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1 Introduction

The Lichnerowicz Laplacian ∆L of a (semi)-Riemannian manifold (M, g) is a differential

operator of order two acting on symmetric traceless 2-tensor fields S2(M), which can

be seen as infinitesimal deformations of the metric g, and describes the change of the

Ricci tensor in terms of these infinitesimal deformations. If the metric g is Einstein and

h ∈ S2(M) is an eigentensor such that

∆Lh = 2
sg
n
g, δgh = 0, trg h = 0, (1.1)

where δg is the divergence, then the infinitesimal deformation h preserves the Einstein

equation. Thus the spectrum of ∆L is connected to the stability analysis of Einstein

metrics.

The Lichnerowicz Laplacian also appears in stability analysis in physics, albeit in a

different way. In higher dimensional gravity theories, solutions of the form M = B×Mq,

where B is a four-dimensional Lorentz manifold and Mq is a q-dimensional compact

manifold with diameter of the order of the Planck length, are understood as ground

states. Physical fields are then introduced as solutions to Eq. (1.1) and are interpreted

as fluctuations around the ground state. The (warped) product structure of M allows

to expand solutions to Eq. (1.1) in terms of eigentensors of the Lichnerowicz Laplacian

∆̃L of Mq. This leads (among other cases) to scalar fields on B whose mass depends

on the spectrum of ∆̃L. Most notably, the spectrum of the Lichnerowicz Laplacian on

compact candidates Mq determines the mass spectrum of the effective four-dimensional

theory. This possibly leads to particles with imaginary masses which are considered an

instability in the case where B is Minkowski space.

Our goal in this thesis was to investigate the spectrum of the Lichnerowicz Laplacian

on certain types of compact n-dimensional Einstein manifolds (M, g) with scalar curva-

ture s > 0 and whether the smallest eigenvalue λ of the Lichnerowicz Laplacian violates

the stability condition

λ ≥ s

n(n− 1)

(
4− 1

4
(n− 5)2

)
(1.2)

which was established in [GH02,GHP02] for generalised Schwarzschild-Tangherlini space-

times and Anti-de Sitter product spaces. We will call spaces violating Eq. (1.2) physically

unstable in the context of the corresponding physical theories.

After giving a detailed introduction in Section 2 on how the Lichnerowicz Laplacian

arises in the stability analysis of Einstein metrics and modern Kaluza-Klein theories, we

will see in Section 3 how the Lichnerowicz Laplacian can be understood as the special
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1 Introduction

case of a universal Weitzenböck formula and give a first lower bound on the eigenvalues,

which was first found in [PP84].

For n ≤ 8 the critical eigenvalue of Eq. (1.2) is positive and a non-trivial kernel of

the Lichnerowicz Laplacian is a sufficient condition for physical instability. It is well

known [PP84] that product manifolds admit symmetric 2-tensor fields that are parallel

and therefore lie in the kernel of the Lichnerowicz Laplacian. In Section 4 we will give

a proof of the following theorem using holonomy theory.

Theorem 4.4 ([PP84]). Let (Mn, g) be a locally reducible connected Riemannian man-

ifold. Then there exists an h ∈ S2M , h 6= 0 such that trh = δh = 0 and ∆Lh = 0.

Moreover, if 2 ≤ n ≤ 8, then M is physically unstable.

On Kähler manifolds the complex structure J commutes with the Lichnerowicz Lapla-

cian. We identify in Section 5 primitive harmonic J-invariant 2-forms with symmetric

traceless 2-tensor fields that lie in the kernel of the Lichnerowicz Laplacian and are able

to prove the following corollary.

Corollary 5.21. If M is a compact Kähler manifold of dimension 4, 6 or 8 and

h1,1(M) > 1, then M is physically unstable.

If M = G/H is a Riemannian symmetric space of compact type, the Lichnerowicz

Laplacian agrees with the Casimir operator. We show in Section 6 how the problem of

determining the spectrum of the Casimir and, consequently, the Lichnerowicz Laplacian

can be reduced to finding the irreducible G-representations whose restrictions to H

contain the defining representation of Sym2
0M . Stability and rigidity of Einstein metrics

on Riemannian symmetric spaces has been determined by N. Koiso in [Koi80]. We use

his results to prove the following theorem:

Theorem 6.11. All irreducible Riemannian symmetric spaces of compact type are phys-

ically stable.

Finally, in Section 7 we discuss the case when (M, g) is a compact spin manifold

admitting Killing spinors. Following [Wan91], we will give a connection between the

Rarita-Schwinger operator D3/2 acting on spinor valued 1-forms and the Lichnerowicz

Laplacian and show the following Corollary.

