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Abstract

We consider problems related to two main research directions: on the one
hand, generalized gradients and, on the other hand, a special class of spinors
on Kähler spin manifolds.
We introduce generalized gradients in the general context of G-structures.
They are natural first order differential operators acting on sections of vector
bundles associated to irreducible G-representations. We study their geomet-
ric and analytic properties, in particular we show their conformal invariance
and give a new proof of Branson’s classification of minimal elliptic operators
that are naturally constructed from generalized gradients.
On Kähler spin manifolds, Kählerian twistor spinors are a natural analogue
of twistor spinors on Riemannian spin manifolds. They are defined as sec-
tions in the kernel of a first order differential operator adapted to the Kähler
structure, called Kählerian twistor (Penrose) operator. We study the proper-
ties of Kählerian twistor spinors and give a complete description of compact
simply-connected Kähler spin manifolds of constant scalar curvature carry-
ing such spinors. We show that the existence of Kählerian twistor spinors is
related to the lower bound of the spectrum of the Dirac operator.

Kurzzusammenfassung

Wir betrachten Fragestellungen bezüglich zweier Hauptforschungsrichtungen:
einerseits verallgemeinerte Gradienten und andererseits eine spezielle Klasse
von Spinoren auf Kählerschen Mannigfaltigkeiten.
Wir führen verallgemeinerte Gradienten auf G-Strukturen ein. Diese sind
natürliche Differentialoperatoren erster Ordnung, die auf Schnitten von zu ir-
reduziblen G-Darstellungen assozierten Vektorbündeln wirken. Wir untersu-
chen deren geometrischen und analytischen Eigenschaften, insbesondere zeigen
wir deren konforme Invarianz und geben einen neuen Beweis für Bransons
Klassifikation von minimalen elliptischen Differentialoperatoren, die natürlich
aus verallgemeinerten Gradienten konstruiert werden.
Auf Kählerschen Spin-Mannigfaltigkeiten sind Kählersche Twistorspinoren
ein natürliches Analogon von Twistorspinoren auf Riemannschen Spin-Mannig-
faltigkeiten. Diese sind definiert als Schnitte im Kern eines an die Kählersche
Struktur angepassten Differentialoperators erster Ordnung, des sogenanntes
Kählerschen Twistor (Penrose)-Operators. Wir untersuchen die Eigenschaften
der Kählerschen Twistorspinoren und geben eine vollständige Beschreibung
der kompakten einfach-zusammenhängenden Kählerschen Spin-Mannigfaltig-
keiten mit konstanter Skalarkrümmung, die solche Spinoren zulassen. Wir
zeigen, dass die Existenz von Kählerschen Twistorspinoren in Verbindung
mit der unteren Abschätzung des Spektrums des Dirac-Operators steht.
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Introduction

As the title indicates, in this thesis we are concerned with problems related
to two main research directions: on the one hand, generalized gradients and,
on the other hand, a special class of spinors on Kähler spin manifolds.

In the first part of the thesis we introduce generalized gradients in the general
context of G-structures and study their geometric and analytic properties,
in particular their conformal invariance and ellipticity.

In the second part we consider Kählerian twistor spinors, investigate their
relationship to eigenvalue estimates of the Dirac operator and classify the
compact simply-connected Kähler spin manifolds of constant scalar curvature
carrying such spinors.

The two parts of the thesis are strongly related to each other, since Kählerian
twistor spinors naturally arise as sections in the kernel of an U(n)-generalized
gradient, namely the so-called Kählerian twistor operator. Furthermore, one
of the ingredients used in the classification of Kähler manifolds admitting
such spinors are the Weitzenböck formulas, which are a universal technical
tool involving generalized gradients. However, while the first part may be
situated at the intersection of conformal and Riemannian geometry, repre-
sentation theory and analysis on manifolds, the second one is mainly based
on tools in spectral geometry and foremost in Kähler spin geometry.

In the sequel we first give a brief overview on the general context in which
our problems are naturally placed, then we state the main results of our work
and finally present the structure of the thesis.

A. General Setting

The notion of generalized gradients, also called Stein-Weiss operators, was
first introduced by E. Stein and G. Weiss, [64], on an oriented Riemannian
manifold, as a generalization of the Cauchy-Riemann equations. They are
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first order differential operators acting on sections of vector bundles associa-
ted to irreducible representations of the special orthogonal group (or of the
spin group if the manifold is spin), which are given by the following universal
construction: one projects onto an irreducible subbundle the covariant deriva-
tive induced on the associated vector bundle by the Levi-Civita connection
(or, more generally, by any metric connection).

Some of the most important first order differential operators which naturally
appear in geometry are, up to normalization, particular cases of generalized
gradients. For example, on a Riemannian manifold, the exterior differential
acting on differential forms, its formal adjoint, the codifferential, and the
conformal Killing operator on 1-forms are generalized gradients. On a spin
manifold classical examples of generalized gradients are the Dirac operator,
the twistor (or Penrose) operator and the Rarita-Schwinger operator.

An essential property of generalized gradients is their invariance at confor-
mal changes of the metric. This property was noticed for the first time by
N. Hitchin in 1974, [29], in the case of the Dirac and the twistor operator in
spin geometry and it turned out to have important consequences in physics.
Two years later, H. Fegan, [19], showed that, up to the composition with
a bundle map, the only conformally invariant first order differential opera-
tors between vector bundles associated to the bundle of oriented frames are
the generalized gradients. Further results in this direction were obtained
by Y. Homma, [31], [32], [34], for the conformal invariance of generalized
gradients associated to U(n), Sp(n) and Sp(1) ·Sp(n)-structures. For these
subgroups Homma’s proof of conformal invariance is given by explicit com-
putations based on the relationship between the enveloping algebra of the Lie
algebra of the structure group and the algebraic structure of the principal
symbols of generalized gradients.

On an oriented Riemannian manifold, generalized gradients naturally give
rise, by composition with their formal adjoints, to second order differential
operators acting on sections of associated vector bundles. Particularly im-
portant are the extreme cases of linear combinations of such second order
operators: if the linear combination provides a zero-order operator, then it
is a curvature term and one obtains a so-called Weitzenböck formula; if the
linear combination is a second order differential operator, then it is interest-
ing to determine when it is elliptic.

The importance of Weitzenböck formulas comes from the fact that they relate
the local differential geometry to global topological properties by the so-
called Bochner method, which has many applications in various problems.
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For instance, Weitzenböck formulas are used to prove the vanishing of the
Betti numbers under suitable curvature assumptions, the non-existence of
positive scalar curvature metrics on spin manifolds with non-vanishing Â-
genus or eigenvalue estimates for Laplace and Dirac-type operators. The
general pattern of the Bochner technique is the following: given a solution
of a system of partial differential equations of geometric origin on a compact
manifold, if it is assumed that a strict inequality is imposed on an appropriate
geometric quantity, then the solution must vanish identically. This technique
and its applications have been explained for instance by J.-P. Bourguignon
in the survey [10] or, with more details, by H. Wu in [68].

There have been given two different approaches to a systematic study of all
possible Weitzenböck formulas. In [63], U. Semmelmann and G. Weingart
provide a unified treatment of the construction of Weitzenböck formulas for
the irreducible non-symmetric holonomy groups, by giving on the one hand a
recursion procedure for the construction of a basis of the space of Weitzenböck
formulas and, on the other hand, by characterizing Weitzenböck formulas as
eigenvectors of an explicitly known matrix. Another approach was found by
Y. Homma, who described all Weitzenböck formulas in [33], [32], [31] and [34],
separately for Riemannian, Kähler, hyper-Kähler, respectively quaternionic-
Kähler manifolds. His method is based on the algebraic structure of the
principal symbols, which is determined from their relationship to the univer-
sal enveloping algebra of the corresponding Lie algebra.

The other extreme case is when linear combinations of generalized gradients
composed with their formal adjoints yield elliptic second order differential
operators. The classical example here is the Laplacian acting on differential
forms, which is obtained by assembling two generalized gradients, namely the
exterior differential and the codifferential. All minimal elliptic operators pro-
vided by this construction were classified by Th. Branson, [13], who showed
that it is enough to take surprisingly few generalized gradients in order to
obtain an elliptic operator. It thus turned out that Laplace-type operators
represent the generic case. Namely, apart from a few known exceptions,
each minimal elliptic operator is given by a pair of generalized gradients.
The arguments used by Th. Branson are based on tools and techniques of
harmonic analysis and explicit computations of the spectra of generalized
gradients on the sphere. Partial results regarding the ellipticity of natural
first order operators were previously obtained by J. Kalina, A. Pierzchalski
and P. Walczak, [37], who showed that the only generalized gradient which
is strongly elliptic is given by the projection onto the Cartan summand. Fur-
thermore, the projection onto its complement is also elliptic, by a result of
E. Stein and G. Weiss, [64].
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Closely related to such elliptic operators is the existence of refined Kato
inequalities. This relationship was first remarked by J.-P. Bourguignon, [10].
He pointed out that in all geometric settings where refined Kato inequalities
occurred, the sections under consideration are tensor fields of a certain type
which are solutions of a natural linear first order injectively elliptic system.

Kato inequalities are estimates in Riemannian geometry, which have proven
to be a powerful technique for linking vector-valued and scalar-valued pro-
blems in the analysis on manifolds. The classical Kato inequality may be
stated as follows. For any section ϕ of a Riemannian or Hermitian vector
bundle E endowed with a metric connection ∇ over a Riemannian manifold
(M, g), at any point where ϕ does not vanish, the following inequality holds:

|d|ϕ|| ≤ |∇ϕ|.

In many geometric situations the classical Kato inequality is not sufficient
to obtain the desired results and there have been considered refined Kato
inequalities of the form: |d|ϕ|| ≤ k|∇ϕ|, for a constant k < 1. For example,
such estimates occur in Yau’s proof of the Calabi conjecture or in Bernstein’s
problem for minimal hypersurfaces in Rn. The explicit computation of opti-
mal Kato constants for all natural first order differential operators was given
by D. Calderbank, P. Gauduchon and M. Herzlich, [18]. More precisely, the
formula depends only on the conformal weights, which are real numbers com-
puted from representation theoretical data of the Lie algebra of the structure
group.

A central problem in spectral geometry is to find estimates for the eigenvalues
of the classical elliptic differential operators on compact manifolds. Among
the most important operators are the Laplace and the Yamabe operator
on Riemannian manifolds and the Dirac and the twistor operator on spin
manifolds.

In the sequel we turn our attention to the Dirac operator and its eigen-
value estimates. The Dirac operator is defined as the composition of the
covariant derivative induced on the spinor bundle by the Levi-Civita connec-
tion and the Clifford multiplication. It was first introduced by Dirac on the
Minkowski space using Pauli matrices and in its current form by M.F. Atiyah
and I.M. Singer, [3]. It is an elliptic self-adjoint first order differential ope-
rator who acts on sections of Clifford bundles (in particular on the spinor
bundle, if the manifold is spin). The Dirac operator has found many appli-
cations. For instance, it plays a fundamental role in the index theorems of
Atiyah-Singer, [3], in the classification of manifolds of positive scalar curva-
ture, in non-commutative geometry and Seiberg-Witten theory.
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From the general theory of elliptic operators on compact manifolds it follows
that the spectrum of the Dirac operator is discrete and the multiplicities of
its eigenvalues are finite. When the scalar curvature, S, of the spin mani-
fold is positive, it is possible to obtain a lower bound for the eigenvalues
of the Dirac operator D, or, more precisely, for its square, using the so-
called Lichnerowicz-Schrödinger formula, which is a typical example of a
Weitzenböck formula: D2 = ∇∗∇ + S

4
, where ∇∗∇ is the rough Laplacian

acting on the spinor bundle. Integrating on the compact manifold yields
the inequality: λ2 ≥ 1

4
inf
M
S, for each eigenvalue λ of the Dirac operator.

However, this inequality is not optimal, since the equality case cannot hold
unless S vanishes everywhere.

The first optimal lower bound for the eigenvalues of the Dirac operator was
obtained in 1980 by Th. Friedrich, [20], using the twistor operator introduced
by R. Penrose. He proved that on a compact spin manifold (Mn, g) of positive
scalar curvature S, the first eigenvalue λ of D satisfies the inequality:

λ2 ≥ n

4(n− 1)
inf
M
S,

whose limiting case is characterized by the existence of real Killing spinors
or, equivalently, by constant scalar curvature and the existence of twistor
spinors.

Twistor spinors are defined as sections in the kernel of the twistor operator,
which is an example of a generalized gradient and is given by the projection
of the covariant derivative onto the Cartan summand of the tensor product
T∗M ⊗ ΣM (where T∗M is the cotangent bundle and ΣM is the spinor
bundle). More precisely, a twistor spinor ϕ ∈ Γ(ΣM) is a solution of the
equation:

∇Xϕ = − 1

n
X ·Dϕ,

where the dot denotes the Clifford multiplication. An important special
class of twistor spinors is formed by Killing spinors, which are defined by the
following linear differential equation: ∇Xϕ = αX · ϕ, for some constant α.
They are closely related to the spectrum of the Dirac operator, as remarked
above. Killing spinors also play an important role in physics. They were first
introduced in general relativity as a tool to construct first integrals of the
free geodesic motion and occurred more recently as supersymmetries in 10
and 11-dimensional supergravity theories.

The general geometric description of simply-connected manifolds carrying
Killing spinors was obtained in 1993 by Ch. Bär, [5], using the correspon-
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dence between Killing spinors on M and parallel spinors on the Riemannian
cone over M . He showed that each simply-connected manifold admitting
Killing spinors belongs to one of the following families: spheres (in all dimen-
sions), Sasaki-Einstein manifolds (in odd dimensions), 3-Sasakian manifolds
(in dimensions of the form 4k + 3), manifolds admitting a nearly parallel
G2-structure (in dimension 7), nearly Kähler manifolds (in dimension 6).

There is an important class of manifolds, namely, the Kähler ones, that does
not occur in this list. Indeed, it has already been shown in 1984 by O. Hijazi,
[27], that Kähler spin manifolds do not carry any nontrivial Killing spinors.
Moreover, in 1992 K.-D. Kirchberg, [42], proved that if the scalar curvature is
nonzero, then there do not exist any nontrivial twistor spinors. In particular,
this shows that Friedrich’s inequality is not sharp on Kähler manifolds. In
1986, K.-D. Kirchberg, [40], improved this inequality and found the optimal
one on compact Kähler manifolds. Making use of the Kähler form, he showed
that every eigenvalue λ of the Dirac operator on a compact Kähler manifold
(M2m, g, J) of positive scalar curvature S satisfies the following inequalities:

λ2 ≥


m+1
4m

inf
M
S, if m is odd,

m
4(m−1)

inf
M
S, if m is even.

(0.1)

The limiting manifolds of these inequalities of odd complex dimension are
characterized by the existence of Kählerian Killing spinors, i.e. a pair of
spinors (ϕ, ψ) satisfying the equations:{

∇Xϕ = α(X + iJX) · ψ,
∇Xψ = α(X − iJX) · ϕ,

(0.2)

for all vector fields X, where α is a real constant. Similarly, in even complex
dimension, the equality case in (0.1) is characterized by the existence of
spinors ϕ satisfying the following equations:{

∇Xϕ = − 1
n
(X − iJX) ·Dϕ,

∇X(Dϕ) = −1
4
(Ric(X)− iJRic(X)) · ϕ.

(0.3)

The limiting Kähler manifolds for these inequalities were geometrically des-
cribed by A. Moroianu, [51], [54], in 1994 for odd complex dimension, res-
pectively in 1999 for even complex dimension. He proved that in dimension
8`+2 the only limiting Kähler manifold is CP 4`+1 and in dimension 8`+6 the
limiting manifolds are the twistor spaces over quaternionic Kähler manifolds
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of positive scalar curvature. The proof of A. Moroianu is based on the notion
of projectable spinors, which he introduced in [52]. He considered the S1-
principal bundle UM associated to a maximal square root of the canonical
bundle of M with the metric induced by the connection of the canonical
bundle. He showed that UM naturally admits a spin structure and each
Kählerian Killing spinor on M induces a projectable Killing spinor on UM .

The situation is different in even complex dimension, where the absence of
Kählerian Killing spinors does not allow the use of projectable spinors. It can
be directly checked that the Riemannian product of a flat 2-dimensional torus
and a manifold admitting Kählerian Killing spinors is a limiting manifold of
even complex dimension. In 1990 it was conjectured by A. Lichnerowicz, [48],
that all limiting Kähler manifolds are obtained in this way. A. Moroianu
first showed in [53] that the Ricci tensor of a limiting Kähler manifold Mn of
even complex dimension has two eigenvalues: 0 and 1

n−2
S with multiplicities

2, respectively n − 2. The second step in the proof of the Lichnerowicz
conjecture was established by A. Moroianu in [54] in the framework of Spinc

geometry. An alternative proof was provided later, in 2001, based on a result
of V. Apostolov, T. Drăghici and A. Moroianu, [2], regarding the splitting of
a Kähler manifold whose Ricci tensor has two non-negative eigenvalues.

B. Main Original Results

Our main results in the first part of the thesis are the conformal invariance of
G-generalized gradients and a new proof of Branson’s classification of mini-
mal first order elliptic operators naturally arising from generalized gradients.

We study generalized gradients in the more general context of G-structures,
when there is a reduction of the structure group of the tangent bundle of a
Riemannian manifold (Mn, g) to a closed subgroup G of SO(n). In particular,
we make no assumptions on the holonomy group. Essentially, we consider
G to be one of the groups that arise on interesting geometric structures, i.e.
G is SO(n), U(n

2
), SU(n

2
), Sp(n

4
), Sp(1)·Sp(n

4
), G2 or Spin(7) (where for the

last two groups the dimension of the manifold is n = 7, respectively n = 8).

We show that the construction of classical generalized gradients for the struc-
ture groups SO(n) and Spin(n), introduced by E. Stein and G. Weiss, [64],
can be carried over toG-structures. In order to defineG-generalized gradients
the only condition that has to be fulfilled is to have well-defined projections
from the tensor product of the cotangent bundle and an irreducible associated
G-bundle, T ∗M ⊗ VM (which is the target bundle of any covariant deriva-
tive) onto its irreducible subbundles. This condition is satisfied if and only if

xiii



the decomposition of such a tensor product is multiplicity-free, which is true
due to a technical result in representation theory (see Theorem 1.7). This
result is not new, it follows from more general results in representation the-
ory, known as generalized Clebsch-Gordan theorems, which were proven, for
instance, by J.R. Stembridge in [65]. The statement of Theorem 1.7 appears
also in the paper [63] of U. Semmelmann and G. Weingart. Our contribution
is its direct detailed proof. Essentially, Theorem 1.7 states that for any of the
groups G considered above, if τ the restriction of the standard representation
of SO(n) to G and λ an irreducible G-representation, then the decomposition
of the tensor product τ ⊗ λ = Rn ⊗R λ ∼= Cn ⊗C λ is multiplicity-free and
described as follows:

τ ⊗ λ = ⊕
ε⊂λ

(λ+ ε), (0.4)

where by ε ⊂ λ we denote the relevant weights of λ. Moreover, these relevant
weights are completely described by a certain selection rule (for details see
Theorem 1.7). The decomposition (0.4) carries over to vector bundles as
follows: T ∗M ⊗R VλM = (T ∗M)C ⊗C VλM = ⊕

ε⊂λ
Vλ+εM .

The G-generalized gradients acting on sections of an irreducible associated
vector bundle VλM , are then defined by the composition P∇

λ

ε = Πε ◦ ∇λ,
where ∇λ is the connection induced on VλM by a G-connection ∇ of the
G-structure and Πε is the projection onto the subbundle Vλ+εM .

The main property of G-generalized gradients that we proved is their con-
formal invariance. More precisely, for each G-generalized gradient defined
by the minimal G-connection and denoted by PG,λ

ε , we show that there ex-
ists a weight, called conformal weight, relative to which it is conformally
invariant. These conformal weights turn out to be exactly the eigenvalues of
the symmetric operator Bλ

g , defined by:

Bλ
g : (Rn)∗ ⊗ Vλ → (Rn)∗ ⊗ Vλ, Bλ

g (α⊗ v) =
n∑
i=1

e∗i ⊗ dλ(prg(ei ∧ α))v.

The eigenspaces of B coincide, except for a special case, with the irreducible
components given by the decomposition (0.4). Its corresponding eigenvalues,
denoted by wε, are explicitly computed in terms of the representation theory
of the Lie algebra g of G, according to Fegan’s Lemma, [19].

We summarize the results concerning the conformal invariance of G-gene-
ralized gradients obtained in § 1.2 in the following:

Theorem 0.1. Any G-generalized gradient PG,λ
ε is conformally invariant

relative to the weight wε and this is the only weight with respect to which
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PG,λ
ε is conformally invariant. With respect to two conformally related G-

structures GM and ḠM , for ḡ = e2ug and ḠM ↪→ SOḡM , the conformal

invariance relating the corresponding generalized gradients is expressed in

the following form:

P̄G,λ
ε ◦ φG,Ḡwε = φG,Ḡwε−1 ◦ PG,λ

ε ,

where for any weight w, φG,Ḡw denotes the following isomorphism between the

associated vector bundles V G
λ M := GM ×G V and V Ḡ

λ M := ḠM ×G V :

φG,Ḡw : V G
λ M → V Ḡ

λ M, [(e1, . . . , en), v] 7→ [(e−ue1, . . . , e
−uen), ewuv].

The conformal invariance of G-generalized gradients generalizes the results
obtained by Y. Homma, [31]– [34], for Kählerian, hyper-Kählerian and quater-
nionic-Kählerian generalized gradients. At the same time it provides a uni-
form and direct proof in all these cases, avoiding the specific computa-
tions from the original proofs for each of the subgroups U(n), Sp(n) and
Sp(1) ·Sp(n). Furthermore, Theorem 0.1 motivates the terminology for the
operator B called in literature the conformal weight operator (see [63]).

The proof of Theorem 0.1 is provided in the framework of conformal geometry
and uses Weyl structures. An important role is played by the properties of
the conformal weight operator B, whose eigenvalues are exactly the corres-
ponding conformal weights of the generalized gradients.

The last result in the first part of the thesis is a new proof of Branson’s
classification of natural first order minimal elliptic operators. The original
proof in [13] uses tools of harmonic analysis, which as powerful as they are,
seem to be specific for the structure groups SO(n) and Spin(n). We propose
a different approach, which is mainly based on the representation theory of
the Lie algebra so(n) and on the relationship between ellipticity and Kato
constants, as explained in § 2.2.

The tool used in our proof is on the one hand, the explicit computation of the
optimal Kato constants in terms of representation theoretical data provided
by D. Calderbank, P. Gauduchon and M. Herzlich, [18], and, on the other
hand, the branching rules for the special orthogonal group. The main idea
is that the argument in [18] may be in a certain way reversed: while in [18]
the task is to establish for each natural elliptic operator an explicit formula
for its optimal Kato constant (assuming the Branson’s list of minimal ellip-
tic operators), our goal is to analyze to which extend the computations of
the Kato constants rely on this assumption on the ellipticity and how Bran-
son’s list could be recovered. We mention that there is an exceptional case,
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corresponding to the zero-weight (see Remark 2.29), that is not recovered
by our proof. The arguments suggest that they should carry over to other
subgroups G of SO(n), in order to provide the classification of natural elliptic
operators constructed from G-generalized gradients. However, it is still work
in progress and in this direction we only have partial results, particularly for
the exceptional group G2.

In the second part of the thesis we get into the realm of Kähler spin geometry
and study a special class of spinors, the so-called Kählerian twistor spinors.
Our motivation is two-fold, on the one hand we are looking for an analogue of
the notion of twistor spinors on Kähler manifolds and on the other, we want to
describe the limiting manifolds of Kirchberg’s refined inequality for the small-
est eigenvalue of the square of the Dirac operator restricted to an irreducible
subbundle of the spinor bundle. It turns out that these two problems are
related to each other and the main result is the geometric description of these
limiting manifolds or, equivalently, of compact simply-connected Kähler spin
manifolds of constant scalar curvature carrying nontrivial Kählerian twistor
spinors. Along the way we prove other intermediary results which are of in-
terest in their own, for instance the description of Kählerian twistor spinors
on Kähler-Einstein manifolds and on Kähler products.

As mentioned above, K.-D. Kirchberg proved in [42] that a Kähler manifold
does not admit any nontrivial twistor spinors, unless its scalar curvature is
zero. It is thus natural to ask for an analogue class of spinors on Kähler
manifolds, defined by a twistorial equation adapted to the Kähler structure.
These spinors are called Kählerian twistor spinors and are defined in the fol-
lowing way. On a Kähler spin manifold (M2m, g, J), the spinor bundle ΣM
splits into U(m)-irreducible subbundles: ΣM = ⊕mr=0ΣrM , where ΣrM is the
eigenbundle of the Clifford multiplication with the Kähler form for the eigen-
value i(2r −m). For each 0 ≤ r ≤ m, there is defined a Kählerian twistor
operator by the projection of the covariant derivative onto the Cartan sum-
mand of the tensor product T∗M ⊗ ΣrM . The sections in the kernel of this
first order differential operator are the Kählerian twistor spinors. Explicitly,
they satisfy the equations:{

∇X+ϕ = − 1
2(m−r+1)

X+ ·D−ϕ,
∇X−ϕ = − 1

2(r+1)
X− ·D+ϕ,

(0.5)

where X± denote the projections of X onto T 1,0M , respectively T 0,1M , the
(±i)-eigenbundles of J , and D± are defined by D± =

∑2m
i=1 e

±
i · ∇e∓i

. A
slightly different notion of “Kählerian twistor spinors” has been introduced
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by K.-D. Kirchberg, [41], and O. Hijazi, [28]. These form a special class of
Kählerian twistor spinors (defined more naturally as sections in the kernel
of the Kählerian twistor operator), which we call special Kählerian twistor
spinors and are characterized by a further condition, namely to be in the
kernel of D− or D+.

As in the Riemannian case, Kählerian twistor spinors are closely related to
the spectrum of the Dirac operator. We note that the spinors characterizing
the limiting manifolds of Kirchberg’s inequalities, i.e. those satisfying the
equations (0.2), respectively (0.3), are in particular Kählerian twistor spinors
in Σm±1

2
M , respectively Σm

2
±1M . It is thus natural to study Kählerian twistor

spinors also as a generalization of these two important special cases.

Considering the splitting of the spinor bundle into irreducible subbundles,
there exists a refinement of Kirchberg’s inequality (0.1). Namely, the first
eigenvalue, λ2, of the square of the Dirac operator restricted to ΣrM on a
compact Kähler manifold (M2m, g, J) of positive scalar curvature S satisfies
the following inequality for 0 ≤ r ≤ m

2
(for m

2
< r ≤ m there is a similar one):

λ2 ≥ r + 1

2(2r + 1)
inf
M
S.

The limiting manifolds are characterized by constant scalar curvature and
the existence of nontrivial Kählerian twistor spinors in ΣrM . We obtained
their geometric description as follows (see Theorem 5.15).

Theorem 0.2. Let (M2m, g, J) be a compact simply-connected spin Kähler

manifold of constant scalar curvature admitting nontrivial Kählerian twistor

spinors in ΣrM for an r with 0 < r < m. Then M is the product of

a Ricci-flat manifold M1 and an irreducible Kähler-Einstein manifold M2,

which must be one of the limiting manifolds of Kirchberg’s inequality (0.1)

in odd complex dimensions. More precisely, there exist left (right) Kählerian

twistor spinors in at most one such ΣrM with r < m
2

(r > m
2

) and they are

of the form:

ψ = ξ0 ⊗ ϕr (ψ = ξ2r−m−1 ⊗ ϕm−r+1),

where ξ0 ∈ Γ(Σ0M1) (ξ2r−m−1 ∈ Γ(Σ2r−m−1M1)) is a parallel spinor and

ϕr ∈ Γ(ΣrM2) (ϕm−r+1 ∈ Γ(Σm−r+1M2)) is a left (right) Kählerian twistor

spinor. In particular, the complex dimension of the Kähler-Einstein manifold

M2 is 2r + 1 (resp. 2(m− r) + 1).

In particular, for r = m
2
±1, the complex dimension of the Ricci-flat factor is 1
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and we reobtain the limiting manifolds of Kirchberg’s inequalities for even
complex dimension. Thus, this result may be considered as a generalization
of A. Moroianu’s description of limiting Kähler manifolds in even complex
dimension. However, we use his classification in the odd-dimensional case. In
particular, Theorem 0.2 answers a question raised by K.-D. Kirchberg in [41]
and, in a certain sense, completes the picture in the Kähler case.

The proof of Theorem 0.2 is done in more steps, which we briefly present here.
Firstly we construct a connection, called Kählerian twistor connection, such
that Kählerian twistor spinors are in one-to-one correspondence to parallel
sections of this connection. The explicit computation of the curvature of the
Kählerian twistor connection allows us to derive some useful formulas, that
represent the starting point for the main arguments. We then show that on
a compact Kähler spin manifold of constant scalar curvature all Kählerian
twistor spinors are special Kählerian twistor spinors. The key point in the
proof is that the existence of such a nontrivial spinor imposes strong re-
strictions on the Ricci tensor, namely it only has two constant non-negative
eigenvalues. This has been proven by A. Moroianu, [53], in the special case
of limiting manifolds of Kirchberg’s inequality for even complex dimension
and we notice that his method works for any bundle ΣrM . By a result of
V. Apostolov, T. Drăghici and A. Moroianu, [2], it follows that the Ricci ten-
sor must be parallel. Thus, assuming the manifold to be simply-connected,
it must split, by de Rham’s decomposition theorem, in a product of irre-
ducible Kähler-Einstein manifolds. Analyzing Kählerian twistor spinors on a
product (see Theorem 5.12), it turns out that one of the factors is Ricci-flat
and the other is Kähler-Einstein admitting itself special Kählerian twistor
spinors. The problem is thus reduced to the study of Kähler-Einstein mani-
folds, where we show that the only nontrivial non-extremal Kählerian twistor
spinors are the Kählerian Killing spinors (see Proposition 5.8).

Furthermore, we consider a larger class of manifolds, the weakly Bochner flat
manifolds, and show that the existence of Kählerian twistor spinors already
implies constancy of the scalar curvature. It remains an open question for
further research whether this implication holds for other interesting classes of
manifolds, for instance for the extremal Kähler ones or even for any Kähler
manifold.
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C. Outline of the Thesis

In the sequel we briefly present the organization of the thesis.

In Chapter 1 we first describe the classical generalized gradients of the spe-
cial orthogonal group SO(n) on a Riemannian manifold and of Spin(n) on a
spin manifold. Then we introduce the generalized gradients associated to a
G-structure for a closed subgroup G of SO(n). For this, we prove a techni-
cal representation-theoretical result concerning the multiplicity-free decom-
position of the tensor product of an irreducible G-representation with the
restriction to G of the standard SO(n)-representation. We use Weyl struc-
tures to show that the generalized gradients of a G-structure defined by the
minimal G-connection are conformally invariant. In the last section, § 1.3,
we explain how generalized gradients naturally give rise to second order dif-
ferential operators, whose linear combinations yield two interesting extreme
cases: Weitzenböck formulas and second order elliptic differential operators.
For the study of Weitzenböck formulas we give a brief overview on the two
systematic approaches provided by U. Semmelmann and G. Weingart, [63],
and by Y. Homma, [33]. The second order elliptic differential operators are
separately discussed in Chapter 2.

In Chapter 2 we first present the general setting and state in Theorems 2.12
and 2.13 Branson’s classification of minimal first order elliptic operators that
naturally arise from generalized gradients. Then we turn our attention to
Kato inequalities and their relationship to ellipticity. In § 2.2 we present the
main steps for the explicit computation of optimal Kato constants in terms
of representation theoretical data, which was obtained by D. Calderbank,
P. Gauduchon and M. Herzlich, [18]. In § 2.3 we give a new proof of Branson’s
classification result. Our approach uses on the one hand the observation that
certain arguments used by D. Calderbank, P. Gauduchon and M. Herzlich
in the computation of the Kato constant may be reversed and, on the other
hand, the branching rules for the special orthogonal group.

Chapter 3 is mainly a short introduction in spin geometry on Kähler mani-
folds, where we introduce the notations and some results needed in Chapters 4
and 5.

In Chapter 4 we first define the main objects, the Kählerian twistor spinors,
and study some particular cases. In § 4.3 we construct a connection called
Kählerian twistor connection, such that Kählerian twistor spinors are in one-
to-one correspondence to parallel sections of this connection. Furthermore,
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in § 4.4, we explicitly compute the curvature of the Kählerian twistor con-
nection, which allows us to derive some useful formulas, that represent the
starting point for the main arguments.

Chapter 5. First we show in § 5.1 that, on a compact Kähler spin mani-
fold of constant scalar curvature, all Kählerian twistor spinors are special
Kählerian twistor spinors. Then, in § 5.2, we prove the key fact that the
existence of such a nontrivial spinor imposes strong restrictions on the Ricci
tensor, namely it only has two constant eigenvalues. We conclude by a result
of V. Apostolov, T. Drăghici and A. Moroianu, [2], that the Ricci tensor must
be parallel. Thus, assuming the manifold simply-connected, it must be, by
de Rham’s decomposition theorem, a product of irreducible Kähler-Einstein
manifolds. In § 5.4, analyzing Kählerian twistor spinors on a product, it turns
out that one of the factors is Ricci-flat and the other is Kähler-Einstein ad-
mitting itself special Kählerian twistor spinors (see Theorem 5.12). Turning
our attention in § 5.3 to Kähler-Einstein manifolds, we show that the only
nontrivial non-extremal Kählerian twistor spinors are the Kählerian Killing
spinors. The main result giving the geometric description of compact simply-
connected Kähler manifolds of constant scalar curvature admitting Kählerian
twistor spinors is then provided in § 5.5 by Theorem 5.15. In the last section,
§ 5.6, we show that on the larger class of weakly Bochner flat manifolds the
existence of Kählerian twistor spinors already implies the constancy of the
scalar curvature.

In Appendix A. we collect some formulas of spin geometry, that we use in
the computations, particularly in §§ 4.3 and 4.4.

For the reader’s convenience we have compiled both an index of notational
conventions and an index of terms.

All manifolds and geometric objects on them are supposed to be differentiable
of class C∞. Throughout this work we use the summation convention: unless
otherwise indicated, summation is implied whenever repeated indices occur
in an expression.

xx



Part I

Generalized Gradients of

G-Structures
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Chapter 1

Natural Differential Operators

of G-structures

The concept of G-structure provides a unified manner to treat most of the
interesting geometric structures. In the sequel we study natural differen-
tial operators associated to G-structures. Firstly we consider generalized
gradients of a G-structure and prove their conformal invariance. Then we
explain how generalized gradients naturally give rise to second order differen-
tial operators, whose linear combinations yield two interesting extreme cases:
Weitzenböck formulas and second order elliptic differential operators, which
we separately discuss in more detail in § 1.3 and in Chapter 2, respectively.

1.1 Generalized Gradients

Some of the most important first order differential operators which naturally
appear in geometry are, up to normalization, particular cases of generalized
gradients. For example, on a Riemannian manifold, the exterior differen-
tial acting on differential forms, its formal adjoint, the codifferential, the
conformal Killing operator on 1-forms are generalized gradients. On a spin
manifold, classical examples of generalized gradients are the Dirac operator,
the twistor (or Penrose) operator and the Rarita-Schwinger operator.

The notion of generalized gradients, also called Stein-Weiss operators, was
first introduced by E. Stein and G. Weiss, [64], on an oriented Rieman-
nian manifold, i.e. for the structure group SO(n), as a generalization of the

3



4 1. NATURAL DIFFERENTIAL OPERATORS OF G-STRUCTURES

Cauchy-Riemann equations. They give a general construction of first order
differential operators that we recall in the sequel. We then show how this
construction can be carried over to G-structures.

1.1.1 SO(n) and Spin(n)-generalized gradients

Let us first state the general context and fix the notation. We begin by
briefly recalling the representation theoretical background needed to define
the generalized gradients. The description of the representations of SO(n),
or its Lie algebra so(n), differs slightly according to the parity of n. We
write n = 2m if n is even and n = 2m + 1 if n is odd, where m is then the
rank of so(n). Let {e1, . . . , en} be a fixed oriented orthonormal basis of Rn,
so that {ei ∧ ej}i<j is a basis of the Lie algebra so(n) ∼= Λ2Rn. We also fix
a h of so(n) by the basis {e1 ∧ e2, . . . , e2m−1 ∧ e2m} and denote the dual
basis of h∗ by {ε1, . . . , εm}. The is then normalized such that this basis is
orthonormal. Roots and weights are given by their coordinates with respect
to the orthonormal basis {εi}i=1,m. Thus, irreducible so(n)-representations
are parametrized by dominant weights , i.e. the weights λ whose coordinates
are either all integers or all half-integers, (λ1, . . . , λm) ∈ Zm∪(1

2
+Z)m, which

satisfy one of the inequality:

λ1 ≥ λ2 ≥ · · ·λm−1 ≥ |λm|, if n = 2m, or

λ1 ≥ λ2 ≥ · · ·λm−1 ≥ λm ≥ 0, if n = 2m+ 1.
(1.1)

Through this parametrization a dominant weight λ is the highest weight of
the corresponding representation. The representations of so(n) are in one-
to-one correspondence with the representations of the corresponding simply-
connected Lie group, i.e. Spin(n), the universal covering of SO(n). The
representations which factor through SO(n) are exactly those with λ ∈ Zm.
With a slight abuse of notation we use the same symbol for an irreducible
representation and its highest weight. Thus, an irreducible representation of
so(n) will be identified with its highest weight λ ∈ h∗ or, alternatively, will
be denoted by Vλ. For example, in this notation, the standard representation
denoted by τ is given by the weight (1, 0, . . . , 0); the weight (1, . . . , 1, 0, . . . , 0)
(with p ones) corresponds to the p-form representation ΛpRn, whereas the
dominant weights λ = (1, . . . , 1,±1), for n = 2m, correspond to selfdual,
respectively antiselfdual m-forms; the representation of totally symmetric
traceless tensors Sp0Rn has highest weight (p, 0, . . . , 0).

In order to have this one-to-one correspondence between finite dimensional
irreducible representations and highest weights, it is necessary to consider
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only complex representations. Since we want the standard representation
τ to model the tangent bundle of a manifold, it is natural to consider the
real standard representation Rn. On the other hand, it is useful in many
arguments to have this parametrization given by the highest weight and
thus, to consider τ to be the complex representation Cn. In a certain sense,
we may use both representations alternatively, because the only place where
this problem comes up is in the decomposition of a tensor product of the
form τ ⊗ λ, where λ is any complex irreducible representation and in which
case the following isomorphism holds: Rn⊗RVλ ∼= Cn⊗CVλ. Thus, from now
on, τ will denote either the real or the complex standard representation, as
needed in the context.

The following so-called classical selection rule describes the decomposition
of the tensor product τ ⊗λ into irreducible so(n)-representations, where τ is
the standard representation and λ is any irreducible representation.

