpha \mathcal{Z}_{K} \wedge \mathcal{Z}_{P} \wedge (\alpha\eta_{+} + \beta\eta_{-}) + \alpha\pi^{*}(\rho \wedge \widetilde{\omega}) + \beta\pi^{*}(\omega_{P} \wedge \widetilde{\omega})$$

$$\omega_{\xi}^{2} = 2\mathcal{Z}_{K} \wedge \mathcal{Z}_{P} \wedge (\alpha\eta_{+} + \beta\eta_{-}) + \alpha^{2}\eta_{+}^{2} + \beta^{2}\eta_{-}^{2}$$

$$d\omega_{\xi} \wedge \omega_{\xi} = \alpha\beta\mathcal{Z}_{K} \wedge (\eta_{+}^{2} - \eta_{-}^{2})$$

$$\omega_{\xi} \wedge \varphi_{\xi} = \alpha\beta(\alpha \mathcal{Z}_{P} - \beta\mathcal{Z}_{K}) \wedge (\eta_{+}^{2} - \eta_{-}^{2})$$

$$+ (\alpha\eta_{+} + \beta\eta_{-}) \wedge (\alpha \mathcal{Z}_{K} + \beta\mathcal{Z}_{P}) \wedge \pi^{*}\widetilde{\omega}$$

BEWEIS: Die ersten beiden Gleichungen erhält man aus den Formel in 3.9 und den Gleichungen für φ in 6.9 bzw. für ω in 6.6. Die übrigen Gleichungen ergeben sich dann aus 6.8.

KOROLLAR 6.12. Falls $\omega_P \wedge \widetilde{\omega} = 0$ gilt, so definiert

$$\omega := \mathcal{Z}_K \wedge \mathcal{Z}_P + \eta_-$$
$$\varphi := \mathcal{Z}_P \wedge \pi^* \widetilde{\omega} - \mathcal{Z}_K \wedge \eta_+$$

eine halb-flache SU(3)-Struktur auf $X = K \times_{\triangle} P$.

BEWEIS: Wähle $\alpha = 0$ und $\beta = 1$ (oder auch -1) in 6.11.

BEMERKUNG 6.13. Es gilt

(1)
$$\pi^* \widetilde{\omega}^2 = \alpha^2 \eta_+^2 + \beta^2 \eta_-^2$$

(2) $\eta \wedge \pi^* \widetilde{\omega} = 0$

BEWEIS: Als horizontale 6-Formen auf X sind $\eta_{-}^{3} = \pi^{*} \tilde{\omega}^{3} = 0$. Damit berechnet man

$$\omega^{3} = 3\mathcal{Z}_{K} \wedge \mathcal{Z}_{P} \wedge \pi^{*}\widetilde{\omega}^{2}$$
$$\omega_{\xi}^{3} = 3\mathcal{Z}_{K} \wedge \mathcal{Z}_{P} \wedge (\alpha^{2}\eta_{+}^{2} + \beta^{2}\eta_{-}^{2})$$

Nach 3.10 gilt $\omega_{\xi}^{3} = \omega^{3}$. Kontraktion mit ξ_{K} und ξ_{P} liefert (1). Da $(\omega_{\xi}, \varphi_{\xi})$ eine SU(3)-Struktur definiert, gilt $\omega_{\xi} \wedge \varphi_{\xi} = 0$. Aus 6.11 erhält man für $\alpha = 1$ und $\beta = 0$ die Gleichung $\eta_{+} \wedge \pi^{*} \widetilde{\omega} = 0$. Für $\alpha = 0$ und $\beta = 1$ erhält man außerdem $\eta_{-} \wedge \pi^{*} \widetilde{\omega} = 0$ und damit (2).