Corollary 7.13 ([GHP02]). If (M, g) is a Riemannian spin manifold with positive scalar

curvature admitting a non-zero Killing spinor, then M is physically stable.
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German translation of the introduction

Der Lichnerowicz Laplace Operator ∆L einer (semi)-Riemannschen Mannigfaltigkeit

(M, g) ist ein Differentialoperator zweiter Ordnung auf spurfreien symmetrischen 2-

Tensorfeldern S2(M), welche als infinitesimale Deformationen aufgefasst werden können,

und beschreibt die Änderung des Ricci-Tensors unter diesen infinitesimalen Deformatio-

nen. Wenn die Metrik g Einstein ist und h ∈ S2(M) ein Eigentensor ist, so dass

∆Lh = 2
sg
n
g, δgh = 0, trg h = 0, (1.1)

wobei δg die Divergenz bezeichnet, dann lässt die infinitesimale Deformation h die

Einstein-Gleichungen invariant. Folglich spielt das Spektrum von ∆L eine wichtige Rolle

in der Stabilitätsuntersuchung von Einsteinmetriken.

Der Lichnerowicz Laplace Operator kommt auch in der Stabilitätsuntersuchung in

der Physik vor, allerdings auf eine andere Art und Weise. In Gravitationstheorien in

höheren Dimensionen untersucht man Lösungen der Form M = B ×Mq, wobei B ei-

ne vierdimensionale lorentzsche Mannigfaltigkeit und Mq eine q-dimensionale kompakte

Mannigfaltigkeit in der Größenordnung der Plancklänge ist. Lösungen dieser Art werden

als Grundzustand verstanden. Physikalische Felder werden dann als Lösungen von Glei-

chung (1.1) eingeführt und als Fluktuation oder Störung dieses Grundzustandes betrach-

tet. Die (verzerrte) Produktstruktur von M erlaubt es, Lösungen von Gleichung (1.1)

in Eigenmoden bezüglich des Lichnerowicz Laplace Operators ∆̃L auf Mq zu entwickeln.

Dies führt unter anderem zu skalaren Feldern auf B deren Masse vom Spektrum von

∆̃L abhängt. Das heißt also, dass das Spektrum des Lichnerowicz Laplace Operators auf

Mq das Massenspektrum der effektiven vierdimensionalen Theorie bestimmt. Dies kann

unter Umständen zu Teilchen mit imaginärer Masse führen, welche, im Falle dass B der

Minkowskiraum ist, als Instabilität betrachtet werden.

Ziel dieser Arbeit war es, das Spektrum des Lichnerowicz Laplace Operators auf be-

stimmten Typen von kompakten n-dimensionalen Einsteinmannigfaltigkeiten (M, g) mit

Skalarkrümmung s > 0 zu untersuchen und zu überprüfen, ob der kleinste Eigenwert λ

des Lichnerowicz Laplace Operators die Stabilitätsbedingung

λ ≥ s

n(n− 1)

(
4− 1

4
(n− 5)2

)
(1.2)

verletzt. Diese Bedingung wurde in [GH02, GHP02] für verallgemeinerte Schwarschild-

Tangherlini Raumzeiten und Anti-de Sitter Produkträume hergeleitet. Wir nennen Räu-

me, welche Gleichung (1.2) verletzen im Kontext der entsprechenden physikalischen

Theorie physikalisch instabil .
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1 Introduction

Nach einer detaillierten Einführung über die Rolle des Lichnerowicz Laplace Opera-

tors in der Stabilitätsuntersuchung von Einsteinmetriken und modernen Kaluza-Klein

Theorien in Abschnitt 2 werden wir in Abschnitt 3 sehen, wie der Lichnerowicz Laplace

Operator als Spezialfall einer universellen Weitzenböck-Formel auftaucht und geben ei-

ne erste untere Schranke für die Eigenwerte, die von Page und Pope in [PP84] erstmals

bewiesen wurde.

Für n ≤ 8 ist der kritische Eigenwert von Gleichung (1.2) positiv und ein nicht-trivialer

Kern des Lichnerowicz Laplace Operators ist eine hinreichende Bedingung für physika-

lische Instabilität. Es ist bekannt [PP84], dass Produktmannigfaltigkeiten symmetrische

2-Tensorfelder zulassen, die parallel sind und im Kern des Lichnerowicz Laplace Opera-

tors liegen. In Abschnitt 4 geben wir einen Beweis des folgenden Theorems mithilfe von

Holonomietheorie.

Theorem 4.4 ([PP84]). Sei (Mn, g) eine lokal reduzible Mannigfaltigkeit. Dann existiert

ein h ∈ S2M , h 6= 0, so dass, trh = δh = 0 und ∆Lh = 0.

Gilt außerdem 2 ≤ n ≤ 8, dann ist M physikalisch instabil.

Auf Kählermannigfaltigkeiten kommutiert die komplexe Struktur J mit dem Lich-

nerowicz Laplace Operator. Wir identifizieren in Abschnitt 5 primitive harmonische

J-invariante 2-Formen mit spurlosen symmetrischen 2-Tensorfeldern, die im Kern des

Lichnerowicz Laplace Operators liegen und zeigen folgendes Korollar.

Korollar 5.21. Ist M eine kompakte Kählermannigfaltigkeit der Dimension 4, 6 oder

8 und ist h1,1(M) > 1, so ist M physikalisch instabil.

Wenn M = G/H ein Riemannscher symmetrischer Raum von kompaktem Typ ist, so

stimmt der Lichnerowicz Laplace Operator mit dem Casimir Operator von G überein.