Lemma 1.1. An irreducible representation of weight µ occurs in the decom-

position of τ ⊗ λ if and only if the following two conditions are fulfilled:

(i) µ = λ± εj, for some j, or n = 2m+ 1, λm > 0 and µ = λ,

(ii) µ is a dominant weight, i.e. satisfies the inequality (1.1).

A proof of this selection rule follows from Theorem 1.7, where we consider
more generally G-representations, for subgroups G of SO(n). We adopt the
same terminology as in [18] and [63] and call the weights satisfying (i) virtual
weights associated to λ and effective weights if they also satisfy (ii); the
weights ε of the standard representation τ , ε ∈ {0,±ε1, . . . ,±εm}, with the
property that µε := λ+ε occurs in the decomposition of τ⊗λ, are also called
relevant weights . We write ε ⊂ λ for a relevant weight for a given irreducible
representation λ, so that the decomposition of the tensor product may be
expressed as follows:

τ ⊗ λ = ⊕
ε⊂λ

µε. (1.2)

The essential property of the decomposition (1.2) is that it is multiplicity-
free, i.e. the isotypical components are actually irreducible (this is a special
case of Theorem 1.7, to which we refer for the proof). It thus follows that
the projections onto each irreducible summand µε in the splitting are well-
defined; we denote them by Πε.

Let (M, g) be a Riemannian manifold, SOgM the principal SO(n)-bundle of
oriented orthonormal frames and ∇ any metric connection, considered either
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as a connection 1-form on SOgM or as a covariant derivative on the tangent
bundle TM .

The tool for transferring representation theory on manifolds is the con-
struction of associated vector bundles. We recall that, in general, to any
G-principal bundle GM on M and any representation V of the group G,
ρ : G → Aut(V ), there is an associated vector bundle VM on M defined by
VM := GM ×G V := (GM × V )/ρ, where the quotient is given with respect
to the following right action of the group G:

(p, v) · g = (p · g, ρ(g−1)v), for all p ∈ GM, g ∈ G, v ∈ V.

In our case we consider vector bundles associated to SOgM and irreducible
SO(n)-representations of highest weight λ and denote them by VλM . For
instance, the tangent bundle is associated to the standard representation
τ : SO(n) ↪→ GL(Rn) and the bundle of p-forms is associated to the irre-
ducible representation of highest weight λ = (1, . . . , 1︸ ︷︷ ︸

p

, 0, . . . , 0). We identify

the cotangent bundle T∗M and the tangent bundle TM using the metric g,
since they are associated to equivalent SO(n)-representations. The decom-
position (1.2) carries over to the associated vector bundles:

T∗M ⊗ VλM ∼= TM ⊗ VλM ∼= ⊕
ε⊂λ

VµεM (1.3)

and the corresponding projections are also denoted by Πε.

A metric connection ∇ on SOgM induces a connection on any associated
bundle VλM denoted by ∇λ : Γ(VλM) → Γ(T∗M ⊗ VλM). The generalized
gradients are then built-up by projecting the induced covariant derivative
onto the irreducible subbundles VµεM given by the splitting (1.3).

Definition 1.2. Let (M, g) be a Riemannian manifold, ∇ a metric con-

nection and VλM the vector bundle associated to the irreducible SO(n)-

representation of highest weight λ. For each relevant weight ε of λ, i.e. for

each irreducible component in the decomposition of T∗M ⊗ VλM , there is a

generalized gradient P∇
λ

ε defined by the composition:

Γ(VλM)
∇λ−→ Γ(TM ⊗ VλM)

Πε−→ Γ(Vλ+εM). (1.4)

The classical case is when ∇ is the Levi-Civita connection. However, any
metric connection may be used to define the generalized gradients. Those
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defined by the Levi-Civita connection play an important role since they are
conformal invariant, as we show in § 1.2.

Example 1.3. We consider the bundle of p-forms, ΛpM , on a Riemannian

manifold (Mn, g) and assume for simplicity that n = 2m+ 1 and p ≤ m− 1.

The highest weight of the representation is λp = (1, . . . , 1, 0, . . . , 0) and,

from the selection rule in Lemma 1.1, it follows that there are three relevant

weights for λp, namely−εp, εp+1 and ε1. The tensor product then decomposes

as follows:

TM ⊗ ΛpM ∼= Λp−1M ⊕ Λp+1M ⊕ Λp,1M,

where the last irreducible component is the Cartan summand corresponding

to the highest weight equal to the sum of the highest weights of the factors

of the tensor product, i.e. to λp + ε1. The generalized gradients in this case

are, up to a constant factor, the following: the codifferential, δ, the exterior

derivative, d, respectively the so-called twistor operator , T .

If M has, in addition, a spin structure, then the classes of bundles and
generalized gradients are enriched. More precisely, as mentioned above,
the irreducible Spin(n)-representations, and thus the irreducible associated
Spin(n)-bundles, correspond exactly to the irreducible so(n)-representations,
so that they are parametrized by all the dominant weights λ = (λ1, . . . , λm),
λ ∈ Zm ∪ (1

2
+ Z)m satisfying the inequalities (1.1). The irreducible repre-

sentations of Spin(n) with λ ∈ (1
2

+ Z)m are exactly those that do not factor
through SO(n).

Let us recall here the definition of a spin structure, which will also be needed
in Part II.

Definition 1.4. Let (M, g) be an oriented Riemannian manifold and SOgM

its bundle of orthonormal frames. The manifold M is called spin if there

exists a 2-fold covering SpingM of SOgM with projection θ :SpingM→SOgM ,

satisfying the following conditions:

1. SpingM is a principal bundle over M with structure group Spin(n),

2. If we denote by φ the canonical projection of Spin(n) onto SO(n), then

for every u ∈ SpingM and a ∈ Spin(n) we have θ(ua) = θ(u)φ(a), i.e.

the following diagram commutes:
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Spin(n) a7→ua //

φ

��

SpingM

θ

��

$$HHHHHHHHH

M

SO(n)
A 7→θ(u)A

// SOgM

::vvvvvvvvv

The bundle SpingM is called a spin structure.

An oriented Riemannian manifold M is spin if and only if its second Stiefel-
Whitney class, w2(M), vanishes.

The n-dimensional Clifford algebra Cl(n) has, up to equivalence, exactly one
irreducible complex representation Σn for n even and two irreducible complex
representations Σ±n for n odd. In the last case, these two irreducible represen-
tations become equivalent when restricted to Spin(n) and this restriction is
also denoted by Σn. For n even, the restriction to Spin(n) splits with respect
to the action of the volume element: Σn = Σ+

n ⊕Σ−n and the elements of Σ+
n

and Σ−n are usually called positive, respectively negative half-spinors . In the
parametrization given by the dominant weights we have: Σ2m+1 has highest
weight (1

2
, . . . , 1

2
) and Σ±2m has highest weight (1

2
, . . . , 1

2
,±1

2
). For arbitrary

n, Σn is called the complex spin representation and it defines a complex vec-
tor bundle associated to the spin structure, called the complex spinor bundle
and denoted by ΣM . The sections of the spinor bundle ΣM are called spinor
fields or, shortly, spinors.

On a Riemannian spin manifold (M, g), the Spin(n)-generalized gradients
P∇

λ

ε are similarly defined by the composition:

Γ(VλM)
∇λ−→ Γ(TM ⊗ VλM)

Πε−→ Γ(Vλ+εM). (1.5)

The only difference to (1.4) is that now λ is an irreducible Spin(n)-representa-
tion, ∇ a connection on the principal bundle SpingM and ∇λ the induced
connection on the associated bundle VλM . A special case is when ∇ is the
connection canonically induced on SpingM by the Levi-Civita connection
and is then denoted by ∇g. This connection is used to define the generalized
gradients in the following two examples.

Example 1.5. The spinor representation ρn : Spin(n) → Aut(Σn), with n

odd, is irreducible and the tensor product bundle splits into two irreducible
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subbundles as follows:

TM ⊗ ΣM ∼= ΣM ⊕ ker(c),

where c : TM × ΣM → ΣM denotes the Clifford multiplication of a vector

field with a spinor. Thus, in this case, there are two generalized gradients:

the Dirac operator D, which is locally explicitly given by the formula:

Dϕ =
n∑
i=1

ei · ∇eiϕ, for all ϕ ∈ Γ(ΣM),

where {ei}i=1,n is a local orthonormal basis and the middle dot is a simplified

notation for the Clifford multiplication, and the twistor (Penrose) operator T :

TXϕ = ∇Xϕ+
1

n
X ·Dϕ.

For n even, the spinor representation is not irreducible, so that the spinor

bundle splits into two subbundles: ΣM = Σ+M ⊕Σ−M . The decomposition

of the tensor product is then given by:

T∗M ⊗ Σ±M = Σ∓M ⊕ ker(c).

Again the projections onto the first summand correspond to the Dirac opera-

tor and onto ker(c) to the twistor operator.

Example 1.6 (Rarita-Schwinger Operator). Let n ≥ 3 be odd and consider

the so-called twistor bundle, i.e. the target bundle of the twistor operator

acting on spinors, denoted by Σ3/2M . This is the vector bundle associated to

the irreducible Spin(n)-representation with highest weight (3
2
, 1

2
, · · · , 1

2
). If

n ≥ 5, it follows from the selection rule in Lemma 1.1 that there are four rele-

vant weights: 0, −ε1, +ε1, +ε2 and the corresponding four gradient targets

are: Σ3/2M itself, the spinor bundle ΣM , the associated vector bundles to the

irreducible representations of highest weights (5
2
, 1

2
, . . . , 1

2
) and (3

2
, 3

2
, 1

2
, . . . , 1

2
),

respectively. If n = 3 the last of these targets is missing.

The corresponding generalized gradient for the representation λ = (3
2
, 1

2
, . . . , 1

2
)

and the relevant weight ε = 0 is denoted by D3/2 := P
(3/2,1/2,...,1/2)
0 . This

operator is well-known especially in the physics literature and is called the

Rarita-Schwinger operator.
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If n is even, n = 2m, then the two bundles defined by the Cartan summand

in T∗M ⊗Σ±M have highest weights (3
2
, 1

2
, . . . , 1

2
,±1

2
) and the corresponding

Rarita-Schwinger operators are the generalized gradients denoted by:

D±3/2 = P
(3/2,1/2,...,1/1,±1/2)
∓εm , D±3/2 : Γ(Σ±3/2M)→ Γ(Σ∓3/2M).

Another possible realization of the Rarita-Schwinger operator is as the pro-

jection of the twisted Dirac operator DT on Σ3/2M (see e.g. [66] for a detailed

description):

Γ(Σ3/2M) ↪→ Γ(TM ⊗ ΣM) ∇−→ Γ(T∗M ⊗ TM ⊗ ΣM) c⊗1−−→ Γ(TM ⊗ ΣM)→ Γ(Σ3/2M).

1.1.2 Generalized gradients of G-structures

Essentially the same construction as above may be used to define generalized
gradients associated to a G-structure. On a differentiable manifold M of
dimension n we denote by GLnM the bundle of linear frames over M . If G
is a Lie subgroup of GL(n,R), then a G-structure on M is a differentiable
subbundle of GLnM with structure group G. The existence of a G-structure
on a manifold is a topological condition. For example, an oriented Rie-
mannian metric is equivalent to an SO(n)-structure, an almost Hermitian
structure to a U(n

2
)-structure, a conformal class of Riemannian metrics to a

CO(n)-structure. In order to construct geometric first order differential op-
erators of a G-structure, the natural starting point is, as in the SO(n)-case,
a connection on the principal G-bundle. It will be considered alternatively
either as a connection 1-form with values in g, the Lie algebra of G, or as
a G-equivariant horizontal distribution H. In general, a connection ∇ on
a principal G-bundle GM induces a connection on any vector bundle VM
associated to a representation ρ : G→ Aut(V ). One possible way to describe
the induced connection ∇ρ is to give its horizontal distribution, which is the
projection onto GM of the G-equivariant horizontal distribution H:

H[p,v] := dpr(p,v)(Hp ⊕ 0), pr : GM × V → (GM × V )/ρ.

As we are mainly interested in Riemannian geometry, we will consider in
the sequel G to be one of the subgroups of SO(n) which arise in important
geometric situations and are mostly encountered in literature. These groups
are exactly the ones in Berger’s list of holonomy groups. Thus, in the sequel,



1.1. GENERALIZED GRADIENTS 11

we assume that

G ∈
{

SO(n),U
(n

2

)
, SU

(n
2

)
, Sp
(n

4

)
, Sp(1)·Sp

(n
4

)
, G2, Spin(7)

}
, (1.6)

where in the last two cases the dimension of the manifold is assumed to
be 7, respectively 8. We notice that all the groups in (1.6) are compact.
Moreover, their Lie algebras are simple, except for u(n

2
) = iR⊕ su(n

2
), which

has a 1-dimensional center and sp(1)⊕ sp(n
4
), which is semisimple.

Every finite-dimensional representation of a compact Lie group G is equiva-
lent to a unitary one, so that it can be decomposed as a direct sum of
irreducible representations. Thus, without loss of generality, we consider in
the sequel complex finite-dimensional irreducible representations of G, which
are parametrized by the dominant weights. In Table 1.1 we wrote down the
suitable positivity conditions that define the dominant weights for each group
in the list (1.6). The coordinates of the weights are given with respect to a
chosen basis of the dual of a Cartan subalgebra of the Lie algebra g.

The general setting is now the following: there exists a G-structure on M
and a G-connection ∇, i.e. a connection whose holonomy group is a subset
of G, Hol(∇) ⊆ G, and for any finite-dimensional complex irreducible G-
representation of highest weight λ, VλM denotes, as usual, the associated
vector bundle.

We consider the restriction of the standard representation of the special
orthogonal group, τ : SO(n) ↪→ GL(n,R), to the subgroup G and denote
it further by τ . This restriction is the defining representation of the sub-
group G and the associated vector bundle is just the tangent bundle TM .
The tangent and the cotangent bundle, TM and T∗M , will be identified,
since they are associated to equivalent G-representations, as G ⊂ SO(n).
The real G-representation τ is irreducible, because the groups in (1.6) are
holonomy groups, which are known to act transitively on the unit sphere in
Rn. The restriction to G of the standard complex representation, which we
still denote by τ , remains an irreducible representation, except for the uni-
tary and special unitary group. For these groups the complexified tangent
bundle splits into two irreducible subbundles:

TCM = T 1,0M ⊕ T 0,1M, (1.7)

which represent the (±i)-eigenspaces of the corresponding almost complex
structure of the manifold.
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The main ingredient needed to define the notion of G-generalized gradient is
the following representation theoretical result (see also [63] for the statement
of Theorem 1.7, which we prove here with all the details).

Theorem 1.7. Let G be one of the groups in (1.6), τ the restriction of the

standard representation to G and λ an irreducible G-representation. The

decomposition of the tensor product τ ⊗ λ = Rn ⊗R λ ∼= Cn ⊗C λ is described

as follows:

τ ⊗ λ = ⊕
ε⊂λ

(λ+ ε), (1.8)

where by ε ⊂ λ we denote the relevant weights of λ. Moreover, the relevant

weights are described by the following selection rule: a weight ε of τ is relevant

for λ if and only if λ+ε is a dominant weight, with the exception of the weight

ε = 0, which occurs only for the groups G2 and SO(n) with n odd. For ε = 0

a stronger condition must be fulfilled, namely: λ−λτ , respectively λ−λΣ are

dominant weights, where λτ and λΣ are the highest weight of the standard

representation of g2, respectively of the spinor representation of so(n). The

decomposition (1.8) carries over to vector bundles and we get:

T∗M ⊗R VλM = (T∗M)C ⊗C VλM = ⊕
ε⊂λ

Vλ+εM. (1.9)

Proof: The decomposition (1.8) is a special case of an important result in
representation theory, sometimes called the general Clebsch-Gordan theorem,
which provides formulas for the multiplicities of the irreducible components
of the tensor product of two irreducible representations of a semisimple Lie
algebra. More precisely, if g is a complex semisimple Lie algebra, an ordering
of the roots is chosen and W+ denotes the corresponding set of dominant
weights of g, then the decomposition of the tensor product of any pair of
irreducible representations, µ and λ with µ, λ ∈ W+, has the form:

µ⊗ λ = ⊕
ν∈W+

c(ν;µ, λ)ν, (1.10)

where the coefficients c(ν;λ, ν) are the tensor product multiplicities giving the
number of times the irreducible representation ν occurs as a summand in the
decomposition. The tensor product is called multiplicity-free if c(ν;µ, λ) ≤ 1,
for all ν. Multiplicity-free tensor products are important because their de-
compositions are canonical and therefore the projections onto the irreducible
components are well-defined.

There are different methods to compute the multiplicities c(ν;µ, λ), most of
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them being based on Weyl’s character formula or, equivalently, on Kostant’s
formula for the multiplicity of a weight. For instance, the more particular
question on which tensor products of simple Lie algebras are multiplicity-free
has been completely answered. The pairs of fundamental weights ω1, ω2 such
that the tensor product m1ω1 ⊗m2ω2 is multiplicity-free for all m1,m2 ≥ 0
are classified by P. Littelmann, [50], and, more generally, the multiplicity-
free tensor products of simple Lie algebras have been completely classified by
J. R. Stembridge, [65], and independently, for the exceptional Lie algebras,
by R. King and B. Wybourne, [39]. From their classification it follows in
particular that the decomposition of τ ⊗λ is multiplicity-free. However, this
tensor product is a very special case, because τ is the standard representation.
We provide here a direct proof, also based on Weyl’s character formula, of
the fact that the splitting (1.8) is multiplicity-free, since this is the main
property that enables us to define G-generalized gradients. Moreover, the
argument yields the stated characterization of the relevant weights.

First we need to make a short digression to the representation theory of
semisimple Lie algebras. Let g be a semisimple Lie algebra of rank r and h a
Cartan subalgebra. Choose an ordering of the roots and denote by ω1, . . . , ωr
the fundamental weights of g, which span the Weyl chamber denoted by WC:

WC = {α1ω1 + · · ·+ αrωr|α1, . . . , αr ≥ 0}. (1.11)

Then, the dominant weights are, by definition, the weights in this Weyl
chamber. The so-called Weyl vector , δ, is defined to be half the sum of the
positive roots, or equivalently, the sum of the fundamental weights, so that
it lies in the interior of the Weyl chamber. The strict Weyl chamber SWC
is the translation of WC with δ:

SWC = WC + δ = {α1ω1 + · · ·+ αrωr|α1, . . . , αr ≥ 1}. (1.12)

The group W generated by reflections through the hyperplanes orthogonal
to the roots is called the Weyl group of the Lie algebra g. The length |w| of
a Weyl group element w is the length of the shortest word representing that
element in terms of the standard generators, which are the reflections given
by the simple roots.

Let Λ be the weight lattice of g, which is freely generated by the set of funda-
mental weights, and let ZΛ be the integral group ring on the abelian group
Λ. We write e(ν) for the basis element of ZΛ corresponding to the weight ν,
so that elements of ZΛ are expressions of the form

∑
nνe(ν), with all but a

finite number of integers nν being zero. The character of a representation V
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is defined as:
ch(V ) =

∑
ν

dim(Vν)e(ν) ∈ (ZΛ)W, (1.13)

where Vν is the weight space of V for the weight ν, dim(Vν) its multiplicity
and (ZΛ)W the ring of invariant elements under the action of the Weyl group.
It can be directly checked that the character map, ch : R(g)→ ZΛ, is a ring
homomorphism between the representation ring of the semisimple Lie algebra
g and ZΛ.

For any weight ν, let Aν be the following element in ZΛ:

Aν =
∑
w∈W

(−1)|w|e(w(ν)).

Let λ, µ ∈ WC be dominant weights and Vλ, Vµ the irreducible representa-
tions of highest weights λ, respectively µ. Weyl’s character formula may be
expressed in the following three equivalent ways:

ch(Vλ) =
Aλ+δ

Aδ
, (1.14a)

evµ+δ(Aδ · ch(Vλ)) = δµλ, (1.14b)

evµ+δ(Aδ · ch(W )) = dim(Homg(Vµ,W )), (1.14c)

where W is any finite-dimensional representation of g, δµλ is Kronecker’s
delta and evµf denotes the evaluation of an element f of ZΛ, considered as
a linear map with finite support on Λ, f : Λ→ Z, at the point µ ∈ Λ.

Since ch : R(g)→ ZΛ is a ring homomorphism, we have in particular:

ch(Vµ ⊗ Vλ) = ch(Vµ) · ch(Vλ),

which together with the Weyl character formula yields the following expres-
sion for the multiplicities c(ν;λ, µ) of the tensor product:

c(ν;µ, λ) = dim(Homg(Vν , Vµ ⊗ Vλ))
(1.14c)

= evν+δ(Aδ · ch(Vµ) · ch(Vλ))

(1.14a)
=

∑
w∈W

(−1)|w|evν+δ[e(w(λ+ δ)) · ch(Vµ)]. (1.15)

Now let G be one of the groups in (1.6). Then, except for u(n), the Lie
algebras of the others groups are semisimple and we may thus use the previ-
ously mentioned notions to analyze the tensor product decomposition (1.8).
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One can verify that the same arguments work also for u(n), since the only
difference between u(n) and the simple Lie algebra su(n) is its 1-dimensional
center.

As usual, τ is the restriction of the standard representation of SO(n) to G,
or the corresponding Lie algebra representation of g, and the weights of τ
will be denoted here by ε1, . . . , εn. It can easily be checked that each weight
of τ has multiplicity 1. As we show in the sequel, this fact essentially implies
that the decomposition (1.8) is multiplicity-free.

The character of τ is then given by ch(τ) =
∑n

i=1 e(εi) and for µ = τ , the
formula (1.15) yields:

c(ν; τ, λ) =
∑
w∈W

(−1)|w|evν+δ[e(w(λ+ δ)) ·
n∑
i=1

e(εi)]

=
∑
w∈W

n∑
i=1

(−1)|w|evν+δe(w(λ+ δ) + εi)

=
∑
w∈W

n∑
i=1

(−1)|w|δν+δ,w(λ+εi+δ),

(1.16)

where for the last equality we used the property of the Weyl group to leave
invariant the set of weights of any representation, in particular those of τ .

Let ε ∈ {ε1, . . . , εn} be one of the weights of τ . From (1.16) it follows that in
order to compute the multiplicities c(ν; τ, λ) we have to compare ν + δ with
w(λ+ ε+ δ), for all elements w of the Weyl group.

An important property of the weights of τ , that can be explicitly checked for
each of the groups G in (1.6), is that when expressing them in terms of the
fundamental weights ω1, . . . , ωr, the coefficients are either 0 or ±1, except
for two weights with coefficient −2, respectively 2, which only occur for G2

and SO(n) with n odd. These cases are treated separately and explain the
supplementary condition of the selection rule for the zero weight for these
groups.

The above mentioned property and the description (1.12) of the strict Weyl
chamber show that λ + ε + δ ∈ WC. Since the Weyl group W acts simply
transitively on the set of Weyl chambers, it follows that, for any element
w 6= id of W, w(λ + ε + δ) belongs to a different Weyl chamber, so that it
cannot be equal to ν+ δ, which lies in the strict Weyl chamber SWC. Thus,
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the sum over the elements of W in (1.16) reduces to one term corresponding
to w = id and we get:

c(ν; τ, λ) =
n∑
i=1

δν+δ,λ+εi+δ =
n∑
i=1

δν,λ+εi .

Hence the only multiplicities different from zero in the tensor product τ ⊗ λ
are c(λ + ε; τ, λ) = 1, for some weight ε of τ , such that λ + ε is dominant.
This proves the decomposition (1.8) and the selection rule, except for the
zero weight.

If G is G2 or SO(n) with n odd, the problem is when λ + ε + δ /∈ WC,
which may only occur if ε is exactly the weight ε0 of τ whose expression in
terms of the fundamental weights has a coefficient equal to −2. Thus, the
condition λ + ε0 + δ /∈ WC is equivalent to λ − λτ , respectively λ − λΣ not
being dominant for the group G2, respectively SO(n). Then there is exactly
one element w0 in W , given by the reflection to one of the walls of the Weyl
chamber WC, that maps λ+ ε0 + δ in WC. It can be directly checked that
w0(λ+ ε0 + δ) = δ, so that the only coefficient that changes compared to the
above computation is c(0; τ, λ). More precisely, it decreases by 1 and thus
becomes equal to zero, completing the proof for these special cases. �

From Theorem 1.7, the tensor product T∗M ⊗ VλM is multiplicity-free, so
that its decomposition is unique and the projections on the irreducible sub-
bundles are well-defined (otherwise one may just define the projections onto
the isotypical components of the tensor product). This allows us to define
the G-generalized gradients as follows:

Definition 1.8. Let (M, g) be a Riemannian manifold carrying a G-structure

and λ be a G-irreducible representation. Then the decomposition of the

tensor product of the cotangent bundle with the associated vector bundle:

T∗M ⊗ VλM = ⊕
ε⊂λ

Vλ+εM

is completely described by Theorem 1.7 and the G-generalized gradients P∇
λ

ε

acting on sections of VλM are defined by the composition:

Γ(VλM)
∇λ−→ Γ(TM∗ ⊗ VλM)

Πε−→ Γ(Vλ+εM), (1.17)

where ∇λ is the connection induced on VλM by a G-connection ∇ and Πε is

the projection onto the subbundle Vλ+εM .
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In the sequel we sometimes drop the group G, which may be easily deduced
from the context, and just call these operators generalized gradients. The
Definition 1.8 may be given more generally, not just for the geometrically
interesting groups in (1.6), but for any group G ⊂ GL(n), which satisfies
the technical condition given by (1.8), i.e. such that the tensor product of
any G-irreducible representation with the restriction of the standard GL(n)-
representation is multiplicity-free.

Notice that N(λ) := ]{ε| ε is relevant for λ} ≤ dim(τ), so that there are
at most n generalized gradients for each dominant weight λ and this is the
generic case.

Example 1.9. If G is U(n
2
) or SU(n

2
), then the decomposition (1.7) implies

that the covariant derivative splits as follows: ∇λ = (∇λ)1,0 + (∇λ)0,1 with

respect to the almost complex structure. Consequently, the set of U(n
2
) or

SU(n
2
)-generalized gradients acting on sections of an irreducible vector bundle

VλM splits into two subsets, namely the sets of gradients factorizing over the

complementary projections:

Γ(T 0,1M ⊗C VλM)
Πε // Γ(Vλ+εM)

Γ(VλM) ∇λ // Γ(TCM ⊗C VλM)

pr1,0
55jjjjjjjjjjjjjjj

pr0,1

))TTTTTTTTTTTTTTT

Γ(T 1,0M ⊗C VλM)
Πε′ // Γ(Vλ+ε′M)

and which are called holomorphic, respectively anti-holomorphic generalized

gradients. This apparently skewed notation is due to the isomorphisms

T 1,0 ∼= (T 0,1)∗ and T 0,1 ∼= (T 1,0)∗. We notice that the weights of T 1,0 are

equal to those of T 0,1 with opposite sign.

On a Kähler spin manifold of complex dimension m, examples of U(m)-

generalized gradients are the projections of the Dirac operator, D+ and D−,

defined by (3.6), and the twistor operator of type r, Tr, given by (4.4),

which act on each of the irreducible subbundles ΣrM of the spinor bundle,

as explained in detail in § 3 and § 4.1.

Remark 1.10. The exceptional case of the zero weight in the selection rule in

Theorem 1.7 provides interesting generalized gradients, which have the same

source and target bundle, so that in particular they have spectra. In this case
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the projection Π0 composed with the covariant derivative carries sections of

VλM to sections of a copy of VλM which is a subbundle in T∗M⊗VλM . In or-

der to use the same realization of VλM as both source and target bundle for a

realization Πself
0 of Π0, one needs a choice of normalization. First, one normal-

izes the Hermitian inner product on T∗M⊗VλM such that |ξ ⊗ v|2 = |ξ|2|v|2
and then normalizes Πself such that (Πself

0 )2 = Π∗0Π0. This determines Πself
0

up to multiplication by ±1. Examples of such generalized gradients are

the following: the Dirac operator, the Rarita-Schwinger operator, ∗d acting

on n−1
2

-forms in odd dimension n ≥ 3. Explicit computations of the spec-

tra of these operators have been done on certain manifolds, for instance by

Th. Branson, [14], on spheres. In general, there exist only estimates of the

eigenvalues of these operators. An illustration of this fact is given in § 3.2 for

the Dirac operator, where we describe the known estimates for its eigenvalues

and the corresponding limiting manifolds.

1.2 The Conformal Invariance of Generalized

Gradients

In this section we show that the generalized gradients associated to a G-
structure are conformally invariant. First we describe the known classical
case of generalized gradients of the special orthogonal group SO(n) on a
Riemannian manifold and of Spin(n), the two-fold covering of SO(n), on
a spin manifold. Then we prove the conformal invariance in the general
case of a G-structure, when assuming a reduction of the structure group of
the tangent bundle to a closed subgroup G of SO(n). In § 1.1 we defined
generalized gradients for any metric connection, respectively G-connection.
However, in order to ensure their conformal invariance, all generalized gradi-
ents considered throughout this section are constructed using the Levi-Civita
connection, respectively the minimal G-connection.

The property of conformal invariance was noticed for the first time in spin
geometry by N. Hitchin in 1974, [29], for the Dirac and Penrose operator
and it turned out to have important consequences in physics. Two years
later, H. Fegan, [19], showed that, up to the composition with a bundle map,
the only conformally invariant first order differential operators between vec-
tor bundles associated to the bundle of oriented frames are the generalized
gradients. Further results were obtained by Y. Homma, [31], [32], [34], for
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the conformal invariance of generalized gradients associated to U(n), Sp(n)
and Sp(1)·Sp(n)-structures. For these subgroups Homma’s proof of the con-
formal invariance is given by explicit computations, which are based on the
relation between the enveloping algebra of the Lie algebra g and the algebraic
structure of the principal symbols of generalized gradients.

In the sequel we use the framework of conformal geometry to show the confor-
mal invariance of generalized gradients associated to the minimal connection
of any G-structure. This approach leads us on the one hand to a general
result and on the other hand gives a uniform and direct proof of the known
cases, avoiding the specific computations for each subgroup.

1.2.1 SO(n) and Spin(n)-generalized gradients

As noticed by P. Gauduchon, [24], the suitable approach to the study of
conformal invariance is to make use of Weyl connections. An important role
is played by the conformal weight operator, whose eigenvalues are exactly
the corresponding conformal weights of the generalized gradients (which is
also the motivation for its name).

Let (M, c) be an oriented n-dimensional manifold with a conformal structure
c, i.e. an equivalence class of Riemannian metrics, where two metrics are
equivalent ḡ ∼ g if there exists a function u : M → R such that ḡ = e2ug. In
the language of G-structures this is equivalent to a reduction of the structure
group of the tangent bundle to the conformal group

CO(n) = {A ∈ GL(n,R)|AtA = aIn, a > 0},

which is also described as follows:

CO(n) = R∗+ × SO(n) = {aA| a ∈ R∗+, A ∈ SO(n)}.

Let COnM denote the principal bundle of oriented c-orthonormal frames
on (M, c) and SOgM the bundle of oriented orthonormal frames for a fixed
metric g in the conformal class.

Each irreducible representation of CO(n), λ̃ : CO(n)→ Aut(V ), is identified
with a couple (λ,w), where λ is the restriction of λ̃ to SO(n), which is still an
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irreducible representation, and w, the conformal weight of λ̃, is determined
by the restriction of λ̃ to R∗+, which has the following form:

λ̃(a) = aw · I, a ∈ R∗+,

where I is the identity of V and the conformal weight w is a real or complex
number, depending on whether V is a real or complex representation. As in
the previous section, we use the description of an irreducible representation
by its highest weight λ = (λ1, . . . , λm) ∈ Zm, where m = [n

2
] is the rank of

so(n).

Let Vλ̃M denote the vector bundle on M associated to λ̃ and to the principal
CO(n)-fiber bundle COnM and call it of conformal weight w (and the same
for the sections of Vλ̃M). Notice that any vector bundle on M determined
by GLnM and a linear representation of GL(n,R) has a natural conformal
weight, which is the conformal weight of the restriction of this representation
to CO(n). For example, the natural conformal weight1 of TM is 1 and of
T∗M is −1.

Let us first recall the definition of a Weyl structure.

Definition 1.11. A Weyl structure on (M, c) is a linear connection D on

TM , which is conformal, i.e. induced by a CO(n)-equivariant connection on

COnM and symmetric, i.e. has no torsion.

A Weyl structure D is called closed if it is locally the Levi-Civita connection
of a local metric in the conformal class c and it is called exact if it is globally
the Levi-Civita connection of a metric in c. In both cases, locally or globally,
the metric is uniquely defined up to a constant by the Weyl structure.

The Weyl structures on the conformal manifold (M, c) form an affine space
modeled on the space of real 1-forms on M . More precisely, two Weyl struc-
tures are related by:

D2 = D1 + θ̃, (1.18)

where θ is a real 1-form on M and θ̃ is the 1-form with values in the adjoint
bundle (the one associated to the adjoint representation of CO(n) on its Lie
algebra co(n)), identified with θ by:

θ̃(X) = θ(X) · I + θ ∧X,
1We adopt the convention in [24], in contrast to [19] and [30], where the sign is opposite,

since the principal bundle considered there is the one of co-frames.
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where θ ∧X is the skew-symmetric endomorphism defined as:

(θ ∧X)(Y ) = θ(Y )X − g(X, Y )θ],

for any metric g in the conformal class and θ] the dual of θ with respect to
the metric g.

Each conformal connection on TM , in particular any Weyl structure D,
induces for each linear representation λ̃ : CO(n) → Aut(V ) a covariant

derivative Dλ̃ on the associated vector bundle Vλ̃M . If D1 and D2 are related

by (1.18), then, for λ̃ = (λ,w), the induced covariant derivatives Dλ̃
1 and Dλ̃

2

satisfy:

Dλ̃
2 = Dλ̃

1 + dλ̃(θ̃) = Dλ̃
1 +

n∑
i=1

e∗i ⊗ dλ(θ ∧ ei) + w θ ⊗ I, (1.19)

where {ei}i=1,n is a c-orthonormal frame at the point considered and {e∗i }i=1,n

is the (algebraic) dual frame.

By τ we denote, as usual, the standard representation of SO(n) on Rn, iden-
tified with its dual (Rn)∗, and also the representation of conformal weight
−1 of CO(n) on (Rn)∗. The associated vector bundles to τ and COnM ,
respectively SOgM , are canonically identified to T∗M .

Consider an irreducible representation of CO(n), λ̃ : CO(n) → Aut(V ), of
conformal weight w and λ the highest weight of its restriction to SO(n).
The tensor product τ ⊗ λ̃ has then conformal weight w − 1 and it has
the same multiplicity-free decomposition into irreducible CO(n) or SO(n)-
subrepresentation, as described by Lemma 1.1:

τ ⊗ λ = ⊕
ε⊂λ

µε, (1.20)

where µε = λ+ ε and ε belongs to the set of weights of τ which are relevant
with respect to λ. We introduce the following notation: µ0 = λ, µi,± = λ±εi,
for i = 1, . . . ,m, where m = [n

2
].

For each relevant weight ε of λ, we introduced in Definition 1.2 a generalized
gradient acting on sections of the associated vector bundle VλM (here we
specify the metric g in the notation, because we shall compare operators
associated to different metrics):

P g,λ
ε = Πε ◦ ∇g,λ, (1.21)
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where ∇g,λ is the connection induced on VλM by the Levi-Civita connection
∇g of (M, g).

In the same way, for each conformal weight w, each relevant weight ε of λ
determines on any conformal manifold (M, c) a family of generalized gradi-
ents, parametrized by the Weyl structures, acting on the associated vector
bundle Vλ̃M , where λ̃ = (λ,w), as follows:

PD,λ̃
ε = Πε ◦Dλ̃, (1.22)

where Dλ̃ is the connection induced on Vλ̃M by a Weyl connection D of (M, c)
and Πε the projection of T∗M ⊗ V(λ,w)M onto its subbundle V(λ+ε,w−1)M .

Definition 1.12. The operator P g,λ
ε is called conformally invariant relative

to the conformal weight w if the operators PD,λ̃
ε defined by (1.22) do not

depend on the Weyl structure D.

It turns out that these conformal weights, with respect to which the gener-
alized gradients are conformally invariant, are exactly the eigenvalues of the
so-called conformal weight operator. Let us first recall its definition (here we
use the identification of the adjoint representation so(n) with Λ2Rn through
〈A, x∧y〉 = 〈Ax, y〉, where the scalar product 〈·, ·〉 on Λ2Rn is the one induced
via Gram’s determinant):

Definition 1.13. The conformal weight operator of an SO(n)-representation

λ, λ : SO(n)→ Aut(V ), is the symmetric endomorphism defined as follows:

Bλ : (Rn)∗ ⊗ V → (Rn)∗ ⊗ V, Bλ(α⊗ v) =
n∑
i=1

e∗i ⊗ dλ(ei ∧ α)v, (1.23)

where {ei}1,n is an orthonormal basis of Rn and {e∗i }1,n its dual basis. The

operator Bλ is (τ ⊗ λ̃)-equivariant for any conformal weight w, λ̃ = (λ,w).

We also denote by Bλ the induced endomorphism on the associated bundle

T∗M⊗Vλ̃M .

Using the conformal weight operator, the difference between the connections
induced on Vλ̃M by two Weyl structures D1 and D2 related by (1.18) is given
as follows:

(Dλ̃
2 −Dλ̃

1 )ξ = wθ ⊗ ξ −Bλ(θ ⊗ ξ), for all ξ ∈ Γ(Vλ̃M). (1.24)
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Since the algebraic endomorphism Bλ is CO(n)-equivariant and the decom-
position (1.20) is multiplicity-free, it follows from Schur’s Lemma that Bλ

acts on each irreducible component of the decomposition (1.20) by multipli-
cation with a scalar.

We show in the sequel that the conformal weight operator Bλ may be ex-
pressed in terms of the Casimir operators and then explicitly compute its
eigenvalues. Let us recall that the (normalized) Casimir operator Cλ of any
SO(n)-representation λ is defined by:

Cλ = −
∑
i<j

dλ(ei ∧ ej) ◦ dλ(ei ∧ ej), (1.25)

where as above, {ei}1,n is an orthonormal basis of Rn.

If the representation λ is irreducible, it follows from Schur’s Lemma that Cλ

is a scalar equal to c(λ) · I, where c(λ), called the Casimir number, is a real
positive number, except for the trivial representation, when it is zero. The
Casimir numbers are normalized such that c(τ) = n − 1. Freudenthal’s for-
mula gives the following expression for the Casimir numbers of an irreducible
representation of so(n) of highest weight λ:

c(λ) = 〈λ+ δ, λ+ δ〉 − 〈δ, δ〉 = 〈λ, λ+ 2δ〉, (1.26)

where δ is the Weyl vector of so(n), defined as half the sum of the positive
roots, so that its components are δi = n−2i

2
, for i = 1, . . . ,m.