Für $\alpha := 1$ und $\beta := 0$ liefert 6.11 eine SU(3)-Struktur

$$\omega := \mathcal{Z}_K \wedge \mathcal{Z}_P + \eta_+$$
$$\varphi := \mathcal{Z}_K \wedge \pi^* \widetilde{\omega} - \mathcal{Z}_P \wedge \eta_-$$

Unter Verwendung von Gleichung (1) erhält man ebenfalls aus 6.11 die Gleichung

$$\omega^2 = 2\mathcal{Z}_K \wedge \mathcal{Z}_P \wedge \eta_+ + \pi^* \widetilde{\omega}^2$$

Weiter lässt sich die Ricci-Form ρ schreiben als

$$\rho = scal^g \cdot \widetilde{\omega} + \rho_0,$$

wobei $\rho_0 \in [\Lambda_0^{(1,1)}]$ gilt und $scal^{\tilde{g}}$ die Skalarkrümmung der zugrundeliegenden Kählerfläche ist. Falls $scal^{\tilde{g}} \equiv -\frac{1}{2}$ konstant ist, so erhält man

$$d\varphi = -\mathcal{Z}_K \wedge \mathcal{Z}_P \wedge \eta_+ + \pi^* (\rho \wedge \widetilde{\omega})$$
$$= -\mathcal{Z}_K \wedge \mathcal{Z}_P \wedge \eta_+ - \frac{1}{2} \pi^* \widetilde{\omega}^2$$
$$= -\frac{1}{2} \omega^2$$

und damit eine nearly-halb-flache SU(3)-Struktur auf $X = K \times_{\triangle} P$. Eine naheliegende Idee ist es, die obige Transformation der SU(3)-Struktur zu iterieren. Man rechnet jedoch leicht nach, dass die SU(3)-Struktur, welche man durch doppelte Anwendung von 3.9 erhält, wieder mit der Ausgangsstruktur übereinstimmt.

ANHANG

A2.2. Die Differenzierbarkeit von $f : GL/H \longrightarrow \Lambda^k$ folgt direkt aus der Differenzierbarkeit von

$$f \circ \pi : GL \longrightarrow \Lambda^k \qquad g \longmapsto g.\omega$$

und der Tatsache, dass $\pi: GL \longrightarrow GL/H$ eine surjektive Submersion ist. Weiter erhält man für $g, g' \in G$

(1)
$$f(g'.[g]) = g'.f([g])$$

Zum Nachweis der Injektivität des Differentials $f_{*[g]}$ betrachte zunächst den Fall [g]=[e]. Sei $v \in T_{[e]}G/H$ mit $f_*v = 0$. Aufgrund der Surjektivität von π_{*e} existiert ein $X \in T_eGL$ mit $\pi_*X = v$. Man erhält nun für alle $t \in \mathbb{R}$

(2)
$$exp(tX) \in Stab_{GL}(\omega)$$

wie folgt: Für $t_0 \in \mathbb{R}$ gilt nach (1)

$$f[exp((t_0+t)X)] = f[exp(t_0X)exp(tX)] = exp(t_0X).f[exp(tX)]$$

Wegen $0 = f_* v = (t \longmapsto f[exp(tX)])'(0)$ und $exp(t_0X) \in Aut(\Lambda^k)$ erhält man hieraus

$$0 = (t \longmapsto f[exp((t_0 + t)X)])'(0) = (t \longmapsto f[exp(tX)])'(t_0)$$

Da $t_0 \in \mathbb{R}$ beliebig gewählt war, ist $exp(tX).\omega = f[exp(tX)] = f[e] = \omega$ konstant, womit (2) gezeigt ist. Aus (2) folgt nun, dass $\pi \circ exp(tX) = [e]$ konstant ist, und somit gilt $v = \pi_*X = 0$. Sei nun $v \in T_{[g]}G/H$ mit $f_*v = 0$ und $[g] \in G/H$ beliebig. Definiere $\varrho(g^{-1}): G/H \longrightarrow G/H$ durch $[g'] \longmapsto [g^{-1}g']$. Aus (1) folgt $f_*\varrho(g^{-1})_*v = g^{-1}.f_*v = 0$ und wegen $\varrho(g^{-1})_*v \in T_{[e]}G/H$ liefert der erste Fall $v = \varrho(g)_*\varrho(g^{-1})_*v = 0$.