Wir zeigen in Abschnitt 6, wie das Problem der Bestimmung des Spektrums des Casimirs

und folglich auch des Lichnerowicz Laplace Operators darauf reduziert werden kann, die

irreduziblen G-Darstellungen, deren Einschränkung auf H die definierende Darstellung

von Sym2
0M enthalten, zu bestimmen. Stabilität von Einsteinmetriken auf Riemannschen

symmetrischen Räumen von kompaktem Typ wurde von N. Koiso in [Koi80] untersucht.

Wir zeigen, aufbauend auf seinen Ergebnissen, das folgende Theorem.

Theorem 6.11. Alle irreduziblen Riemannschen symmetrischen Räume von kompaktem

Typ sind physikalisch stabil.

Schließlich diskutieren wir in Abschnitt 7 den Fall, in dem (M, g) eine kompakte Spin-

Mannigfaltigkeit mit Killing-Spinoren ist. Wir zeigen , gemäß [Wan91], einen Zusammen-

hang zwischen dem Rarita-Schwinger Operator D3/2, der auf spinorwertigen 1-Formen
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operiert, und dem Lichnerowicz Laplace Operator auf und beweisen folgendes Korollar.

Korollar 7.13 ([GHP02]). Sei (M, g) eine Riemannsche Spin-Mannigfaltigkeit mit po-

sitiver Skalarkrümmung und Killing-Spinor. Dann ist (M, g) physikalisch stabil.
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2 Preliminaries

Let (M, g) be a closed connected Riemannian manifold together with its Levi-Civita

connection ∇.

Conventions and Definitions. (1) Throughout this thesis, if not specified other-

wise, we will be using the Einstein summation convention.

(2) We denote by ΛkM the bundle of k-forms on M , i.e. ΛkM = Λk(TM∗). Similarly,

we define the bundle of symmetric k-tensors SymkM = Symk(TM∗). We will

sometimes implicitly identify the tangent and cotangent bundle via g and some-

times we will also implicitly use the metric to change the tensor type, e.g. we will

identify h ∈ Sym2M with g-symmetric endomorphisms via h(X) := h(X, ei)ei and

vice versa.

If EM is a vector bundle over M , we will denote the space of sections by Γ(EM).

In particular, we will set X(M) = Γ(TM), Sk(M) = Γ(SymkM) and Ωk(M) =

Γ(ΛkM) for the space of vector fields, symmetric k-tensor fields and differential

k-forms, respectively.

(3) By a Lorentz metric g we understand a metric of signature (1, n − 1). A Lorentz

manifold is a semi-Riemannian manifold equipped with a Lorentz metric.

(4) We define the Riemannian curvature tensor

RX,YZ = [∇X ,∇Y ]Z −∇[X,Y ]Z,

R(X, Y, Z, V ) = g(RX,YZ, V ),

the Ricci tensor

Ric(X, Y ) = tr(Z 7→ RZ,XY ) = R(ei, X, Y, ei),

and the scalar curvature of (M, g)

s = tr Ric = Ric(ei, ei)

for vector fields X, Y , Z and a local orthonormal frame {ei} on M . �

Definition 2.1. The Lichnerowicz Laplace operator

∆L = ∇∗∇− Ric?−2R̊ (2.1)

is a second order elliptic differential operator acting on symmetric 2-tensor fields on M .

Here Ric? is the induced action of Ric ∈ End(TM) on Sym2M and R̊ ∈ End(Sym2M)

is defined as (R̊h)(X, Y ) = R(ei, X, Y, ej)h(ei, ej). o
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2 Preliminaries

2.1 Deformations

Let (M, g) be a closed connected Riemannian manifold. Denote by M the manifold of

Riemannian metrics on M and by D the group of diffeomorphisms of M which acts on

M via pullback. We want to consider deformations of g, i.e. smooth curves g(t) in M
with g(0) = g.

If two metrics g and g̃ are in the same D-orbit, then (M, g) and (M, g̃) share the same

geometric properties. In physics, this would be interpreted as a different choice of gauge.

Therefore the isometry classes of metrics are described by the quotientM/D called the

space of Riemannian structures .

We are thus only interested in deformations changing the geometric structure of the

manifold. Using the slice theorem of D. Ebin (c.f. [Ebi70]) we get the existence of a real

analytic submanifold S ofM, called the slice to the action of D, which is normal to the

D-orbit of g at g.

On an infinitesimal level, sinceM is a positive cone in the space of symmetric 2-tensor

fields S2M , we may identify the tangent space of TgM of M at g with S2M ; i.e. for

a deformation g(t) the element d
dt

∣∣
t=0

g(t) is in S2M . We call such a tensor field an

infinitesimal deformation of g.

Let δ∗ : SkM → Sk+1M be the differential operator obtained by composing the

covariant derivative ∇ : SkM → S1M ⊗ SkM with symmetrization S1M ⊗ SkM →
Sk+1M . Its formal adjoint is called the divergence and is denoted by δ : Sk+1M → SkM
which is just the restriction of the adjoint covariant derivative ∇∗ to SkM . On 1-forms

δ∗ satisfies δ∗(X) = −1
2
LXg where L denotes the Lie derivative.