Lemma 1.14 (Fegan’s Lemma, [19]). The conformal weight operator Bλ is

equal to

Bλ =
1

2
(Cτ⊗λ − I|R∗ ⊗ Cλ − Cτ ⊗ I|V ). (1.27)

It is then straightforward the following:

Corollary 1.15. The conformal weight operator Bλ acts on each irreducible

summand λ + ε in the decomposition τ ⊗ λ = ⊕
ε⊂λ

(λ + ε) by multiplication

with the scalar wε(λ) given by:

wε(λ) =
1

2
(c(λ+ ε)− c(λ)− (n− 1)). (1.28)
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From Freudenthal’s formula (1.26) we then get for i = 1, . . . ,m:

w0(λ) =
1− n

2
,

wi,+(λ) := wεi(λ) = 1 + λi − i,
wi,−(λ) := w−εi(λ) = 1− n− (λi − i).

(1.29)

To simplify notation, we shall sometimes omit the highest weight λ in the
denomination of the conformal weights.

Remark 1.16. The formulas (1.29) together with the conditions on the weights

to be relevant show that the conformal weights are ordered as follows:

w1,+ > · · · > wm,+ > w0 ≥ wm,− > · · · > w1,−,

if n is odd, n = 2m + 1, and w0(λ) = wm,−(λ) if and only if λm = 0. But,

from the selection rule given by Lemma 1.1, it follows that this equality case

cannot occur for relevant weights, since if λm = 0, then neither w0 nor wm,−
is a relevant weight. For n even, n = 2m, the conformal weights are ordered

as follows:

w1,+ > · · · > wm−1,+ > {wm,+, wm,−} > wm−1,− > · · · > w1,−,

where wm,+(λ)−wm,−(λ) = 2λm, so that wm,+(λ) 6= wm,−(λ) unless λm = 0.

Hence, the conformal weights are almost always distinct. Thus, except for

the cases of irreducible representations λ with λm = 0, it turns out that the

decomposition (1.20) corresponds exactly to the eigenspaces of the conformal

weight operator Bλ, which may be expanded as: Bλ =
∑
ε⊂λ

wε(λ)Πε.

Lemma 1.17. The operator P g,λ
ε is conformally invariant relative to the

conformal weight wε and this is the only conformal weight with respect to

which this operator is conformally invariant.

Proof: Composing (1.24) with the projection Πε we get

(PD2,λ̃
ε − PD1,λ̃

ε )(ξ) = (w − wε)Πε(θ ⊗ ξ), for all ξ ∈ Γ(Vλ̃M). (1.30)

Thus, it follows that P g,λ
ε is conformally invariant if and only if w = wε, since

otherwise we would get the contradiction that Πε ≡ 0. �
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The relation between the formulation of the conformal invariance with re-
spect to the Weyl connections and the one with respect to the Levi-Civita
connections of conformally related metrics follows from Proposition 1.27,
which holds in a more general setting for G-generalized gradients. In the
case of the SO(n)-structure, the minimal connection is just the Levi-Civita
connection, so that we obtain the equivalence of the following two statements:

(1) P g,λ
ε is conformally invariant relative to the conformal weight wε.

(2) If ḡ is a metric conformally related to g, ḡ = e2ug, then the corresponding
operators induced by the Levi-Civita connections are related by:

P ḡ,λ
ε ◦ φg,ḡwε = φg,ḡwε−1 ◦ P g,λ

ε , (1.31)

where, for any conformal weight w, φg,ḡw is the isomorphism between
the induced vector bundles defined by:

φg,ḡw : V g
λM → V ḡ

λM, [(e1, . . . , en), v] 7→ [(e−ue1, . . . , e
−uen), ewuv].

Remark 1.18. The relation (1.31) expressing the conformal invariance of the

generalized gradients may be rewritten in the following form, which is usually

encountered in literature:

P ḡ,λ
ε = e(wε−1)uφg,ḡ ◦ P g,λ

ε ◦ e−wεu(φg,ḡ)−1, (1.32)

using the following identification of the associated vector bundles that does

not take into account any conformal weight, but has the advantage of being

an isometry:

φg,ḡ : V g
λM → V ḡ

λM, [s, v] 7→ [Φg,ḡ(s), v],

where Φg,ḡ is the isomorphism of the SO(n)-principal bundles of the two

conformally related metrics ḡ = e2ug:

Φg,ḡ : SOgM → SOḡM, {e1, . . . , en} 7→ {e−ue1, . . . , e
−uen}. (1.33)

Remark 1.19. If V is not just a representation of SO(n), but is the restriction

of a representation of the general linear group GL(n,R), then, as noticed

above, V has a natural conformal weight given by the restriction of the re-

presentation to CO(n) ⊂ GL(n,R). In this case one may canonically identify

the associated bundles to this representation and to the principal bundles

SOgM , SOḡM and COnM . When both representations of highest weight λ,
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respectively λ+ε, come from representations of GL(n,R), the corresponding

generalized gradients associated to the conformally related metrics g and ḡ

are related as follows, after having identified the associated vector bundles

to the ones associated to COnM :

P ḡ,λ
ε = e(wε−ωλ+ε−1)uP g,λ

ε e−(wε−ωλ)u, (1.34)

where wε is the conformal weight and ωλ, ωλ+ε are the natural conformal

weights of the representations λ, respectively λ+ ε.

Example 1.20. We consider the bundle of p-forms, ΛpM , on a Riemannian

manifold (Mn, g), as in Example 1.20. The highest weight of the represen-

tation is λp = (1, . . . , 1, 0, . . . , 0) and as it is the restriction of a GL(n,R)-

representation, it has a natural conformal weight which is equal to −p. As

we had already seen, there are three relevant weights for λp: −εp, εp+1 and

ε1 and the tensor product decomposes as follows:

TM ⊗ ΛpM ∼= Λp−1M ⊕ Λp+1M ⊕ Λp,1M,

where the last irreducible component is the Cartan summand correspond-

ing to the highest weight λp + ε1. The eigenvalues of the conformal weight

operator are then given by (1.29): wp,−(λp) = −n + p, wp+1,+(λp) = −p
and w1,+(λp) = 1. The relation (1.34) implies that the conformal invariance

of these generalized gradients, acting on the vector bundles associated to

COnM , may be expressed as follows: dḡ = dg, δḡ = e(−n+2p−2)uδge(n−2p)u.

The first equality just expresses the obvious fact that the exterior deriva-

tive d is independent of the metric. The conformal invariance of the twistor

operator is given by substituting wε = w1,+(λp) = 1 into (1.32):

T ḡ = φg,ḡ ◦ T g ◦ eu(φg,ḡ)−1.

On a spin manifold, the generalized gradients associated to the group Spin(n)
are also conformally invariant. The situation is very similar to the one for
the group SO(n), since their Lie algebras are canonically identified. In the
sequel we write down explicitly this property of conformal invariance on spin
manifolds and illustrate it for the most well-known operators: the Dirac
operator, the twistor (Penrose) operator and the Rarita-Schwinger operator.

The approach is the same as for the special orthogonal group, using in this
case the Weyl structures on a spin conformal manifold. We first recall its
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definition. The conformal spin group is the group CSpin(n) = Spin(n)×R∗+,
which is the universal cover of the conformal group CO(n). Its Lie algebra
is cspinn

∼= son ⊕ R ∼= co(n).

Definition 1.21. A spin structure on a conformal manifold (M, c) is given

by a principal CSpin(n)-bundle CSpinnM together with a projection θ, such

that the following diagram commutes for every ũ ∈ CSpinnM :

CSpin(n) a7→ũa //

φ

��

CSpinnM

θ

��

$$JJJJJJJJJJ

M,

CO(n)
A 7→θ(ũ)A

// COnM

::tttttttttt

where φ is the canonical projection of CSpin(n) onto CO(n).

Similarly to the Riemannian case, if M has a spin structure, then any Weyl
structure D induces a connection on CSpinnM , and therefore a covariant
derivative on each associated vector bundle to a representation of CSpin(n).
The description of the representations of CSpin(n) is analogous to the one
for CO(n): each irreducible representation λ̃ of CSpin(n) is given by a couple
(λ,w), where λ is the restriction of λ̃ to Spin(n), which is still an irreducible
representation, and w, the conformal weight of λ̃, is determined by the re-
striction of λ̃ to R∗+: λ̃(a) = aw · I.

Definition 1.12 of conformal invariance relative to a conformal weight may
thus be carried over to generalized gradients of Spin(n). Since the formula
(1.23) defining the conformal weight operator only involves the representation
of the Lie algebra spin(n) ∼= so(n), it follows that Bλ is well-defined for any
irreducible representation λ of Spin(n). Consequently, its eigenvalues, called
conformal weights, are also given by (1.27) or more explicitly by (1.29) and
Remark 1.16 still holds in this case.

The argument in the proof of Lemma 1.17 also works for Spin(n)-generalized
gradients. The equivalence to the formulation with respect to the induced
Levi-Civita connections of conformally related metrics follows similarly from
Proposition 1.27. In order to give the precise statement we first need to recall
the isomorphism between the spinor bundles of conformally related metrics.
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Let (Mn, g) be a Riemannian spin manifold and consider the conformal
change of the metric given by ḡ = e2ug. As above, Φg,ḡ denotes the iso-
morphism of the two SO(n)-principal fiber bundles given by (1.33). Then
there is a spin structure induced on (Mn, ḡ), which is defined up to isomor-
phism by the following commutative diagram:

SpingM
Φ̃g,ḡ //

θg
��

SpinḡM

θḡ
��

SOgM
Φg,ḡ

// SOḡM

It then follows, by an analogue argument to the one in the proof of Proposi-
tion 1.27, that the following two statements are equivalent:

(1) P g,λ
ε is conformally invariant relative to the conformal weight wε.

(2) If ḡ is a metric conformally related to g, ḡ = e2ug, then the corresponding
operators induced by the Levi-Civita connections are related by:

P ḡ,λ
ε ◦ φ̃g,ḡwε = φ̃g,ḡwε−1 ◦ P g,λ

ε , (1.35)

where, for any conformal weight w, φ̃g,ḡw is the isomorphism between
the associated vector bundles defined by:

φ̃g,ḡw : V g
λM → V ḡ

λM, [s, v] 7→ [Φ̃g,ḡ(s), ewuv].

Example 1.22. The spinor representation ρn : Spin(n) → Aut(Σn), with

n odd, is irreducible and in this case there are two generalized gradients

(see Example 1.5): the Dirac operator D and the twistor operator T . The

highest weight is ρn = (1
2
, . . . , 1

2
) and the conformal weights are given by

(1.29): w0(ρn) = 1−n
2

, w1,+(ρn) = 1
2
. It then follows that D is conformally

invariant relative to the conformal weight 1−n
2

and T is conformally invariant

relative to the weight 1
2
. If g and ḡ are two conformally related metrics,

ḡ = e2ug, by (1.35) we have:

Dḡ ◦ φ̃g,ḡ1−n
2

= φ̃g,ḡ− 1+n
2

◦Dg, (1.36)

T ḡ ◦ φ̃g,ḡ1
2

= φ̃g,ḡ− 1
2

◦ T g. (1.37)
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In the case when n is even, n = 2m, the spinor bundle splits in two irreducible

subbundles ΣM = Σ+M ⊕ Σ−M with highest weight ρ+
n = (1

2
, . . . , 1

2
), re-

spectively ρ−n = (1
2
, . . . , 1

2
,−1

2
). In each case there are again two generalized

gradients, the Dirac and the twistor operator (again see Example 1.5):

D : Γ(Σ±M)→ Γ(Σ∓M),

T : Γ(Σ±M)→ Γ(ker(c)),

and their conformal weights, given by (1.29), are: wm,−(ρ+
n ) =wm,+(ρ−n ) = 1−n

2
,

respectively w1,+(ρ+
n ) = w1,+(ρ−n ) = 1

2
.

Remark 1.23. In a simplified notation we consider:

·̄ : ΣM = SpingM ×ρn Σn → ΣM = SpinḡM ×ρn Σn

[s, ϕ] 7→ [Φ̃g,ḡ(s), ϕ],

which is an isometry with respect to the Hermitian product on the spinor

bundles. We may then rewrite the conformal invariance of D and T in the

following more familiar expression (where D and T denote the operators

associated to the metric ḡ):

D(e−
n−1

2
uϕ̄) = e−

n+1
2
uDϕ, (1.38)

T (e
u
2 ϕ̄) = e−

u
2 Tϕ. (1.39)

We mention that the conformal invariance of T is usually written in the

following form:

TX(e
u
2 ϕ̄) = e

u
2 TXϕ, (1.40)

where TX : Γ(ΣM)→ Γ(ΣM), so that on the right side is the same conformal

weight 1
2
.

The conformal invariance of these operators was first established by N. Hitchin,

[29]. The original proof is given by an explicit computation, using the fol-

lowing relation between the Levi-Civita connections induced on the spinor

bundles of two metrics g and ḡ = e2ug in the same conformal class:

∇Xϕ = ∇Xϕ−
1

2
X · du · ϕ− 1

2
X(u)ϕ, (1.41)

for every ϕ ∈ Γ(ΣM) and X ∈ Γ(TM), where X is given by X = e−uX.
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Example 1.24. Another important generalized gradient is the so-called

Rarita-Schwinger operator (see Example (1.6)), D3/2 : Σ3/2M → Σ3/2M ,

for n odd and D±3/2 : Σ±3/2M → Σ∓3/2M , for n even. It has the same con-

formal weight as the Dirac operator, namely 1−n
2

: for n = 2m + 1, we get

by (1.29) w0(λ) = 1−n
2

, for any highest weight λ, and for n = 2m we have

wm,−((3
2
, 1

2
, . . . , 1

2
, 1

2
)) = wm,+((3

2
, 1

2
, . . . , 1

2
,−1

2
)) = 1−n

2
. Thus, the Rarita-

Schwinger operator fulfills the same relation by conformal changes of the

metric as the Dirac operator (with the notations of the previous remark,

while here the sections ϕ and ϕ are in the twistor bundles associated to the

principal bundle SpingM , respectively SpinḡM):

D3/2(e−
n−1

2
uϕ̄) = e−

n+1
2
uD3/2ϕ. (1.42)

1.2.2 Generalized gradients of G-structures

Suppose now that the Riemannian manifold (M, g) admits a reduction of the
orthonormal frame bundle SOgM to a subbundle GM with structure group
G, where G is a closed subgroup of the special orthogonal group SO(n). First
we need to establish which special connection plays for a G-structure the role
of the Levi-Civita connection and should be used to define the generalized
gradients, such that they are conformally invariant. This is the so-called
minimal connection of a G-structure, which is, in a certain sense, the G-
connection that is as close as possible to the Levi-Civita connection.

Let g ⊂ so(n) be the Lie algebra of G and decompose the Lie algebra so(n)
of all skew-symmetric matrices as the direct sum of g and its orthogonal
complement: so(n) = g⊕ g⊥. Denote by prg and prg⊥ the projections onto g

and g⊥, respectively.

The Levi-Civita connection seen as a connection form is a 1-form ωLC on
SOgM with values in the Lie algebra so(n). Restricting ωLC to the subbundle
GM and decomposing it with respect to the above splitting, we get:

ωLC = prg(ω
LC) + prg⊥(ωLC) =: ωG + T, (1.43)

where ωG is a connection form on GM and T is a 1-form on M with values in
the associated vector bundle GM×Gg⊥. The connection corresponding to the
connection 1-form ωG is called the minimal connection of the G-structure and
is denoted by ∇G. T is called the intrinsic torsion of the G-structure and is a
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measure for how much the G-structure fails to be integrable. More precisely,
a G-structure is integrable if and only if its intrinsic torsion vanishes, which
means that the Levi-Civita connection restricts to GM and its holonomy
group is a subgroup of G. Otherwise stated, the intrinsic torsion is the
obstruction for the Levi-Civita connection to be a G-connection.

In the sequel we consider the generalized gradients of a G-structure defined
by its minimal connection. If g and ḡ are two conformally related metrics,
there is a corresponding conformal change of the G-structure, denoted by
ḠM , which is the image of GM under the principal bundle isomorphism
between SOgM and SOḡM given by (1.33). We thus obtain the following
commutative diagram, where all the arrows are the natural inclusions:

GM
� � //

��

(R∗+ ×G)M

��

ḠM? _oo

��
SOgM

� � // COnM SOḡM? _oo

The right and left squares of the diagram are still commutative when consid-
ering the canonical connections, i.e. the extension DG of the minimal con-
nection DG to (R∗+ ×G)M coincides with the projection onto R⊕ g ⊂ co(n)
of the extension Dg of the Levi-Civita connection ∇g to COnM .

We now consider the same construction of the differential operators as above,
using the minimal connection of the G-structure and its extension to the
(R∗+ × G)-principal bundle. Here G is as in § 1.1 one of the subgroups in
the list (1.6). Hence, G acts irreducibly on τ and the decomposition (1.20)
is now done into G-irreducible components. We consider the G-generalized
gradients introduced in Definition 1.8:

PG,λ
ε = Πε ◦ ∇G,λ, (1.44)

where λ is the highest weight of an irreducible G-representation, VλM is the
associated vector bundle, ∇G,λ is the connection on VλM induced by the
minimal connection ∇G and Πε is the projection of the bundle T∗M ⊗ VλM
onto the subbundle Vλ+εM .

For any conformal weight w, there is an irreducible representation λ̃ = (λ,w)
of R∗+ × G and on the associated bundle Vλ̃M the operators are similarly
defined by:

PD,λ̃
ε = Πε ◦DG,λ̃, (1.45)
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for any connection DG given by the projection onto (R∗+ × G)M of a Weyl
connection D on COnM . We have the following analogous definition:

Definition 1.25. The operator PG,λ
ε is called conformal invariant relative to

the conformal weight w if the operators defined by (1.45) do not depend on

the Weyl structure whose projection onto the principal subbundle (R∗+×G)M

defines the generalized gradients PD,λ̃
ε .

The conformal weight operator may be defined for any G-representation V ,
λ : G→ Aut(V ), as follows (see [63]):

Bλ
g : (Rn)∗⊗V → (Rn)∗⊗V, Bλ

g (α⊗v) =
n∑
i=1

e∗i ⊗dλ(prg(ei∧α))v, (1.46)

where {ei}1,n is an orthonormal basis of Rn and {e∗i }1,n the dual basis.

The eigenvalues of Bλ
g are then computed according to Fegan’s Lemma:

Bλ
g =

1

2
(Cτ⊗λ − I|R∗ ⊗ Cλ − Cτ ⊗ I|V ), (1.47)

where the Casimir operator of an irreducible G-representation λ is given by:

Cλ = −
∑
α

dλ(Xα) ◦ dλ(Xα),

for an orthonormal basis {Xα}α of g with respect to the invariant scalar
product induced on g ⊂ so(n) ∼= Λ2Rn, 〈X, Y 〉 = −1

2
tr(XY ). Usually it is

convenient to compute the Casimir operators with respect to a chosen scalar
product and then to renormalize them. The Casimir numbers may thus be
computed by Freudenthal’s formula (1.26): c(λ) = 〈λ, λ+ 2δ〉, where δ is the
Weyl vector of g and are then renormalized as follows:

cΛ2

(λ) = 2
dim(g)

n

c(λ)

c(τ)
.

Thus, the conformal weight operator Bλ
g acts on each G-irreducible compo-

nent in the decomposition τ ⊗ λ = ⊕
ε⊂λ

(λ + ε) by multiplication with the
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scalar wε given by:

wε = wε(λ) =
1

2
(cΛ2

(λ+ ε)− cΛ2

(λ)− cΛ2

(τ))

=
dim(g)

n

|ε|2 + 2〈λ+ δ, ε〉 − 〈τ + 2δ, τ〉
〈τ + 2δ, τ〉

.
(1.48)

In particular, it follows that the eigenspaces of the conformal weight ope-
rator Bλ are compatible with the irreducible decomposition of the tensor
product τ ⊗ λ. Notice that if two conformal weights of Bλ

g are equal, then
the eigenspace to this eigenvalue is equal to the sum of the corresponding
irreducible components.

The analogue of Lemma 1.17 holds in general for G-structures:

Lemma 1.26. The G-generalized gradient PG,λ
ε is conformally invariant

relative to the conformal weight wε and this is the only conformal weight

with respect to which this operator is conformally invariant.

Proof: Let D1 and D2 be any two Weyl connections. Then there is a real
1-form θ on M such that (1.18) holds. As above DG

i denotes the projection
of Di onto the principal R∗+×G-subbundle. The connections induced by DG

1

and DG
2 on the associated vector bundle Vλ̃M are then related as follows:

DG,λ̃
2 = DG,λ̃

1 +dλ̃(prg(θ̃)) = DG,λ̃
1 +

n∑
i=1

e∗i ⊗dλ(prg(θ∧ei))+w θ⊗ I, (1.49)

where {ei}i=1,...,n is a conformal frame and {e∗i } the dual frame. Thus, with
respect to the conformal weight operator, we get:

(DG,λ̃
2 −DG,λ̃

1 )(ξ) = w θ ⊗ ξ −Bλ
g (θ ⊗ ξ), for all ξ ∈ Γ(Vλ̃M). (1.50)

Projecting now the equation (1.50) onto the component λ+ ε of the decom-
position of the tensor product τ ⊗ λ, we get:

(PD2,λ̃
ε − PD1,λ̃

ε )(ξ) = (w − wε)Πε(θ ⊗ ξ), for all ξ ∈ Γ(Vλ̃M). (1.51)

Hence, the generalized gradient PG,λ
ε is conformally invariant relative to the

conformal weight w if and only if w = wε. �

The next result expresses the conformal invariance directly in terms of the
minimal connections of two conformally related G-structures.
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Proposition 1.27. The following statements are equivalent:

(1) PG,λ
ε is conformally invariant relative to the conformal weight wε.

(2) If GM and ḠM are conformally related G-structures, for ḡ = e2ug and

ḠM ↪→ SOḡM , then the corresponding generalized gradients are related

by:

P̄G,λ
ε ◦ φG,Ḡwε = φG,Ḡwε−1 ◦ PG,λ

ε , (1.52)

where for any conformal weight w, φG,Ḡw is the isomorphism between the

associated vector bundles V G
λ M := GM ×G V and V Ḡ

λ M := ḠM ×G V ,

defined by:

φG,Ḡw : V G
λ M → V Ḡ

λ M, [(e1, . . . , en), v] 7→ [(e−ue1, . . . , e
−uen), ewuv].

Proof: We consider the following diagram:

Γ(V G
λ M)

∇G,λ
��

Γ(V(λ,wε)M)
φGwε
∼

oo

DG,(λ,wε)

��
DḠ,(λ,wε)

��

φḠwε
∼

// Γ(V Ḡ
λ M)

∇Ḡ,λ
��

Γ(T∗M ⊗ V G
λ M)

Πε
��

Γ(T∗M ⊗ V(λ,wε)M)

Πε
��

Γ(T∗M ⊗ V Ḡ
λ M)

Πε
��

Γ(V G
µεM) Γ(V(µε,wε−1)M)

φGwε−1

∼
oo

φḠwε−1

∼
// Γ(V Ḡ

µεM)

where DG is the minimal connection of the G-structure extended to the
(R∗+ ×G)-principal bundle (which may be also seen as the projection onto
g ⊕ R of the Weyl connection given by the extension of the Levi-Civita
connection of the metric g) and DG,(λ,wε) is the induced connection on the
vector bundle Vλ̃M associated to the irreducible representation λ̃ = (λ,wε).
The isomorphisms in the diagram are defined by:

φGw : V(λ,w)M → V G
λ M, φGw([(f1, . . . , fn), v]) = [(e1, . . . , en), awv],

where fi = aei, i = 1, . . . , n and {ei}1,n is an orthonormal basis with respect

to the metric g. With this notation, we have: φG,Ḡw = φḠw ◦ (φGw)−1. The left
and right “squares” of the diagram commute by the definition of the induced
connection on an associated vector bundle.

Suppose now that (1) holds. Then the whole diagram commutes, since then
for the conformal weight wε the compositions “in the middle” give the same
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operator (as PD,λ̃
ε = Πε ◦DG,λ̃ does not depend on the Weyl structure). The

composition on its “boundary” gives (2).

If (1.52) holds for a conformal weight w and for any two conformally re-
lated G-structures, then the above diagram is commutative. Thus, the
operator PD,λ̃

ε is the same for all the Weyl structures given by the mini-
mal connections of conformally related G-structures. Then, (1.51) implies
(w − wε)Πε(θ ⊗ ξ)=0, for any exact 1-form θ on M and any ξ ∈ Γ(Vλ̃M).
At some fixed point on M , it follows that (w − wε)Πε(α ⊗ v) = 0, for all
α ⊗ v ∈ (Rn)∗ ⊗ V , which shows that w = wε. Substituting in (1.51), it
follows that P g,λ

ε is conformally invariant relative to the conformal weight
wε. �

In conclusion, the explicit formula (1.48) allows us to compute the eigenvalues
of the conformal weight operator Bλ

g of a G-structure for any irreducible
representation λ, where G is a subgroup of the special othogonal group,
and thus, by Lemma 1.26 and Proposition 1.27, to determine the conformal
weights of the G-generalized gradients. For completeness we give in Table 1.1
the explicit values of the conformal weights of G-generalized gradients for all
subgroups G in (1.6). As an example we consider the unitary group, which
is a special case, since the complexified tangent bundle is not irreducible.

Example 1.28. If G = U(n) ⊂ SO(2n), then TMC splits into two irreducible

subspaces. Hence the U(n)-generalized gradients are of two kinds: holomor-

phic and anti-holomorphic, as explained in Example 1.9. In [32] they were

called Kählerian gradients , since if the metric is Kähler, the U(n)-gradients

are given by the Levi-Civita which coincides in this case with the minimal

connection of the integrable U(n)-structure. Formula (1.48) implies that the

conformal weights are given by: wi,− = −λi + i − n, wi,+ = λi − i + 1, for

i = 1, . . . , n.

The conformal invariance ofG-generalized gradients has the following straight-
forward, but important consequences:

Corollary 1.29. Let (M, g) be a Riemannian manifold which admits a G-

structure, for some group G ⊂ SO(n). Then the dimension of the kernel

of any G-generalized gradient, dim(ker(PG,λ
ε )), is the same for all metrics

conformally related to g.

Corollary 1.30. If PG,λ
ε is a G-generalized gradient with conformal weight

wε(λ), then its formal adjoint is, up to a constant, equal to PG,λ+ε
−ε and is

conformally invariant with respect to the conformal weight w−ε(λ+ ε).
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Remark 1.31. We notice that in general it is not straightforward to construct

higher order conformally invariant differential operators composing first or-

der ones. The composition of two generalized gradients does not need to be

conformally invariant, unless the corresponding conformal weights are related

by wε2(λ + ε1) = wε1(λ) − 1, in which case the composition PG,λ+ε1
ε2

◦ PG,λ
ε1

is a second order conformally invariant differential operator. An interest-

ing particular case is the one when we compose a generalized gradient with

its formal adjoint. For instance, the above condition is not fulfilled for the

Laplace operator ∆ acting on p-forms: it implies that dδ acting on p-forms is

conformally invariant if and only if p = n
2

+ 1 and similarly δd is conformally

invariant if and only if p = n
2
− 1, showing that ∆ = dδ + δd is not con-

formally invariant. Instead, the Laplace operator might be modified by the

scalar curvature in order to make it conformally invariant. More precisely,

the following formula: Yg = 4n−1
n−2

∆g + scalg defines the so-called conformal

Laplacian or Yamabe operator on an n-dimensional Riemannian manifold

(M, g), for n ≥ 3.

As applications of this property of conformal invariance we mention for in-
stance the conformal relation between Killing and twistor spinors (see § 4 for
the definition of these special classes of spinors), which together with the clas-
sification of manifolds admitting Killing spinors established by Ch. Bär, [5],
yields a description of the manifolds carrying twistor spinors (which satisfy
a more general equation than the Killing spinors). Another example is the
conformal invariance of the Yamabe operator which plays a crucial role in
the solution of the Yamabe problem of finding a metric of constant scalar
curvature in a given conformal class on the manifold M .

1.3 Weitzenböck Formulas

A natural and universal way to construct second order differential operators
acting on sections of associated vector bundles on a Riemannian manifold is
to consider the composition of generalized gradients with their formal metric
adjoints.

As in the previous sections, we consider a Riemannian manifold (M, g) ad-
mitting a G-structure with a fixed G-connection, VλM is the vector bundle
on M associated to the irreducible G-representation of highest weight λ and
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P λ
ε is a G-generalized gradient: P λ

ε : Γ(VλM) → Γ(Vλ+εM). Any subset
I ⊂ {ε| ε relevant weight for λ} defines the following operator:

P λ
I :=

∑
ε∈I

aε (P λ
ε )∗ ◦ P λ

ε , (1.53)

as a linear combination with constant coefficients aε.

There are two interesting extreme cases for linear combinations of generalized
gradients, i.e. for operators defined by (1.53):

1. The first case is when P λ
I is a zero-order differential operator, which

then yields a so-called Weitzenböck formula, provided that the connec-
tion used to define the generalized gradients is the Levi-Civita connec-
tion. This assumption is needed for the symmetries of the curvature of
the Levi-Civita connection, which ensure that the zero-order differen-
tial operator is equal to a certain curvature term.

2. The other extreme case is when P λ
I is an elliptic second order differential

operator. This is a condition depending only on the principal symbol of
the operator, so that it is independent of the chosen defining connection.

We analyze these two extreme cases in more detail, the first case in the sequel
and the second one in Chapter 2.

In differential geometry, Weitzenböck formulas play an important role in
relating the local geometry to global topological properties by the so-called
Bochner method. Weitzenböck formulas occur in various problems and have
many applications, for instance in proving vanishing results and eigenvalue
estimates for geometric differential operators. In this thesis we will use a
Weitzenböck formula adapted to the Kähler structure (see (5.1)) as one of the
tools for providing the complete description of manifolds carrying a special
class of spinors, the so-called Kählerian twistor spinors.

It turned out that the natural setting for a unified treatment of all Weitzenböck
formulas that occurred in different geometric contexts is provided by general-
ized gradients. Thus, a Weitzenböck formula is mainly defined on a Rie-
mannian manifold as a zero-order linear combination of differential opera-
tors obtained by composing generalized gradients with their adjoints, as in
(1.53). For the sake of completeness, we briefly present in this section the
two different approaches that have been given to a systematic study of all
possible Weitzenböck formulas, by U. Semmelmann and G. Weingart, [63],



1.3. WEITZENBÖCK FORMULAS 39

and by Y. Homma, [33]. Furthermore, we show how a characterization of
Weitzenböck formulas for the Levi-Civita connection given in [63] can be car-
ried over to the more general case of the minimal connection of a G-structure
with totally skew-symmetric torsion, where we give a sufficient condition to
obtain Weitzenböck formulas (Lemma 1.33).

In [63], U. Semmelmann and G. Weingart provided a unified construction of
Weitzenböck formulas for the irreducible non-symmetric holonomy groups, by
giving on the one hand a recursion procedure for the construction of a basis of
the space of Weitzenböck formulas and, on the other hand, by characterizing
reduced Weitzenböck formulas as eigenvectors of an explicitly known matrix.
Another approach was given by Y. Homma, who described all Weitzenböck
formulas in [33], [32], [31] and [34], separately for Riemannian, Kähler, hyper-
Kähler, respectively quaternionic-Kähler manifolds. His method is based on
the algebraic structure of the principal symbols, which is determined from
their relationship to the universal enveloping algebra of the corresponding
Lie algebra.

As in § 1.1, we consider G-generalized gradients acting on sections of a vector
bundle VλM associated to an irreducible G-representation of highest weight
λ. By Theorem 1.7, the decomposition of the tensor product T ⊗Vλ (here we
denote by T := τ the restriction to G of the standard SO(n)-representation)
is explicitly described as:

T ⊗ Vλ = ⊕
ε⊂λ

Vλ+ε, (1.54)

where ε ⊂ λ denotes the set of relevant weights of λ.

In [63] is studied the space of all Weitzenböck formulas on VλM , denoted by
W(Vλ), defined in a more general sense as the space of all linear combinations
of the form (1.53). Namely, if we simplify notation and drop λ, we have:

W(Vλ) :=

{∑
ε

aε P
∗
ε Pε

}
. (1.55)

The reduced Weitzenböck formulas are those linear combinations which are
bundle endomorphisms depending on the Riemannian curvature:∑

ε

aε P
∗
ε Pε = curvature action. (1.56)

The key point in [63] is the observation that the space of Weitzenböck formu-
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las,W(Vλ), can be identified with the vector space Endg(T⊗Vλ) of g-invariant
endomorphisms of T ⊗ Vλ, and thus is an algebra. Since the decomposition
(1.54) is multiplicity-free, the projections onto the irreducible summands are
well-defined and we denoted them by Πε. The algebra Endg(T ⊗ Vλ) is then
commutative and is spanned by the pairwise orthogonal idempotents Πε.

The space of Weitzenböck formulas has the following different realizations
(see [63, Definition 3.1]):

W(Vλ) = Homg(T ⊗ T ⊗ Vλ, Vλ) = Homg(T ⊗ T,End(Vλ)) = Endg(T ⊗ Vλ),
(1.57)

where the first identification is given as follows. Each F ∈ Homg(T ⊗ T ⊗
Vλ, Vλ) defines by composition with ∇2 a second order differential operator
acting on sections of VλM :

Γ(VλM)
∇2

−→ Γ(TM ⊗ TM ⊗ VλM)
F−→ Γ(VλM).

As an element of Endg(T ⊗ Vλ), F is expanded in the basis given by the
projections Πε: F =

∑
ε fε Πε. A straightforward computation shows that

the composition of a generalized gradient with its formal adjoint can be
expressed as follows: P ∗ε Pε = −Πε(∇2). Thus, we obtain:

F (∇2) = −
∑
ε

fε P
∗
ε Pε .

This gives the first identification in (1.57), showing that the coefficients of
the Weitzenböck formula corresponding to F are equal to the coordinates of
F in the basis {Πε}ε, with opposite sign. For example, the rough Laplacian
∇∗∇ =

∑
ε P
∗
ε Pε corresponds to the linear map a⊗ b⊗ ϕ 7→ −〈a, b〉ϕ.

The algebra W(Vλ) has a canonical involution, a twist σ :W(Vλ)→W(Vλ),
such that a Weitzenböck formula reduces to a pure curvature expression if
and only if it is an eigenvector of σ with eigenvalue −1. More precisely, the
twist σ is defined in the realization of the space of Weitzenböck formulas as
Homg(T ⊗ T ⊗ Vλ, Vλ) by the precomposition with the twist:

σ : T ⊗ T ⊗ Vλ → T ⊗ T ⊗ Vλ, a⊗ b⊗ v 7→ b⊗ a⊗ v.

The decomposition of the space W(Vλ) = Homg(T ⊗ T,End(Vλ)) into the
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(±1)-eigenspaces of σ is the following:

Homg(T ⊗ T,End(Vλ)) ∼= Homg(Λ
2T,End(Vλ))⊕ Homg(Sym2T,End(Vλ)).

(1.58)
The fact that a Weitzenböck formula F ∈ Homg(Λ

2T,End(Vλ)) induces a
zero-order operator which is a pure curvature term is proved by the following
computation:

F (∇2ϕ) =
1

2

∑
i,j

F (ei ⊗ ej ⊗ (∇2
ei,ej
−∇2

ej ,ei
)ϕ) =

1

2
Fei⊗ejRei,ejϕ, (1.59)

where {ei}i=1,n is an orthonormal basis of T (and also a local orthonor-
mal basis of the tangent bundle, parallel at the point where the compu-
tations are made) and ϕ is a section of VλM . Conversely, if F induces
a zero-order operator, then in particular the principal symbol of F (∇2)
vanishes: 0 = σF (∇2)(ξ)(ϕ) = Fξ,ξϕ (for any cotangent vector ξ and ϕ ∈
Γ(VλM)), showing that F is skew-symmetric in the first two arguments:
F ∈ Homg(Λ

2T,End(Vλ)).

The classical examples of reduced Weitzenböck formulas like the original
Weitzenböck formula in Riemannian geometry:

∆ = ∇∗∇+ q(R)

or the Schrödinger-Lichnerowicz formula in spin geometry (see also (3.9)):

D2 = ∇∗∇+
1

4
S

reduce in this setting to the fact that ∆−∇∗∇ and D2−∇∗∇ are eigenvectors
of σ of eigenvalue −1 and thus pure curvature expressions.

Remark 1.32. We notice that, whereas the different realizations of the space

of Weitzenböck formulas in (1.57) are valid for any G-generalized gradients,

in order to establish the equivalence between the skew-symmetric morphisms

F ∈ Homg(T ⊗ T,End(Vλ)) and the Weitzenböck formulas reducing to pure

curvature terms, it is important to consider those generalized gradients de-

fined by the Levi-Civita connection. It is the vanishing of the torsion of

the connection ∇ that implies the last equality in (1.59). In particular, this

means that the Levi-Civita connection restricts to the G-structure, so that

the minimal G-connection coincides with the Levi-Civita connection and the

holonomy group must be contained in G.
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In the more general setting of generalized gradients of G-structures, we have
already noticed in § 1.2.2 that in order to obtain “nice” properties (for in-
stance the conformal invariance of G-generalized gradients) one has to con-
sider the minimal connection. The following result assures that also in this
case, assuming some extra conditions, the skew-symmetric morphisms pro-
vide pure curvature terms.

Lemma 1.33. Let ∇G be the minimal connection of a G-structure and sup-

pose that it has totally skew-symmetric torsion T . We consider now the

space of Weitzenböck formulas given by (1.55), where the generalized gra-

dients are defined by the connection ∇G. Then, any Weitzenböck formula

F ∈ Homg(Λ
2T,End(Vλ)) with the property that F |g⊥ ≡ 0 induces a pure

curvature term as follows:

F ((∇G)2ϕ) =
1

2

∑
i,j

Fei⊗ej(R
G
ei,ej

ϕ),

where RG denotes the curvature tensor of the minimal connection ∇G.

Proof: If the torsion TG of the minimal connection of a G-structure is
totally skew-symmetric, then it may be identified with the intrinsic torsion
T , defined by (1.43) as a 1-form on M with values in the associated vector
bundle GM ×G g⊥. More precisely, when both are regarded as 3-forms on
M , they are related as follows: TG = −2T , so that TG may also be seen as
a 1-form with values in GM ×G g⊥.

We start as in (1.59) and, assuming that the frame {ei}i=1,n is parallel at the
point where the computations are made, we have:

F ((∇G)2ϕ) =
∑
i,j

F (ei ⊗ ej ⊗ (∇G
ei
∇G
ej
ϕ))

=
1

2

∑
i,j

F (ei ⊗ ej ⊗ (∇G
ei
∇G
ej
ϕ−∇G

ej
∇G
ei
ϕ))

=
1

2

∑
i,j

Fei⊗ej(R
G
ei,ej

ϕ−∇G
TG(ei,ej)

ϕ).