A2.8. Wegen $K(\varphi_0) = I_0 \otimes \epsilon_0$ erhält man für $A \in Stab(\varphi_0)$

$$I_0 \otimes \epsilon_0 = K(\varphi_0) = K(A,\varphi_0) = A \cdot K(\varphi_0) = \det(A^{-1})A \circ I_0 \circ A^{-1} \otimes \epsilon_0$$

Da ebenfalls $\lambda(\varphi_0) = \lambda(A.\varphi_0) = det(A^{-1})^2 \lambda(\varphi_0)$ gilt, muss für $A \in Stab_0(\varphi_0)$ bereits $det(A^{-1}) = 1$ gelten. Also folgt

$$I_0 = A \circ I_0 \circ A^{-1}$$

und somit $A \in GL(3, \mathbb{C})$. Damit erhält A die komplexe Form $\alpha_0 = \varphi_0 - iI_0.\varphi_0$ und aus 3.1 folgt $A \in SL(3, \mathbb{C})$. Ein Element aus $SL(3, \mathbb{C}) = Stab(\alpha_0)$ stabilisiert $\varphi_0 = Re(\alpha_0)$ und der Zusammenhang von $SL(3, \mathbb{C})$ garantiert schließlich

$$Stab_0(\varphi_0) = SL(3, \mathbb{C})$$

A2.5. Sei V ein 7-dimensionaler reeller Vektorraum und $K : V \longrightarrow V^* \otimes \Lambda^7 V^*$ eine lineare Abbildung. Für $vol \in \Lambda^7 (V^* \otimes \Lambda^7 V^*)^*$ gilt nach Definition von det(K)

(1)
$$\Lambda^7 V^* \ni vol \circ K = det(K) \otimes vol$$

Für einen 1-dimenionalen reellen Vektorraum W gilt $W \otimes W^* = \mathbb{R}$. Mit $W := \Lambda^7 (V^* \otimes \Lambda^7 V^*)$ erhält man daher aus Gleichung (1)

$$det(K) \in \Lambda^7 V^* \otimes \Lambda^7 (V^* \otimes \Lambda^7 V^*)$$
$$= \Lambda^7 V^* \otimes \Lambda^7 V^* \otimes (\Lambda^7 V^*)^7$$
$$= (\Lambda^7 V^*)^9$$

Identifiziere dabe
i $\Lambda^7 V^* \otimes (\Lambda^7 V^*)^7 \cong \Lambda^7 (V^* \otimes \Lambda^7 V^*)$ durch

$$(\alpha_1 \wedge .. \wedge \alpha_7) \otimes \epsilon_1 \otimes .. \otimes \epsilon_7 \longmapsto (\alpha_1 \otimes \epsilon_1) \wedge .. \wedge (\alpha_7 \otimes \epsilon_7)$$

Teil (ii) aus 2.5 erhält man ebenso.

A2.19. Die Gestalt von $\hat{\rho}$ erhält man direkt aus den folgenden Gleichungen:

(i)
$$D_{\varphi}\epsilon(\dot{\varphi}) = -\frac{1}{2}I(\varphi).\varphi \wedge \dot{\varphi}$$

(ii) $D_{\sigma}\epsilon(\dot{\sigma}) = -\frac{1}{2}\omega \wedge \dot{\sigma}$, falls $\sigma = \frac{1}{2}\omega^2$.

Sobald diese für die Modelltensoren φ_0 bzw. σ_0 gelten, erhält man (i) bzw. (ii) aus 2.18 für beliebiges $\rho = A.\rho_0$. Es genügt daher die obigen Gleichungen für die entsprechenden Modelltensoren zu zeigen.