Let EM be a vector bundle over M and e, f ∈ Γ(EM). We define the global scalar

product 〈·, ·〉 : Γ(EM)× Γ(EM)→ R as

〈e, f〉 =

∫
M

g (e, f)µg.

The following Lemma is an infinitesimal version of Ebin’s slice theorem describing the

tangent space of M at g.

Lemma 2.2. The tangent space TgM = S2M decomposes into

S2M = Im(δ∗|S1(M))⊕Ker(δ|S2(M))

which is orthogonal with respect to the global scalar product and where Im(δ∗|S1(M)) is

the tangent space of the D-action.

Sketch of proof. Let g(t) be a deformation of g lying in the D-orbit of g. Then g(t) =

η(t)∗g for a smooth family of diffeomorphisms η(t) with η(0) = id. Now let p ∈ M

12



2.2 Einstein deformations

then η(t)(p) is a smooth curve in p and for each p ∈ M, d
dt

∣∣
t=0

η(t)(p) ∈ TpM . Thus
d
dt

∣∣
t=0

η(t) may be identified with some vector field X ∈ X(M). On the other hand, the

flow φt of X is also a 1-parameter family of diffeomorphisms satisfying d
dt

∣∣
t=0

φt = X.

Finally, d
dt

∣∣
t=0

η(t)∗g = d
dt

∣∣
t=0

φ∗tg which is by defininition LXg, the Lie derivative of

g along X. Thus d
dt

∣∣
t=0

η(t)∗g = −2δ∗(X).

The decomposition of S2(M) follows because the principal symbol of δ∗ is injective.

For details see [BE69] and [Ebi70].

2.2 Einstein deformations

A metric g is called Einstein if it satisfies the Einstein equation

Ricg =
sg
n
g. (2.2)

A (semi)-Riemannian manifold (M, g) is called Einstein manifold if the metric g is

Einstein.

An Einstein deformation is a deformation g(t) of an Einstein metric g which is orthog-

onal to the orbit of the D-action such that each g(t) satisfies Eq. (2.2) and the volume

of g(t) is constant in t. An infinitesimal Einstein deformation is the corresponding

infinitesimal deformation.

Lemma 2.3. The infinitesimal Einstein deformations are solutions h ∈ S2M of the

system

∆Lh = 2
sg
n
g, δgh = 0, trg h = 0, (1.1)

where ∆L is the Lichnerowicz Laplacian.

Proof. The formulas for various curvature tensors in local coordinates show that the

maps g 7→ Rg (resp. g 7→ Ricg, g 7→ sg) are quasilinear second order differential

operators fromM to Γ(Sym2(Λ2M)) (resp. S2M , C∞(M)). They are differentiable and

for a given metric g the differentials at g are linear second order differential operators

which we will denote by R′g, Ric′g and s′g.

We need the following formulas for the differentials at g in the direction of h (c.f.

[Bes87, chapter 1.K])

Ric′g h =
1

2
∆L −

1

2
Hess(trg h)− δ∗g(δgh),

s′gh = ∆g(trh) + δg(δgh)− g(Ricg, h),

vol(M)′gh = −1

2

∫
M

(trg h)µg.
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2 Preliminaries

Taking into account a result of M. Obata [Oba62], which states that an Einstein metric

other than the standard sphere is the unique metric with constant scalar curvature

in its conformal class with normalized volume, we are only interested in infinitesimal

deformations leaving the scalar curvature invariant. This leads, together with theory on

elliptic operators,1 to the decomposition

S2M =
(
Im(δ∗|S1(M)) + C∞(M) · g

)
⊕
(
δ−1
g (0) ∩ tr−1

g (0)
)
,

which is orthogonal with respect to the global scalar product and where we have set

δ−1
g (0) = Ker(δg|S2M) and tr−1

g (0) = Ker(trg |S2M).

The infinitesimal deformations of interest lie in the second component. They preserve

the volume and the scalar curvature and are orthogonal to the orbit of the D-action.

So let g(t) be a deformation of g and h ∈ S2M with trh = δh = 0 such that
d
dt

∣∣
t=0

g(t) = h. Differentiating Ricg(t) = (sg(t)/n)g(t) at t = 0 yields

Ric′g h =
s′gh

n
g +

sg
n
h

which is equivalent to

∆Lh = 2
sg
n
h.

Remark 2.4. Let (M, g) be an Einstein manifold. If 2 sg
n

is not an eigenvalue of ∆L, then g

is not deformable, i.e. Einstein deformations do not exist. Consequently, its equivalence

class [g] in M/D is isolated in the moduli space of Einstein structures. Such Einstein

metrics g are called rigid .

Integrability of infinitesimal Einstein deformations into Einstein deformations is a

complicated issue. In fact, N. Koiso discovered in [Koi82] that the symmetric metric g

on CP 2k × CP 1, l ≥ 2 is rigid but is infinitesimally deformable. In other words there

are solutions h ∈ S2M to Eq. (1.1) which are not integrable. �

2.3 Stability of Einstein metrics

Consider the total scalar curvature functional (also known as the Einstein-Hilbert func-

tional)

S :M→ R, S(g) =

∫
M

sgµg.