(1.60)



1.3. WEITZENBÖCK FORMULAS 43

It is thus enough to show that the last term above vanishes:∑
i,j

Fei,ej(∇G
TG(ei,ej)

ϕ) =
∑
i,j,k

F (ei, ej)(T
G(ei, ej, ek)∇G

ek
ϕ)

= 2
∑
i<j

∑
k

F (ei ∧ ej)(〈TG(ek), ei ∧ ej〉∇G
ek
ϕ)

= 2
∑
k

F (TG(ek))(∇G
ek
ϕ) = 0,

(1.61)

where for the second equality we used that TG is totally skew-symmetric and
the last equality follows from the assumption that F |g⊥ ≡ 0. �

An important example of a Weitzenböck formula F ∈ Homg(Λ
2T,End(Vλ))

satisfying the assumptions of Lemma 1.33, and thus providing a pure curva-
ture term, is given by the conformal weight operator Bλ

g , defined by (1.46).
Its importance is explained in the discussion below. We mention that in
the sequel we consider only Weitzenböck formulas defined by the Levi-Civita
connection, as in [63].

We now describe the recursion procedure given in [63] for constructing a basis
of the space W(Vλ) of all Weitzenböck formulas, such that the basis vectors
are eigenvectors of σ with alternating eigenvalues ±1. This recursion pro-
cedure makes essential use of a fundamental reduced Weitzenböck formula,
namely the one corresponding to the conformal weight operator B := Bλ

g ,
defined by (1.46) (where again we simplify notation and drop the indices λ
and g):

B : (Rn)∗ ⊗ V → (Rn)∗ ⊗ V, B(α⊗ v) =
n∑
i=1

e∗i ⊗ dλ(prg(ei ∧ α))v,

where {ei}1,n is an orthonormal basis of Rn and {e∗i }1,n the dual basis.

We recall that the eigenspaces of the conformal weight operator B are, except
for a special case, exactly the irreducible summands in the decomposition
(1.54) (see § 1.2.2). Its eigenvalues, the conformal weights, which we denoted
by wε, are explicitly computed and listed in Table 1.1.

From the definition of the conformal weight operator it is obvious that the
endomorphism B belongs to the (−1)-eigenspace of the twist σ and thus
induces a pure curvature term, B(∇2), on the vector bundle VλM . This
curvature term can be explicitly described using an orthonormal basis {Xα}
of g with respect to the scalar product induced on g ⊂ Λ2T . The curvature
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operator R : Λ2TM → gM associated to the Riemannian curvature tensor
R of M gives rise to the following global section of the universal enveloping
algebra bundle associated to the holonomy reduction:

q(R) :=
∑
α

XαR(Xα) ∈ Γ(U(g)M).

A direct computation yields then the so-called universal Weitzenböck formula
(see [63, Proposition 3.6]):

B(∇2) = −
∑
ε⊂λ

wε P
∗
ε Pε = q(R).

In many cases the conformal weight operator B generates all Weitzenböck
formulas. More precisely, the following algebra isomorphism holds if all con-
formal weights are pairwise different (see [63, Proposition 3.7]):

Endg(T ⊗ Vλ) ∼= C(B)/〈min(B)〉,

where min(B) denotes the minimal polynomial of the endomorphism B.

The conformal weight operator B is the first step of the recursion procedure.
The output of the recursion procedure is a sequence of B-polynomials pi(B),
whose first two terms are id and B and, more generally, p2i(B) is in the
(+1) and p2i+1 in the (−1)-eigenspace of σ. The coefficient of P ∗ε Pε in the
Weitzenböck formula corresponding to pi(B) is equal to pi(wε).

In order to describe precisely the recursion procedure, one has to consider
a further endomorphism of the space of Weitzenböck formulas, whose eigen-
spaces correspond to a finer decomposition of this space than (1.58). This is
the so-called classifying endomorphism K ofW(Vλ) = Homg(T ⊗T ⊗Vλ, Vλ),
defined by the precomposition with the g-invariant endomorphism:

T ⊗ T ⊗ Vλ → T ⊗ T ⊗ Vλ, a⊗ b⊗ v 7→ −
∑
α

Xαa⊗Xαb⊗ v,

where {Xα}α is an orthonormal basis of g. The essential property of K
is that it is compatible with the decomposition of the tensor product into
irreducible summands: T⊗T = ⊕αWα, in the following sense. The classifying
endomorphismK is diagonalizable on Homg(T⊗T,End(Vλ)) with eigenspaces
Homg(Wα,End(Vλ)) and the corresponding eigenvalues are explicitly given

by: κWα = 1
2
CasΛ2

Wα
− CasΛ2

T .
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The main result providing the recursion formula is now basically a direct
consequence of Fegan’s Lemma and Schur’s Lemma:

Theorem 1.34. (Recursion Formula, [63]) The actions of K, B and σ on

W(Vλ) by precomposition are related as follows:

K +B + σBσ = CasΛ2

T = − 2

n
dim(g). (1.62)

This result yields a recursion formula for K-eigenvectors and allows the con-
struction of a complete eigenbasis for W(Vλ) of σ.

Corollary 1.35. (Basic Recursion Procedure, [63]) Let F ∈ W(Vλ) be an

eigenvector of the twist σ and of the classifying endomorphism K: σ(F )=±F ,

K(F ) = κF . Then, the new Weitzenböck formula:

Fnew =

(
B − CasΛ2

T − κ
2

)
◦ F

is again a σ-eigenvector with σ(Fnew) = ∓1. In particular, it holds:

idnew = B, Bnew = B2 − 1

4
CasΛ2

g B.

Corollary 1.36. (Orthogonal Recursion Procedure, [63]) Let p0(B), . . . , pk(B)

be a sequence of polynomials obtained by the Gram-Schmidt orthonormaliza-

tion procedure to the powers id, B, . . . , Bk of the conformal weight operator

B. If all these polynomials are σ-eigenvectors and pk(B) is moreover a K-

eigenvector, then the orthogonal projection pk+1(B) of Bk+1 onto the orthog-

onal complement of the span of id, B, . . . , Bk is again a σ-eigenvector.

These recursion procedures are applied in [63] for G equal to one of the
groups SO(n), G2, Spin7 and, in an adapted version, for Kähler geometry,
G = U(n).

Apart from these recursion procedures, it turns out that the formula (1.62)
may be considered directly as a matrix equation for the unknown matrix of
the twist σ. This provided in [63] an explicit computation for the coefficients
σε,ε′ of the matrix of σ with respect to the basis given by the projections Πε:
σ(Πε) =

∑
ε′ σε,ε′ Πε′ , for manifolds of holonomy SO(n), U(n), G2 or Spin(7).

As noticed above, the twist σ classifies all reduced Weitzenböck formulas
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F ∈ W(Vλ). Consequently, the matrix expressions for the twist σ in the
basis {Πε}ε ofW(Vλ) makes it possible to check this condition effectively for
a given Weitzenböck formula.

A different approach to the description of all Weitzenböck formulas was pro-
vided by Y. Homma, [33]. His strategy is to study the algebraic structure
of the symbols of the operators and to show how they are controlled by the
enveloping algebra of the Lie algebra g. He relates Weitzenböck formulas
that reduce to pure curvature expressions to higher Casimir elements of the
enveloping algebra. This gives a universal and direct construction of the
coefficients aε and of the curvature actions in (1.56).

In the rest of this section we briefly present the main ideas of the approach
in [33], without getting into the technical details. In [33] are described the
reduced Weitzenböck formulas on Riemannian manifolds for the generalized
gradients defined by the Levi-Civita connection. The method developed in
[33] was then carried over by Y. Homma also to Kähler, hyper-Kähler and
quaternionic Kähler manifolds in [32], [31], respectively [34], using the same
main scheme, but specific computations for each group involved (U(n), Sp(n),
respectively Sp(1)·Sp(n)).

The key observation in [33] is that the formulas in the universal enveloping
algebra of the complexification of so(n), so(n,C), with certain symmetries
involving the so-called higher Casimir elements, yield reduced Weitzenböck
formulas on Riemannian manifolds. The intermediary step is constituted
by the so-called Clifford homomorphisms, which, on the one hand, are the
principal symbols of generalized gradients and, on the other hand, are related
to the higher Casimir elements. These relations may be visualized in the
following scheme, that we explain in the sequel:

higher Casimir
elements

oo // Clifford
homomorphisms

oo // reduced Weitzenböck
formulas

Casimir elements are defined as elements in the center Z of the enveloping
algebra U(so(n,C)). The center Z is characterized as the invariant subal-
gebra in U(so(n,C)) under the adjoint action of SO(n). An algebraic basis
of Z is constructed as follows. As in § 1.1, we denote by {ei}i=1,n a fixed
oriented orthonormal basis of Rn and denote by eij := ei ∧ ej, such that
{eij| 1 ≤ i < j ≤ n} constitute an orthonormal basis of so(n) ∼= Λ2Rn. For
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each positive integer q, we consider the following element in U(so(n,C)):

eqij =


∑

1≤i1,i2,...,iq−1≤n
eii1ei1i2 · · · eiq−1j, q ≥ 1,

δij, q = 0.
(1.63)

A straightforward computation shows that the traces cq :=
∑

i e
q
ii, for all

q ≥ 0, called higher Casimir elements, belong to the center Z. Notice that
the usual Casimir element defined by (1.25) corresponds to c2.

In the case of n = 2m + 1, the higher Casimir elements {cq}q generate the
center Z algebraically. In the case n = 2m, another Casimir element is
needed in order to generate Z, namely the so-called Pfaffian element , pf,
defined by:

pf :=
1

(2i)mm!

∑
σ∈S2m

sgn(σ)eσ(1)σ(2)eσ(3)σ(4) · · · eσ(2m−1)σ(2m),

where S2m is the permutation group of {1, . . . , 2m}. By Schur’s Lemma it
follows that every Casimir element acts as a constant on each irreducible
so(n)-representation. The eigenvalue of each cq and of the Pfaffian element
on an irreducible so(n)-representation of highest weight λ is denoted by cq(λ),
respectively pf(λ). These eigenvalues are explicitly computed only in terms
of the conformal weights of so(n) ( [33, Proposition 4.14]).

It turned out that many computations simplify if one considers the translated
Casimir elements defined by: c̃q :=

∑
i ẽ
q
ii, where ẽqij are given by the same

formula (1.63), but with translated elements ẽij = eij + n−1
2
δij (notice that

the same translation with n−1
2

is also considered in § 2.2 for the conformal
weight operator, see (2.9)).

The following result in [33] gives in a certain sense the algebraic counterpart
of the reduced Weitzenböck formulas:

Theorem 1.37 ( [33]). Any translated element ẽqij is a linear combination

of {ẽpji}p=0,...,q, whose coefficients are translated Casimir elements:

ẽqij = (−1)qẽqji −
1− (−1)q

2
ẽq−1
ji +

q−1∑
p=0

(−1)pc̃q−1−pẽ
p
ji. (1.64)

By analogy to the Dirac operator, whose principal symbol is given by the Clif-
ford multiplication, the principal symbols of generalized gradients are called
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in [33] Clifford homomorphisms. These Clifford homomorphisms satisfy the
identities corresponding to (1.56) at the symbol level. More precisely, at the
level of vector spaces, they are defined as follows: for any relevant weight ε
of λ, each vector a ∈ T defines a linear map

pε(a) : Vλ → Vλ+ε, pε(a)v := Πε(a⊗ v).

The adjoint operator of pε(a) with respect to the inner products on Vλ and
Vλ+ε is denoted by (pε(a))∗. The linear maps pε(a) and (pε(a))∗ are called the
Clifford homomorphisms associated to λ and ε. The orthogonal projection
Πε : T ⊗ Vλ → Vλ+ε is then realized as follows:

Πε(a⊗ v) =
n∑
i=1

(pε(ei))
∗pε(a)ei ⊗ v.

Clifford homomorphisms are related to the higher Casimir elements of the
enveloping algebra by the following result:

Proposition 1.38. ( [33]) The Clifford homomorphisms {pε}ε satisfy the

relations:

∑
ε⊂λ

(wε)
q

n∑
i=1

(pε(ei))
∗pε(ei) = cq(λ)idVλ , for each q ≥ 0, (1.65)

where ε ⊂ λ denotes the set of relevant weights of λ and {wε}ε are the

conformal weights of so(n). For n = 2m, the Pfaffian element satisfies a

similar relation:

∑
ε⊂λ

pf(λ+ ε)
n∑
i=1

(pε(ei))
∗pε(ei) = 2mpf(λ)idVλ . (1.66)

The Clifford homomorphisms are compatible with the action of SO(n) or
Spin(n), so that they extend to vector bundle homomorphisms. For each vec-
tor fieldX=

∑
iX

iei, the bundle homomorphism pε(X) ∈ Hom(VλM,Vλ+εM)
is defined by:

VλM 3 [e, v] 7→
∑
i

X i[e, pε(ei)v] ∈ Vλ+εM.
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Any generalized gradient Pε may be then expressed as follows:

Pε(ϕ) = Πε

(
n∑
i=1

e∗i ⊗∇eiϕ

)
=

n∑
i=1

pε(ei)∇eiϕ,

for any section ϕ ∈ Γ(VλM). The second order differential operator P ∗ε Pε is
realized as:

P ∗ε Pε = −
∑
i,j

(pε(ei))
∗pε(ej)∇2

ei,ej
, (1.67)

where ∇2
X,Y := ∇X∇Y −∇∇XY , for all vector fields X, Y .

In order to give the reduced Weitzenböck formulas, we need to consider also
the curvature actions in (1.56). The (translated) curvature endomorphisms
on the associated vector bundle VλM are defined by:

R̃q
λ :=

∑
i,j

λ(ẽqij)Rλ(ei, ej), for each q ≥ 1,

where λ is canonically extended to a representation of the enveloping algebra
and Rλ denotes the curvature tensor of the connection induced on VλM by
the Levi-Civita connection: Rλ(X, Y ) := ∇2

X,Y −∇2
Y,X , for any vector fields

X, Y . When n is even, there is also a curvature endomorphism related to
the Pfaffian element:

Rpf
λ :=

∑
i,j

λ(pfij)Rλ(ei, ej),

where {pfij}i,j=1,2m are the elements of the enveloping algebra defined by:

pfij :=


pf, i = j,

(−1)i+j 2m
(2i)mm!

∑
σ∈Sij

2m

sgn(σ)eσ(1)σ(2) · · · eσ(2m−1)σ(2m), i < j,

−pfji, i > j,

where Sij
2m is the permutation group of {1, . . . , 2m} \ {i, j}.

The main result (see [33, Theorem 7.1]) now essentially follows from the for-
mula (1.64) in the enveloping algebra, using the relationship between higher
Casimir elements and Clifford homomorphisms given by (1.65) and (1.66) and
also the expression (1.67) for the operators occurring in reduced Weitzenböck
formulas.
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Theorem 1.39. ( [33]) Let {Pε}ε⊂λ be the generalized gradients acting on

sections of VλM . Then all (independent) reduced Weitzenböck formulas are

given as follows:

∑
ε⊂λ

{
2q−1∑
p=0

c̃2q−1−p(λ)(−w̃ε)p
}
P ∗ε Pε = R̃2q

λ , for q ≥ 1,

and, when n is even, there is also the following reduced Weitzenböck formula:∑
ε⊂λ

2(pf(λ)− pf(λ+ ε))P ∗ε Pε = Rpf
λ ,

where {w̃ε}ε are the translated conformal weights of so(n), which are explicitly

given by (2.10).



Chapter 2

Elliptic Operators and Kato

Inequalities

On a Riemannian manifold, generalized gradients naturally give rise to second
order differential operators, by composing each generalized gradient with its
formal adjoint. In the previous chapter, § 1.3, we considered linear combina-
tions of these operators that sum up to a zero-order differential operator and
provide Weitzenböck formulas. In this chapter we analyze the other interest-
ing extreme case, namely when this construction yields second order elliptic
differential operators. The main result here is a new proof of Branson’s clas-
sification, [13], of such elliptic operators for generalized gradients between
vector bundles with structure group SO(n) or Spin(n). The method we use
for the proof is completely different from the one in [13], which seems to be
specific for these two structure groups. The approach we give is mainly based
on the representation theory of the Lie algebra so(n) and on the relationship
between ellipticity and Kato constants, which we explain in § 2.2. The argu-
ments suggest that they should carry over to get similar classification results
for generalized gradients of G-structures.

Firstly we present the general setting and state Branson’s classification re-
sult. Then we turn our attention to Kato inequalities and their relationship
to ellipticity. An essential tool for our proof is the explicit computation
of the optimal Kato constants in terms of representation theoretical data,
which was done by D. Calderbank, P. Gauduchon and M. Herzlich, [18]. The
starting point in [18] is the list of elliptic second order differential operators
provided by Branson’s classification. For each such operator is given an ex-
plicit formula for its optimal Kato constant. Our main observation is that

51
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this argument may be reversed and we recover the ellipticity using this direct
computation, as we show in § 2.3.

2.1 Ellipticity of Generalized Gradients

The purpose of this section is to present Branson’s classfication result of
second order elliptic operators that naturally arise from generalized gradients.
We begin by briefly explaining the notions of ellipticity needed in the sequel
and analyze the main properties of these operators given as linear combina-
tions of generalized gradients composed with their formal adjoints. Then, in
Theorems 2.12 and 2.13 we state the classification result of Th. Branson, [13],
of all operators of this type which are elliptic. In particular, this classification
shows that ellipticity is attained by assembling surprisingly few generalized
gradients. From the construction and the arguments used it follows that
the classification is valid for all Riemannian manifolds or (if a spin structure
enters) Riemannian spin manifolds.

Let us first recall the definition of the principal symbol of a differential
operator, which is a simple invariant way to refer to its highest order part. If
E and F are smooth vector bundles over the manifold M and P :Γ(E)→Γ(F )
is a linear differential operator of order k, then at every point x ∈M and for
every ξ ∈ T ∗xM one can associate an algebraic object, the principal symbol
σξ(P ;x), or simply σξ(P ). If, in local coordinates, Pu =

∑
|α|≤k aα(x)∂αu,

where aα are dim(F )× dim(E) matrices, then σξ(P ;x) is the matrix

σξ(P ;x) = ik
∑
|α|≤k

aα(x)ξα,

with the notation ξα =
∏

j ξ
αj and i =

√
−1. It is usually convenient to

delete the factor ik when M is a real manifold, as it is in our context. To
define the principal symbol invariantly, let Ex and Fx be the fibers of E and
F at x ∈M , let u ∈ Γ(E) with u(x) = z and ϕ ∈ C∞(M) such that ϕ(x) = 0,
dϕ(x) = ξ, then σξ(P ;x) : Ex → Fx is the following endomorphism

σξ(P ;x)z =
ik

k!
P (ϕku)|x. (2.1)

Example 2.1. On a vector bundle E over a manifold M , any connection

∇ : Γ(E)→ Γ(T∗M⊗ E) satisfies ∇(ϕu) = dϕ ⊗ u + ϕ∇u, for any sections
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ϕ ∈ C∞(M), u ∈ Γ(E). Consequently, the principal symbol of ∇ is given by:

σξ(∇)u = iξ ⊗ u. Alternatively, in the convention without the coefficient ik,

the principal symbol is just the identity: σ = id : Γ(T∗M⊗E)→ Γ(T∗M⊗E).

It follows that the principal symbol of any G-generalized gradient, which

is defined by (1.17) as a projection of a G-connection onto an irreducible

subbundle: Pε := P∇
λ

ε := Πε ◦ ∇λ, is given exactly by the projection Πε

which defines it, σPε = Πε : Γ(T∗M⊗ VλM)→ Γ(Vλ+εM).

Definition 2.2. A linear differential operator P : Γ(E)→ Γ(F ) is elliptic at

a point x ∈M if the symbol σξ(P ;x) is an isomorphism for every real section

ξ ∈ T∗xM \ {0}. P is elliptic if it is elliptic at all points x ∈M .

Example 2.3. Classical examples of elliptic operators are ∂̄, the Cauchy-

Riemann operator acting on complex-valued functions (or more general on

forms of type (0, q) on a complex manifold), which is a first order operator

and the Laplacian ∆ acting on p-forms, which is of second order. We shall

come back to these examples later on, as they are special cases of elliptic

operators obtained from generalized gradients.

Ellipticity is an algebraic property of a differential operator which implies
analytic conclusions. The theory of linear elliptic operators is very important
and highly-developed, but in our context we consider a special case of elliptic
operators and, as we shall see, without loss of generality, the problem may
be reduced to analyzing first order differential operators. Obviously, from
Definition 2.2, a necessary condition for the existence of an elliptic operator
between two vector bundles is that they have the same rank. So that in
order to talk about the ellipticity of generalized gradients, which act between
irreducible vector bundles of (usually) different ranks, we need to consider
the following notion of ellipticity.

Definition 2.4. A linear differential operator P : Γ(E)→ Γ(F ) is underde-

termined elliptic at a point x ∈M if its symbol σξ(P ;x) is surjective for every

real section ξ ∈ T∗xM \ {0}. P is overdetermined (or injectively) elliptic at a

point x ∈M if σξ(P ;x) is injective for every real section ξ ∈ T∗xM\{0}. P is

called (injectively) strongly elliptic if σξ(P ;x) is injective for every complex

cotangent vector ξ ∈ (T∗xM)C \ {0}.

Remark 2.5. Since the principal symbol of a G-generalized gradient Pε is

given by the projection Πε defining it, the above notions of ellipticity may be

easily rephrased in terms of this projection as follows: Pε is underdetermined
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(respectively overdetermined) elliptic if an only if Πε ◦ (ξ ⊗ ·) : Vλ → Vλ+ε is

surjective (respectively injective), for each nonzero section ξ ∈ Γ(T∗xM).

Thus, the generalized gradient Pε is (strongly) injectively elliptic if and only

if Πε is non-vanishing on each decomposable element, i.e.

Πε(ξ ⊗ v) = 0⇒ ξ ⊗ v = 0,

where ξ ∈ Γ(T∗M) (respectively ξ ∈ Γ((T∗M)C)) and v ∈ Γ(VλM).

Remark 2.6. The property of an operator to be strongly elliptic obviously

implies that it is elliptic. The converse is not true and a counterexample is

provided by the Dirac operator D on a spin manifold, whose principal symbol

is given by the Clifford multiplication, σξ(D)(ϕ) = ξ · ϕ.

The general setting considered in the sequel is the following: (M, g) is a
Riemannian (spin) manifold, λ is a dominant weight of so(n) and VλM is the
associated vector bundle to the irreducible representation of highest weight
λ. For any subset I of the set of relevant weights of λ, which is completely
determined by the selection rule in Lemma 1.1, denote by PI the following
differential operator:

DI :=
∑
ε∈I

P ∗ε Pε , (2.2)

where Pε := Πε ◦∇ is the generalized gradient. This is a simplified notation,
where the highest weight λ is omitted, but may be easily deduced from the
context. It is then natural to ask

Question 2.7. Given λ, for which subsets I is the operator DI elliptic?

The complete answer to this question was given by Th. Branson, [13]. In this
section we restate his result in our notation and in § 2.3 we give a new proof
of it.

First notice that Question 2.7 regarding second order differential operators
may be reduced to first order ones. If we denote by PI the following first
order operator:

PI :=
∑
ε∈I

Pε, (2.3)

then DI = P ∗I PI and the following equivalence holds:

Lemma 2.8. The operator DI is elliptic if and only if PI is injectively elliptic.
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This equivalence is a simple consequence of the behavior of principal symbols,
namely that: σP ∗I PI = (σPI )

∗ ◦ σPI , where (σPI )
∗ is the Hermitian adjoint of

σPI . In the sequel we shall shortly say that PI is elliptic instead of injectively
elliptic.

It follows that DI is elliptic if and only if the projection

ΠI :=
∑
ε∈I

Πε : T ⊗ Vλ → ⊕
ε∈I
Vλ+ε (2.4)

is injective when restricted to the set of decomposable elements in T ⊗ Vλ.
Thus, the ellipticity of the operators DI is reduced to a question about the
representation theory of so(n), without reference to any particular manifold.
This remark is the starting point in the original proof given by Th. Branson
for the classification of elliptic Stein-Weiss operators. This remark also shows
that, in contrast to the situation in § 1.3, where the connection ∇ defining
the generalized gradients is the Levi-Civita connection, here ∇ can be any
metric connection.

The fact that each projection in (2.4) is onto a different direct summand has
the following straightforward, but important consequences:

(1) If instead of the operators PI given by (2.4), we consider, more general-
ly, operators of the form

∑
ε∈I aεPε with nonzero coefficients, then such an

operator is elliptic if and only if PI is. Thus, the ellipticity only depends on
the subset I and not on the coefficients, unlike in the case of Weitzenböck
formulas, see § 1.3, where these coefficients play a very important role.

(2) If I1 ⊂ I2 and PI1 is elliptic, then also PI2 is elliptic. Hence the interesting
operators are the minimal elliptic operators PI , i.e. such that there is no
proper subset of I which still defines an elliptic operator. It is this set of
minimal elliptic operators that was determined by Th. Branson. In a certain
sense, the bigger the set I is, the greater is the probability for PI to be elliptic.
For instance, if I is the whole set of weights of the standard representation,
then the operator is the rough Laplacian ∇∗∇, which is, of course, elliptic.

The following results concerning Question 2.7 have been shown prior to
Branson’s classification. Recall that the Cartan summand of two irreducible
representations λ and µ is the subrepresentation of λ ⊗ µ of highest weight
λ+ µ.

Proposition 2.9 (J. Kalina, A. Pierzchalski and P. Walczak, [37]). For

any irreducible representation λ, the projection onto the Cartan summand of
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τ ⊗ λ defines a strongly elliptic first order differential operator, also called

top gradient, and this is the only generalized gradient with this property.

In fact, in [37], J. Kalina, A. Pierzchalski and P. Walczak proved a more
general version of Proposition 2.9, for the irreducible decomposition of the
tensor product of two irreducible representations of any compact semisimple
Lie group: among all operators defined by projections from a tensor product
to its irreducible subbundles, only the one given by the projection onto the
Cartan summand is strongly elliptic.

The proof of Proposition 2.9 in [37] uses an approximation of the highest
weight vector with converging sequences in order to show that the top gra-
dient is strongly elliptic, while the other implication is more or less straight-
forward. Namely, if v ∈ Vλ and w ∈ Vµ are respectively the highest weight
vectors, then v ⊗w is the highest weight vector in Vλ ⊗ Vµ and thus belongs
to the Cartan summand. Then v⊗w is a nontrivial element in the kernel of
any other projection different from the one onto the Cartan summand. More-
over, this shows that the operator defined by any other set of projections not
containing the Cartan projection is not strongly elliptic.

For example, from Proposition 2.9, it follows that the twistor operator T
acting on p-forms (see Example 1.3) is strongly elliptic.

Proposition 2.10 (E. Stein and G. Weiss, [64]). For any irreducible re-

presentation λ, the projection onto the complement of the Cartan summand,

i.e. when the set I is equal to the whole set of relevant weights except for the

highest weight of τ , defines an elliptic operator PI .

Example 2.11. In Example 1.3 the complement of the Cartan projection

defines the operator P = d + δ, which, by Proposition 2.10, is (injectively)

elliptic and, by the above construction, just gives rise to the Laplacian acting

on p-forms: ∆ = dδ + δd = (d+ δ)∗(d+ δ).

Branson’s classification essentially says that the Laplacian is not a special
case, but the generalized gradients usually break up into pairs or singletons
which are elliptic. Before stating it, we give a graphical interpretation of the
classical selection rule in Lemma 1.1 for the special orthogonal group, which
can be found in [63] and simplifies the task of finding the relevant weights.
In our context the graphical interpretation is helpful to better visualize the
classification of elliptic operators, which turns out to be strongly related to
the selection rule.
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First we consider the case of SO(n) or Spin(n) with n odd, n = 2m+1. We use
the same notation as above: {±ε1, . . . ,±εm, 0} are the weights of the defining
complex representation τ of SO(n) and Vλ is the irreducible representation of
highest weight λ = (λ1 ≥ · · · ≥ λm−1 ≥ λm ≥ 0) ∈ Zm ∪ (1

2
+ Z)m, where λi

are the coordinates of λ with respect to the orthonormal basis {ε1, . . . , εm}.
The decision criterion given in Lemma 1.1 for the decomposition of the tensor
product τ ⊗ λ can be read in the following diagram featuring the weights of
τ and labeled boxes. A weight ε is relevant for an irreducible representation
λ if and only if the coordinates λ1, . . . , λm of λ satisfy all the inequalities
labeling the boxes containing ε.

Diagram 2.1: Selection Rule for SO(2m+ 1) or Spin(2m+ 1)

ε1

λ1>λ2

−ε1

ε2

λ2>λ3

−ε2

ε3 ··········
λm−2>λm−1

−εm−2

εm−1

λm−1>λm

−εm−1

εm

λm>0

−εm
0

λm≥1

Theorem 2.12 (Th. Branson, [13]). Let (M, g) be a Riemannian (spin)

manifold of odd real dimension n = 2m + 1 and VλM the associated vector

bundle to an irreducible SO(n)- (or Spin(n))-representation of highest weight

λ. For any subset I of the set of relevant weights of λ, the corresponding

operator PI =
∑

ε∈I Πε ◦ ∇ is a minimal elliptic operator if and only if I is

one of the following sets:

1. {ε1} (strongly elliptic),

2. {0}, if λ is properly half-integral,

3. {−εi, εi+1}, for i = 1, . . . ,m− 1,

4. {−εm, 0}, if λ is integral.
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For the case of SO(n) or Spin(n) with n even, n = 2m, there is a similar
graphical interpretation of the relevant weights of an irreducible representa-
tion λ = (λ1 ≥ · · · ≥ λm−1 ≥ |λm|) ∈ Zm ∪ (1

2
+ Z)m, where again λi are the

coordinates of λ with respect to the orthonormal basis {ε1, . . . , εm}.

Diagram 2.2: Selection Rule for SO(2m) or Spin(2m)

ε1

λ1>λ2

−ε1

ε2

λ2>λ3

−ε2

ε3 ··········
λm−2>λm−1

−εm−2

εm−1

λm−1>λm

−εm−1

εm

λm−1>−λm−εm

Theorem 2.13 (Th. Branson, [13]). Considering the same assumptions as

in Theorem 2.12, but now on a Riemannian (spin) manifold of even real

dimension n = 2m, the operator PI =
∑

ε∈I Πε ◦∇ is minimal elliptic if and

only if I is one of the following sets:

1. {ε1} (strongly elliptic),

2. {−εm}, if λm > 0,

3. {εm}, if λm < 0,

4. {−εi, εi+1}, for i = 1, . . . ,m− 2,

5. {−εm−1, εm}, if λm ≥ 0,

6. {−εm−1,−εm}, if λm ≤ 0.

Theorems 2.12 and 2.13 give a complete answer to the Question 2.7, by restat-
ing the results for the second order differential operators DI = P ∗I PI . Note
that in the list of minimal elliptic operators no operator P ∗ε Pε appears twice,
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except for P ∗−εm−1
P−εm−1

in the case when n is even and λm = 0 6= λm−1. The
list is also exhaustive, i.e. each P ∗ε Pε occurs, except for n odd and λ properly
half-integral, when P ∗−εmP−εm does not occur in the list. Thus, apart from
these exceptions, the subsets I defining the minimal elliptic operators form
a partition of the set of weights of the standard representation τ .

Remark 2.14. A priori it is not clear that the ellipticity of the differential

operator DI : VλM → VλM defined by a certain subset I is independent of

the given highest weight λ (of course here are considered only the highest

weights for which all the elements in I are relevant weights). This follows

from Theorems 2.12 and 2.13 and no other direct way of proving it is known.

Our aim is to give a new proof of Theorems 2.12 and 2.13 in § 2.3, which
we hope is better suited as a starting point for an analogous classification
of elliptic operators defined by G-generalized gradients for the subgroups
considered in (1.6). For this reason we only mention here for the proof
of these theorems, that the arguments used by Th. Branson involve tools
and techniques of harmonic analysis, explicit computations of the spectra of
generalized gradients on the sphere and a strong irreducibility property of
principal series representations of the group Spin0(n + 1, 1). For details we
refer the reader to Th. Branson’s paper [13].

Remark 2.15. The GL(n)- and O(n)-generalized gradients which are ellip-

tic have been studied by J. Kalina, B. Ørsted, A. Pierzchalski, P. Walczak

and G. Zhang, [36], in an elementary way using the language of Young dia-

grams. However, they find only the top gradient and miss the other elliptic

generalized gradients in the list of Branson, because they restrict to a certain

special class, the so-called “up gradients”, as pointed out in [13].

2.2 Optimal Kato Constants

Kato inequalities are estimates in Riemannian geometry, which have proved
to be a powerful technique for linking vector-valued and scalar-valued prob-
lems in analysis on manifolds. The classical Kato inequality may be stated
as follows. For any section ϕ of a Riemannian or Hermitian vector bundle E
endowed with a metric connection ∇ over a Riemannian manifold (M, g), at
any point where ϕ does not vanish, the following inequality holds:

|d|ϕ|| ≤ |∇ϕ|. (2.5)
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This estimate is a direct consequence of the Schwarz inequality applied to the
identity d(|ϕ|2) = 2〈∇ϕ, ϕ〉, which is given by the fact that the connection
is metric. Thus, equality is attained at a point x ∈M if and only if ∇ϕ is a
multiple of ϕ at x, i.e. if there exists a 1-form α such that

∇ϕ = α⊗ ϕ. (2.6)

Whenever (2.6) has no solutions in the corresponding geometric setting, there
exist refined Kato inequalities, which are of the form

|d|ϕ|| ≤ k|∇ϕ|, (2.7)

with a constant k < 1. For example, such estimates occur in Yau’s proof of
the Calabi conjecture or in the Bernstein problem for minimal hypersurfaces
in Rn. It turns out that the knowledge of the best constant k plays a key role
in such proofs. For a survey of these techniques see the introductory part
in [18] and the references therein.

The principle underlying the existence of refined Kato inequalities was first
remarked by J.-P. Bourguignon, [10]. He pointed out that in all geometric
settings where refined Kato inequalities occured, the sections under consider-
ation are solutions of a natural linear first order injectively elliptic system and
that in such a situation the equality case in (2.5) cannot be achieved, except
at points where ∇ϕ = 0. To see this, suppose that equality is attained at a
point by a solution ϕ of such an elliptic system. At that point, ∇ϕ = α⊗ϕ,
for some 1-form α. A natural first order operator is one of the form PI , that
we considered in § 2.1, i.e. is given by a projection ΠI of the connection ∇
onto a natural subbundle of T∗M⊗E. Hence 0 = ΠI(∇ϕ) = ΠI(α⊗ϕ) and,
by the ellipticity of PI , it follows that α ⊗ ϕ = 0, so ∇ϕ = 0. It thus turns
out that there is a strong relationship between the ellipticity of the operators
PI and the existence of refined Kato inequalities for sections in their kernel.

D. Calderbank, P. Gauduchon and M. Herzlich, [18], proved that there exists
indeed a refined Kato inequality for sections in the kernel of any natural
first order injectively elliptic operator PI , which acts on sections of a vector
bundle associated to an irreducible SO(n) or Spin(n)-representation. They
computed the optimal Kato constant kI , which depends only on the choice
of the elliptic operator, in terms of representation-theoretical data. More
precisely, the formulas for the optimal Kato constants involve only the con-
formal weights of the generalized gradients, which are explicitly known (see
e.g. Table 1.1).
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In this section we present the main steps in the computation of the general
expression for the optimal Kato constants, see [18].

The general setting is the same as in § 2.1: on a Riemannian (spin) mani-
fold (M, g), VλM is the vector bundle associated to the irreducible SO(n)-
respectively Spin(n)-representation of highest weight λ = (λ1, . . . , λm); for
any subset I of the set of relevant weights of λ, PI is the operator defined by
(2.3) acting on sections of VλM . The aim is to show that for each operator
PI which is injectively elliptic, there exists an optimal constant kI < 1 such
that the refined Kato inequality holds:

|d|ϕ|| ≤ kI |∇ϕ|, for all ϕ ∈ ker(PI), (2.8)

and to give a formula for kI , in terms of the conformal weights.

In Definition 1.13 we introduced the conformal weight operator B (we shall
omit from now on the highest weight λ), whose eigenvalues, the conformal
weights, are given by (1.29). The key property used in the sequel is that the
conformal weights are strictly ordered (see Remark 1.16), with the exception
of the case when n is even, n = 2m, λm = 0 and wm,+ = wm,−, which is due
to the fact that the two corresponding SO(n)-irreducible representations are
exchanged by a change of orientation, while their sum is an irreducible O(n)-
representation. In this exceptional case we consider in the sequel these two
representations as one summand, so that the conformal weights of distinct
projections are always different from each other.

It turns out that the computations are simplified if one considers the trans-
lated conformal weight operator :

B̃ : (Rn)∗ ⊗ Vλ → (Rn)∗ ⊗ Vλ, B̃ := B +
n− 1

2
Id, (2.9)

whose eigenvalues are the translated conformal weights , for i = 1, . . . ,m:

w̃0(λ) = 0,

w̃i,+(λ) = λi − i+
n+ 1

2
,

w̃i,−(λ) = −λi + i− n− 1

2
,

(2.10)

which obviously have the same strict ordering as the conformal weights.
These translated conformal weights have the advantage that the virtual
weights whose relevance depends on the same condition on λ, i.e that are
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in the same box in the Diagrams 2.1 and 2.2, sum up to zero if that con-
dition is not fulfilled. For instance, if λi = λi+1, then the weights −εi and
εi+1 are not relevant for λ and their corresponding conformal weights satisfy:
w̃i,−(λ) + w̃i+1,+(λ) = 0. This cancellation property for non-relevant weights
is useful for the forthcoming computations.

The strict ordering of the translated conformal weights allows us to rename
them (and the corresponding summands in the decomposition of the tensor
product (Rn)∗ ⊗ Vλ) and to index them in a decreasing ordering as follows:

(Rn)∗ ⊗ Vλ =
N
⊕
i=1
Vi, (2.11)

with
w̃1(λ) > w̃2(λ) > · · · > w̃N(λ),

where N is the number of summands in the decomposition, i.e. the number
of relevant weights for λ. This reordering of the indices of the conformal
weights is then carried over to the corresponding weights of the standard
representation and thus, the subsets I defining the operators PI are subsets
of {1, . . . , N}.