BEWEIS: Nach Definition von $K(\varphi)(x)$ gilt

$$K(\varphi)(x) = \frac{1}{2} \sum_{j=1}^{6} (e^j \wedge (x \lrcorner \varphi) \wedge \varphi) e_j$$

und damit

$$\lambda(\varphi) = \frac{1}{6} tr(K_{\varphi}^2) = \frac{1}{24} \sum_{i,j=1}^{6} (e^i \wedge (e_j \lrcorner \varphi) \land \varphi) (e^j \wedge (e_i \lrcorner \varphi) \land \varphi)$$

Hieraus folgt

$$D_{\varphi}\lambda(\dot{\varphi}) = \frac{1}{12}\sum_{i,j=1}^{6} [e^{i} \wedge (e_{j} \lrcorner \dot{\varphi}) \land \varphi + e^{i} \wedge (e_{j} \lrcorner \varphi) \land \dot{\varphi}](e^{j} \wedge (e_{i} \lrcorner \varphi) \land \varphi)$$

Auf \mathbb{R}^6 gilt für die 7-Form $e^i\wedge \dot{\varphi}\wedge \varphi=0$ und damit

(1)
$$e^{i} \wedge (e_{j} \lrcorner \dot{\varphi}) \wedge \varphi = \delta_{ij} (\dot{\varphi} \wedge \varphi) + e^{i} \wedge \dot{\varphi} \wedge (e_{j} \lrcorner \varphi)$$

Einsetzen von (1) liefert

$$D_{\varphi}\lambda(\dot{\varphi}) = \frac{1}{12}\sum_{i,j=1}^{6} [\delta_{ij}(\dot{\varphi} \wedge \varphi) + 2e^{i} \wedge (e_{j} \lrcorner \varphi) \wedge \dot{\varphi}](e^{j} \wedge (e_{i} \lrcorner \varphi) \wedge \varphi)$$

Nach 2.8 ist jedoch $\sum (e^i \wedge (e_i \lrcorner \varphi) \wedge \varphi) = 2tr(K(\varphi)) = 0$ und somit

$$D_{\varphi}\lambda(\dot{\varphi}) = \frac{1}{6}\sum_{i,j=1}^{6} [e^{i} \wedge (e_{j} \lrcorner \varphi) \wedge \dot{\varphi}](e^{j} \wedge (e_{i} \lrcorner \varphi) \wedge \varphi)$$

Weiter gilt ebenfalls nach 2.8

$$e^{j} \wedge (e_{i} \lrcorner \varphi) \wedge \varphi = 2K(\varphi)(e_{i})(e^{j}) = \pm 2\delta_{j,i\pm 3},$$

mit postivem Vorzeichen für $i \in \{1,2,3\}$ und negativem für $i \in \{4,5,6\}.$ Damit also

$$D_{\varphi}\lambda(\dot{\varphi}) = \frac{1}{3} \left[\sum_{i=1}^{3} e^{i} \wedge (e_{i+3} \lrcorner \varphi) - \sum_{i=4}^{6} e^{i} \wedge (e_{i-3} \lrcorner \varphi)\right] \wedge \dot{\varphi}$$

Eine direkte Rechnung für $\varphi=\varphi_0=e^{123}-e^{156}+e^{246}-e^{345}$ ergibt

$$D_{\varphi_0}\lambda(\dot{\varphi}) = \frac{1}{3}[3(e^{456} - e^{126} + e^{135} - e^{234})] \wedge \dot{\varphi} = I_0.\varphi_0 \wedge \dot{\varphi}$$

Schließlich folgt hieraus wegen $\sqrt{-\lambda(\varphi_0)}=\epsilon_0\cong 1$

$$D_{\varphi_0}\epsilon(\dot{\varphi}) = \frac{1}{2\sqrt{-\lambda(\varphi_0)}}(-D_{\varphi_0}\lambda(\dot{\varphi})) = -\frac{1}{2}I_0.\varphi_0\wedge\dot{\varphi}$$

und somit (i).