The following theorem is a classical result due to D. Hilbert [Hil24] and relates the

solution of Einstein’s equations to critical points of the variational problem of S(g).

Similar to variational problems in functional analysis we will give a definition for the

stability of critical points of S(g).

1For details, see [Bes87, Lemma 4.58]
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2.3 Stability of Einstein metrics

Theorem 2.5. For a compact connected Riemannian manifold (M, g) of dimension

n > 2, the following properties are equivalent.

(1) (M, g) is Einstein,

(2) g is a critical point of S restricted to the set M1 of metrics of volume 1,

(3) g is a critical point of S restricted to the set Nµ of metrics for which µg = µ for a

fixed volume element µ of M .

Proof. The differentials of S and of µg in the direction of h ∈ S2M at g are given by

S ′gh =
〈sg

2
g − Ricg, h

〉
and

µ′gh = −1

2
trg h,

where 〈·, ·〉 =
∫
M
g (·, ·)µg is the global scalar product .

Consequently,

TgM1 = {h ∈ S2M | 〈h, g〉 = 0} and

TgNµ = {h ∈ S2M | trg h = 0}.

Then g is a critical point of S restricted to M1 (resp. Nµ) if and only if

S ′gh =
〈sg

2
g − Ricg, h

〉
= 0

for all h ∈ TgM1 (resp. for all h ∈ TgNµ). In other words, if and only if the orthogonal

projection of sg
2
g − Ricg onto TgM1 (resp. TgNµ) is zero. But since

S2M = C∞(M) · g ⊕ tr−1
g (0)

and TgNµ = tr−1
g (0) ⊂ TgM1, in both cases this implies Ricg = fg for some f ∈ C∞(M).

It is well known that when this is the case, then f is constant and g is Einstein.

Remark 2.6. Note that S ′gh =
〈
s
n
g − Ric, h

〉
for h ∈ TgNµ. �

Theorem 2.7 ([Koi79, Theorem 2.5]). The Hessian (HessS)g has the form

(HessS)g(h, h) = −1

2

〈
∆Lh− 2

sg
n
h, h
〉

for h ∈ δ−1
g (0) ∩ tr−1

g (0).

This motivates the following definition.

Definition 2.8. An Einstein metric g is called stable if (HessS)g restricted to δ−1
g (0)∩

tr−1
g (0) is strictly negative or, equivalently, if the smallest eigenvalue of ∆L is greater

than 2 sg
n

. o

Remark 2.9. Note that stability of g implies rigidity and non-deformability of g. �
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2 Preliminaries

2.4 Kaluza-Klein compactifications

First attempts to unify general relativity and electromagnetism were made by Kaluza

[Kal21] and Klein [Kle26]. Their idea was that spacetime could be of higher dimension

where the additional dimensions were at such length scales such that they are not directly

observable.

This process of compactification, which was introduced by Kaluza and Klein and is

usually termed Kaluza-Klein compactification, was at first done from dimension four to

dimension five but can be generalized to higher dimensions.

2.4.1 The Kaluza-Klein model

A physical model describing general relativity and electromagnetism requires taking into

account the electromagnetic potential A. The demand for a unified theory led Kaluza

to consider an extended five dimensional spacetime (M, g) and a canonical projection

π : M → B onto a four dimensional Lorentz spacetime R4. For the metric, consider the

ansatz

g = π∗g′ + (A+ dθ)⊗ (A+ dθ)

which is often referred to in the literature as the Kaluza-Klein ansatz . Here, g′ is a

Lorentz metric on R4, A is a 1-form on R4 and θ = x0 is the fifth coordinate on R5.

Denote the remaining coordinates by xi for i = 1, . . . , 4. The idea to incorporate the

1-form A in the metric, which, of course, should in some way correspond to the 4-vector

potential from electrodynamics, was inspired by the possibility that in five dimensions

the Christoffel-symbols could somehow encode more than gravity in four dimensions. So

certain assumptions on the form of the metric (e.g. requiring the R4-components gij of

g for i, j = 1, . . . , 4 to be independent of x5) led to the Kaluza-Klein ansatz.

Adding a fifth non-compact dimension seems physically unreasonable as one would

somehow expect this fifth dimension to have some measurable effect in our four di-

mensional spacetime. Oskar Klein suggested that the fifth coordinate is to be taken as

periodic. In other words, the extra dimension has to be compact, i.e. a circle S1 of length

in the order of the Planck length. Consequently, π becomes a principal S1-bundle.

Let π : M → B be a principal S1-bundle over a (semi)-Riemannian manifold (B, g′)

with connection 1-form ω on M and metric g on M given by

g = π∗g′ + ω ⊗ ω. (2.3)

Then we have the following theorem which is due to J. P. Bourguignon (for details, see

[Bes87,FPII04]).
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Theorem 2.10. Any S1-invariant (semi)-Riemannian metric g on the total space of a

principal S1-bundle for which the fibres are totally geodesic is of the form

g = π∗g′ + ω ⊗ ω. (2.3)

where ω is a connection 1-form over the bundle and g′ is a (semi)-Riemannian metric

on the base.