Remark 2.16. Notice that, in the above notation, the weights which are in

the same box in Diagram 2.1 and 2.2 are pairs of type {i, N + 2− i} and the

list of minimal elliptic operators of the form PI established by Th. Branson

(see Theorems 2.12 and 2.13) is the following:

1. P{1};

2. P{`+1} if N = 2` and λm 6= 0;

3. P{`} if N = 2`− 1 and λ is properly half-integral;

4. P{i,N+2−i} for i = 2, . . . , `− 1;

5. P{`,`+2} if N = 2`;

6. P{`,`+1} if N = 2`− 1 and λ is integral.

This shows that the list of the minimal elliptic operators depends only on

the ordering of the conformal weights.
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The following result reduces the search for Kato inequalities to an algebraic
problem. By Î we denote the complement of I in {1, . . . , N}.

Lemma 2.17. Let I be a subset of {1, . . . , N} and PI :=
∑

i∈I Πi ◦ ∇ the

corresponding operator. For any section ϕ in the kernel of PI and at any

point where ϕ does not vanish, the following inequality holds:

|d|ϕ|| ≤ kI |∇ϕ|, (2.12)

where the constant kI , called Kato constant, is defined by

kI := sup
|α|=|v|=1

|ΠÎ(α⊗ v)| =
√

1− inf
|α|=|v|=1

|ΠI(α⊗ v)|2, (2.13)

where α ∈ (Rn)∗ and v ∈ Vλ. Furthermore, equality holds at a point if and

only if ∇ϕ = ΠÎ(α⊗ ϕ) for a 1-form α at that point, such that:

|ΠÎ(α⊗ ϕ)| = kI |α⊗ ϕ|.

The proof of Lemma 2.17 is based, as for the classical Kato inequality, on
purely algebraic refined Schwarz inequalities of the form:

|〈Φ, v〉|
|v|

≤ k|Φ|, (2.14)

where Φ ∈ (Rn)∗⊗Vλ and v ∈ Vλ. The inequality (2.12) is obtained by lifting
(2.14) to the associated vector bundles and putting v = ϕ and Φ = ∇ϕ for a
section ϕ ∈ Γ(VλM).

The first step in the minimization process for the computation of the Kato
constant kI , given by (2.13), is to use the classical Lagrange interpolation,
in order to express each projection Πj, for some j ∈ {1, . . . , N}, as follows:

Πj =
∏
k 6=j

B̃ − w̃kId
w̃j − w̃k

=

N−1∑
k=0

w̃N−1−k
j Ak∏

k 6=j

(w̃j − w̃k)
,

where Ak :=
∑k

`=0(−1)`σ`(w̃)B̃k−` and σi(w̃) is the i-th elementary symme-
tric function in the translated conformal weights w̃1, . . . , w̃N . By products
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(or powers) of endomorphisms we mean their composition. It further follows
that the norms of the projections are given by:

|Πj(α⊗ v)|2 = 〈Πj(α⊗ v), α⊗ v〉 =

N−1∑
k=0

w̃N−1−k
j 〈Ak(α⊗ v), α⊗ v〉∏

k 6=j

(w̃j − w̃k)
. (2.15)

Formula (2.15) expressing the N quantities |Πj(α⊗v)|2 in terms of the other
N quantities 〈Ak(α ⊗ v), α ⊗ v〉 is the key formula of the method in [18].
The main technical step is based on the one hand, on a precise expression for
the traces of the operators B̃j (which follows from the relationship between
translated conformal weights and higher order Casimir operators) and, on
the other hand, is based on a result due to Diemer and G. Weingart, who
proved that each family of polynomials in B̃ satisfying some special recur-
rence formula involving their traces has nice symmetry properties. We refer
to [18] for the details and only state here the output of this technical analysis:

Lemma 2.18. If N is odd, then 〈A2j+1(α⊗ v), α⊗ v〉 = 0, for each j.

If N is even, then 〈A2j+1(α⊗v), α⊗v〉+ 1
2
〈A2j(α⊗v), α⊗v〉 = 0, for each j.

Lemma 2.18 shows that in the expression (2.15) of |Πj(α ⊗ v)|2 half of the
N quantities 〈Ak(α ⊗ v), α ⊗ v〉 vanish. Thus, each |Πj(α ⊗ v)|2 is given as
an affine function in the remaining variables, that we denote as follows:

Qk := (−1)k−1〈A2k−2(α⊗v), α⊗v〉, k = 2, . . . , `, for N = 2`−1 or N = 2`.

Notice that the first variable would be just constant, Q1 = 1, since A0 = Id.

The equalities (2.15), for j = 1, . . . , N , then become for N = 2`− 1:

|Πj(α⊗ v)|2 =

w̃
2(`−1)
j −

∑̀
k=2

(−1)kw̃
2(`−k)
j Qk∏

k 6=j

(w̃j − w̃k)
=: πj(Q2, . . . , Q`), (2.16)
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and for N = 2`:

|Πj(α⊗ v)|2 =

(
w̃j −

1

2

) w̃
2(`−1)
j −

∑̀
k=2

(−1)kw̃
2(`−k)
j Qk∏

k 6=j

(w̃j − w̃k)
=: πj(Q2, . . . , Q`).

(2.17)

Hence, the problem of estimating inf
|α|=|v|=1

|ΠI(α⊗ v)|2 (for a subset I corres-

ponding to an elliptic operator) is reduced to minimizing this affine function
over the admissible region in the (`−1)-dimensional affine space. The admis-
sible region consists of the points Q of coordinates {Qk}k=2,`, such that there
exist unitary vectors α ∈ (Rn)∗ and v ∈ Vλ with the property that for each
k = 2, . . . , ` the following relation holds: Qk = (−1)k−1〈A2k−2(α⊗ v), α⊗ v〉.
Thus, the search for Kato constants mainly reduces to linear programming.

The admissible region is contained in a convex in the Q-space, since |Πj(α⊗
v)|2 = πj(Q) and each norm is non-negative and smaller than 1, if Q is
an admissible point. More precisely, from (2.16) it follows that the point
Q = (Q2, . . . , Q`) is in the convex region P in R`−1 defined by the following
system of linear inequalities for N odd, N = 2`− 1:

∑̀
k=2

(−1)j+kw̃
2(`−k)
j Qk ≥ (−1)jw̃

2(l−1)
j , j = 1, . . . , 2`− 1, (2.18)

with equality if and only if |Πj(α ⊗ v)|2 = πj(Q) = 0. For N even, N = 2`,
the system of linear inequalities is similarly obtained from (2.17), taking into
account that the sign of the denominator in (2.17) is (−1)j−1:

∑̀
k=2

(−1)j+kw̃
2(`−k)
j Qk ≥ (−1)jw̃

2(l−1)
j , 1 ≤ j ≤ `,∑̀

k=2

(−1)j+kw̃
2(`−k)
j Qk ≤ (−1)jw̃

2(l−1)
j , `+ 1 ≤ j ≤ 2`,

(2.19)

and equality is attained if and only if |Πj(α⊗ v)|2 = πj(Q) = 0.

The convex region P defined by the system (2.18), respectively (2.19), turns
out to have the following important properties, as explained in the sequel:
it is compact, hence polyhedral, and one may identify its vertices as corre-
sponding to the maximal non-elliptic operators. Since the norms are affine
in the Qk’s, it then suffices to minimize over the set of vertices.
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For a subset J ⊂ {1, . . . , N} with ` − 1 elements, the intersection of the
corresponding hyperplanes is the point denoted by QJ :

{QJ} := ∩
j∈J
{πj(Q2, . . . Q`) = 0}, (2.20)

whose coordinates are given by the elementary symmetric functions in the
squares of the translated conformal weights: QJ

k = σk−1

(
(w̃2

j )j∈J
)
. At the

point QJ , the affine functions πj, defined by (2.16) for N = 2`− 1, take the
values

πj(Q
J) =

∏
k∈J

(w̃2
j − w̃2

k)∏
k 6=j

(w̃j − w̃k)
=

∏
k∈J,k 6=j

(w̃j + w̃k)∏
k∈Ĵ ,k 6=j

(w̃j − w̃k)
εj(J), (2.21)

where εj(J) = 0 if j ∈ J and 1 otherwise. Similarly, for N = 2`, the affine
functions πj defined by (2.17) take the values:

πj(Q
J) =

(
w̃j −

1

2

)∏
k∈J

(w̃2
j − w̃2

k)∏
k 6=j

(w̃j − w̃k)
=

(
w̃j −

1

2

) ∏
k∈J,k 6=j

(w̃j + w̃k)∏
k∈Ĵ ,k 6=j

(w̃j − w̃k)
εj(J).

(2.22)
The expression for the coordinates of QJ follows from the fact that the affine
function πj is obtained by evaluating a polynomial independent of j on w̃2

j and
that the coefficients of a polynomial are given by the elementary symmetric
functions of the roots.

In the case N = 2`− 1, the compactness of the convex region P is obtained
by considering the subsets J = {2, . . . , `} and J = {` + 1, . . . , 2` − 1}. The
inverse of the Vandermonde system of inequalities (2.18) for J = {2, . . . , `}
has non-negative entries, while for J = {`+ 1, . . . , 2`− 1} it has non-positive
entries and one gets:

Proposition 2.19. If N = 2` − 1, then for k = 2, . . . , ` the following in-

equalities hold:

σk−1(w̃2
2, . . . , w̃

2
` ) ≤ Qk ≤ σk−1(w̃2

`+1, . . . , w̃
2
2`−1).

The lower bounds are all attained if and only if Π{2,...,`}(α ⊗ v) = 0, while

the upper bounds are all attained if and only if Π{`+1,...,2`−1}(α ⊗ v) = 0.

Both bounds are sharp if n is even or if n is odd and λ is integral, since
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the operators P{2,...,`} and P{`+1,...,2`−1} are not injectively elliptic. In the case

when n is odd and λ is properly half-integral, the above lower bound is not

sharp, since P{2,...,`} is elliptic.

In the case N = 2`, the compactness of the convex region is analogously
obtained by taking the subsets J = {2, . . . , `} and J = {` + 2, . . . , 2`}.
Again the inverse of the Vandermonde systems have all entries of the same
sign and one gets:

Proposition 2.20. If N = 2`, then for k = 2, . . . , ` the following inequalities

hold:

σk−1(w̃2
2, . . . , w̃

2
` ) ≤ Qk ≤ σk−1(w̃2

`+2, . . . , w̃
2
2`).

The lower bounds are all attained if and only if Π{2,...,`}(α ⊗ v) = 0, while

the upper bounds are all attained if and only if Π{`+2,...,2`}(α⊗ v) = 0. These

bounds are always sharp by the non-ellipticity of P{2,...,`} and P{`+2,...,2`}.

As there exists a set of minimal elliptic operators, there also exists a set of
maximal non-elliptic operators, i.e. the set of operators PI which are non-
elliptic and I has maximal cardinality. Theorems 2.12 and 2.13 provide us
also the set of maximal non-elliptic operators, which are explicitly described
as follows.

Let NE denote the set of subsets of {1, . . . , N} whose elements are obtained
by choosing exactly one index in each of the sets {j,N +2− j} for 2 ≤ j ≤ `,
if N = 2`−1 or N = 2`, giving 2`−1 elements in NE . The elements of NE are
then precisely the subsets of {1, . . . , N} corresponding to the maximal non-
elliptic operators, unless n is odd, N = 2`−1 and λ is properly half-integral,
in which case the subsets containing ` (which corresponds to the zero weight)
are elliptic. This is called the exceptional case and is the only one when the
Kato constant provided by Theorem 2.22 might not be optimal.

The set NE can easily be described in the graphical interpretation given
by Diagrams 2.1 and 2.2 (with the remark that now the indices are con-
sidered according to the convention given by the decreasing ordering of the
conformal weights): each element of NE contains exactly one index from
each box containing two weights. For instance, for n = 2m + 1, if λm = 1

2
,

then −εm is not relevant and the zero weight forms one box, so that it is
not taken in any subset in NE ; if λm ≥ 1, then {−εm, 0} are in the same
box and one of them is chosen for each subset in NE . For n = 2m, if
λm−1 > λm > 0, then {−εm−1, εm} form one box and {−εm} is alone in a
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box; whereas if λm−1 > −λm > 0, then ±εm are interchanged (since the or-
dering of the corresponding conformal weights changes: wm,+−wm,− = 2λm),
namely {−εm−1,−εm} are in one box and {εm} forms itself a box. This is in
accordance with the classification of minimal elliptic operators: {−εm} and
{−εm−1, εm} are elliptic if λm > 0, and {εm} and {−εm−1,−εm} are elliptic
if λm < 0. In the special case when the weights ±εm are relevant and their
conformal weights are equal: wm,− = wm,+, i.e. when λm−1 > λm = 0, then,
in our convention, the corresponding representations are considered as one
summand Vλ−εm ⊕ Vλ+εm and in this case the last box in the Diagram 2.2
is formed by {−εm−1, εm}, and the corresponding projection to εm is here
actually the projection onto Vλ−εm ⊕ Vλ+εm .

In the sequel we call NE the set of maximal non-elliptic operators, which
is true apart from the exceptional case. Notice that each subset in NE has
exactly ` − 1 elements, where ` gives the parity of N , i.e. N = 2` − 1 or
N = 2`. Now we can give explicitly the description of the vertices of the
polyhedral region P in R`−1 (we also here recall its complete proof given
in [18], because we need the arguments in § 2.3):

Proposition 2.21. The vertices of the polyhedron P are exactly the points

QJ , defined by (2.20), with J ∈ NE, the set of maximal non-elliptic operators.

In the exceptional case, when n is odd and λ is properly half-integral, only

one inclusion holds, namely that the vertices are contained in the set NE.

Proof: Let us denote by V the set of vertices of the polyhedron P in
R`−1. Then we have to show that, if we are not in the exceptional case, the
following equality holds: V = {QJ | J ∈ NE}. Notice that the vertices of P
are characterized as follows:

V = {QJ | |J | = `− 1,Πj(Q
J) = 0, for all j ∈ J ; Πj(Q

J) > 0, for all j ∈ Ĵ}.

The two inclusions are shown as follows.

(1) {QJ | J ∈ NE} ⊂ V : for J ∈ NE , PJ is not elliptic, so that there exists a
decomposable element α ⊗ v ∈ (Rn)∗ ⊗ Vλ of norm one with Πj(α ⊗ v) = 0,
for all j ∈ J , which implies that QJ ∈ V .

(2) J /∈ NE implies QJ /∈ V (where J is a subset of {1, . . . , N} with ` − 1
elements, for N = 2` or N = 2` − 1): if J /∈ NE , then it follows that the
corresponding operator PJ is elliptic (otherwise J would be contained in a
maximal non-elliptic set, but they all have exactly ` − 1 elements and are
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contained in NE). In order to show that QJ is not a vertex of the polyhedron
P , it is enough to find for any set J defining an elliptic operator PJ , an index
i such that πi(Q

J) < 0.

For N odd, equation (2.21) implies that for each i /∈ J , Πi(Q
J) is nonzero

and its sign is:

sgn(πi(Q
J)) = (−1)i−1sgn(

∏
j∈J

(w̃2
i − w̃2

j )).

There are exactly `− 1 couples of the type (s,N + 2− s) and, since J /∈ NE
and has ` − 1 elements, there exists at least one such couple not contained
in J .
The ordering of the squares of the translated conformal weights, that can be
directly checked by the formulas (2.10), is the following (N = 2`− 1):

w̃2
1 > w̃2

N+1 > w̃2
2 > w̃2

N > · · · > w̃2
i > w̃2

N+2−i > · · · > w̃2
` > w̃2

N+2−`.

It then follows that for a couple (s,N + 2− s), w̃2
s and w̃2

N+2−s are adjacent
in this ordering, so that the following signs are the same:

sgn(
∏
j∈J

(w̃2
s − w̃2

j )) = sgn(
∏
j∈J

(w̃2
N+2−s − w̃2

j )).

Since N is odd, s and N + 2− s have different parity, showing that πs(Q
J)

and πN+2−s(Q
J) have opposite signs.

For N even, the only difference is the way the sign chances when passing
from i = s to i = N + 2− s: the parity of i remains the same, but the sign
of the factor

(
w̃j − 1

2

)
in (2.22) changes.

We notice that the arguments in (2) are also valid in the exceptional case,
since NE still contains all subsets defining maximal non-elliptic operators.
Thus, the inclusion V ⊂ {QJ | J ∈ NE} holds in all cases. �

As remarked above, in order to compute the Kato constant given by (2.13)
it suffices to minimize or maximize over the set of vertices of the polyhedron
P . The identification of these vertices provided by Proposition 2.21 and the
fact that the explicit values of the norms |Πj(α⊗v)|2 at each vertex turn out
to be easily computed prove the main result:

Theorem 2.22 (D. Calderbank, P. Gauduchon and M. Herzlich, [18]). Let

I be a subset of {1, . . . , N} corresponding to an injectively elliptic operator

PI =
∑

i∈I Πi ◦∇ acting on sections of VλM . Then a refined Kato inequality
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holds: |d|ϕ|| ≤ kI |∇ϕ|, for any section ϕ ∈ ker(PI), outside the zero set of ϕ.

If N is odd, the Kato constant kI is given by the following expressions:

k2
I = max

J∈NE

 ∑
i∈Î∩Ĵ

∏
j∈J(w̃i + w̃j)∏

j∈Ĵ\{i}(w̃i − w̃j)

 = 1−min
J∈NE

 ∑
i∈I∩Ĵ

∏
j∈J(w̃i + w̃j)∏

j∈Ĵ\{i}(w̃i − w̃j)

 .

(2.23)

If N is even, the Kato constant kI is similarly given by:

k2
I = max

J∈NE

 ∑
i∈Î∩Ĵ

(
w̃i −

1

2

) ∏
j∈J(w̃i + w̃j)∏

j∈Ĵ\{i}(w̃i − w̃j)


= 1− min

J∈NE

 ∑
i∈I∩Ĵ

(
w̃i −

1

2

) ∏
j∈J(w̃i + w̃j)∏

j∈Ĵ\{i}(w̃i − w̃j)

 .

(2.24)

These Kato constants are optimal, unless in the exceptional case when n and

N are odd, N = 2` + 1, λ is properly half-integral and the set J achieving

the extremum contains `+ 1.

Another completely different approach to the computation of optimal Kato
constants was provided, independently, by Th. Branson, [15], whose proofs
rely on powerful techniques of harmonic analysis. One may say that the
method in [18] (whose main steps we gave in this section) is the local method,
relying on algebraic considerations on the conformal weights and a linear
programming problem. On the other hand, the method in [15] is a global
one, using the spectral computation on the round sphere in [13] and a result
relating the spectrum of an operator to information on its symbol. The
advantage of the local method is that it provides an explicit description of
the sections satisfying the equality case of the refined Kato inequality, while
the advantage of the global method is that it is always sharp (also in the
exceptional case).

2.3 A New Proof of Branson’s Classification

The aim of this section is to give a new proof of Branson’s classification of
natural first order minimal elliptic operators, [13], stated here in our notation
in Theorems 2.12 and 2.13. The tools we use are on the one hand the
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computation of the Kato constant provided by D. Calderbank, P. Gauduchon
and M. Herzlich in [18], whose main steps are given in the previous section,
§ 2.2, and, on the other hand, the branching rules for the special orthogonal
group. The main idea is that the argument in [18] may be, in a certain sense,
reversed: while in [18] the task is to establish for each natural elliptic operator
an explicit formula of its optimal Kato constant, assuming known the list of
Branson of minimal elliptic operators, our goal is to analyze to which extend
the computations of the Kato constants rely on this assumption of ellipticity
and how Branson’s list could be recovered. Our proof does not cover a special
case, that is explained in Remark 2.29, but has the advantage of avoiding
the powerful tools of harmonic analysis used in [13]. Being based mainly on
representation theoretical arguments, this proof suggests that it should carry
over to other subgroups G of SO(n), in order to provide the classification
of natural elliptic operators constructed from G-generalized gradients, as
pointed out in Remark 2.30.

The starting point is the following straightforward observation:

Lemma 2.23. Let kI be the optimal Kato constant for the operator PI , which

is given by kI = sup
|α|=|v|=1

|ΠÎ(α⊗ v)| (see Lemma 2.17). Then it holds:

kI < 1 ⇐⇒ PI is an elliptic operator.

Proof: If |α| = |v| = 1, then 1 = |α⊗ ϕ|2 = |ΠI(α⊗ ϕ)|2 + |ΠÎ(α⊗ ϕ)|2,
so that kI is always smaller or equal to 1. Then, by negation, the equivalence
in the statement is the same as the following equivalence:

kI = 1 ⇐⇒ PI is not elliptic,

which is a consequence of the definitions: kI = 1 if and only if there exist
α and v of norm 1 such that |ΠÎ(α ⊗ v)| = 1, which is then the same as
|ΠI(α ⊗ ϕ)| = 0, or, equivalently, α ⊗ ϕ ∈ ker(PI), meaning that PI is not
elliptic. �

Lemma 2.23 implies that the ellipticity of a natural first order differential
operator PI follows from the computation of its optimal Kato constant kI .
Thus, as soon as we are able to compute explicitly kI (without using the
ellipticity assumption) or to show that kI is strictly less than 1, it follows that
the operator PI is elliptic. In the sequel we show that kI is strictly bounded
from above by 1 for the operators in Branson’s list, i.e., in the notation
given by the decreasing ordering of the translated conformal weights, for all
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operators enumerated in Remark 2.16, except the case 3., which corresponds
to the zero weight.

We use the same notation as in § 2.2 and notice that for the construction
of the convex region P , as well as for establishing its compactness, the only
ingredient needed is the ordering of the translated conformal weights, which
is provided by the explicit formulas (2.10).

The key observation is that the only step in the proof of the main result in [18]
(and stated here in Theorem 2.22) where the ellipticity of the operators was
used, is in the identification of the vertices of the polyhedral region, namely
in Proposition 2.21. If we now consider the same set NE introduced in § 2.2:

NE = {J ⊂ {1, . . . , N} | |J ∩ {i, N + 2− i}| = 1, for 2 ≤ i ≤ `},

whereN = 2`−1 orN = 2`, then one inclusion established in Proposition 2.21
still holds, without any ellipticity assumption on the operators. More pre-
cisely, we get:

Lemma 2.24. The vertices of the polyhedron P are given by a subset of NE.

Proof: As in the proof of Proposition 2.21, we start with a subset J
in {1, . . . , N} with ` − 1 elements, such that J /∈ NE and show that the
corresponding point QJ defined by (2.20) is not a vertex of P . It is enough
to find an element i ∈ {1, . . . , N} such that πi(Q

J) < 0. The argument in
the same as in the proof of Proposition 2.21: by the definition of the set
NE we find a couple (s,N + 2 − s), for some 2 ≤ s ≤ `, that is outside J
and from the ordering of the translated conformal weights we conclude that
πs(Q

J) and πN+2−s(Q
J) are nonzero and have opposite signs. �

From the inclusion V ⊂ NE given by Lemma 2.24, the formula (2.13) for the
Kato constant kI and the expressions (2.16) and (2.17) for the norms of the
projections, we get the following upper bound:

k2
I = max

Q∈P

∑
j∈Î

πj(Q)

 = max
Q∈V

∑
j∈Î

πj(Q)

 ≤ max
J∈NE

∑
j∈Î

πj(Q
J)

 =: cI .

(2.25)

Thus, if we show for a subset I ⊂ {1, . . . , N} that cI < 1, then from (2.25)
and Lemma 2.23 it follows that the corresponding operator PI is elliptic.

We notice that the formulas for the optimal Kato constant in Theorem 2.22
actually compute the values of the upper bound cI , if we do not assume
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the ellipticity of any operator involved. This straightforward, but important
remark provides the main argument in the new proof of Branson’s classifica-
tion.

Applying now Theorem 2.22 in the special case when the set I has only one
element or two elements of the form {i, N + 2− i}, one recovers the list of
minimal elliptic operators as follows.

Corollary 2.25. The upper bound cI is strictly smaller than 1 for any of the

following subsets I:

1. I = {1};

2. I = {`+ 1} if N = 2` and λm 6= 0;

3. I = {i, N + 2− i} for i = 2, . . . , `.

From the above discussion it then follows that the corresponding operators PI
are elliptic.

Proof: By Theorem 2.22, the upper bound cI is given by the following
formula, if N = 2`− 1:

cI = max
J∈NE

∑
j∈Î

πj(Q
J)

 = max
J∈NE

 ∑
i∈Î∩Ĵ

∏
j∈J(w̃i + w̃j)∏

j∈Ĵ\{i}(w̃i − w̃j)


= 1− min

J∈NE

 ∑
i∈I∩Ĵ

∏
j∈J(w̃i + w̃j)∏

j∈Ĵ\{i}(w̃i − w̃j)

 ,

(2.26)

and if N = 2`:

cI = max
J∈NE

∑
j∈Î

πj(Q
J)

 = max
J∈NE

 ∑
i∈Î∩Ĵ

(
w̃i −

1

2

) ∏
j∈J(w̃i + w̃j)∏

j∈Ĵ\{i}(w̃i − w̃j)


= 1− min

J∈NE

 ∑
i∈I∩Ĵ

(
w̃i −

1

2

) ∏
j∈J(w̃i + w̃j)∏

j∈Ĵ\{i}(w̃i − w̃j)

 .

(2.27)
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The last expressions in (2.26) and (2.27) are particularly simple if the set I
has just a few elements, as it is in our case.

1. Substituting I = {1} in (2.26) and (2.27), the sums reduce to one element,

since I ∩ Ĵ = {1} for any J ∈ NE , and we get:

c{1} = 1− min
J∈NE

( ∏
j∈J(w̃1 + w̃j)∏

j∈Ĵ\{i}(w̃1 − w̃j)

)
, if N = 2`− 1, (2.28)

c{1} = 1− min
J∈NE

((
w̃1 −

1

2

) ∏
j∈J(w̃1 + w̃j)∏

j∈Ĵ\{1}(w̃1 − w̃j)

)
, if N = 2`, (2.29)

which implies that c{1} < 1, because w̃1 is the biggest translated conformal
weight: w̃2

1 > w̃2
j , for any 2 ≤ j ≤ N and w̃1 = λ1 + n−1

2
> 1

2
(we assume

always n ≥ 2 and λ1 6= 0, otherwise λ is just the trivial representation).

2. If the dimension n is odd, n = 2m + 1, the case N = 2` can only occur
if λm = 1

2
, as can be easily seen in the Diagram 2.1 which illustrates the

selection rule (since in all the other cases the weights come in pairs). In
this case, the index `+ 1, given by the decreasing ordering of the translated
conformal weights, stays for the weight 0. If n = 2m and N = 2`, then
from Diagram 2.2, it follows that the index `+ 1 stays either for the weight
−εm, if λm > 0, or for the weight εm, if λm < 0 (since again the indices
are given by the decreasing ordering of the translated conformal weights and
w̃m,+ − w̃m,− = 2λm). Substituting I = {` + 1} in (2.27) reduces again the
sum to one element and yields the following expression:

c{`+1} = 1− min
J∈NE

(
w̃`+1 − 1

2

w̃`+1 − w̃1

·
∏

j∈J(w̃`+1 + w̃j)∏
j∈Ĵ\{1,`+1}(w̃`+1 − w̃j)

)
. (2.30)

From the explicit values of the translated conformal weights given by (2.10),
namely: w̃m,− = −λm+m− n−1

2
and w̃m,+ = λm−m+ n+1

2
, it follows that for

n = 2m+ 1, as well as for n = 2m, the term
(
w̃`+1 − 1

2

)
is strictly negative,

and thus
w̃`+1− 1

2

w̃`+1−w̃1
is strictly positive. From the way the sets J ∈ NE are

defined, by choosing exactly one element from each pair {i, 2` + 2 − i} for
2 ≤ i ≤ `, it follows that in the product in (2.30), there occur only factors of

one of the following two types: w̃`+1+w̃i
w̃`+1−w̃2`+2−i

or w̃`+1+w̃2`+2−i
w̃`+1−w̃i

for some 2 ≤ i ≤ `.

From the ordering of the translated conformal weights it turns out that each
such factor is strictly positive, showing thus that c{`+1} < 1.

3. The ordering of the translated conformal weights implies the following
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inequalities, for any i ∈ {1, . . . , N}, j ∈ {1, . . . , `} and j 6= i, N + 2− i:

w̃i + w̃j
w̃i − w̃N+2−j

>
w̃i + w̃N+2−j

w̃i − w̃j
> 0, if i < j or N + 2− j < i,

w̃i + w̃N+2−j

w̃i − w̃j
>

w̃i + w̃j
w̃i − w̃N+2−j

> 0, if j < i < N + 2− j.

If N = 2` − 1, then substituting I in (2.26) with a set formed by a pair of
type I = {i, N + 2 − i}, with i ∈ {2, . . . , `}, and using the above relations
yields the following expression for the upper bound of the Kato constant:

cI = 1−min

(
w̃i + w̃2`+1−i

w̃i − w̃1

,
w̃i + w̃2`+1−i

w̃2`+1−i − w̃1

)
.

Similarly, if N = 2`, then substituting I = {i, N + 2− i} in (2.27) yields:

cI = 1−min

(
(w̃i + w̃2`+2−i)(w̃i − 1

2
)

(w̃i − w̃`+1)(w̃i − w̃1)
,

(w̃i + w̃2`+2−i)(w̃2`+2−i − 1
2
)

(w̃2`+2−i − w̃`+1)(w̃2`+2−i − w̃1)

)
.

The same argument as in the case 2. shows that cI < 1. �

Corollary 2.25 proves that all the operators that come up in Branson’s clas-
sification, and that we listed in Remark 2.16 in our notation, are elliptic,
except for one special case that we explain in Remark 2.29. But our aim is
to determine all minimal elliptic operators, so that we still have to eliminate
the other possibilities. Namely, on the one hand, we have to show that the
generalized gradients corresponding to an element in one of the sets obtained
in the case 3. of Corollary 2.25 are not elliptic, and on the other hand, that
there are no other combinations which provide elliptic operators. Thus, we
have to find the maximal non-elliptic operators, in order to conclude that
the elliptic operators found in Corollary 2.25 are all the minimal elliptic op-
erators. The main tool we use for this is the branching rule of the special
orthogonal group and the following necessary condition for ellipticity (see
also [18]):

Lemma 2.26. Let PI : Γ(Vλ) → Γ(⊕
i∈I
Vi) be the operator corresponding

to a subset I ⊂ {1, . . . , N}, in the notation introduced by (2.11). If there

exists an irreducible SO(n − 1)-subrepresentation of Vλ that does not occur

as SO(n− 1)-subrepresentation of Vi for any i ∈ I, then PI is not elliptic.

Proof: By Definition 2.4, PI is (injectively) elliptic if its principal symbol,
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ΠI : (Rn)∗⊗Vλ → ⊕
i∈I
Vi, is injective when restricted to the set of decomposable

elements, i.e. if for any vector α ∈ (Rn)∗, α 6= 0, the linear map:

Vλ → ⊕
i∈I
Vi, v 7→ ΠI(α⊗ v)

is injective. Since SO(n) acts transitively on the unit sphere in (Rn)∗, one
may, without loss of generality, take α to be a unit vector. Then, the above
map is SO(n − 1)-equivariant, where SO(n − 1) is the stabilizer group of
α under the SO(n)-action on the sphere. The existence of an injective and
SO(n− 1)-equivariant map between Vλ and ⊕

i∈I
Vi shows that any SO(n− 1)-

subrepresentation of Vλ occurs in Vi for some i ∈ I. �

In order to use Lemma 2.26 we have to apply the branching rule for the re-
striction of an SO(n)-representation to SO(n− 1), which we recall in the se-
quel (see e.g. Theorem 9.16, [45]). We consider, as usual, the parametrization
of irreducible SO(n)-representations by dominant weights, i.e. the weights
satisfying the inequalities (1.1).

Proposition 2.27 (Branching Rule for SO(n)).

(a) For the group SO(2m + 1), the irreducible representation with highest

weight λ = (λ1, . . . , λm) decomposes with multiplicity 1 under SO(2m),

and the representations of SO(2m) that appear are exactly those with

highest weights γ = (γ1, . . . , γm) such that

λ1 ≥ γ1 ≥ λ2 ≥ γ2 ≥ · · · ≥ λm−1 ≥ γm−1 ≥ λm ≥ |γm|. (2.31)

(b) For the group SO(2m), the irreducible representation with highest weight

λ = (λ1, . . . , λm) decomposes with multiplicity 1 under SO(2m−1), and

the representations of SO(2m − 1) that appear are exactly those with

highest weights γ = (γ1, . . . , γm−1) such that

λ1 ≥ γ1 ≥ λ2 ≥ γ2 ≥ · · · ≥ λm−1 ≥ γm−1 ≥ |λm|. (2.32)

From Proposition 2.27 we obtain the maximal non-elliptic operators as fol-
lows:

Corollary 2.28. The maximal non-elliptic operators PJ are given exactly by

the sets J in NE, apart from the special case when n is odd, N = 2` − 1

and λm ≥ 1. In this case the sets J of NE that do not contain ` (which

corresponds to the weight 0) are maximal non-elliptic.
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Proof: We recall that the coordinates of a dominant weight λ are given
with respect to the basis {εi}i=1,m introduced in § 1.1.1. Here it is more
convenient to consider the elements of a set J as weights of the standard
representation, instead of the notation with indices corresponding to the
ordering of the translated conformal weights.

Let J be a subset in NE , i.e. J has cardinality ` − 1, where N = 2` or
N = 2` − 1. If n = 2m, then J is obtained by choosing exactly one weight
from each pair of relevant weights of type {−εi, εi+1}, for 1 ≤ i ≤ m− 2 and
one weight from {−εm−1, εm}, if λm > 0, or one weight from {−εm−1,−εm},
if λm < 0. If n = 2m + 1, then we consider the sets J ∈ NE obtained
by choosing exactly one weight from each pair of relevant weights of type
{−εi, εi+1}, for 1 ≤ i ≤ m− 1 and the weight −εm, if it is relevant.

For each such set J , it is enough to find an SO(n − 1)-subrepresentation of
Vλ that does not occur in ⊕

ε∈J
Vλ+ε. By Corollary 2.28 it will then follow that

the corresponding operator PJ is not elliptic. When enlarging the set J to
some set J ′ by adding any other relevant weight, there is at least one subset
I of J ′ which is equal to one of those listed in Corollary 2.25, showing that
J ′ is elliptic. This means that J is maximal non-elliptic.

For n = 2m we choose the irreducible SO(2m − 1)-subrepresentation of λ
with highest weight γ = (γ1, . . . , γm−1), where the coordinates are defined by
the following rule, for each 1 ≤ i ≤ m− 2:

γi =

{
λi, if λi = λi+1 or − εi ∈ J
λi+1, if εi+1 ∈ J,

(2.33)

and

γm−1 =


λm−1, if λm−1 = λm = 0 or − εm−1 ∈ J
λm, if εm ∈ J and λm > 0

−λm, if − εm ∈ J and λm < 0.

(2.34)

We recall that the condition λi = λi+1, for 1 ≤ i ≤ m−2, is equivalent to the
fact that the weights {−εi, εi+1} are not relevant for λ and λm−1 = λm = 0
is the only case when −εm−1 is not relevant (see e.g. Diagram 2.2). The
coordinates of γ fulfill the inequalities (2.32) for the representation λ, showing
that γ is an irreducible SO(2m − 1)-subrepresentation of λ. On the other
hand, it can be directly checked that the inequalities (2.32) are not satisfied
anymore for any of the SO(2m)-representations of highest weight λ+ ε with
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ε ∈ J , showing that γ does not occur as SO(2m − 1)-subrepresentation in
⊕ε∈JVλ+ε.

For n = 2m+1 we similarly choose an irreducible SO(2m)-subrepresentation
of λ with highest weight γ = (γ1, . . . , γm), whose coordinates are defined by
the following rule, for each 1 ≤ i ≤ m− 1:

γi =

{
λi, if λi = λi+1 or − εi ∈ J
λi+1, if εi+1 ∈ J,

(2.35)

and γm = λm. It follows also in this case that the inequalities (2.31) are
fulfilled for λ, but fail for any λ + ε with ε ∈ J . The branching rule then
implies that γ is an irreducible SO(2m)-subrepresentation of Vλ which does
not occur as subrepresentation in ⊕ε∈JVλ+ε. �

Remark 2.29. From Corollary 2.25 and Corollary 2.28 we recover Branson’s

classification of minimal elliptic operators, up to an exceptional case. Namely,

when n is odd, N = 2` − 1 and λm > 0, then the zero weight is rele-

vant. If λ is moreover properly half-integral, then the corresponding operator

P` : VλM → VλM is elliptic (by Branson’s result), while if λ is integral, P` is

not elliptic. Unfortunately this special case cannot be recovered by the above

arguments, since they only involve the translated conformal weights, which

are associated to the Lie algebra so(n), so that they do not distinguish be-

tween the groups Spin(n) and SO(n). The argument based on the branching

rule for establishing the maximal non-elliptic operators does not work either

for the zero weight, since in this case the source and target representations

are isomorphic.

Remark 2.30. This new approach to the classification of minimal elliptic op-

erators has the advantage that it is mainly based on representation theory

and avoids the techniques of harmonic analysis which, as powerful as they

are, seem to be particular for the special orthogonal group. Our hope is that

this method can be carried over to the subgroups G in (1.6), in order to pro-

vide a similar classification of the minimal elliptic operators obtained from

G-generalized gradients. We notice that the argument in Lemma 2.26 still

works for any of these groups G (because they occur as holonomy groups,

which are known to act transitively on the unit sphere) and combined with

the branching rules of the groups involved yield a list of non-elliptic oper-

ators. This is work in progress and until now we only have partial results,

particularly for the group G2.
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In the sequel we present our partial results regarding the ellipticity of G2-
generalized gradients. The group G2 is the smallest of the exceptional Lie
groups. It is a compact, simple and simply-connected group, defined as
the automorphism group of the octonions algebra O. Hence, we have the
inclusion G2 ↪→ SO(7), where SO(7) is identified with the rotation group of
the imaginary octonions. Alternatively, G2 may be defined as the isotropy
group of a 3-form of general type in Λ3(R7) or as the isotropy group of a real
Spin(7)-spinor. The Lie algebra g2 is 14-dimensional and has rank 2.

We denote by T the complexification of the defining representation of G2 (or,
equivalently, of g2) given by the restriction of the standard SO(7)-representa-
tion. Thus, T is a 7-dimensional representation and it has too many weights
to be orthonormal for any scalar product on the dual h∗ of a fixed Cartan sub-
algebra h of g2. However, one can choose an ordering of the weights in h∗, so
that the weights of T are totally ordered: ε1 >ε2>ε3>0>−ε3>−ε2>−ε1.
In this notation, the fundamental weights of g2 are given by: ω1 = ε1,
ω2 = ε1 +ε2; and the last weight of T is expressed as follows: ε3 = −ω2 +2ω1.