Zum Nachweis von (ii) beachte, dass nach Definition von K und 2.9

$$K(\sigma_0 + t\dot{\sigma}) = K(\sigma_0) + tK(\dot{\sigma}) = I_0 + tK(\dot{\sigma})$$

gilt. Damit folgt

$$det(K(\sigma_0 + t\dot{\sigma})) = det(E + tI_0^{-1}K(\dot{\sigma}))$$

und somit

$$D_{\sigma_0}\lambda(\dot{\sigma}) = tr(I_0^{-1}K(\dot{\sigma})) = tr(-I_0K(\dot{\sigma}))$$

Mit $K(\dot{\sigma})(e^i) = . \land e^i \land \dot{\sigma} = \sum_{j=1}^6 (e^j \land e^i \land \dot{\sigma})e_j$ erhält man

$$-I_0 K(\dot{\sigma})(e^i) = -\sum_{j=1}^3 (e^j \wedge e^i \wedge \dot{\sigma})e_{j+3} + \sum_{j=4}^6 (e^j \wedge e^i \wedge \dot{\sigma})e_{j-3}$$

und hieraus

$$D_{\sigma_0}\lambda(\dot{\sigma}) = tr(-I_0K(\dot{\sigma}))$$
$$= \sum_{i=1}^3 e^{i+3} \wedge e^i \wedge \dot{\sigma} - \sum_{i=4}^6 e^{i-3} \wedge e^i \wedge \dot{\sigma}$$
$$= -2\omega_0 \wedge \dot{\sigma}$$

Wegen $\lambda(\sigma_0) = 1$ erhält man schließlich

$$D_{\sigma_0}\epsilon(\dot{\sigma}) = \frac{1}{4}(\lambda(\sigma_0))^{-\frac{3}{4}}D_{\sigma_0}\lambda(\dot{\sigma}) = -\frac{1}{2}\omega_0\wedge\dot{\sigma}$$

und damit (ii).

A2.22. Nach Wahl einer Volumenform dV auf M, schreibe $\epsilon(\varrho) = f_{\varrho}dV$, mit einer differenzierbaren Funktion $f_{\varrho} : M \longrightarrow \mathbb{R}$. Für einen differenzierbarer Weg $\varrho : I := [-1, 1] \longrightarrow \Omega_{\rho_0}(M)$ sei

$$f: M \times I \longrightarrow \mathbb{R}$$
 mit $f(m, t) := f_{\varrho(t)}(m)$

Dann gilt

- (1) Die Kompaktheit von M garantiert, dass für alle $t \in I$ die Abbildung $f_t : M \longrightarrow \mathbb{R}$ integrierbar ist.
- (2) Für fest gewähltes $m \in M$ ist die Abbildung $f_m : I \longrightarrow \mathbb{R}$ differenzierbar. (3) Es existiert $K := \max_{\substack{(t,m) \in M \times I}} \{ |\frac{\partial f}{\partial t}(t,m)| \}.$

Wähle nun eine beliebige Nullfolge $h_n \in \mathbb{R} \setminus \{0\}$ und definiere

$$f_n: M \longrightarrow \mathbb{R} \quad \text{durch} \quad m \longmapsto \frac{1}{h_n} (f(m, h_n) - f(m, 0))$$

Nach (1) und (2) ist f_n eine Folge integrierbarer Funktionen, welche punktweise gegen $\frac{\partial f}{\partial t}(.,0)$ konvergiert. Weiter existiert nach dem Mittelwertsatz der Analysis ein $\xi_n(m) \in [0, h_n]$ mit

$$|f_n(m)| = \left|\frac{1}{h_n}(f(m, h_n) - f(m, 0))\right| = \left|\frac{\partial f}{\partial t}(m, \xi_n(m))\right| \stackrel{(3)}{\leq} K =: F(m)$$

Die konstante Abbildung $F: M \longrightarrow \mathbb{R}$ ist auf der kompakten Mannigfaltigkeit M integrierbar und majorisiert die Folge f_n . Nach dem Satz von Lebesgue gilt daher

$$\lim_{n \to \infty} \int_M f_n dV = \int_M \frac{\partial f}{\partial t}(.,0) dV$$