The metric g is Einstein with Einstein constant Λ if and only if

(1) the 2-form F ′ on B which pulls back to the curvature 2-form F of the connection

ω is harmonic with constant norm ‖F ′‖ =
√

Λ, and

(2) the Ricci tensor of B is given by Ric′−Λg′ = 1
2
F ′ ◦ F ′,

where (F ′ ◦ F ′)(X, Y ) := F ′(X, ei)F
′(ei, Y ).

Thus if we start with a pure gravity theory on the total space M , (i.e. the metric of

the total space is Einstein) our metric on the base satisfies the Einstein field equation

Ric′−Λg′ = T

where T = F ′ ◦F ′ is the electromagnetic stress-energy tensor and F ′ satisfies Maxwell’s

equations

∆F ′ = 0

where ∆ is the Hodge-Laplacian.

2.4.2 Generalisation of the Kaluza-Klein ansatz

It is now natural to generalise the original Kaluza-Klein method to higher dimensions

and non-abelian structure groups of the fibres, more specifically, we are now going to

translate the Kaluza-Klein idea in the language of principal bundles and Riemannian

submersions.

Let π : (M, g) → (B, g′) be a Riemannian submersion with totally geodesic fibres.

Let V = ker dπ denote the vertical distribution and let H be the horizontal distribution

determined as the orthogonal complement of V via the metric g. Then the metric g

restricted to the horizontal distribution is isometric to the metric g′ on the base.

The invariant (2,1)-tensors A and T of the Riemannian submersion π introduced by

O’Neill [O’N66] can be used to relate the curvature of B with that of M . Since the fibres

π are by assumption totally geodesic T identically vanishes.
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The tensor A is defined as

AEF = v∇hEhF + h∇hEvF, for vector fields E and F on M

and satisfies AXY = 1
2
v[X, Y ] for horizontal vector fields X and Y , where we have

denoted by h and v the projection onto the horizontal and vertical distribution of M ,

respectively. Moreover, AE is a skew-symmetric endomorphism of TM and AE(V) ⊂ H
and AE(H) ⊂ V for any vector field E on M .

The following proposition is a special case of O’Neills formulas [O’N66] and relates

the Ricci curvature of M to the Ricci curvature of the base and the fibres via the tensor

A. For details and proof we refer the reader to [Bes87] and [FPII04].

Proposition 2.11. Let π : (Mn, g)→ (Bm, g′) be as above. We denote by Ric, Ric′ and

R̂ic the Ricci tensor of M , B and the fibres, respectively. And similarly, let s, s′ and ŝ

denote the corresponding scalar curvatures. Then

Ric(U, V ) = R̂ic(U, V ) + g(AXi
U,AXi

V ), (2.4a)

Ric(X, Y ) = π∗Ric′(X, Y )− 2g(AXUj, AYUj), (2.4b)

Ric(U,X) = g((∇Xi
A)Xi

X,U), (2.4c)

and

m

n
s = π∗s′ − 2‖A‖2, (2.5a)

n−m
n

s = ŝ+ ‖A‖2, (2.5b)

where U, V are vertical, X, Y are horizontal vector fields and Xi and Uj are local or-

thonormal frames of the horizontal and vertical distributions H and V, respectively.

Corollary 2.12. Let π : (Mn, g) → (Bm, g′) be as above. Then (M, g) is Einstein if

and only if

R̂ic(U, V ) + g(AXi
U,AXi

V ) =
s

n
g(U, V ), (2.6a)

π∗Ric′(X, Y )− 2g(AXUj, AYUj) =
s

n
g(X, Y ), (2.6b)

(∇Xi
A)Xi

= 0, (2.6c)

where U, V are vertical, X, Y are horizontal and Xi and Uj are local orthonormal frames

of the horizontal and vertical distributions H and V, respectively.
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In particular, if M is connected, the Einstein condition implies that ‖A‖ and ŝ are

constant on the fibres. If any two fibres are isometric, they are constant on M and s′ is

also constant.

Remark 2.13. (1) Note that Eq. (2.4) can be interpreted as a decomposition of Ric

into ”block form“. The horizontal part of Ric is related to the Ricci curvature

of the base, the vertical part corresponds to the curvature of the fibres and the

”off-diagonal part“ corresponds to the Yang-Mills condition (see Item (5) below).

(2) If π is a totally geodesic Riemannian submersion (i.e. if γ is a geodesic on M

then π ◦ γ is a geodesic on B) such that M is complete, simply connected and

dimM > dimB, then M is a Riemannian product and π is the projection on one

of the factors [Vil70].

(3) By a theorem of Hermann [Her60] a Riemannian submersion is a fibre bundle with

structure group the isometry group of a fibre, if M is connected and the fibres are

totally geodesic.

On the other hand, given π : M → B a principal G-bundle, a G-invariant metric

ĝ on G, a Riemannian metric g′ on the base B and a connection 1-form θ on M ,

then by a theorem due to [Vil70] there exists one and only one Riemannian metric

g on M such that π is a Riemannian submersion from (M, g) to (B, g′).

(4) Assume that the Riemannian submersion π with totally geodesic fibres acts as the

projection of a principal G-bundle with connection 1-form θ.