Any irreducible G2-representation is parametrized by a dominant weight, λ,
which is expressed as a positive integral combination of the fundamental
weights: λ = aω1 + bω2, with a, b ≥ 0, or, equivalently, with respect to the
weights of T as: λ = λ1ε1 + λ2ε2, with integers λ1 ≥ λ2 ≥ 0. The selection
rule given by Theorem 1.7 for the decomposition of T ⊗ Vλ into irreducible
G2-representations may be visualized in following diagram, which is similar
to the ones for the special orthogonal group (see Diagrams 2.1 and 2.2) and
is found as well in [63]:

Diagram 2.3: Selection Rule for G2

ε1

λ1 > λ2

−ε1

ε2

0

λ1 > λ2 + 1 −ε3

λ2 > 0

−ε2

ε3

Let (M, g) be a Riemannian manifold carrying a G2-structure and consider
the G2-generalized gradients (in a simplified notation: Pε := P∇

λ

ε = Πε ◦∇λ)
acting on sections of the associated vector bundle VλM , as defined by (1.17),
where ∇ is any G2-connection.
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We now consider Question 2.7 for the group G2. Namely, we ask for which
subsets I of the set {±εi, 0}i=1,3 of weights of the representation T is the ope-
rator DI :=

∑
ε∈I P

∗
ε Pε elliptic. By Lemma 2.8, which holds for any group G,

this question is equivalent to asking when the first order differential operator
PI :=

∑
ε∈I Pε is (injectively) elliptic. The interesting cases are, as for SO(n),

the minimal elliptic operators and the maximal non-elliptic operators.

We recall that the method used in our proof of Branson’s classification for the
case of SO(n) consists of two steps: first we proved that the Kato constant
of the operators in Branson’s list is strictly smaller then 1, which yields their
ellipticity, and then we established the set of maximal non-elliptic operators,
which implies that the operators in the list are all minimal elliptic operators.
Our purpose is to use the same method for the group G2. The results we have
until now give a partial answer for the second step. Namely, we provide a list
of non-elliptic operators, but it is still open if it contains all maximal non-
elliptic operators. We obtain this list using the following necessary criterion
for ellipticity, which is the analogue of Lemma 2.26:

Lemma 2.31. Let PI : Γ(Vλ)→ Γ(⊕
ε∈I
Vε) be the operator corresponding to a

subset I ⊂ {±εi, 0}i=1,3. If there exists an irreducible SU(3)-subrepresentation

of Vλ that does not occur as SU(3)-subrepresentation of any Vε, with ε ∈ I,

then PI is not elliptic.

The proof of Lemma 2.31 is based on the same argument as for Lemma 2.26,
which is straightforwardly carried over to the case of G2. We only need to
observe that the group G2 acts transitively on the 6-dimensional sphere in
R7 and the isotropy group of a point on the sphere is SU(3).

In order to apply Lemma 2.31, we need the branching rule for restricting a
representation of G2 to SU(3). This rule was established, for instance, by
R. King and A. Qubanchi, [38], and can be formulated as follows:

Proposition 2.32. (Branching Rule for G2 to SU(3), [38]) The multiplicity

of the SU(3)-irreducible representation of highest weight (ν1 ≥ ν2 ≥ 0) in the

G2-irreducible representation of highest weight (λ1 ≥ λ2 ≥ 0) is given by:

C
(λ1,λ2)
(ν1,ν2) = 1 + min(λ1 − λ2, λ2, ν1 − ν2, ν2, λ1 + λ2 − ν1,

λ1 − ν1 + ν2, λ1 − ν2,−λ2 + ν1),
(2.36)

where the minimum is taken only if all elements are positive; otherwise one

takes -1, so that the coefficient is equal to 0.
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Lemma 2.31 and Proposition 2.32 imply as follows that the differential opera-
tors PI given by the subsets I = {ε2,−ε3}, respectively I = {−ε1,−ε2,−ε3},
are not elliptic.

Let I = {ε2,−ε3}. It is enough to show that for any G2-irreducible represen-
tation Vλ of highest weight (λ1 ≥ λ2 ≥ 0), there exists an SU(3)-irreducible
representation of highest weight (ν1, ν2) which occurs in the decomposition
of Vλ, but does not occur in the decompositions of Vλ+ε2 and Vλ−ε3 . We
check directly by (2.36) that the SU(3)-irreducible representation with high-
est weight (λ2, 0) fulfills these conditions, as follows:

C
(λ1,λ2)
(λ2,0) = 1 + min(λ1 − λ2, λ2, λ1, 0) ≥ 1,

C
(λ1,λ2+1)
(λ2,0) = 1 + min(λ1 − λ2 − 1, λ2, 0, λ1,−1) = 0,

C
(λ1−1,λ2+1)
(λ2,0) = 1 + min(λ1 − λ2 − 2, λ2, 0, λ1 − 1,−1) = 0.

Let I = {−ε1,−ε2,−ε3}. Similarly, we check that for the G2-irreducible
representation Vλ of highest weight (λ1 ≥ λ2 ≥ 0), there exists the SU(3)-
irreducible representation of highest weight (λ1 + λ2, λ1) with multiplicity
greater or equal to 1 in the decomposition of Vλ, but which does not occur
in the decompositions of Vλ−ε1 , Vλ−ε2 and Vλ−ε3 . Namely, it holds:

C
(λ1,λ2)
(λ1+λ2,λ1) = 1 + min(λ1 − λ2, λ2, λ1, 0) ≥ 1,

C
(λ1−1,λ2)
(λ1+λ2,λ1) = 1 + min(λ1 − λ2 − 1, λ2, λ1,−1) = 0,

C
(λ1,λ2−1)
(λ1+λ2,λ1) = 1 + min(λ1 − λ2, λ2 − 1, λ1,−1) = 0,

C
(λ1−1,λ2+1)
(λ1+λ2,λ1) = 1 + min(λ1 − λ2 − 2, λ2, λ1 − 1,−1) = 0.

The following table summarizes the known results on the ellipticity of the
operators of type PI contructed from G2-generalized gradients:

Singletons Pairs Triples

{−ε1} non-elliptic {−ε1,−ε2} non-elliptic {−ε1,−ε2,−ε3} non-elliptic
{ε2} non-elliptic {−ε1,−ε3} non-elliptic
{−ε2} non-elliptic {−ε2,−ε3} non-elliptic
{−ε3} non-elliptic {ε2,−ε3} non-elliptic

{ε1}
strongly
elliptic
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We recall that the top gradient given by the weight ε1 and corresponding
to the projection onto the Cartan summand is, by Proposition 2.9, strongly
elliptic. The other sets in the table, providing non-elliptic operators, follow
from the two sets I considered above and from the remark that if PI is non-
elliptic, then all the operators corresponding to subsets of I are non-elliptic
as well. We notice that there are two singletons for which the ellipticity
question is still open, namely ε3 and 0. For the weight 0, the source and
target of the operator are both equal to Vλ, so that Lemma 2.31 cannot
be applied. For the weight ε3, it follows from a dimension argument (using
Weyl’s dimension formula) that if λ1 > 2λ2− 1, then dim(Vλ) > dim(Vλ+ε3),
showing that in these cases the G2-generalized gradient Pε3 is not elliptic.
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Kählerian Twistor Spinors
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Chapter 3

Preliminaries: Spin Geometry

on Kähler Manifolds

The purpose of this chapter is to fix the notations and to recall some results
of spin geometry on Kähler manifolds that we shall need in the sequel.

3.1 The Decomposition of the Spinor Bundle

Let (M, g, J) be a Kähler manifold of real dimension n = 2m with Rie-
mannian metric g, complex structure J and Kähler form Ω = g(J ·, ·). The
tangent and cotangent bundle are identified using the metric g. In the sequel
{ei}i=1,n always denotes a local orthonormal frame and, where we do not write
sums, we implicitly use the Einstein summation convention over repeated in-
dices. The complexified tangent bundle splits into the (±i)-eigenbundles of
the complex structure: TMC = TM1,0⊕TM0,1 and we denote the components
of a vector field X with respect to this splitting as follows:

X+ =
1

2
(X − iJX) ∈ Γ(TM1,0), X− =

1

2
(X + iJX) ∈ Γ(TM0,1).

We now assume on M the existence of a spin structure. On Kähler manifolds
this is equivalent to the existence of a square root of the canonical bundle
K = Λ(m,0)M , i.e. a holomorphic line bundle L such that K ∼= L ⊗ L
(see [29]).
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Let SpingM be the Spin(2m)-principal bundle of the spin structure and de-
note by ΣM the associated spinor bundle: ΣM = SpingM ×Spin(2m) Σ, where
Σ is the 2m-dimensional complex spin representation of Spin(2m). ΣM is a
complex Hermitian vector bundle and its sections are called spinor fields (or
shortly spinors).

The Clifford contraction c : T∗M ⊗ ΣM → ΣM is defined on each fiber by
the Clifford multiplication on the spinor representation Σ. On decomposable
elements we have c(X ⊗ ϕ) = X · ϕ. It is extended to a multiplication with
k-forms. Each k-form α acts as an endomorphism of the spinor bundle, which
is locally given by:

α · ϕ =
∑

1≤i1<i2<···<ik≤2m

α(ei1 , . . . , eik)ei1 · . . . · eik · ϕ.

Consider now the Clifford multiplication with the complex volume form (with
the orientation given by the complex structure): ωC = im

∏m
i=1 ei · Jei. Since

the dimension is even, ωC has the eigenvalues +1 and −1 and the eigenspaces
are inequivalent complex irreducible representations of Spin(2m) denoted by:

Σ = Σ+ ⊕ Σ−. (3.1)

As an endomorphism of the spinor bundle, the Kähler form is given locally by:

Ω =
1

2

n∑
j=1

ej · Jej. (3.2)

By a straightforward computation, it follows:

Lemma 3.1. Under the action of the Kähler form Ω, the spinor bundle splits

into the orthogonal sum of holomorphic subbundles:

ΣM =
m
⊕
r=0

ΣrM, (3.3)

where each ΣrM is the eigenbundle of Ω corresponding to the eigenvalue

iµr = i(2r −m) and rankC(ΣrM) =
(
m
r

)
.

This decomposition corresponds to the one for (0, ∗)-forms in (0, r)-forms on
M , if we consider the so-called Hitchin representation (see [29]) of the spin
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bundle of any almost Hermitian manifold: ΣM ∼= L ⊗ Λ0,∗, where L is the
square root of the canonical bundle K of M determined by the spinorial
structure.

Comparing the decomposition (3.1) with the finer one (3.3) we have:

Σ+M = ⊕
0≤r≤2m
r even

ΣrM, Σ−M = ⊕
0≤r≤2m
r odd

ΣrM.

On the spinor bundle ΣM there is a canonical C-anti-linear real (resp. quater-

nionic) structure, j : ΣM → ΣM , such that j2 = (−1)
m(m+1)

2 . The following
property of j holds:

j : ΣrM → Σm−rM, j(Z · ϕ) = Z̄ · j(ϕ), for all Z ∈ Γ(TMC).

3.2 The Dirac Operator and Estimates for

Its Eigenvalues

The Levi-Civita connection ∇ on TM induces a covariant derivative on ΣM ,
which we also denote by ∇. Since the Kähler form is parallel, ∇ preserves
the splitting (3.3).

The Dirac operator is defined as the composition

Γ(ΣM)
∇→ Γ(T∗M⊗ ΣM)

c→ Γ(ΣM), D = c ◦ ∇. (3.4)

Explicitly D is locally given by

D =
n∑
j=1

ej · ∇ej . (3.5)

Associated with the complex structure J there is another “square root of the
Laplacian”, locally defined by

Dc =
n∑
j=1

Jej · ∇ej .
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Dc is also an elliptic self-adjoint operator and it follows easily that

(Dc)2 = D2 and DDc +DcD = 0.

Define now the two operators

D+ =
1

2
(D− iDc) =

n∑
j=1

e+
j ·∇e−j

, D− =
1

2
(D+ iDc) =

n∑
j=1

e−j ·∇e+j
, (3.6)

which satisfy the relations

D = D+ +D−, (D+)2 = 0, (D−)2 = 0, D+D− +D−D+ = D2. (3.7)

When restricting the Dirac operator to ΣrM , it acts as follows:

D = D− +D+ : Γ(ΣrM)→ Γ(Σr−1M)⊕ Γ(Σr+1M),

because of the following result which can be checked by straightforward com-
putation.

Lemma 3.2. For any tangent vector field X and r ∈ {0, . . . ,m} one has

X+ · ΣrM ⊆ Σr+1M X− · ΣrM ⊆ Σr−1M, (3.8)

with the convention that Σ−1M = Σm+1M = M × {0}. Thus, if we denote

by cr the restriction of the Clifford contraction to T∗M⊗ΣrM , then cr splits

as follows:

cr = c−r ⊕ c+
r : TM⊗ ΣrM → Σr−1M ⊕ Σr+1M.

One of the main tools for the study of the Dirac operator is the Schrödinger-
Lichnerowicz formula:

D2 = ∇∗∇+
1

4
S, (3.9)

where∇∗∇ is the Laplacian on the spinor bundle and S is the scalar curvature
of M .

Let us recall here for later use the lower bounds for the spectrum of the Dirac
operator on Riemannian and Kähler manifolds. The first such inequality
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was obtained by Th. Friedrich, [20], who showed that on an n-dimensional
compact Riemannian spin manifold (M, g) each eigenvalue λ of the Dirac
operator satisfies

λ2 ≥ n

4(n− 1)
inf
M
S. (3.10)

Of course, this inequality gives new information only if the scalar curva-
ture is positive, in which case we denote the smallest possible eigenvalue by
λ0 =

√
n

4(n−1)
inf
M
S. In [20] it is shown that a limiting manifold for (3.10) is

characterized by the existence of a special spinor. More precisely, we have:

Theorem 3.3. Let (M, g) be a Riemannian manifold which admits an eigen-

spinor ϕ of the Dirac operator D with the smallest eigenvalue λ0. Then the

manifold is Einstein and ϕ is a Killing spinor for the Killing constant −λ0

n
,

i.e. satisfies the equation

∇Xϕ = −λ0

n
X · ϕ, (3.11)

for all vector fields X on M . Conversely, if ϕ is a nontrivial spinor on M

satisfying the equation (3.11) for some real constant, then g is an Einstein

metric and (M, g) is a limiting manifold for (3.10), ϕ being an eigenspinor

of D of the smallest eigenvalue λ0.

The complete simply connected Riemannian manifolds carrying real Killing
spinors have been described by Ch. Bär, [5]. The main tool in his proof is
the cone construction. He shows that Killing spinors correspond to fixed
points of the holonomy group of the cone and then uses the Berger-Simons
classification of possible holonomy groups.

On Kähler manifolds the inequality (3.10) is always strict since a Kähler
manifold does not admit Killing spinors. It was improved by K.-D. Kirchberg,
who showed that each eigenvalue λ of the Dirac operator on a 2m-dimensional
compact spin Kähler manifold (M, g, J) satisfies

λ2 ≥ m+ 1

4m
inf
M
S, if m is odd, (3.12)

λ2 ≥ m

4(m− 1)
inf
M
S, if m is even. (3.13)
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Again we can only get new information about the eigenvalues from these
inequalities if the scalar curvature is positive. In this case we denote the smal-

lest possible eigenvalues by λodd0 :=
√

m+1
4m

inf
M
S and λeven0 :=

√
m

4(m−1)
inf
M
S.

The limiting manifolds of Kirchberg’s inequalities are also characterized by
the existence of spinors satisfying a certain differential equation. More pre-
cisely, K.-D. Kirchberg, [43], and O. Hijazi, [28], proved:

Theorem 3.4. Let (M, g, J) be a compact Kähler spin manifold of complex

dimension m = 2l + 1 which admits an eigenspinor ϕ of D corresponding to

the smallest eigenvalue λodd0 . Then the metric g is Einstein and the spinor

ϕ = ϕl + ϕl+1 ∈ Γ(ΣlM ⊕ Σl+1M) is a Kählerian Killing spinor for the

Killing constant − λodd0

m+1
, i.e. its components satisfy the equations:

∇Xϕl = − λodd0

m+ 1
X− · ϕl+1,

∇Xϕl+1 = − λodd0

m+ 1
X+ · ϕl,

(3.14)

for any vector field X. Conversely, if ϕ = ϕl + ϕl+1 ∈ Γ(ΣlM ⊕ Σl+1M) is

a spinor on M satisfying the equations (3.14) for some real constant, then g

is an Einstein metric and (M, g, J) is a limiting manifold for (3.12), ϕ being

an eigenspinor of D corresponding to the smallest eigenvalue λodd0 .

In the case of even complex dimension, the characterization of limiting mani-
folds in terms of special spinors has been given by K.-D.Kirchberg, [41], and
in the following stronger version by P. Gauduchon, [25].

Theorem 3.5. Let (M, g, J) be a compact Kähler spin manifold of complex

dimension m = 2l ≥ 4 which admits an eigenspinor ϕ of D to the small-

est eigenvalue λeven0 . Then the manifold has constant scalar curvature and

ϕ = ϕl−1 + j(ϕ′l−1), where ϕl−1, ϕ
′
l−1 ∈ Γ(Σl−1M) are spinors satisfying the

following equation:

∇Xϕl−1 = − 1

m
X− ·Dϕl−1, (3.15)

for any vector field X. Conversely, if ϕ = ϕl−1+j(ϕ′l−1) ∈ Γ(Σl−1M⊕Σl+1M)

is a spinor on M such that ϕl−1, ϕ
′
l−1 satisfy the equation (3.15) and if there

exists a real nonzero constant λ such that D2ϕ = λ2ϕ, then the manifold has

constant scalar curvature and is a limiting manifold for (3.13), λ being equal

to λeven0 .
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These limiting manifolds have been classified by A. Moroianu in [51] for m
odd and in [54] for m even. In the even complex dimension, the result was
conjectured by A. Lichnerowicz, [48], who proved it under the assumption
that the Ricci tensor is parallel.

Theorem 3.6. The only limiting manifold for (3.12) in complex dimension

4k + 1 is the complex projective space CP 4k+1. In complex dimension 4k + 3

the limiting manifolds are exactly the twistor spaces over quaternionic Kähler

manifolds of positive scalar curvature.

Theorem 3.7. A Kähler manifold M of even complex dimension m ≥ 4 is

a limiting manifold for (3.13) if and only if its universal cover is isometric

to a Riemannian product N ×R2, where N is a limiting manifold for the odd

complex dimension m− 1 and M is the suspension over a flat parallelogram

of two commuting isometries of N preserving a Kählerian Killing spinor.
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Chapter 4

Kählerian Twistor Spinors

In this chapter we introduce the main objects, the Kählerian twistor spinors.
We show that these spinors are in one-to-one correspondence to parallel
sections of a connection called the Kählerian twistor connection, which we
construct explicitly. Moreover, we compute the curvature of the Kählerian
twistor connection and obtain formulas that are the starting point for the
classification of Kähler spin manifolds carrying Kählerian twistor spinors.

4.1 Twistor Operators

Natural first order differential operators acting on sections of an associated
vector bundle E over the manifold M are given by the composition of pro-
jections onto irreducible components of the tensor product T∗M ⊗ E with
a covariant derivative on E, as we have seen in § 1.1. Then the principal
symbol of the operator is the projection defining it. There is always a distin-
guished projection onto the so-called Cartan summand, whose highest weight
is exactly the sum of the highest weights of the representations defining the
bundles T∗M and E.

Consider now the spinor bundle ΣM over a Riemannian spin manifold (M, g).
Since the tensor product TM⊗ΣM splits as Spin(n)-representation as follows:

TM⊗ ΣM ∼= ΣM ⊕ ker(c),

we get two first order differential operators: the Dirac operator (see (3.4)),
given by the projection (which is identified with the Clifford contraction) of
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the covariant derivative onto ΣM and the complementary operator given by
the projection of the covariant derivative onto the Cartan summand ker(c).

In order to define the projections we need to consider an embedding of ΣM
into the tensor product TM ⊗ ΣM , i.e. the right inverse of the contraction
c, ι : ΣM → TM ⊗ ΣM , such that c ◦ ι = idΣM , which is given locally as
follows:

ι(ϕ) = − 1

n

n∑
j=1

ej ⊗ ej · ϕ.

The Riemannian twistor (Penrose) operator is then defined by

T : ΣM → ker c, Tϕ = ∇ϕ+
1

n
ej ⊗ ej ·Dϕ,

or, more explicitly, when applied to a vector field X:

TXϕ = ∇Xϕ+
1

n
X ·Dϕ. (4.1)

Definition 4.1. Let (M, g) be a Riemannian manifold. A spinor ϕ ∈ Γ(ΣM)

is called Riemannian twistor spinor if it belongs to the kernel of the Rieman-

nian twistor operator, i.e. if it satisfies the differential equation

∇Xϕ = − 1

n
X ·Dϕ, (4.2)

for all vector fields X.

Let us now consider the case of Kähler manifolds. It was proven in [42] by
K.-D. Kirchberg that on a Kähler manifold with nonzero scalar curvature,
the space of Riemannian twistor spinors is trivial (a different proof of this
result is also given by O. Hijazi, [28], and for compact Kähler manifolds
this vanishing result is due to A. Lichnerowicz, [49]). Thus, it is natural to
consider a twistor operator adapted to the Kähler structure, by looking at the
decomposition of each tensor product of the vector bundles TM⊗ ΣrM (for
r = 0, . . . ,m) into irreducible components under the action of the unitary
group U(m). There are three irreducible summands:

TM⊗ ΣrM ∼= Σr−1M ⊕ Σr+1M ⊕ ker(cr), (4.3)

where cr is the restriction of the Clifford contraction to ΣrM as in Lemma 3.2.
Thus, there are three first order differential operators: the first two projec-
tions are given by c−r , respectively c+

r , and the third one is the projection
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onto the Cartan summand, ker cr. As in the Riemannian case we need the
two embeddings, which are locally given as follows:

ι−r : Σr−1M → TM⊗ ΣrM, ι−r (ϕ) = − 1

2(m− r + 1)

n∑
j=1

ej ⊗ e+
j · ϕ,

ι+r : Σr+1M → TM⊗ ΣrM, ι+r (ϕ) = − 1

2(r + 1)

n∑
j=1

ej ⊗ e−j · ϕ.

The Kählerian twistor (Penrose) operator is defined as the projection of the
covariant derivative onto the Cartan summand: Tr : Γ(ΣrM)→ Γ(ker(cr)),

Trϕ = ∇ϕ+
1

2(m− r + 1)
ej ⊗ e+

j ·D−ϕ+
1

2(r + 1)
ej ⊗ e−j ·D+ϕ,

or, more explicitly, when applied to a vector field X:

(Tr)Xϕ = ∇Xϕ+
1

2(m− r + 1)
X+ ·D−ϕ+

1

2(r + 1)
X− ·D+ϕ. (4.4)

The Kählerian twistor operator has already introduced e.g. by P. Gauduchon,
[25]. Different approaches have been considered by O. Hijazi, [28], and by
K.-D. Kirchberg, [41]. In Remark 4.8 we discuss the relationship between
the various definitions of a twistor spinor adapted to the Kähler structure.

Definition 4.2. Let (M, g, J) be a Kähler manifold. A spinor ϕ ∈ Γ(ΣrM)

is called Kählerian twistor spinor if it belongs to the kernel of the Kählerian

twistor operator, i.e. if it satisfies the differential equations{
∇X+ϕ = − 1

2(m−r+1)
X+ ·D−ϕ,

∇X−ϕ = − 1
2(r+1)

X− ·D+ϕ,
(4.5)

for all vector fields X.

We shall denote by KT (r) the space of Kählerian twistor spinors in ΣrM .
It follows immediately from the defining equations (4.5) that the real (or
quaternionic) structure of the spinor bundle, j, preserves these spaces:

j : KT (r)
∼−→ KT (m− r).

Thus, it is sufficient to study KT (r) for 0 ≤ r ≤ m
2

.
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A special class of spinors in KT (r) are the special Kählerian twistor spinors
defined as follows:

Definition 4.3. A Kählerian twistor spinor ϕ ∈ Γ(ΣrM) is holomorphic,

respectively anti-holomorphic Kählerian twistor spinor if D+ϕ = 0, respec-

tively D−ϕ = 0.

We denote the space of holomorphic and anti-holomorphic Kählerian twistor
spinors in ΣrM by HKT (r), respectively AKT (r), and notice that they are
interchanged by j:

j : AKT (r)
∼−→ HKT (m− r). (4.6)

Parallel spinors are of course the simplest examples of a twistor spinor of
any kind, because, by definition, all components of the covariant derivative
vanish. However, this condition is very restrictive, since parallel spinors only
exist on Ricci-flat Kähler manifolds.

Directly from the decomposition (4.3) and using the embeddings ι+r and ι−r
we get the following Weitzenböck formula, relating the differential operators
acting on sections of ΣrM :

∇∗∇ =
1

2(r + 1)
D−D+ +

1

2(m− r + 1)
D+D− + T ∗r Tr. (4.7)

This is just a special case of a general Weitzenböck formula (see § 1.3) which
expresses the rough Laplacian ∇∗∇ acting on an associated vector bundle E
as the sum of all T ∗T with T first order differential operator given by the
projections of a covariant derivative onto the irreducible components of the
tensor product TM⊗ E.

Remark 4.4 (Relationship to the estimates of the eigenvalues of the Dirac

operator). By Theorem 3.3, each eigenspinor corresponding to the smallest

eigenvalue of the Dirac operator on a Riemannian manifold is a Killing spinor,

thus in particular a twistor spinor. Moreover, the eigenspinors to the smallest

eigenvalue are exactly the eigenspinors of D which are twistor spinors.

Similarly, on a Kähler manifold Theorems 3.4 and 3.5 imply that every eigen-

spinor of the Dirac operator corresponding to the smallest eigenvalue is a sum

of two special Kählerian twistor spinors: if m is odd, then (3.14) implies that

ϕ ∈ AKT (m−1
2

) ⊕ HKT (m+1
2

) and if m is even, then (3.15) implies that
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ϕ ∈ AKT (m
2
− 1)⊕HKT (m

2
+ 1). Moreover, eigenspinors corresponding to

the smallest eigenvalue are exactly the eigenspinors of D which are Kählerian

twistor spinors. The geometric description of the limiting Kähler manifolds

(Theorems 3.6 and 3.7) provides the first examples of manifolds admitting

Kählerian twistor spinors. Thus, Kählerian twistor spinors may be seen as a

generalization of these special spinors which naturally appear in the limiting

case for the lower bound of the spectrum of the Dirac operator.

We now show that special Kählerian twistor spinors on a Kähler manifold
of positive scalar curvature are exactly the eigenspinors with the smallest
eigenvalue of the square of the Dirac operator restricted to an irreducible
subbundle ΣrM . This result has been proven by K.-D. Kirchberg, [41], and
by O. Hijazi, [28]. Here we follow the argument given by P. Gauduchon, [25],
and by U. Semmelmann, [60].

Lemma 4.5. Let ϕ ∈ Γ(ΣrM). Then the following inequality holds

|∇ϕ|2 ≥ 1

2(r + 1)
|D+ϕ|2 +

1

2(m− r + 1)
|D−ϕ|2, (4.8)

with equality if and only if ϕ is a Kählerian twistor spinor (Trϕ = 0).

Proof: The statement of the lemma is a direct consequence of the following
relation:

|∇ϕ|2 =
1

2(r + 1)
|D+ϕ|2 +

1

2(m− r + 1)
|D−ϕ|2 + |Trϕ|2,

which in turn is implied by the following equalities that are straightforward
from the definition of the embeddings ι±r :

|ι+r (ϕr+1)|2 =
1

2(r + 1)
|ϕr+1|2, |ι−r (ϕr−1)|2 =

1

2(m− r + 1)
|ϕr−1|2,

∇ϕ = ι+r (D+ϕ) + ι−r (D−ϕ) + Trϕ.

�

The Lichnerowicz formula (3.9) yields the following:

Lemma 4.6. Let ϕ be an eigenspinor of D2, D2ϕ = λϕ that satisfies the

inequality

|∇ϕ|2 ≥ 1

k
|Dϕ|2. (4.9)
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Then the following inequality holds:

λ ≥ k

k − 1

1

4
inf
M
S

and equality is attained if and only if S is constant and equality in (4.9) holds

at all points of the manifold.

Proposition 4.7. Let (M, g, J) be a Kähler manifold of positive scalar cur-

vature. Then any eigenvalue λ of D2 on ΣrM satisfies:

λ ≥ 2(r + 1)

2r + 1

1

4
inf
M
S, if r ≤ m

2
(4.10)

and

λ ≥ 2(m− r + 1)

2m− 2r + 1

1

4
inf
M
S, if r >

m

2
. (4.11)

Equality is attained if and only if the scalar curvature is constant and the

corresponding eigenspinor is an anti-holomorphic (holomorphic) Kählerian

twistor spinor if r ≤ m
2

(r > m
2

).

Proof: Let ϕ ∈ Γ(ΣrM) with D2ϕ = λϕ. We distinguish two cases.

I. If D−ϕ = 0, then |Dϕ|2 = |D+ϕ|2 and (4.8) implies:

|∇ϕ|2 ≥ 1

2(r + 1)
|D+ϕ|2 =

1

2(r + 1)
|Dϕ|2.

Applying Lemma 4.6, it follows that λ ≥ 2(r+1)
2r+1

1
4

inf
M
S.

II. If D−ϕ 6= 0, then we apply the same argument for ϕ− := D−ϕ ∈
Γ(Σr−1M) with D2ϕ− = λϕ−. Then D−ϕ− = 0, so that |Dϕ−|2 = |D+ϕ−|2
and from (4.8) it follows:

|∇ϕ−|2 ≥ 1

2r
|D+ϕ−|2 =

1

2r
|Dϕ−|2.

Applying again Lemma 4.6, it follows that λ ≥ 2r
2r−1

1
4

inf
M
S > 2(r+1)

2r+1
1
4

inf
M
S.

The same argument applied to the cases when D+ϕ = 0 and D+ϕ 6= 0 shows
that λ ≥ 2(m−r+1)

2m−2r+1
1
4

inf
M
S. If r ≤ m

2
, then 2(m−r+1)

2m−2r+1
1
4

inf
M
S ≤ 2(r+1)

2r+1
1
4

inf
M
S and

thus follows (4.10). Similarly for r > m
2

it follows (4.11). The equality case
follows from Lemmas 4.5 and 4.6. �
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Remark 4.8 (Relationship to other notions of Kählerian twistor spinors). The

term “Kählerian twistor spinor” has already been used in the literature. A

class of spinors with this name has been introduced by K.-D. Kirchberg, [41],

and by O. Hijazi, [28]. We explain here the relationship between Defini-

tion 4.2 and these definitions.

In [41], K.-D. Kirchberg defined a Kählerian twistor spinor of type r (for

1 ≤ r ≤ m) to be a spinor ϕ ∈ Γ(ΣM) satisfying the equation

∇Xϕ = − 1

4r
(X ·Dϕ+ JX ·Dcϕ). (4.12)

He showed that a solution of (4.12) must lie in Γ(Σr−1M ⊕ Σm−r+1M). By

rewriting this equation using the operators D+ and D−:{
∇X+ϕ = − 1

2r
X+ ·D−ϕ,

∇X−ϕ = − 1
2r
X− ·D+ϕ,

it follows that the spinors satisfying (4.12) are exactly the anti-holomorphic

and holomorphic Kählerian twistor spinors in Σr−1M , respectively Σm−r+1M ,

see Definition 4.3. K.-D. Kirchberg, [42], further proved some vanishing re-

sults for these spinors, which we shall also obtain in § 5.3 (for Kähler-Einstein

manifolds) and § 5.2 (for Kähler manifolds of constant scalar curvature) as

a special case.

In [28], O. Hijazi considered as defining equation for a spinor ϕ ∈ Γ(ΣM)

the following slightly more general equation than (4.12):

∇Xϕ = aX ·Dϕ+ bJX ·Dcϕ, (4.13)

where a and b are any real numbers. For example, if a = − 1
n

and b = 0,

then a solution of (4.13) is a Riemannian twistor spinor (as (4.2) shows).

Furthermore O. Hijazi proved that on a Kähler spin manifold with nonzero

scalar curvature there exists a nontrivial solution of (4.13) if and only if

a = b = − 1
4(r+1)

, for some integer r with 0 ≤ r ≤ m − 2, thus reducing

equation (4.13) to (4.12). For r = m − 1 it is proven ( [28, Theorem 4.30]

and [41, Proposition 11, Theorem 17]) that the solutions of the equation

(4.13) are exactly the Riemannian twistor spinors and they are all trivial on

a Kähler spin manifold of nonzero scalar curvature.
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In order to better compare these definitions we notice that, using the opera-

tors D and Dc, the defining equation (4.5) for Kählerian twistor spinors can

be rewritten as follows:

∇Xϕ =− m+ 2

8(r + 1)(m− r + 1)
(X ·Dϕ+ JX ·Dcϕ)

− m− 2r

8(r + 1)(m− r + 1)
i(JX ·Dϕ−X ·Dcϕ).

An important property of the special Kählerian twistor spinors noticed by
K.-D. Kirchberg, [42], is that they are eigenspinors of the square of the Dirac
operator, if we assume the scalar curvature to be constant. This is implied
by the Lichnerowicz formula as follows.
Let ϕ ∈ AKT (r): ∇Xϕ = − 1

2(r+1)
X− · D+ϕ. By differentiating once this

defining equation and then contracting, we get

∇ej∇ejϕ = − 1

2(r + 1)
e−j · ∇ejD

+ϕ,

where {ej}j=1,n is a local orthonormal frame parallel at the point where the
computations are made. Since D−ϕ = 0, it follows

∇∗∇ϕ =
1

2(r + 1)
D−D+ϕ =

1

2(r + 1)
D2ϕ,

which together with the Lichnerowicz formula (3.9) yields

D2ϕ =
r + 1

2(2r + 1)
Sϕ. (4.14)

Thus, if the scalar curvature S is constant, then ϕ is an eigenspinor of D2.
Similarly, if ϕ ∈ HKT (r), then we get D2ϕ = m−r+1

2(2m−2r+1)
Sϕ.

4.2 Particular Cases

We first look at extremal cases of Kählerian twistor spinors, i.e. of highest
and lowest type and notice that they are always special Kählerian twistor
spinors. Let ϕ ∈ Γ(ΣrM): if r = 0, then D−ϕ vanishes automatically and if
r = m, then D+ϕ = 0. Thus ϕ is an anti-holomorphic, respectively holomor-
phic Kählerian twistor spinor. Moreover, as shown by K.-D. Kirchberg, they
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are exactly the holomorphic, respectively anti-holomorphic sections in Σ0M ,
respectively ΣmM ( [41, Theorem 12], with the remark that we use different
conventions, namely S0 in [41] corresponds to ΣmM in our notations):

KT (0) = AKT (0) = H̄0(M,Σ0M) = jH0(M,K
1
2 ),

KT (m) = HKT (m) = H0(M,ΣmM) = H0(M,K
1
2 ).

Another special case is the middle of the dimension, when m is even and
r = m

2
. This is the only case when the coefficients of the defining equations

(4.5) of a Kählerian twistor spinor are equal:

∇Xϕ = − 1

m+ 2
(X+ ·D−ϕ+X− ·D+ϕ). (4.15)

We show that on a compact Kähler spin manifold of positive constant scalar
curvature there does not exist any nontrivial solution of this twistorial equa-
tion, which means that there are no Kählerian twistor spinors in the middle
dimension.

By differentiating and then contracting (4.15) we obtain

∇ej∇ejϕ = − 1

m+ 2
(e+
j · ∇e+j

D−ϕ+ e−j · ∇e−j
D+ϕ),

where {ej}j=1,n is an orthonormal frame parallel at the point where the com-
putation is made. Thus, it follows that

∇∗∇ϕ =
1

m+ 2
(D−D+ϕ+D−D+ϕ) =

1

m+ 2
D2ϕ,

which together with the Lichnerowicz formula (3.9) implies

D2ϕ =
m+ 2

4(m+ 1)
Sϕ,

showing that if the scalar curvature is constant, then ϕ is an eigenspinor with
the eigenvalue λeven0 = m+2

4(m+1)
S, which is strictly smaller than m

4(m−1)
S. This

value is the lower bound given by Kirchberg’s inequality (3.13) for m even.
Thus ϕ must be zero.
If S = 0, then from the above relations we have ∇∗∇ϕ = D2ϕ = 0, so that
ϕ is a parallel spinor if the manifold M is compact.
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4.3 The Kählerian Twistor Connection

The purpose of this section is to construct for each r (from now on we fix an
r with 0 < r < m and r 6= m

2
) a vector bundle endowed with a connection,

called Kählerian twistor connection, such that Kählerian twistor spinors in
ΣrM are in one-to-one correspondence to parallel sections of this connection.
This allows us to conclude for instance, that the space of Kählerian twistor
spinors is finite dimensional. The curvature of this connection provides useful
formulas for computations with Kählerian twistor spinors, needed in § 5 to
describe geometrically the Kähler manifolds admitting such spinors.

The idea of constructing a larger vector bundle with a suitable connection
such that solutions of a certain equation correspond to parallel sections has
often appeared in the literature. For example for Riemannian twistor spinors
this construction was done by Th. Friedrich, [21], and for conformal Killing
forms by U. Semmelmann, [61].

By the definition of a Kählerian twistor spinor, the covariant derivative of
ϕ involves ϕ+ := D+ϕ and ϕ− := D−ϕ. Hence, the first step will be the
computation of the covariant derivatives of these sections, which yields an
expression involving only zero-order terms and D2ϕ. Then we compute the
covariant derivative of D2ϕ and get an expression involving zero-order terms
and the sections ϕ+ and ϕ−, showing that the system closes and thus defines
a connection. More precisely, if we denote by ϕ̂ the section (ϕ, ϕ+, ϕ−, D2ϕ)
in ΣrM⊕Σr+1M⊕Σr−1M⊕ΣrM , then we have∇Xϕ̂ = B(X)ϕ̂, where B(X)
is a certain 4× 4-matrix whose coefficients are endomorphisms of the spinor
bundle, depending on the vector field X. The Kählerian twistor connection
is then a connection in the bundle ΣrM ⊕Σr+1M ⊕Σr−1M ⊕ΣrM , defined
as ∇̂X = ∇X−B(X) and the Kählerian twistor spinors are given by the first
component of parallel sections of ∇̂.

Let ϕ be a Kählerian twistor spinor in ΣrM . First we derive some formulas
relating the second order differential operators D+D−, D−D+ and D2, when
applied to a Kählerian twistor spinor. Since we asssumed that r 6= m/2,
the system formed by the Weitzenböck formula (4.7) (using the fact that, by
definition, Trϕ = 0) and the Lichnerowicz formula (3.9) can be inversed and
we get the following relations:

D+D−ϕ = −(2r + 1)(m− r + 1)

m− 2r
D2ϕ+

(r + 1)(m− r + 1)

2(m− 2r)
Sϕ, (4.16)

D−D+ϕ =
(2m− 2r + 1)(r + 1)

m− 2r
D2ϕ− (r + 1)(m− r + 1)

2(m− 2r)
Sϕ, (4.17)
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D+D−ϕ = − (2r + 1)(m− r + 1)

(2m− 2r + 1)(r + 1)
D−D+ϕ+

m− r + 1

2(2m− 2r + 1)
Sϕ, (4.18)

D−D+ϕ = −(2m− 2r + 1)(r + 1)

(2r + 1)(m− r + 1)
D+D−ϕ+

r + 1

2(2r + 1)
Sϕ. (4.19)

We now compute the covariant derivatives of D+ϕ and D−ϕ in the direction
of a vector field X which is parallel at the point where the computations are
done. The local orthonormal frame {ej}j=1,n is parallel at this point too.