Die Abbildung

$$g: I \longrightarrow \mathbb{R} \quad \text{mit} \quad t \longmapsto \int_M \epsilon(\varrho_t)$$

ist daher in t = 0 differenzier
bar mit

$$g'(0) = \lim_{n \to \infty} \frac{1}{h_n} (g(h_n) - g(0)) = \lim_{n \to \infty} \int_M f_n dV$$
$$= \int_M \frac{\partial f}{\partial t} (., 0) dV = \int_M D_{\varrho_0} \epsilon(\dot{\varrho}_0)$$

Damit ist die Differenzierbarkeit von V gezeigt. Die zweite Gleichung folgt direkt aus 2.17.

A4.8. Es ist zu zeigen, dass für ein hinreichend klein gewähltes Intervall I die Paare (ω_t, φ_t) für alle $t \in I$ positiv sind. Betrachte dazu die stetige Abbildung

$$F: I \times TM \longrightarrow \mathbb{R} \quad \text{mit} \quad (t, X) \longmapsto \omega_t(X, I(\varphi_t)X)$$

Dann ist

$$W := F^{-1}(\mathbb{R}_{>0}) \subset I \times TM$$

offen. Sei weiter g die Metrik der Ausgangsstruktur (ω_0, φ_0) und $T^1 M \subset TM$ das zugehörige Tangentialeinheitsbündel. Da (ω_0, φ_0) bereits positiv sind, gilt

$$\{0\} \times T^1 M \subset W$$

Mit M ist auch T^1M kompakt, und somit existiert ein $\epsilon > 0$, für welches die ganze ϵ -Tube] $-\epsilon, \epsilon[\times T^1M$ in W liegt. Daher gilt für $t \in] -\epsilon, \epsilon[$ und $X \in T^1M$

$$F(t, X) = \omega_t(X, I(\varphi_t)X) > 0$$

A4.11. Identifiziere $T^*M = TM$ bzgl. der Standardmetrik $S^3 \times S^3 \subset \mathbb{R}^8$. Man rechnet zunächst nach, dass für $i \neq j$

$$(\sigma_i \lrcorner \varphi) \land (\sigma_j \land \varphi) = (\Sigma_i \lrcorner \varphi) \land (\Sigma_j \land \varphi) = 0$$
$$(\sigma_i \lrcorner \varphi) \land (\Sigma_j \land \varphi) = (\Sigma_i \lrcorner \varphi) \land (\sigma_j \land \varphi) = 0$$

gilt. Die nicht-verschwindenden Terme sind hingegen durch

$$(\sigma_1 \lrcorner \varphi) \land (\sigma_1 \land \varphi) = (-mn - x_1^2 + x_2^2 + x_3^2) \sigma_{123} \Sigma_{123}$$
$$(\Sigma_1 \lrcorner \varphi) \land (\Sigma_1 \land \varphi) = (mn + x_1^2 - x_2^2 - x_3^2) \sigma_{123} \Sigma_{123}$$
$$(\sigma_1 \lrcorner \varphi) \land (\Sigma_1 \land \varphi) = 2(mx_1 + x_2x_3) \sigma_{123} \Sigma_{123}$$
$$(\Sigma_1 \lrcorner \varphi) \land (\sigma_1 \land \varphi) = 2(-nx_1 - x_2x_3) \sigma_{123} \Sigma_{123}$$

(und entsprechende zyklische Gleichungen) gegeben. Berechnet man $\lambda(\varphi)$ mit der Formel aus A.4, so erhält man die Gleichung aus 4.11. Ebenfalls mit der Formel aus A.4 berechnet man $K(\varphi)$ und erhält damit

$$I(\varphi) = \frac{1}{\epsilon(\varphi)} K(\varphi) = \frac{1}{\sqrt{y_1 y_2 y_3}} K(\varphi)$$