If we restrict A to horizontal vector fields, we get a 2-form that is closely related

to the curvature 2-form F θ = dθ+ [θ, θ]. Recall that θp|Vp is a linear isometry onto

the Lie algebra g of G and the curvature 2-form acts as F θ = −θ(v[X, Y ]). Thus

(AXY )p = −1

2
(θp|Vp)−1(F θ(X, Y )p).

Using the skew-symmetry of AE and the fact that AE reverses the horizontal and

vertical distribution for any vector field E on M it follows that ‖A‖2 = 1
2
‖F θ‖2.

Indeed,

‖A‖2 = g(AXi
Xj, AXi

Xj) + g(AXi
Uj, AXi

Uj)

=
1

4
‖F θ‖2 + g(AXi

Xk, Uj)g(AXi
Xk, Uj)

=
1

2
‖F θ‖2.
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(5) Eq. (2.6c) is also called the Yang-Mills condition. In fact, if π is a G-principal

bundle, this condition only depends on the metric g′ and the connection 1-form θ.

An equivalent definition of a connection to be Yang-Mills is that the connection is

a critical point of the functional

SYM(θ) =
1

2

∫
M

‖F θ‖2µg

whose Euler-Lagrange equations are D∗θF
θ = 0 where D∗θ is the adjoint of the

exterior covariant derivative Dθ. Since DθF
θ = 0, Yang-Mills connections are

connections with harmonic curvature with respect to the exterior covariant deriva-

tive. �

To summarize Items (3) to (5), if we start with pure gravity on the total space of a

principal G-bundle π : M → B whose fibres are totally geodesic, i.e. we take g as a

critical point of the Einstein-Hilbert functional

S(g) =

∫
M

sgµg

and only vary the connection, the metric of the fibre and the metric of the base space,

then our theory looks on B like gravity coupled to Yang-Mills theory for the gauge group

G. In other words, using Eq. (2.5) we find that

s = π∗s′ − 1

2
‖F θ‖2 + ŝ

where F θ is the curvature 2-form of the connection θ on M . That is to say, our action

functional splits up into

SM(g) = SB(g′) + SYM(θ) + Smod(ĝ).

where SB is the Einstein-Hilbert action on the base, SYM is the action functional of

Yang-Mills theory and Smod is the action functional for the metric on the fibre.

2.5 Stability of spacetimes

In this section we will be looking at different physical theories and use the Kaluza-

Klein approach explained above or variations thereof to gain an effective theory on a

four-dimensional base manifold. We want to motivate the following definition.
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Definition 2.14. Let (M, g) be a compact Riemannian Einstein manifold with positive

curvature. The metric g is called physically stable if the smallest eigenvalue λ of the

Lichnerowicz Laplace operator satisfies

λ ≥ s

n(n− 1)

(
4− 1

4
(n− 5)2

)
. (1.2)

Conversely, if the smallest eigenvalue λ violates Eq. (1.2), then the metric is called

physically unstable. o

Of course, this definition does not apply to every physical theory. However, the

condition for stability for various different theories happens to coincide with Eq. (1.2).

We discuss examples in Sections 2.5.2 and 2.5.3.

First, however, we look at pure gravity on a Riemannian submersion with totally

geodesic and compact fibres in Section 2.5.1. Stability turns out to be given if the

metric is stable in the sense of Definition 2.8 but the approach is similar to Sections 2.5.2

and 2.5.3.

2.5.1 Pure gravity theory

Consider an (4 + q) dimensional pure gravity theory with action given by

S(g) =

∫
M

sgµg

for Lorentz metrics.

What we are now interested in is an effective theory in four dimensions, that is, a

low-energy limit of our ten dimensional theory.

To arrive at such a theory one considers ground states (M, g) that are solutions of

Einstein’s equations

Ric =
s

n
g

and are of the form M = B × Mq where the base (B, g′) is a p-dimensional Lorentz

Einstein spacetime and (Mq, ĝ) is a q-dimensional compact Einstein manifold. We denote

their scalar curvatures by s′ and ŝ, respectively.

By a fluctuation of our ground state we understand a solution h ∈ Γ(Sym2M) of the

wave equation

∆Lh = 2
sg
n
g, δgh = 0, trg h = 0, (1.1)

which is nothing else than an infinitesimal Einstein deformation of (M, g).
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One now makes the ansatz (by slight abuse of notation)

h(U, V ) = ϕh̃(U, V )

h(X, Y ) = 0

h(X,U) = 0

(2.7)

for U, V ∈ TMq, X, Y ∈ TB and ϕ ∈ C∞(B) and h̃ is an eigentensor of the Lichnerowicz

Laplacian ∆̃L on Mq to the eigenvalue λ.

Now, the condition for h to be an infinitesimal Einstein deformation is equivalent to

∆Lh = 2
s

n
h ⇐⇒

(
∇∗∇+ 2

s

n
− 2R̊

)
h = 2

s

n
h

⇐⇒
(
∇∗∇+ ∆Mq − 2R̊

)
ϕh̃ = 0

⇐⇒
(

∆B + ∆̃L − 2
ŝ

q

)
ϕh̃ = 0

⇐⇒ ∆Bϕ = −
(
λ− 2

ŝ

q

)
ϕ

which is the Klein-Gordon equation of a free field of mass
√
λ− 2ŝ/q on B. Here, ∆B

and ∆Mq denote the B and Mq part of ∇∗∇, respectively. To avoid fields with imaginary

mass or, equivalently, negative energy the compact manifold Mq has to be stable in the

sense of Definition 2.8.