∇X+(D+ϕ)
(A.6)
= D+(∇X+ϕ)− 1

2
Ric(X+) · ϕ

=− 1

2(m− r + 1)
D+(X+ ·D−ϕ)− 1

2
Ric(X+) · ϕ

(A.3)
=

1

2(m− r + 1)
X+ ·D+D−ϕ− 1

2
Ric(X+) · ϕ

(4.16)
= − 2r + 1

2(m− 2r)
X+ ·D2ϕ+

r + 1

4(m− 2r)
SX+ · ϕ− 1

2
Ric(X+) · ϕ.

∇X−(D+ϕ)
(A.7)
= D+(∇X−ϕ) = − 1

2(r + 1)
D+(X− ·D+ϕ)

(A.3)
=

1

2(r + 1)
[X− ·D+(D+ϕ) + 2∇X−(D+ϕ)] =

1

r + 1
∇X−(D+ϕ),

so that ∇X−(D+ϕ) = 0.

These two equations give the second row of the connection in (4.25). Simi-
larly, for the covariant derivative of D−ϕ we have

∇X−(D−ϕ) =
2m− 2r + 1

2(m− 2r)
X− ·D2ϕ− m− r + 1

4(m− 2r)
SX− · ϕ− 1

2
Ric(X−) · ϕ,

∇X+(D−ϕ) = 0,

which yield the third row of the connection in (4.25).

For the last component of the connection we compute the covariant derivative
of D2ϕ.

∇X(D2ϕ)
(A.10)

= D2(∇Xϕ)− 1

2
D(Ric)(X) · ϕ+∇Ric(X)ϕ− ej · ei · ∇∇ej∇eiXϕ.

(4.20)

We now compute separately the terms appearing in (4.20). The first one is:
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D2(∇Xϕ)=− 1

2(m− r + 1)
D2(X+ ·D−ϕ)− 1

2(r + 1)
D2(X− ·D+ϕ), (4.21)

D2(X+ ·D−ϕ)
(A.8)
= X+ ·D2D−ϕ− Ric(X+) ·D−ϕ+D2(X+) ·D−ϕ

(3.7)
= X+ ·D−D+D−ϕ− Ric(X+) ·D−ϕ+D2(X+) ·D−ϕ

(4.18)
=

m− r + 1

2(2m− 2r + 1)
X+ ·D−(Sϕ)−Ric(X+)·D−ϕ+D2(X+)·D−ϕ

=
m− r + 1

2(2m− 2r + 1)
SX+ ·D−ϕ+

m− r + 1

2(2m− 2r + 1)
X+ ·∂(S) · ϕ

− Ric(X+) ·D−ϕ+D2(X+) ·D−ϕ

=
m− r + 1

2(2m− 2r + 1)
SX+ ·D−ϕ− m− r + 1

2(2m− 2r + 1)
∂(S) ·X+ · ϕ

− m− r + 1

2m− 2r + 1
X+(S)ϕ−Ric(X+) ·D−ϕ+D2(X+) ·D−ϕ,

D2(X− ·D+ϕ) =
r + 1

2(2r + 1)
SX− ·D+ϕ− r + 1

2(2r + 1)
∂̄(S) ·X− · ϕ

− r + 1

2r + 1
X−(S)ϕ− Ric(X−) ·D+ϕ+D2(X−) ·D+ϕ.

Replacing these terms in (4.21) it follows

D2(∇Xϕ) = − 1

4(2m− 2r + 1)
SX+ ·D−ϕ+

1

4(2m− 2r + 1)
∂(S) ·X+ · ϕ

+
1

2(2m− 2r + 1)
X+(S)ϕ+

1

2(m− r + 1)
Ric(X+) ·D−ϕ

− 1

4(2r + 1)
SX− ·D+ϕ+

1

4(2r + 1)
∂̄(S) ·X− · ϕ (4.22)

+
1

2(2r + 1)
X−(S)ϕ+

1

2(r + 1)
Ric(X−) ·D+ϕ

− 1

2(m− r + 1)
D2(X+) ·D−ϕ− 1

2(r + 1)
D2(X−) ·D+ϕ.

The third term in (4.20) is given by

∇Ric(X)ϕ = ∇Ric(X+)ϕ+∇Ric(X−)ϕ

= − 1

2(m− r + 1)
Ric(X+) ·D−ϕ− 1

2(r + 1)
Ric(X−) ·D+ϕ

(4.23)
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and the last term in (4.20) is

ej · ei · ∇∇ej∇eiXϕ = − 1

2(m− r + 1)
ej · ei · ∇ej∇eiX

+ ·D−ϕ

− 1

2(r + 1)
ej · ei · ∇ej∇eiX

− ·D+ϕ (4.24)

= − 1

2(m− r + 1)
D2(X+)·D−ϕ− 1

2(r + 1)
D2(X−)·D+ϕ.

Substituting the formulas (4.22), (4.23) and (4.24) in (4.20), we get the fol-
lowing equality, which yields the last row of the connection matrix (4.25):

∇X(D2ϕ) =− 1

2
D(Ric)(X)·ϕ+

1

2(2m− 2r + 1)
X+(S)ϕ+

1

2(2r + 1)
X−(S)ϕ

+
1

4(2r + 1)
∂̄(S) ·X− · ϕ+

1

4(2m− 2r + 1)
∂(S) ·X+ · ϕ

− 1

4(2r + 1)
SX− ·D+ϕ− 1

4(2m− 2r + 1)
SX+ ·D−ϕ.

Hence, we have shown that if ϕ ∈ Γ(ΣrM) is a Kählerian twistor spinor, then
the four-tuple (ϕ, ϕ+ := D+ϕ, ϕ− := D−ϕ,D2ϕ) is parallel with respect to
the following connection, denoted by ∇̂, which we call Kählerian twistor
connection:

∇X
1

2(r+1)
X−· 1

2(m−r+1)
X+· 0

− r+1
4(m−2r)

SX+ ·+1
2
Ric(X+)· ∇X 0 2r+1

2(m−2r)
X+·

m−r+1
4(m−2r)

SX− ·+1
2
Ric(X−)· 0 ∇X −2m−2r+1

2(m−2r)
X−·

A(X) 1
4(2r+1)

SX−· 1
4(2m−2r+1)

SX+· ∇X

 ,

(4.25)
where we denote by A(X) the following endomorphism of the spinor bundle:

A(X) :=
1

2
D(Ric)(X)− 1

4(2m− 2r + 1)
(dS)− ·X+ − 1

4(2r + 1)
(dS)+ ·X−

− 1

2(2m− 2r + 1)
X+(S)− 1

2(2r + 1)
X−(S).

Moreover, it follows that any parallel section is of the form (ϕ, ϕ+, ϕ−, D2ϕ)
with ϕ a Kählerian twistor spinor:
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Proposition 4.9. There is a one-to-one correspondence between Kählerian

twistor spinors in ΣrM and the parallel sections of the vector bundle

ΣrM ⊕ Σr+1M ⊕ Σr−1M ⊕ ΣrM with respect to the connection ∇̂ given by

(4.25). The explicit bijection is given by ϕ 7→ ϕ̂ = (ϕ, ϕ+, ϕ−, D2ϕ).

Proof: In the above discussion we have seen that the function ϕ 7→ ϕ̂ takes
values in the space of parallel sections with respect to the connection (4.25)
and it is obviously injective. Thus we only need to prove its surjectivity.

Let (ϕ, ψ, ξ, η) ∈ Γ(ΣrM ⊕ Σr+1M ⊕ Σr−1M ⊕ ΣrM) be a parallel section
with respect to (4.25). Since the first row of this connection is exactly the
Kählerian twistor operator, it follows by contractions that the first three
components are (ϕ, ϕ+, ϕ−), where ϕ is a Kählerian twistor spinor. From

∇X−ϕ = − 1

2(r + 1)
X− · ψ

we get by contraction that ψ = D−ϕ. Similarly, from

∇X−ϕ = − 1

2(m− r + 1)
X+ · ξ

we get ξ = D+ϕ. Substituting now ψ and ξ in the first row yields that ϕ is
a Kählerian twistor spinor. For the last component of the four-tuple we may
compare for example the second row of the connection matrix applied to the
parallel sections (ϕ, ψ = ϕ+, ξ = ϕ−, η) and (ϕ, ϕ+, ϕ−, D2ϕ) obtaining:

X+ · η = X+ ·D2ϕ,

which contracted yields η = D2ϕ. �

If the manifold (M, g, J) is Kähler-Einstein, then Ric(X) = S
n
X and the

Kählerian twistor connection ∇̂ simplifies as follows:

∇̂X =



∇X
1

2(r+1)
X−· 1

2(m−r+1)
X+· 0

− r(m+2)
4m(m−2r)

SX+· ∇X 0 2r+1
2(m−2r)

X+·
(m−r)(m+2)
4m(m−2r)

SX−· 0 ∇X −2m−2r+1
2(m−2r)

X−·

0 1
4(2r+1)

SX−· 1
4(2m−2r+1)

SX+· ∇X


.

(4.26)
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4.4 The Curvature of the Kählerian Twistor

Connection

In this section we compute the curvature of the Kählerian twistor connection.
The first component of this curvature allows us to reduce the Kählerian
twistor connection ∇̂ to one acting on a bundle of smaller rank, namely on
ΣrM ⊕ Σr+1M ⊕ Σr−1M , which is given by the matrix (4.28).

Let ϕ ∈ Γ(ΣrM) be a Kählerian twistor spinor. As ϕ̂ = (ϕ, ϕ+, ϕ−, η :=
D2ϕ) is a parallel section of ∇̂ (see Proposition 4.9), then by definition the
curvature of this connection vanishes on this section: R̂X,Y (ϕ̂) = 0, for any

vector fields X and Y . Thus, computing the components of R̂ we get cer-
tain identities which by further contractions yield the formulas in Proposi-
tion 4.12.

The first component of R̂ is computed as follows.

R̂X,Y


ϕ
ϕ+

ϕ−

η


1

= ∇X

(
∇Y ϕ+

1

2(r + 1)
Y − · ϕ+ +

1

2(m− r + 1)
Y + · ϕ−

)

+
1

2(r + 1)
X− ·

(
− r + 1

4(m− 2r)
SY + · ϕ+

1

2
Ric(Y +) · ϕ+∇Y ϕ

+

)
+

1

2(m− r + 1)
X+ ·

(
m− r + 1

4(m− 2r)
SY − · ϕ+

1

2
Ric(Y −) · ϕ+∇Y ϕ

−
)

+
1

4(m− 2r)

(
2r + 1

r + 1
X− · Y + − 2m− 2r + 1

m− r + 1
X+ · Y −

)
· η

−∇Y

(
∇Xϕ+

1

2(r + 1)
X− · ϕ+ +

1

2(m− r + 1)
X+ · ϕ−

)
− 1

2(r + 1)
Y − ·

(
− r + 1

4(m− 2r)
SX+ · ϕ+

1

2
Ric(X+) · ϕ+∇Xϕ

+

)
− 1

2(m− r + 1)
Y + ·

(
m− r + 1

4(m− 2r)
SX− · ϕ+

1

2
Ric(X−) · ϕ+∇Xϕ

−
)

− 1

4(m− 2r)

(
2r + 1

r + 1
Y − ·X+ − 2m− 2r + 1

m− r + 1
Y + ·X−

)
· η

−∇[X,Y ]ϕ−
1

2(r + 1)
[X, Y ]− · ϕ+ − 1

2(m− r + 1)
[X, Y ]+ · ϕ−
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= RX,Y ϕ−
S

4(m− 2r)
i〈X, JY 〉ϕ+

1

4(r + 1)

[
X− ·Ric(Y +)−Y − ·Ric(X+)

]
·ϕ

+
1

4(m− r + 1)

[
X+ · Ric(Y −)− Y + · Ric(X−)

]
· ϕ

+
1

4(m− 2r)

[
2r −m

(r + 1)(m− r + 1)
(X+ ·Y −−Y + ·X−)+

2(2r + 1)

r + 1
i〈X, JY 〉

]
·η.

Contracting this equation using the formulas in Appendix A we obtain:

0 = − (m+ 2)S

8(r + 1)(m− 2r)
Y − ·ϕ+

(m+ 2)S

8(m− r + 1)(m− 2r)
Y + ·ϕ− i

4(r + 1)
Y − ·ρ · ϕ

+
i

4(m− r + 1)
Y + ·ρ · ϕ+

m+ 1

2(r + 1)(m− 2r)
Y − ·η− m+ 1

2(m− r + 1)(m− 2r)
Y + ·η,

or, equivalently:

(m+ 2)S

4(m− 2r)
Y − · ϕ+

i

2
Y − · ρ · ϕ− m+ 1

m− 2r
Y − · η = 0,

(m+ 2)S

4(m− 2r)
Y + · ϕ+

i

2
Y + · ρ · ϕ− m+ 1

m− 2r
Y + · η = 0,

which both yield by a further contraction:

(m+ 2)S

4(m− 2r)
· ϕ+

i

2
· ρ · ϕ− m+ 1

m− 2r
· η = 0,

so that

D2ϕ = η =
(m+ 2)S

4(m+ 1)
ϕ+

m− 2r

2(m+ 1)
iρ · ϕ. (4.27)

This relation allows us to reduce the connection to one acting on sections of
the bundle ΣrM ⊕ Σr+1M ⊕ Σr−1M . Substituting (4.27) in the second and
third row of the connection (4.25), we get the following connection, denoted
by ∇̃, with respect to which the triple (ϕ, ϕ+, ϕ−) is parallel if ϕ ∈ KT (r): ∇X

1
2(r+1)

X−· 1
2(m−r+1)

X+·
− 1

8(m+1)
SX+ ·+1

2
Ric(X+) ·+ 2r+1

4(m+1)
iX+ · ρ· ∇X 0

− 1
8(m+1)

SX− ·+1
2
Ric(X−) · −2m−2r+1

4(m+1)
iX− · ρ· 0 ∇X

 .

(4.28)
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As in Proposition 4.9, it follows that there is a one-to-one correspondence
between Kählerian twistor spinors on ΣrM and parallel sections of the bundle
ΣrM ⊕ Σr+1M ⊕ Σr−1M with respect to the connection ∇̃ given by (4.28).
An immediate consequence is that the space of Kählerian twistor spinors is
finite dimensional and an upper bound is given as follows.

Corollary 4.10. Let (M, g, J) be a connected spin Kähler manifold. The

dimension of the space of Kählerian twistor spinors in ΣrM is bounded by

the rank of the vector bundle ΣrM ⊕ Σr+1M ⊕ Σr−1M :

dimC(KT (r)) ≤
(
m

r

)
+

(
m

r + 1

)
+

(
m

r − 1

)
.

Remark 4.11. Twistor operators are one of the typical examples of general-

ized gradients (see § 1.1). Twistor operators are strongly elliptic by a result

in [64], implying directly that on compact spin Kähler manifolds the space of

Kählerian twistor spinors is finite dimensional. However, our Corollary 4.10

is a purely local result: the manifold M is not assumed to be compact.

The second component of the curvature of the connection ∇̂, R̂X,Y

 ϕ
ϕ+

ϕ−


2

,

is computed as follows.(
− 1

8(m+ 1)
SX++

1

2
Ric(X+)+

2r + 1

4(m+ 1)
iX+ ·ρ

)
·
(
∇Y ϕ+

1

2(r + 1)
Y − ·ϕ+

)
+

1

2(m− r + 1)

(
− 1

8(m+ 1)
SX++

1

2
Ric(X+) +

2r + 1

4(m+ 1)
iX+ ·ρ

)
·Y + · ϕ−

+∇X

(
− 1

8(m+ 1)
SY + · ϕ+

1

2
Ric(Y +) · ϕ+

2r + 1

4(m+ 1)
iY + · ρ · ϕ+∇Y ϕ

+

)
−
(
− 1

8(m+ 1)
SY ++

1

2
Ric(Y +)+

2r + 1

4(m+ 1)
iY + ·ρ

)
·
(
∇Xϕ+

1

2(r + 1)
X− ·ϕ+

)
− 1

2(m− r + 1)

(
− 1

8(m+ 1)
SY ++

1

2
Ric(Y +) +

2r + 1

4(m+ 1)
iY + · ρ

)
·X+ ·ϕ−

−∇Y

(
− 1

8(m+ 1)
SX+ · ϕ+

1

2
Ric(X+) · ϕ+

2r + 1

4(m+ 1)
iX+ · ρ · ϕ+∇Xϕ

+

)
=RXY ϕ

+ +
1

4(r + 1)

[
− 1

4(m+ 1)
S(X+ · Y − − Y + ·X−)

+ (Ric(X+)·Y −−Ric(Y +)·X−)+
2r + 1

2(m+ 1)
i(X+ ·ρ·Y −−Y + ·ρ·X−)

]
·ϕ+
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+
1

4(m− r + 1)

[
− 1

4(m+ 1)
S(X+ · Y + − Y + ·X+)

+ (Ric(X+)·Y +−Ric(Y +)·X+)+
2r + 1

2(m+ 1)
i(X+ ·ρ·Y +−Y + ·ρ·X+

]
·ϕ−

+

[
− 1

8(m+ 1)
(X(S)Y + − Y (S)X+) +

1

2
((∇XRic)(Y +)− (∇Y Ric)(X+))

+
2r + 1

4(m+ 1)
i(Y + · ∇Xρ−X+ · ∇Y ρ)

]
· ϕ.

Contracting this equation using the formulas in Appendix A we get

0 =
1

2
Ric(Y ) · ϕ+ +

1

4(r + 1)

[
1

2(m+ 1)
S((m− r)Y − + (r + 1)Y +)

−
(

(
S

2
+ iρ) · Y − + 2(r + 1)Ric(Y +)

)
− 2r + 1

2(m+ 1)
i(2(m− r) · ρ · Y − + 2rY + · ρ− iSY +)

]
· ϕ+

+
1

4(m− r + 1)

[
m− r
m+ 1

SY + − (
S

2
+ iρ) · Y + − 2(m− r)Ric(Y +)

− 2r + 1

2(m+ 1)
i(2(2m− 2r − 1)Y + ·ρ+4i(m− r − 1)Ric(Y +) + iSY +)

]
·ϕ−

+

[
− 1

8(m+ 1)
(dS · Y + + 2(m− r)Y (S))

+
1

2

(
−i∇Y +ρ− 1

2
Y +(S) + i∇Y ρ+

1

2
Y (S)

)
+

2r + 1

4(m+ 1)
i

(
1

2
Y + · JdS − 2∇Y +ρ+ 2(m− r)∇Y ρ

)]
· ϕ

=− 1

4(r + 1)(m+ 1)

[
S

2
(rY + + (r + 1)Y −) + ir(2r + 1)Y + · ρ

+ i(r + 1)(2m− 2r + 1)Y − · ρ+ 2(r + 1)(m− 2r)Ric(Y −)

]
· ϕ+

+
1

4(m− r + 1)(m+ 1)

[
mS

2
Y + + (4r2 + 4r − 4rm− 3m)iY + · ρ

+ 2(m− r − 1)(2r −m)Ric(Y +)

]
· ϕ−
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− 1

4(m+ 1)

[
(m− r − 1)Y +(S)−(r + 1)Y −(S)+rY + ·(dS)+−(r + 1)Y + ·(dS)−

− 2(2r + 1)(m− r − 1)i∇Y +ρ− 2(r + 1)(2m− 2r + 1)i∇Y −ρ

]
· ϕ

By projecting this equality onto ΣrM and Σr+2M , it is equivalent to the
following two equations:

+

[
S

2
Y − + i(2m− 2r + 1)Y − · ρ+ 2(m− 2r)Ric(Y −)

]
· ϕ+

− 1

m− r + 1

[
mS

2
Y + + (4r2 + 4r − 4rm− 3m)iY + · ρ

+2(m− r − 1)(2r −m)Ric(Y +)

]
· ϕ− (4.29)

−
[
−(m− r − 1)Y +(S) + (r + 1)Y −(S) + (r + 1)Y + · (dS)−

−2(2r + 1)(m− r − 1)i∇Y +ρ+ 2(r + 1)(2m− 2r + 1)i∇Y −ρ

]
· ϕ = 0,

[
S

2
Y + + i(2r + 1)Y + · ρ

]
· ϕ+ + (r + 1)Y + · (dS)+ · ϕ = 0. (4.30)

The contraction of (4.30) yields ( if r 6= m− 1):[
S

2
+ (2r + 1)iρ

]
· ϕ+ + (r + 1)(dS)+ · ϕ = 0,

so that

iρ · ϕ+ = − 1

2(2r + 1)
Sϕ+ − r + 1

2r + 1
(dS)+ · ϕ. (4.31)

The contraction of (4.29) yields:

0 = (m− r + 1)Sϕ+ + 2(2r + 1)(m− r + 1)iρ · ϕ+

+
2(r −m)(r + 1)S

m− r + 1
ϕ− +

4(r + 1)(r −m)(2r − 2m− 1)

m− r + 1
iρ · ϕ−

+ 2(r + 1)(m− r + 1)(dS)+ · ϕ− 4(r + 1)(m− r)(dS)− · ϕ,
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which, by projections onto Σr+1M , respectively Σr−1M , is equivalent to the
following two equations:

iρ · ϕ+ = − 1

2(2r + 1)
Sϕ+ − r + 1

2r + 1
(dS)+ · ϕ, (4.32)

which is again the equation (4.31) (here it follows to be true also for r = m−1)
and

iρ · ϕ− =
1

2[2(m− r) + 1]
Sϕ− +

m− r + 1

2(m− r) + 1
(dS)− · ϕ. (4.33)

Inserting the relations (4.32) and (4.33) back in (4.29) we get

(m− 2r)

[
S

2r + 1
Y − − 2Ric(Y −)

]
· ϕ+ (4.34)

+
(m− 2r)(m− r − 1)

m− r + 1

[
S

2m− 2r + 1
Y + − 2Ric(Y +)

]
· ϕ−

+

[
−(m− r − 1)Y +(S) + (r + 1)Y −(S)− (2r + 1)(m− r − 1)

2m− 2r + 1
Y + ·(dS)−

+
(r + 1)(2m− 2r + 1)

2r + 1
Y − · (dS)+

]
· ϕ

+2i

[
(2r + 1)(m− r − 1)∇Y +ρ+ (r + 1)(2m− 2r + 1)∇Y −ρ

]
· ϕ = 0,

which is equivalent to the following equations:

i∇Y +ρ · ϕ =− (m− 2r)

(2r + 1)(m− r + 1)

[
1

2(2m− 2r + 1)
SY + − Ric(Y +)

]
· ϕ−

+
1

2(2r + 1)
Y +(S) · ϕ+

1

2(2m− 2r + 1)
Y + · (dS)− · ϕ,

(4.35)

i∇Y −ρ · ϕ =− m− 2r

(r + 1)(2m− 2r + 1)

[
S

2(2r + 1)
Y − − Ric(Y −)

]
· ϕ+

− 1

2(2m− 2r + 1)
Y −(S) · ϕ− 1

2(2r + 1)
Y − · (dS)+ · ϕ.

(4.36)

Now we do a similar computation for the third component of the curvature
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of the Kählerian twistor connection.

R̂X,Y

 ϕ
ϕ+

ϕ−


3

=−
(

1

8(m+ 1)
SX−− 1

2
Ric(X−)+

2m− 2r + 1

4(m+ 1)
iX− ·ρ

)
·
(
∇Y ϕ

+
1

2(r + 1)
Y − · ϕ+ +

1

2(m− r + 1)
Y + · ϕ−

)
+

(
1

8(m+ 1)
SY − − 1

2
Ric(Y −)

+
2m− 2r + 1

4(m+ 1)
iY − ·ρ

)
·
(
∇Xϕ+

1

2(r + 1)
X− · ϕ++

1

2(m− r + 1)
·X+ ·ϕ−

)
+∇X

(
− 1

8(m+ 1)
SY − ·ϕ+

1

2
Ric(Y −)·ϕ− 2m− 2r + 1

4(m+ 1)
iY − ·ρ·ϕ+∇Y ϕ

−
)

−∇Y

(
− 1

8(m+ 1)
SX− ·ϕ+

1

2
Ric(X−)·ϕ− 2m− 2r + 1

4(m+ 1)
iX− ·ρ·ϕ+∇Xϕ

−
)

= RXY ϕ
− +

1

4(r + 1)

[
− 1

4(m+ 1)
S(X− · Y − − Y − ·X−)

+(Ric(X−)·Y −−Ric(Y −)·X−)− 2m− 2r + 1

2(m+ 1)
i(X− ·ρ·Y −−Y − ·ρ·X−)

]
·ϕ+

+
1

4(m− r + 1)

[
− 1

4(m+ 1)
S(X− · Y + − Y − ·X+)

+(Ric(X−)·Y +−Ric(Y −)·X+)− 2m− 2r + 1

2(m+ 1)
i(X− ·ρ·Y +−Y − ·ρ·X+)

]
·ϕ−

+

[
− 1

8(m+ 1)
(X(S)Y − − Y (S)X−) +

1

2
((∇XRic)(Y −)− (∇Y Ric)(X−))

− 2m− 2r + 1

4(m+ 1)
i(Y − · ∇Xρ−X− · ∇Y ρ)

]
· ϕ.

Contracting this equation using the formulas in Appendix A we get

0 =
1

2
Ric(Y ) · ϕ−

+
1

4(r + 1)

(
r

(m+ 1)
SY − − S

2
Y − + iY − · ρ− 2(r − 1)Ric(Y −)

− 2m− 2r + 1

2(m+ 1)
i(−2(2r − 1)Y − · ρ+ iSY − + 4i(r − 1)Ric(Y −))

)
· ϕ+

+
1

4(m− r + 1)

[
1

2(m+ 1)
S(rY + + (m− r + 1)Y −)− S

2
Y + + iY + · ρ

− 2(Ric(Y +) + (m− r + 1)Ric(Y −))
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+
2m− 2r + 1

2(m+ 1)
i(2rY + · ρ+ 4irRic(Y +) + 2(m− r)Y − · ρ+ iSY −)

]
· ϕ−

+

[
1

8(m+ 1)
(Y − · dS + 2Y −(S)− 2rY (S)) +

1

2
(−i∇Y +ρ+

1

2
Y +(S))

− 2m− 2r + 1

4(m+ 1)
i(

1

2
Y − · JdS − 2∇Y −ρ+ 2r∇Y ρ)

]
· ϕ

=
1

4(m+ 1)

[
1

r + 1

(
mS

2
Y − + (4rm−m− 4r2 + 4r)iY − · ρ

+2(r − 1)(m− 2r)Ric(Y −)

)
·ϕ+− 1

m− r + 1

(
S

2
((m− r + 1)Y ++(m− r)Y −)

− i((2r + 1)(m− r + 1)Y + + (2m− 2r + 1)(m− r)Y −)) · ρ

+ 2(m− r + 1)(2r −m)Ric(Y +)

)
· ϕ− +

(
(m− r + 1)Y +(S)− (r − 1)Y −(S)

+ (m− r + 1)Y − · (dS)+ − (m− r)Y − · (dS)− − 2(2r + 1)(m− r + 1)i∇Y +ρ

− 2(r − 1)(2m− 2r + 1)i∇Y −ρ

)]
· ϕ

By projecting this equality onto Σr−2M and ΣrM , it is equivalent to the
following two equations:[
S

2
Y − − i(2m− 2r + 1)Y − · ρ

]
· ϕ− + (m− r + 1)Y − · (dS)− · ϕ = 0 (4.37)

and

−
[
S

2
Y + − i(2r + 1)Y + · ρ+ 2(2r −m)Ric(Y +)

]
· ϕ−

+
1

r + 1

[
mS

2
Y −+(4rm−m−4r2+4r)iY − ·ρ+ 2(r−1)(m−2r)Ric(Y −)

]
·ϕ+

+

[
(m− r + 1)Y +(S)− (r − 1)Y −(S) + (m− r + 1)Y − · (dS)+

− 2(2r + 1)(m− r + 1)i∇Y +ρ− 2(r − 1)(2m− 2r + 1)i∇Y −ρ

]
· ϕ = 0.

(4.38)

The contractions of the equations (4.37) and (4.38) yield again the equations
(4.32) and (4.33). Also, by inserting (4.32) and (4.33) back into (4.38), we
get an equation which is equivalent to (4.35) and (4.36).



4.4. THE KÄHLERIAN TWISTOR CURVATURE 115

We gather now the formulas that we obtained for the actions on a special
Kählerian twistor spinor and deduce some new ones. Is is enough to consider
anti-holomorphic Kählerian twistor spinors, since similar formulas are then
fulfilled by holomorphic Kählerian twistor spinors. In fact, they are obtained
by conjugating the ones for anti-holomorphic Kählerian twistor spinors and
replacing the constant k = 1

2(2r+1)
with k = 1

2(2m−2r+1)
.

Proposition 4.12. Let (M, g, J) be a spin Kähler manifold and ϕ ∈ Γ(ΣrM)

be an anti-holomorphic Kählerian twistor spinor for some fixed r, 0 < r < m:{
∇X−ϕ = − 1

2(r+1)
X− · ϕ+,

∇X+ϕ = 0,

so that in particular ϕ− = D−ϕ = 0. Then the following formulas hold,

where we denote by k := 1
2(2r+1)

:

(dS)− · ϕ = 0, (4.39)

D2ϕ = k(r + 1)Sϕ, (4.40)

∇Xϕ
+ = −1

2
Ric(X+) · ϕ, (4.41)

Ric(X−) · ϕ = kSX− · ϕ, (4.42)

iρ · ϕ = kSϕ, (4.43)

i∇X−ρ · ϕ = −kX−(S)ϕ− kX− · (dS)+ · ϕ = −k(X− ∧ (dS)+) · ϕ, (4.44)

i∇X+ρ · ϕ = kX+(S)ϕ, (4.45)

iρ · ϕ+ = −kSϕ+ − 2k(r + 1)(dS)+ · ϕ, (4.46)

Ric(X−) · ϕ+ = kSX− · ϕ+ − 2k(r + 1)X−(S)ϕ, (4.47)

i∇X+ρ·ϕ+ =−Ric2(X+)·ϕ+kSRic(X+)·ϕ−2k(r+1)∇X+(dS)+·ϕ−kX+(S)ϕ+,

(4.48)

i∇X−ρ·ϕ+ = −2k(r+1)∇X−(dS)+·ϕ−3kX−(S)ϕ+−kX−·(dS)+·ϕ+. (4.49)

Proof: Equation (4.39) follows directly from (4.33) and ϕ− = 0. Equation
(4.40) is the property of a special Kählerian twistor spinor to be eigenspinor
of D2, which we have shown in (4.14).
Substituting (4.40) into the second row of the connection ∇̂ given by (4.25)
we get (4.41). Similarly, by substituting (4.40) into the third row of the
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connection ∇̂ given by (4.25) we get the equation (4.42). Equations (4.27)
and (4.40) yield (4.43).

Substituting (4.47) in (4.36) yields (4.44) and similarly, substituting (4.39)
and ϕ− = 0 in (4.35) yields (4.45). Differentiating (4.43) we get

i∇X−ρ · ϕ = −iρ · ∇X−ϕ+ kX−(S)ϕ+ kS∇X−ϕ

= kX−(S)ϕ− 1

2(r + 1)
kSX− · ϕ+ +

i

2(r + 1)
[X− · ρ− 2iRic(X−)] · ϕ+

(4.46)
= kX−(S)ϕ− 1

2(r + 1)
kSX− ·ϕ+− 1

2(r + 1)
[kSX− ·ϕ+−2Ric(X−)·ϕ+

+ 2k(r + 1)X− · (dS)+ · ϕ]

= kX−(S)ϕ− 1

r + 1
[kSX− − Ric(X−)] · ϕ+ −kX− · (dS)+ · ϕ,

which compared with (4.36) yields

− kX−(S)ϕ+
1

r + 1
[kSX− − Ric(X−)] · ϕ+ =

=
(m− 2r)

(2m− 2r + 1)(r + 1)
[kSX− − Ric(X−)]·ϕ+ +

1

2(2m− 2r + 1)
X−(S)ϕ,

thus proving (4.47). Equation (4.46) is just (4.32). Differentiating (4.46) we
get

i∇Xρ · ϕ+ = − iρ·∇Xϕ
+−kX(S)ϕ+ − kS∇Xϕ

+ − 2k(r + 1)∇X(dS)+ ·ϕ
− 2k(r + 1)(dS)+ · ∇Xϕ

(4.41)
=

1

2
iρ · Ric(X+) · ϕ− kX(S)ϕ+ +

1

2
kSRic(X+) · ϕ

− 2k(r + 1)∇X(dS)+ · ϕ+ k(dS)+ ·X− · ϕ+,

which together with the commutator relation

[iρ · Ric(X+) · ϕ = iRic(X+) · ρ · ϕ− 2Ric2(X+) · ϕ

and (4.43) yields (4.48) and (4.49). �



Chapter 5

The Geometric Description of

Manifolds Carrying Kählerian

Twistor Spinors

In this chapter we prove our main result, the classification of simply-connected
compact Kähler spin manifolds of constant scalar curvature carrying Kählerian
twistor spinors (Theorem 5.15). Let (M, g, J) be such a manifold. Briefly, the
main steps of the proof, which we shall describe in detail, are the following:

1. All Kählerian twistor spinors onM are special Kählerian twistor spinors.

2. The Ricci tensor has two constant eigenvalues.

3. The Ricci tensor is parallel.

4. M = M1 ×M2 with M1 Kähler-Einstein admitting Kählerian twistor
spinors and M2 a Ricci-flat Kähler manifold.

In the last section we relax the condition on the constancy of the scalar
curvature to the metric being weakly Bochner flat.

5.1 Special Kählerian Twistor Spinors

We show that if the scalar curvature is constant, then each Kählerian twistor
spinor is holomorphic or anti-holomorphic.

117
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Proposition 5.1. Let (M, g, J) be a compact Kähler spin manifold of positive

constant scalar curvature and ϕ ∈ Γ(ΣrM) (0 < r < m) a Kählerian twistor

spinor . Then ϕ is an anti-holomorphic Kählerian twistor spinor if r < m
2

or a holomorphic Kählerian twistor spinor if r > m
2

.

Proof: The relation (4.7) and the Lichnerowicz formula (3.9) imply the
following Weitzenböck formula:

2r + 1

2(r + 1)
D−D+ϕ+

2m− 2r + 1

2(m− r + 1)
D+D−ϕ =

1

4
Sϕ (5.1)

If r < m
2

, then 2r+1
2(r+1)

< 2m−2r+1
2(m−r+1)

and from (5.1) it follows by integration

(where we denote by || · || the global norm: ||ϕ||2 =
∫
M
〈ϕ, ϕ〉volM):

2r + 1

2(r + 1)
||Dϕ||2 ≤ 1

4
S||ϕ||2, (5.2)

with equality if and only if D−ϕ = 0. Further it follows that

2(r + 1)

2r + 1

1

4
S ≤ λmin ≤

||Dϕ||2

||ϕ||2
≤ 2(r + 1)

2r + 1

1

4
S,

where the first inequality is given by (4.10) and the second inequality is
the property of the Rayleigh quotient to have as its minimum the smallest
eigenvalue λmin of the operator (here D2 acting on the Hilbert space of square
integrable sections of ΣrM). It then follows that equality must hold in (5.2),
so that ϕ must be an anti-holomorphic Kählerian twistor: D−ϕ = 0 and in
particular an eigenspinor of D2 with the smallest eigenvalue of D2 on ΣrM
(Proposition 4.7).

The same argument shows that for r > m
2

, any Kählerian twistor spinor in
ΣrM must be a holomorphic Kählerian twistor spinor.

If m even and r = m
2

, then we have seen in § 4.2 that the only nontrivial
Kählerian twistor spinors are the parallel ones. �

Remark 5.2. We notice that the condition for the scalar curvature to be

positive in Proposition 5.1 is not restrictive. If S ≤ 0, then taking in (5.1)

the scalar product with ϕ and integrating over M yields D+ϕ = D−ϕ = 0.

As ϕ is also in the kernel of the twistor operator, it follows that ∇ϕ = 0,

implying that the manifold is Ricci-flat (and thus S = 0), unless ϕ ≡ 0.
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5.2 The Eigenvalues of the Ricci Tensor

We now show that the Ricci tensor of a Kähler manifold of constant scalar
curvature admitting a special Kählerian twistor spinor has two constant
eigenvalues and is parallel. This result has been proven by A. Moroianu
in [53] and [54] for the special case of a limiting even dimensional spin Kähler
manifold for Kirchberg’s inequality (3.13). We note that the same method
can be applied when the existence of a special Kählerian twistor spinor is as-
sumed. As shown in Proposition 5.1 this is no restriction, since all Kählerian
twistor spinors are special Kählerian twistor spinors if S is constant.

Theorem 5.3. The Ricci tensor of a Kähler spin manifold of constant scalar

curvature admitting a Kählerian twistor spinor has two constant eigenvalues.

If ϕ is an anti-holomorphic Kählerian twistor spinor in ΣrM , then the Ricci

tensor has the eigenvalues S
2(2r+1)

and 0, with multiplicities 2(2r + 1) and

2(m − 2r − 1) respectively. If ϕ ∈ Γ(ΣrM) is a holomorphic Kählerian

twistor spinor, then the Ricci tensor has the eigenvalues S
2(2m−2r+1)

and 0,

with multiplicities 2(2m− 2r + 1) and 2(2r −m− 1) respectively.

Since the multiplicity of an eigenvalue is a positive integer, we get directly
the following

Corollary 5.4. On a Kähler spin manifold of positive constant scalar cur-

vature, anti-holomorphic Kählerian twistor spinors may exist only in ΣrM

with r ≤ m−1
2

and holomorphic Kählerian twistor spinors may exist only in

ΣrM with r ≥ m+1
2

.

Remark 5.5. In the extremal cases, if m is odd and r = m±1
2

, then the

existence of a holomorphic (respectively anti-holomorphic) Kählerian twistor

spinor ϕ ∈ Γ(ΣrM) implies that the Ricci tensor only has one eigenvalue,

thus proving that the manifold must be Kähler-Einstein. As we move away

from the middle dimension the multiplicity of the eigenvalue 0 of the Ricci

tensor grows and the manifold is actually the product of a Kähler-Einstein

manifold and a Ricci-flat one, if M is supposed to be simply-connected (see

Theorem 5.15) below.