Schließlich ergibt dies

$$\omega(\sigma_1, I(\varphi)\sigma_1) = \frac{1}{y_1}(mx_1 + x_2x_3)$$

$$\omega(\Sigma_1, I(\varphi)\Sigma_1) = \frac{1}{y_1}(nx_1 + x_2x_3)$$

$$\omega(\sigma_1, I(\varphi)\Sigma_1) = \omega(\Sigma_1, I(\varphi)\sigma_1) = \frac{1}{2y_1}(mn + x_1^2 - x_2^2 - x_3^2)$$

sowie die entsprechenden zyklischen Gleichungen. Für $i\neq j$ gilt außerdem

$$\omega(\sigma_i, I(\varphi)\sigma_j) = \omega(\Sigma_i, I(\varphi)\Sigma_j) = \omega(\sigma_i, I(\varphi)\Sigma_j) = \omega(\Sigma_i, I(\varphi)\sigma_j) = 0$$

Dies rechtfertigt die Forderung (4) und die Formel für $g(\psi)$ in 4.11.

A5.6. Siehe A.4.8.

A6.8. Sei $(M, \tilde{g}, \tilde{I}, \tilde{\omega})$ die zugrundeliegende Kähler-Mannigfaltigkeit mit Levi-Civita Zusammenhang ∇ . Weiter sei $\pi_E : E := \Lambda^{(2,0)}T^*M \longrightarrow M$ das kanonische Bündel und $\alpha_0 \in E_{m_0}$ fest gewählt. Da ∇ mit \tilde{I} kommutiert, existieren parallele Vektorfelder

$$s := (X_1, X_2, X_3 = \tilde{I}X_1, X_4 = \tilde{I}X_2),$$

auf M, für welche s einen lokalen Schnitt im $GL(2, \mathbb{C})$ -Bündel $P \subset FM$ definiert. Aufgrund der Parallelität der Vektorfelder ist s horizontal. Definiere weiter einen lokalen Schnitt α in E durch

$$\alpha := \lambda (X_1 - iX_3) \wedge (X_2 - iX_4)$$

Dabei sei $\lambda \in \mathbb{C}$ so gewählt, dass $\alpha(m_0) = \alpha_0$ gilt. Identifiziere außerdem mittels der Metrik $TM \cong T^*M$. Entwickelt man α nach s, so erhält man $\lambda(e^1 - ie^3) \wedge (e^2 - ie^4)$. D.h. es gilt

$$\alpha \cong [s, \lambda(e^1 - ie^3) \land (e^2 - ie^4)] \in \Gamma(P \times_{GL(2,\mathbb{C})} \Lambda^{(2,0)}),$$

weshalb mit s auch α horizontal ist. Definiere weiter eine komplexwertige 2-Form τ auf E durch

$$\forall \alpha \in E : \qquad \tau_{\alpha} := \pi_E^* \alpha$$

Für $i \in \{1, ..., 4\}$ sei X_i^* der horizontale Lift von X_i nach E. Aus der Parallelität der X_i und der Torsionsfreiheit von ∇ folgt, dass die Vektorfelder X_i paarweise verschwindende Lie-Klammern besitzen. Wegen $\pi_{E*}X_i^* = X_i \circ \pi_E$ erhält man daher für $i, j, k \in \{1, ..., 4\}$

$$\pi_{E*}[X_i^*, X_j^*]_{\alpha_0} = [X_i, X_j]_{m_0} = 0$$

und somit

(1)
$$\tau_{\alpha_0}([X_i^*, X_j^*], X_k^*) = \alpha_0(\pi_{E*}[X_i^*, X_j^*], X_k^*) = 0$$

Sei nun c eine Integralkurve von X_i durch $m_0 \in M$. Wegen $\pi_E \circ \alpha \circ c = c$ erhält man

$$\pi_{E*}\alpha_*\dot{c} = \dot{c} = X_i \circ c = \pi_{E*}X_i^* \circ \alpha \circ c$$