The proof of Theorem 5.3 follows from Lemmas 5.6 and 5.7. It is enough to
consider anti-holomorphic Kählerian twistor spinors, since the holomorphic
ones are obtained by applying the canonical C-anti-linear quaternionic (resp.
real) structure j to the anti-holomorphic ones.
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Lemma 5.6. If ϕ ∈ Γ(ΣrM) is an anti-holomorphic Kählerian twistor

spinor, then the following formulas hold (with the notation K=kS= S
2(2r+1)

):

∇Xϕ
+ = −1

2
Ric(X+) · ϕ, (5.3)

Ric(X−) · ϕ = KX− · ϕ, Ric(X−) · ϕ+ = KX− · ϕ+, (5.4)

iρ · ϕ = Kϕ, iρ · ϕ+ = −Kϕ+, (5.5)

∇Xρ · ϕ = 0, i∇Xρ · ϕ+ = −(Ric2(X+)−KRic(X+)) · ϕ. (5.6)

Proof: These relations follow directly from the general formulas (4.41) -
(4.49) for anti-holomorphic Kählerian twistor spinors by using the fact that
the scalar curvature S is constant. �

Let us consider the 2-forms

ρs :=
1

2

n∑
i=1

ei ∧ JRics(ei) =
1

2

n∑
i=1

ei · JRics(ei).

We need the following two properties of these 2-forms: the commutating rule

ρs ·X = X · ρs + 2JRics(X) (5.7)

and the equivalence
δρs = 0⇔ ∇eiRics(ei) = 0, (5.8)

which follows from the following formula:

δρs(X) = −∇eiρs(ei, X) = −∇ei〈JRics(ei), X〉 = 〈∇eiRics(ei), JX〉,

where X is a vector field and {ei}i=1,n a local orthonormal frame parallel at
the point where the computation is done.

We consider then as in [53] the following statements:

(as) tr(Rics) = 2(2r + 1)Ks;

(bs) iρs · ϕ = Ksϕ;

(cs) iρs · ϕ+ = −Ksϕ+;

(ds) ∇Xρs · ϕ = 0;
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(es) i∇Xρs · ϕ+ = −(Rics+1(X+)−KsRic(X+)) · ϕ;

(fs) δρs = 0.

From Lemma 5.6 it follows that these statements are true for s = 1 (constant
scalar curvature implies δρ = −1

2
JdS = 0). We prove by induction that they

are true for all s ∈ N.

Lemma 5.7. The following implications hold:

1. (as)⇒ (bs), (cs);

2. (bs), (cs)⇒ (ds), (es);

3. (as), (fs−1)⇒ (fs);

4. (ds), (es), (fs)⇒ (as+1).

Proof: Let x ∈ M and {Xi, Xa} be an orthonormal basis adapted with
respect to the Ricci tensor:

Ric(Xa) = µaXa, a ∈ {1, . . . , p}, µa 6= K,

Ric(Xi) = KXi, i ∈ {p+ 1, . . . , n}.

From (5.4) it follows that
X−a · ϕ = 0 (5.9)

and
X−a · ϕ+ = 0, (5.10)

for all a ∈ {1, . . . , p}.

1. Suppose that (as) is true. We then have:

p∑
a=1

(µsa −Ks) = tr(Rics)− nKs = 2(2r + 1−m)Ks (5.11)

and using (5.9) we get:

(ρs −KsΩ) · ϕ =
1

2

p∑
a=1

(µsa −Ks)Xa · JXa · ϕ =
i

2

p∑
a=1

(µsa −Ks)Xa ·Xa · ϕ

=
i

2

p∑
a=1

(µsa −Ks) · ϕ = i(m− 2r − 1)Ksϕ.
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Thus we obtain

iρs · ϕ = iKsΩ · ϕ− (m− 2r − 1)Ksϕ = (m− 2r −m+ 2r + 1)Ksϕ = Ksϕ.

Similarly, from (5.10) and (5.11), it follows

(ρs −KsΩ) · ϕ+ = i(m− 2r − 1)Ksϕ+,

so that
iρs · ϕ+ = iKsΩ · ϕ+ − (m− 2r − 1)Ksϕ = −Ksϕ.

2. Using the relation (5.7) we obtain

i∇Xρs · ϕ = i∇X(ρs · ϕ)− iρs · ∇Xϕ = Ks∇Xϕ− iρs · ∇Xϕ

= − 1

2(r + 1)
(Ks − iρs) ·X− · ϕ+

= − 1

2(r + 1)
(KsX− − iX− · ρs − 2Rics(X−)) · ϕ+

(cs)
= − 1

r + 1
(KsX− − Rics(X−)) · ϕ+ (5.4)

= 0

(5.12)

and similarly

i∇Xρs · ϕ+ = i∇X(ρs · ϕ+)− iρs · ∇Xϕ
+ = Ks∇Xϕ

+ − iρs · ∇Xϕ
+

=
1

2
(Ks + iρs) · Ric(X+) · ϕ

=
1

2
(Ks · Ric(X+) + iRic(X+) · ρs − 2Rics+1(X+)) · ϕ

(bs)
= −(Rics+1(X+)−KsRic(X+)) · ϕ.

(5.13)

3. From (as) we get

(∇XRic)(ei,Rics−1ei) = tr(∇XRic ◦ Rics−1) =
1

s
∇X(tr(Rics)) = 0.

Thus, considering X a vector field and {ei}i=1,n a local orthonormal frame
parallel, both parallel in x and using (5.8), we obtain

0 = dρ(Jei,Rics−1ei, X)

= (∇Jeiρ)(Rics−1ei, X) + (∇Rics−1eiρ)(X, Jei) + (∇Xρ)(Jei,Rics−1ei)
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= (∇JeiRic)(JRics−1ei, X)+(∇Rics−1eiRic)(JX, Jei)−(∇XRic)(ei,Rics−1ei)

= 2(∇eiRic)(Rics−1ei, X) = 2〈∇eiRic
s(ei), X〉 − 2Ric(∇eiRics−1(ei), X),

proving that (as) and (fs−1) imply (fs).

4. By contracting (es) we get

iDρs · ϕ+ = −(tr(Rics+1)−Kstr(Ric))ϕ. (5.14)

As Dρs = δρs + dρs
(fs)
= dρs, it follows that Dρs is symmetric (i.e. 〈Dρs ·

ψ, ξ〉 = 〈ψ,Dρs · ξ〉 for any spinors ψ and ξ, where 〈·, ·〉 is the Hermitian
scalar product on ΣM). Taking then the scalar product with ϕ in (5.14)
yields

i(tr(Rics+1)−Kstr(Ric))〈ϕ, ϕ〉 = 〈Dρs · ϕ+, ϕ〉 = 〈ϕ+, Dρs · ϕ〉 = 0,

and as the support of ϕ is dense in M , we obtain (as+1). �

The formulas (as) show that the sum of the sth powers of the eigenvalues
of Ric equals 2(2r + 1)Ks for all s, so by Newton’s relations this proves
Theorem 5.3.

5.3 Kähler-Einstein Manifolds

In this section we show that on a Kähler-Einstein manifold there may only
exist non-extremal Kählerian twistor spinors if its complex dimension, m, is
odd. They must lie in Σm−1

2
M or Σm+1

2
M and are automatically Kählerian

Killing spinors. Thus such a manifold is a limiting manifold for Kirchberg’s
inequality (3.12). These manifolds have been geometrically described by
A. Moroianu (see Theorem 3.6).

Let (M, g, J) be a Kähler-Einstein manifold. Then the scalar curvature S is
constant and by Proposition 5.1 it follows that all Kählerian twistor spinors
are special Kählerian twistor spinors: if 0 ≤ r ≤ m

2
, then they must be anti-

holomorphic Kählerian twistor spinors and if m
2
≤ r ≤ m, then they must be

holomorphic Kählerian twistor spinors. As above, it is sufficient to consider
anti-holomorphic Kählerian twistor spinors ϕ ∈ Γ(ΣrM) for a fixed r with
0 < r < m

2
.
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As ρ = 1
2m
SΩ, it follows that iρ · ϕ = m−2r

2m
Sϕ and from (4.27) we get

D2ϕ =
m2 +m− 2mr + 2r2

2m(m+ 1)
Sϕ. (5.15)

On the other hand, by Proposition 4.7, any anti-holomorphic Kählerian
twistor spinor in ΣrM (for 0 ≤ r < m

2
) is an eigenspinor of D2 with the

smallest possible eigenvalue on ΣrM :

D2ϕ =
(r + 1)S

2(2r + 1)
ϕ. (5.16)

Comparing the eigenvalues in (5.15) and (5.16), we get for r ≤ m−1
2

:

(r + 1)S

2(2r + 1)
=

(m2 +m− 2mr + 2r2)S

2m(m+ 1)
,

which, since S 6= 0, is equivalent to 0 = −r(m− 2r)(m− 2r − 1).

As r 6= 0 and r 6= m
2

, it follows that the only possible value for r is m−1
2

. Thus,
except for parallel spinors (if S=0) and extremal spinors (those in Σ0M),
anti-holomorphic Kählerian twistor spinors on a Kähler-Einstein manifold
can only exist in Σm−1

2
M and they are by definition exactly the Kählerian

Killing spinors. A similar result is true for holomorphic Kählerian twistor
spinors and it might be obtained by considering the isomorphism (4.6) given
by the quaternionic (resp. real) structure j.

Concluding, we have proven the following

Proposition 5.8. On a spin Kähler-Einstein manifold of scalar curvature

the only nontrivial Kählerian twistor spinors are the extremal ones in Σ0M

and ΣmM and the Kählerian Killing spinors in Σm−1
2
M and Σm+1

2
M (if m

is odd).

Combining Proposition 5.8 with the characterization in Proposition 3.4 of the
limiting manifolds of Kirchberg’s inequality and their geometric description
given by A. Moroianu (see Theorem 3.6) we obtain

Theorem 5.9. A Kähler-Einstein spin manifold admitting nontrivial and

non-extremal Kählerian twistor spinors is either CP 4k+1 or a twistor space

over a quaternionic Kähler manifold of positive scalar curvature if m = 4k+3.
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Example 5.10 (The complex projective space). The dimension of the space

of Kählerian Killing spinors on CP 2m with m = 2k − 1 is
(

2k
k

)
(see [43]).

Corollary 5.11. (see [52]) Let (M, g, J) be a Kähler-Einstein manifold ad-

mitting nontrivial non-extremal Kählerian twistor spinors, which is not the

complex projective space, then the dimension of their space is 2. More pre-

cisely:

dimC(KT (
m− 1

2
)) = dimC(KT (

m+ 1

2
)) = 1.

5.4 Kählerian Twistor Spinors on

Kähler Products

We now study Kählerian twistor spinors on a product of compact spin Kähler
manifolds and show that they are defined by parallel spinors on one of the
factors and special Kählerian twistor spinors on the other factor. For twistor
forms a similar result was obtained by A. Moroianu and U. Semmelmann,
[56]. They showed that twistor forms on a product of compact Riemannian
manifolds are defined by Killing forms on the factors.

Let M = M1 ×M2 be the product of two compact spin Kähler manifolds
of real dimensions 2m and 2n respectively. Then M is also a spin Kähler
manifold and its induced spinor bundle is identified with the tensor product
of the spinor bundles of the factors:

ΣM ∼= ΣM1 ⊗ ΣM2,

with the Clifford multiplication given by:

(X1 +X2) · (ψ1 ⊗ ψ2) = X1 · ψ1 ⊗ ψ2 + ψ̄1 ⊗X2 · ψ2,

where ψ̄ is the conjugate of the spinor with respect to the decomposition
given by (3.1), ΣM1 = Σ+M1 ⊕ Σ−M1.

We consider the decompositions of the spinor bundles of M1 and M2 with
respect to their Kähler forms Ω1, Ω2 (Lemma 3.1): ΣM1 = ⊕mk=0ΣkM1,
ΣM2 = ⊕nl=0ΣlM2. Then the corresponding decomposition of ΣM into eigen-
bundles of Ω = Ω1 + Ω2 is:

ΣM =
m+n
⊕
r=0

ΣrM, (5.17)
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with
ΣrM ∼=

r
⊕
k=0

ΣkM1 ⊗ Σr−kM2, (5.18)

since the Kähler form Ω acts on a section of ΣkM1 ⊗ Σr−kM2 as:

Ω · (ψ1 ⊗ ψ2) =(Ω1 + Ω2) · (ψ1 ⊗ ψ2) = Ω1 · ψ1 ⊗ ψ2 + ψ1 ⊗ Ω2 · ψ2

=i(2r −m− n)ψ1 ⊗ ψ2.

Let us define the differential operators:

D+
1 =

2m∑
i=1

e+
i · ∇e−i

, D+
2 =

2n∑
j=1

f+
j · ∇f−j

,

where {ei}i=1,2m and {fj}j=1,2n denote local orthonormal basis of the tangent
distributions to M1, respectively M2. Their adjoints are

D−1 =
2m∑
i=1

e−i · ∇e+i
, D−2 =

2n∑
j=1

f−j · ∇f+
j
.

The following relations are straightforward:

D+ = D+
1 +D+

2 , D− = D−1 +D−2 ,

(D+
1 )2 = (D+

2 )2 = (D−1 )2 = (D−2 )2 = 0,

D+
1 D

+
2 +D+

2 D
+
1 = D−1 D

−
2 +D−2 D

−
1 = 0,

D+
1 D

−
2 +D−2 D

+
1 = D−1 D

+
2 +D+

2 D
−
1 = 0.

We may suppose without loss of generality that one of the factors M1 or M2 is
not Ricci-flat. Otherwise, M = M1×M2 is Ricci-flat and by the Lichnerowicz
formula Kählerian twistor spinors are parallel.

Theorem 5.12. Let M = M1 × M2 be the product of two compact spin

Kähler manifolds of dimensions 2m, respectively 2n and suppose that M2 is

not Ricci-flat. Let ψ ∈ Γ(ΣrM) be a nontrivial Kählerian twistor spinor.

Then ψ has the following form

ψ = ξ0 ⊗ ϕr + ξm ⊗ ϕr−m, (5.19)

where ξ0, ξm are parallel spinors in Σ0M1, ΣmM1, ϕr is an anti-holomorphic
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Kählerian twistor spinor in ΣrM2 (if r ≤ n, otherwise ϕr ≡ 0) and ϕr−m
is a holomorphic Kählerian twistor spinor in Σr−mM2 (if m ≤ r, otherwise

ϕr−m ≡ 0). In particular, M1 is a Ricci-flat manifold and M2 carries special

Kählerian twistor spinors in ΣrM2 or Σr−mM2.

Proof: Let ψ be a Kählerian twistor spinor in ΣrM :{
∇X+ψ = − 1

2(m+n−r+1)
X+ ·D−ψ,

∇X−ψ = − 1
2(r+1)

X− ·D+ψ,
(5.20)

for any vector field X tangent to M . With respect to the decomposition
(5.18), ψ is written as

ψ = ψ0 + · · ·+ ψr,

with ψk ∈ Γ(ΣkM1 ⊗ Σr−kM2), for k = 0, . . . , r.

Projecting onto the components given by (5.18), the twistorial equation
(5.20) is equivalent to the following two systems of equations:

For X ∈ Γ(TM1):{
∇X+ψk = − 1

2(m+n−r+1)
X+ · (D−1 ψk +D−2 ψk−1),

∇X−ψk = − 1
2(r+1)

X− · (D+
1 ψk +D+

2 ψk+1)
(5.21)

and for X ∈ Γ(TM2):{
∇X+ψk = − 1

2(m+n−r+1)
X+ · (D−1 ψk+1 +D−2 ψk),

∇X−ψk = − 1
2(r+1)

X− · (D+
1 ψk−1 +D+

2 ψk).
(5.22)

If {ei}i=1,2m is an orthonormal basis of the 2m-dimensional manifold M1,
then we have on ΣrM1:

e+
i · e−i = −2r, e−i · e+

i = −2(m− r).

By contracting (5.21) using the relations above, it follows that

D−1 ψk = e−i · ∇e+i
ψk = − 1

2(m+ n− r + 1)
e−i · e+

i · (D−1 ψk +D−2 ψk−1)

=
m− k + 1

m+ n− r + 1
(D−1 ψk +D−2 ψk−1),
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D+
1 ψk = e+

i · ∇e−i
ψk = − 1

2(r + 1)
e+
i · e−i · (D+

1 ψk +D+
2 ψk+1)

=
k + 1

r + 1
(D+

1 ψk +D+
2 ψk+1),

so that we get
(r − k)D+

1 ψk = (k + 1)D+
2 ψk+1 (5.23)

and
(n+ k − r)D−1 ψk = (m− k + 1)D−2 ψk−1. (5.24)

We distinguish three cases for 0 ≤ r ≤ m+ n:

I. Suppose that r is strictly smaller than m and n. For k < r, (5.23) and
(5.24) imply:

D−1 D
+
1 ψk =

k + 1

r − k
D−1 D

+
2 ψk+1 = −k + 1

r − k
D+

2 D
−
1 ψk+1

= − (k + 1)(m− k)

(r − k)(n+ k − r + 1)
D+

2 D
−
2 ψk,

(5.25)

which integrated over M yields D+
1 ψk = D−2 ψk = 0, for all k < r. Similarly,

it follows that D−1 ψk = D+
2 ψk = 0, for all k > 0. As D−1 ψ0 = D−2 ψr = 0

holds automatically, then (5.21) and (5.22) show that ψk are parallel spinors
on M (and thus are zero, since M is not Ricci-flat) for 1 ≤ k ≤ r − 1. The
first component ψ0 ∈ Γ(Σ0M1 ⊗ ΣrM2) satisfies the equations:

∇Xψ0 = 0, for all X ∈ Γ(TM1),

∇X+ψ0 = 0, ∇X−ψ0 = − 1

r + 1
X− ·D+

2 ψ0, for all X ∈ Γ(TM2)

and ψr ∈ Γ(ΣrM1 ⊗ Σ0M2) satisfies the equations:

∇X+ψr = 0, ∇X−ψr = − 1

r + 1
X− ·D+

2 ψr, for all X ∈ Γ(TM1),

∇Xψr = 0, for all X ∈ Γ(TM2)

Thus ψ0 = ξ0 ⊗ ϕr with ξ0 ∈ Γ(Σ0M1) a parallel spinor on M1 and ϕr ∈
Γ(ΣrM2) an anti-holomorphic Kählerian twistor spinor on M2 (D−ϕr = 0).
Similarly ψr = ξr ⊗ϕ0, in particular with ϕ0 ∈ Γ(Σ0M2) a parallel spinor on
M2, but as M2 is not Ricci-flat, this term must vanish.
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II. If r is strictly larger than m and n, then by applying the real (resp.
quaternionic) structure j to a Kählerian twistor spinor in ΣrM we get one in
Σm+n−rM , thus reducing to the first case. It then follows that a Kählerian
twistor spinor ψ ∈ ΓΣrM is of the form ψ = ξm⊗ϕr−m with ξm ∈ Γ(ΣmM1)
a parallel spinor on M1 and ϕr−m ∈ Γ(Σr−mM2) a holomorphic Kählerian
twistor spinor on M2.

III. Let r be a number between m and n and suppose that m ≤ r ≤ n. Since
ΣkM1 exist only for 0 ≤ k ≤ m, then automatically ψm+1 = · · · = ψr = 0.
Integrating (5.25) over M we obtain as above D+

1 ψk = D−2 ψk = 0, for all
k ≤ m− 1 and D−1 ψk = D+

2 ψk = 0, for all k ≥ 1. From (5.21) and (5.22) it
follows that ψ1, . . . , ψm−1 are parallel spinors in ΣM and thus must vanish.
The first component ψ0 has as above the form ψ0 = ξ0⊗ϕr with ξ0 ∈ Γ(Σ0M1)
a parallel spinor on M1 and ϕr ∈ Γ(ΣrM2) an anti-holomorphic Kählerian
twistor spinor on M2. The last component is of the form ψm = ξm ⊗ ϕr−m
with ξm ∈ Γ(ΣmM1) a parallel spinor on M1 and ϕr−m ∈ Γ(Σr−mM2) a
holomorphic Kählerian twistor spinor on M2.

The last possible case is when n ≤ r ≤ m. The same argument as above holds
with M1 and M2 interchanged. As M2 is assumed not to be Ricci-flat, then
it carries no parallel spinors, showing that there are no nontrivial Kählerian
twistor spinors in this case. �

Remark 5.13. From Theorem 5.12 it follows in particular that on a product of

two compact spin Kähler manifolds any Kählerian twistor spinor is a special

Kählerian twistor spinor. Moreover, since one of the factors must be a Ricci-

flat manifold, it follows that the second factor, which in turn carries special

Kählerian twistor spinors, is an irreducible Kähler manifold with holonomy

U(m) (from Berger’s list, where we eliminate the case of symmetric manifolds,

which are in particular Kähler-Einstein and thus studied in Theorem 5.9).

If n < m, where m is the complex dimension of the Ricci-flat factor M1 and

n the complex dimension of the other factor M2, then Theorem 5.12 implies

that there are no nontrivial Kählerian twistor spinors in ΣrM for n < r < m.

5.5 The Geometric Description

In this section we give the main result (Theorem 5.15), which is now a con-
sequence of Theorems 5.3 and 5.12 and the following splitting result proven
by V. Apostolov, T. Drăghici and A. Moroianu, [2]:
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Theorem 5.14. Let (M, g, J) be a compact Kähler manifold whose Ricci

tensor has two distinct constant non-negative eigenvalues λ and µ. Then the

universal cover of (M, g, J) is the product of two simply-connected Kähler-

Einstein manifolds with Einstein constants λ and µ, respectively.

Theorem 5.15. Let (M2m, g, J) be a compact simply-connected spin Kähler

manifold of constant scalar curvature admitting nontrivial Kählerian twistor

spinors in ΣrM for an r with 0 < r < m. Then M is the product of

a Ricci-flat manifold M1 and an irreducible Kähler-Einstein manifold M2,

which must be one of the manifolds described in Theorem 5.9. More pre-

cisely, there exist anti-holomorphic (holomorphic) Kählerian twistor spinors

in at most one such ΣrM with r < m
2

(r > m
2

) and they are of the form:

ψ = ξ0 ⊗ ϕr (ψ = ξ2r−m−1 ⊗ ϕm−r+1), (5.26)

where ξ0 ∈ Γ(Σ0M1) (ξ2r−m−1 ∈ Γ(Σ2r−m−1M1)) is a parallel spinor and ϕr ∈
Γ(ΣrM2) (ϕm−r+1 ∈ Γ(Σm−r+1M2)) is an anti-holomorphic (holomorphic)

Kählerian twistor spinor. In particular, the complex dimension of the Kähler-

Einstein manifold M2 is 2r + 1 (resp. 2(m− r) + 1).

Proof: Let (M, g, J) be a Kähler manifold as in the hypothesis of the
theorem and ϕ ∈ Γ(ΣrM) a Kählerian twistor spinor. By Proposition 5.1, ϕ
is a special Kählerian twistor spinor and, as usual, we may suppose that it
is an anti-holomorphic Kählerian twistor spinor. Then, by Theorem 5.3 the
Ricci tensor has two constant eigenvalues: S

2(2r+1)
with multiplicity 2(2r +

1) and 0 with multiplicity 2(m − 2r − 1). From Theorem 5.14, as M is
supposed to be simply-connected, it follows that M is the product of a Ricci-
flat manifold M1 and a Kähler-Einstein manifold M2 of scalar curvature equal
to S

2(2r+1)
. By Theorem 5.12, ψ is of the form (5.26) with ξ0 is a parallel spinor

in Σ0M1 and ϕr is an anti-holomorphic Kählerian twistor spinor in ΣrM2. We
then conclude by applying Theorem 5.9. We notice that this result together
with Corollary 5.11 also provides the dimension of the space of Kählerian
twistor spinors. �

Remark 5.16. This result can be seen as a generalization of the geometric

description of limiting even dimensional Kähler manifolds for Kirchberg’s

inequality (3.13) using the characterization in Theorem 3.5. Thus, if M is a

limiting Kähler manifold of even complex dimension m = 2l, then it admits

an anti-holomorphic Kählerian twistor spinor in Σl−1M (or equivalently a

holomorphic Kählerian twistor spinor in Σl+1M). By Theorem 5.15, M is
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then the product of a 2-dimensional Ricci-flat manifold M1 and a (4l − 2)-

dimensional Kähler-Einstein manifold M2, which is a limiting manifold for

Kirchberg’s inequality (3.12) in odd dimensions.

Remark 5.17. If in Theorem 5.15, (M, g) is not assumed to be simply-

connected, then its universal Riemannian cover (M̃, g̃) carries a unique spin

structure. By a result of J. Cheeger and D. Gromoll ( [9, Theorem 6.65])

(M̃, g̃) is isometric to a Riemannian product (M̄ × Rq, ḡ × g0), where g0 is

the canonical flat metric on Rq and (M̄, ḡ) is a compact simply-connected

manifold with positive Ricci curvature. In order to complete the classifica-

tion of Kähler spin manifolds admitting nontrivial non-extremal Kählerian

twistor spinors, one has to analyze the existence of such spinors on the prod-

uct (M̄ × Rq, ḡ × g0) and the action of the fundamental group of M on M̃ .

In the special case of limiting manifolds for the even dimensional Kirchberg

inequality, this classification was obtained by A. Moroianu, see Theorem 3.7.

In particular, Theorem 5.15 together with Proposition 4.7 answer a ques-
tion raised by K.-D. Kirchberg, [41], about the description of all compact
Kähler spin manifolds, whose square of the Dirac operator has the smallest
eigenvalue of type r.

5.6 Weakly Bochner Flat Manifolds

All known examples of Kähler spin manifolds admitting special Kählerian
twistor spinors have parallel Ricci form, being thus in particular weakly
Bochner flat. The purpose of this section is to show conversely, that any spin
weakly Bochner flat manifold admitting special Kählerian twistor spinors
must have constant scalar curvature and thus, is described in Theorem 5.15.

We first recall that a Kähler manifold (M, g, J) is called weakly Bochner flat if
its Bochner tensor (which is defined as the projection of the Weyl tensor onto
the space of Kählerian curvature tensors) is co-closed. In [1, Proposition 1],
the codifferential of the Bochner tensor is computed using the Matsushima
identity and it is proven that a Kähler manifold is weakly Bochner flat if and
only if the normalized Ricci form defined by

ρ̃ := ρ− 1

2(m+ 1)
SΩ (5.27)
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is a hamiltonian 2-form, i.e. it satisfies the following equation

∇X ρ̃ =
1

4(m+ 1)
(dS ∧ JX − dcS ∧X), (5.28)

for all vector fields X.

Proposition 5.18. Let (M, g, J) be a spin weakly Bochner flat manifold

and ϕ ∈ Γ(ΣrM) (with 0 < r < m) be a nontrivial anti-holomorphic (or

holomorphic) Kählerian twistor spinor. Then the scalar curvature S of the

metric g is constant.

Proof: Let ϕ ∈ Γ(ΣrM) (with 0 < r < m, r 6= m
2

) be a nontrivial anti-
holomorphic Kählerian twistor spinor (using the isomorphism j the same
argument holds for a holomorphic Kählerian twistor spinor). First we notice
that using the projections onto T (1,0)M and T (0,1)M , the equation (5.28) is
equivalent to the following equations:

i∇X+ ρ̃ =
1

2(m+ 1)
X+ ∧ (dS)−, (5.29)

i∇X− ρ̃ = − 1

2(m+ 1)
X− ∧ (dS)+. (5.30)

From (5.27) and (5.29) we obtain:

i∇X+ρ = i∇X+ ρ̃+
1

2(m+ 1)
iX+(S)Ω =

1

2(m+ 1)
[X+ ∧ (dS)− + iX+(S)Ω].

Applying this equation to ϕ and using (4.39) we get

i∇X+ρ · ϕ =
1

2(m+ 1)
(X+ ∧ (dS)−) · ϕ+

1

2(m+ 1)
iX+(S)Ω · ϕ

=
1

2(m+ 1)
X+(S)ϕ+

m− 2r

2(m+ 1)
X+(S)ϕ =

m− 2r + 1

2(m+ 1)
X+(S)ϕ.

(5.31)

On the other hand, by (4.45) we have

i∇X+ρ · ϕ =
1

2(2r + 1)
X+(S)ϕ. (5.32)
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Comparing the equations (5.31) and (5.32) we get

m− 2r + 1

2(m+ 1)
X+(S)ϕ =

1

2(2r + 1)
X+(S)ϕ,

which is equivalent to

r(m− 2r)

2(m+ 1)(2r + 1)
X+(S)ϕ = 0.

As r 6= m
2

and r 6= 0, it follows that X+(S) = 0 at all points where ϕ does
not vanish, thus proving that S must be constant. �
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Appendix A

Auxiliary formulas

We collect here some formulas that we use in our computations. In the sequel
(Mn, g) is a Riemannian manifold and {ei}i=1,n is a local orthonormal frame.

The conventions used for the curvature are the followings: the Riemannian
curvature tensor is given by R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ], and the

Ricci tensor is Ric(X, Y ) =
n∑
i=1

R(ei, X, Y, ei).

If M is also endowed with a Kähler structure whose complex structure de-
noted by J , then the Ricci form is defined as ρ(X, Y ) = Ric(JX, Y ), or
locally as

ρ =
n∑
i=1

1

2
Ric(ei) ∧ Jei.

The Ricci form is closed and its codifferential and Laplacian are:

δρ = −1

2
JdS = −1

2
dcS, ∆ρ = dδρ = −1

2
ddcS = −i∂∂̄S. (A.1)

It is useful to introduce the following notation. We consider the local formula
(3.5) defining the Dirac operator (and the formulas (3.6) defining D− and
D+) and apply it to sections of different associated bundles (∇ is then the
connection induced by the Levi-Civita connection). Thus, when applied to
functions we get:

Df = df, D−(f) = ∂f, D+(f) = ∂̄f.

135
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Applying (3.5) to a vector field X we get the following endomorphisms of
the spinor bundle:

D(X)· :=
n∑
j=1

ej · ∇ejX·,

D2(X)· :=
n∑

i,j=1

ej · ei · ∇ej∇eiX · .

On forms we have: D = d + δ, D+ = ∂̄ + ∂∗, D− = ∂ + ∂̄∗. We may
also extend the formula (3.5) of the Dirac operator to endomorphisms of the
tangent bundle. For instance, for the Ricci tensor we define the following
endomorphism of the spinor bundle:

D(Ric)(X)· := ei · (∇eiRic)(X) · .

With the above notation, the following relations hold (for any tangent vector
field X parallel at the point where the computations are done):

D−(Ric)(X+) = −i∇X+ρ− 1

2
X+(S), D+(Ric)(X+) = 0,

D+(Ric)(X−) = i∇X−ρ−
1

2
X−(S), D−(Ric)(X−) = 0,

D+((dS)−) = D+(∂S) = (∂̄ + ∂∗)(∂S) = −i∆ρ+
1

2
∆S,

D−((dS)−) = D−(∂S) = (∂ + ∂̄∗)(∂S) = −∂∂̄∗S = 0.

For any tangent vector field X and any k-form ω, the following formulas for
the Clifford contraction hold:

X · ω = X ∧ ω −Xyω,

ω ·X = (−1)k(X ∧ ω +Xyω), X · ω = (−1)kω ·X − 2Xyω.

Moreover, we have the following commutator relations:

D(ω · ϕ) = Dω · ϕ+ (−1)kω ·Dϕ− 2(eiyω) · ∇eiϕ,

D±(ω · ϕ) = D±ω · ϕ+ (−1)kω ·D±ϕ− 2(e±i yω) · ∇e∓i
ϕ.
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If ω is a k-form and we consider the extended action of the complex structure
J on forms as a derivation, J(ω) := Jei ∧ eiyω, then:

e+
i · (e−i yω) = e+

i ∧ (e−i yω)− e+
i y(e

−
i yω) =

1

2
(kω − iJ(ω))− e+

i y(e
−
i yω).

If ω is a 2-form, then the above formula becomes:

e+
i · (e−i yω) =

1

2
(2ω − iJ(ω))− ω(e−i , e

+
i ) =

1

2
(2ω − iJ(ω))− 1

2
iω(Jei, ei).

In particular, for the Ricci form ρ, which is a (1, 1)-form, J(ρ) = 0 and it
follows:

e+
i · (e−i yρ) = ρ+

1

2
iRic(ei, ei) = ρ+

1

2
iS,

e+
i · (e−i y∆ρ) = ∆ρ− 1

2
i(∆ρ)(Jei, ei) = ∆ρ+

1

2
i∆S.

Lemma A.1. For any vector field X and a local orthonormal frame {ei}i=1,n

parallel at the point where the computations are done, the following commu-

tator rules hold:

DX ·+X ·D = D(X) · −2∇X , (A.2)

D+X+·+X+·D+ = D+(X+)·, D+X−·+X−·D+ = D+(X−)·−2∇X− , (A.3)

D−X−·+X−·D− = D−(X−)·, D−X+·+X+·D− = D−(X+)·−2∇X+ , (A.4)

[∇X , D] = −1

2
Ric(X) · −ei · ∇∇eiX , (A.5)
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[∇X+ , D+] = −1

2
Ric(X+)·−e+

i ·∇∇e−
i
X+ , [∇X− , D

+] = −e+
i ·∇∇e−

i
X− , (A.6)

[∇X− , D
−] = −1

2
Ric(X−)·−e−i ·∇∇e+

i
X− , [∇X+ , D−] = −e−i ·∇∇e+

i
X+ , (A.7)

[D2, X] = −Ric(X) ·+D2(X) · −2∇eiX · ∇ei , (A.8)

D(Ric(X)·) + Ric(X) ·D = −2∇Ric(X) +D(Ric)(X)·, (A.9)

[∇X , D
2] = − 1

2
D(Ric)(X) ·+∇Ric(X) − ej · ei ·Rej ,∇eiX − ej · ei · ∇∇eiX∇ej

− ej · ei · ∇∇ej∇eiX − ei · ∇∇eiXD, (A.10)

Proof: We show these relations by straightforward computation using the
well known elementary relations of spin geometry. For (A.2) and (A.3) we
compute as follows:

D(X · ϕ) = ei · ∇ei(X · ϕ) = ei · ∇eiX · ϕ+ ei ·X · ∇eiϕ

= D(X) · ϕ−X ·D(ϕ)− 2∇Xϕ.

D+(X+ · ϕ) = e+
i · ∇e−i

(X+ · ϕ) = e+
i · ∇e−i

X+ · ϕ+ e+
i ·X+ · ∇e−i

ϕ

= D+(X+) · ϕ−X+ ·D+(ϕ).

D+(X− · ϕ) = e+
i · ∇e−i

(X− · ϕ) = e+
i · ∇e−i

X− · ϕ+ e+
i ·X− · ∇e−i

ϕ

= D+(X−) · ϕ−X− ·D+(ϕ)− 2∇X−ϕ.

By conjugating (A.3) we get (A.4).
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For (A.5) we have:

∇X(Dϕ) = ∇X(ei · ∇eiϕ) = ei ·RX,eiϕ+ ei · ∇ei∇Xϕ+ ei · ∇∇Xei−∇eiXϕ

= −1

2
Ric(X) · ϕ+D(∇Xϕ)− ei · ∇∇eiXϕ,

and similarly for (A.6):

∇X+(D+ϕ) = ∇X+(e+
i · ∇e−i

ϕ)

= e+
i ·RX+,e−i

ϕ+ e+
i · ∇e−i

∇X+ϕ+ e+
i · ∇∇X+e

−
i −∇e−

i
X+ϕ

= −1

2
Ric(X+) · ϕ+D+(∇X+ϕ)− e+

i · ∇∇e−
i
X+ϕ.

∇X−(D+ϕ) = ∇X−(e+
i · ∇e−i

ϕ)

= e+
i ·RX−,e−i

ϕ+ e+
i · ∇e−i

∇X−ϕ+ e+
i · ∇∇X−e−i −∇e−

i
X−ϕ

= D+(∇X−ϕ)− e+
i · ∇∇e−

i
X−ϕ.

Again (A.7) is obtained by conjugating (A.6). For (A.8) we first compute:

D(D(X) · ϕ) = ej · ∇ej(ei · ∇eiX · ϕ)

= D2(X) · ϕ− ei · ej · ∇eiX · ∇ejϕ− 2∇eiX · ∇eiϕ

= D2(X) · ϕ+ ei · ∇eiX · ej ·∇ejϕ+ 2〈ej,∇eiX〉ei ·∇ejϕ− 2∇eiX ·∇eiϕ

= D2(X) · ϕ+D(X) ·Dϕ+ 2ei · ∇∇eiXϕ− 2∇eiX · ∇eiϕ,

which implies

D2(X · ϕ)
(A.2)
= −D(X ·Dϕ) +D(D(X) · ϕ)− 2D(∇Xϕ)

(A.2)
= X ·D2ϕ−D(X) ·Dϕ+ 2∇X(Dϕ) +D2(X) · ϕ+D(X) ·Dϕ

+ 2ei · ∇∇eiXϕ− 2∇eiX · ∇eiϕ− 2D(∇Xϕ)

(A.5)
= X ·D2ϕ− Ric(X) · ϕ+D2(X) · ϕ− 2∇eiX · ∇eiϕ.
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The relation (A.9) is just (A.2) with X replaced by Ric(X). For the last
relation, (A.10), we have:

∇X(D2ϕ)
(A.5)
= D(∇X(Dϕ))− 1

2
Ric(X) ·Dϕ− ei · ∇∇eiXDϕ

=D2(∇Xϕ)− 1

2
D(Ric(X) · ϕ)− ej · ei ·Rej ,∇eiXϕ− ej · ei · ∇∇eiX(∇ejϕ)

− ej · ei · ∇∇ej∇eiXϕ−
1

2
Ric(X) ·Dϕ− ei · ∇∇eiXDϕ

(A.9)
= D2(∇Xϕ)− 1

2
D(Ric)(X) · ϕ+∇Ric(X)ϕ− ej · ei ·Rej ,∇eiXϕ

− ej · ei · ∇∇eiX(∇ejϕ)− ej · ei · ∇∇ej∇eiXϕ− ei · ∇∇eiXDϕ.

We notice that these commutator relations become simpler if X ∈ Γ(TM) is
parallel at the point where the computations are made. �

By straightforward computations we get:

Lemma A.2. The following formulas for contractions hold, when considered

as endomorphisms of the spinor bundle restricted to the subbundle ΣrM :

e+
i · e−i = −2r, e−i · e+

i = −2(m− r), (A.11)

ei ·Rei,Y =
1

2
Ric(Y ), e−i ·Re+i ,Y

==
1

4
[Ric(Y ) + iρ(Y )], (A.12)

ei · Ric(ei) = −S, e−i · Ric(e+
i ) =

1

2
[ei · Ric(ei)− i · ei · Ric(Jei)] = −S

2
− iρ,

(A.13)

e+
i ·Ric2(e−i ) =

1

2
[ei ·Ric2(ei)− iJ(ei) ·Ric2(ei)] = −1

2
tr(Ric2)+ iρ2. (A.14)
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Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die
anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem
Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation
noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat;
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