Da $\alpha \circ c$ horizontal ist, folgt hieraus $\alpha_* \dot{c} = X_i^* \circ \alpha \circ c$. Damit erhält man

$$X_i^* \cdot \tau(X_j^*, X_k^*) = (t \longmapsto \tau \circ \alpha \circ c(t)(X_j^* \circ \alpha \circ c(t), X_k^* \circ \alpha \circ c(t)))'(0)$$
$$= (t \longmapsto \alpha \circ c(t)(X_j \circ c(t), X_k \circ c(t)))'(0) = 0$$

konstant nach Definition von α

Zusammen mit (1) folgt daher, dass

(2)
$$(d\tau)_{\alpha_0}(X_i^*, X_j^*, X_k^*) = 0$$

gilt. Sei nun η die ursprüngliche 2-Form auf $X = K \times_{\bigtriangleup} P$ und $\pi_{XE} : X \longrightarrow E$ die Projektion $(\alpha, p) \longmapsto \alpha$. Offenbar gilt dann $\eta = \pi^*_{XE} \tau$ und damit

$$d\eta = \pi_{XE}^* d\tau$$

Der horizontale Lift von X_i nach Xsei mit X_i^\star bezeichent. Die Zusammenhangs 1-Form auf X ist durch

$$(\mathcal{Z}_K, \mathcal{Z}_P) = (\pi_{XK}^* \widetilde{\mathcal{Z}}_K, \pi_{XP}^* \widetilde{\mathcal{Z}}_P)$$

gegeben (vgl. die Konstruktion von X in Kapitel 6). Für den Zusammenhang auf $\iota:K\subset E$ gilt

$$\widetilde{\mathcal{Z}}_K = \iota^* \mathcal{Z}_E,$$

wobei \mathcal{Z}_E den Zusammenhang auf E bezeichnet. Damit folgt

$$0 = \mathcal{Z}_K(X_i^\star) = \widetilde{\mathcal{Z}}_K(\pi_{XK*}X_i^\star) = \mathcal{Z}_E(\iota_*\pi_{XK*}X_i^\star) = \mathcal{Z}_E(\pi_{XE*}X_i^\star)$$

Daher ist $\pi_{XE*}X_i^{\star} = X_i^{\star}$ der horizontale Lift von X_i nach E und mit (2) folgt

 $d\eta(X_i^\star, X_j^\star, X_k^\star) = d\tau(\pi_{XE*}X_i^\star, \pi_{XE*}X_j^\star, \pi_{XE*}X_k^\star) = 0$

LITERATUR

[1] I.AGRICOLA, T.FRIEDRICH: Globale Analysis, Vieweg-Verlag, 1.Auflage 2001.

[2] C.BÄR, P.GAUDOCHON, A.MORIANU: Generalized cylinders in semi-Riemannian and spin geometry, Springer-Verlag 2003.

[3] M. CABRERA: SU(3)-structures on hypersurfaces of manifolds with G_2 -structure, 2005, math.DG/0410610.

[4] S.CHIOSSI, S.SALAMON: The intrinsic torsion of SU(3) and G_2 structures, 2002, math.DG/0202282.

[5] M. FERNANDEZ, S.IVANOV, V.MUNOZ, L.UGARTE: Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities, 2006, math.DG/0602160.

[6] T.FRIEDRICH, I.KATH, A.MORIANU, U.SEMMELMANN: On nearly parallel G_2 -structures, 1995.

[7] T.FRIEDRICH: On types of non-integrable geometries, 2002, math.DG/0205149.

[8] E. GOLDSTEIN, S.PROKUSHKIN: Geometric model for complex non-Kähler manifolds with SU(3)-structure, 2004, hep-th/0212307.

[9] N. HITCHIN: The geometry of three-forms in six and seven dimensions, Oxford 2000, math.DG/0010054.

[10] N. HITCHIN: Stable forms and special metrics, Oxford 2001, math.DG/0107101.

[11] S. SALAMON: *Riemannian geometry and holonomy groups*, Pitman Research Notes in Mathematics 201, Longman, 1989.