2.5.2 Anti-de Sitter product spacetimes

Definition 2.15. The Anti-de Sitter space AdSn ⊂ Rn+1 is the hypersurface

L2 = −X2
0 −X2

1 +X2
2 + . . .+X2

n

for some constant L, called the length scale of AdSn. The standard metric on AdSn is

the metric induced from the flat metric of signature (2, 4)

ds2 = −dX2
0 − dX2

1 + dX2
2 + . . .+ dX2

n.

The induced metric is Einstein with scalar curvature given by

sAdSn = −n(n− 1)

L2
. o

The Anti-de Sitter space AdSn is the Lorentz analogon of the hyperbolic hypersurface

in Euclidian Rn+1.
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2.5 Stability of spacetimes

Consider an n = p + q dimensional gravity theory (q ≥ 2) coupled to a q-form field

strength F ∈ Ωq(M) with equations of motion given by

Ric = F ◦ F − q − 1

n− 2
‖F‖2 (2.8a)

∆F = 0 (2.8b)

where (F ◦ F )(X, Y ) := g(X yF, Y yF ).

In [FR80] Freund and Rubin showed that this admits a direct product solution of the

form M = B ×Mq and F = k volMq where (B, g′) and (Mq, ĝ) are Einstein manifolds

with scalar curvatures given by

sB = s′ = −p(p− 1)

L2
,

sMq = ŝ =
q(q − 1)

R2
,

sM = s =
q − p
LR

,

where we have chosen k = (n−1)(q−1)
(p−1)R2 and L = p−1

q−1
R for some constant R. Note that Mq

is necessarily compact.

We take (B, g′) as an Anti-de Sitter space AdSq with length scale L and Mq compact.

Then the ansatz

h = ϕh̃

where ϕ is a function on B and h̃ is an eigentensor on Mq to the eigenvalue λ (compare

Eq. (2.7)) requires of ϕ to solve

∆ϕ = −
(
λ− 2′

ŝ

q

)
ϕ

that is, ϕ corresponds to a scalar field on AdSq with mass given by

m2 = λ− 2
ŝ

q
.

Breitenlohner and Freedman showed in [BF82] that due to the negative scalar cur-

vature of AdSp scalar fields with imaginary mass are only considered a perturbative

instability if

m2L2 < −(p− 1)2

4
⇐⇒ instability (2.9)

or, equivalently,

m2 < −(q − 1)4

4R4
⇐⇒ instability. (2.10)
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Thus we get instability if the spectrum of the Lichnerowicz Laplacian ∆L on Mq

posseses eigenvalues satisfying

λ <
sMq

q(q − 1)

(
4− 1

4
(q − 5)2

)
. (1.2)

2.5.3 Generalised Schwarzschild-Tangherlini spacetimes

A generalised Schwarzschild-Tangherlini spacetime is an n-dimensional Ricci-flat space-

time (M, g) with metric g given in local coordinates by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2ds̃2

where ds̃2 is an Einstein metric on a q-dimensional compact manifold B and f(r) =

(1 − (l/r)q−1), l ∈ R. With this choice the metric g is Ricci-flat. For B = S2 one

recovers the classical Schwarzschild metric.

In [GHP02,GH02] Gibbons et al. established conditions under which these spacetimes

produce a stable physical theory.

Following their approach, we are looking for solutions h ∈ S2(M) of

∆Lh = 2
sg
n
g, δgh = 0, trg h = 0. (1.1)

We assume, similarly to Eq. (2.7), that h only deforms the metric on B, i.e. in local

coordinates

h0a = h1a = 0.

where 0 and 1 are the t and r coordinates respectively.

A direct computation then yields

(∆Lh)0a = (∆Lh)1a = 0

and

(∆Lh)αβ =
1

r2
(∆̃Lh)αβ +

1

f

∂2

∂t2
hαβ − f

∂2

∂r2
hαβ

−
(
f ′ − f 4− n

r

)
∂

∂r
hαβ −

4f

r2
hαβ

where ∆̃L is the Lichnerowicz Laplacian on B and α, β ∈ {2, . . . , n− 1} are the indices

corresponding to B.

Using the ansatz

hαβ(t, r, x̃) = h̃αβ(x̃)r2ϕ(r)eωt,
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2.5 Stability of spacetimes

where ∆̃Lh̃ = λh̃, and changing variables to Regge-Wheeler type

dr? =
dr

f
, Φ = rd/2ϕ,

Eq. (1.1) can be recast as a Schrödinger equation

− ∂2

∂r2
?

Φ + V (r(r?))Φ = −ω2Φ,

with potential given by

V (r) =
λf

r2
+
q − 4

2

f ′f

r
+ (4− 1

2
(q − 5)2)

f 2

r2
.

The spacetime is considered unstable if there exist normalisable bounded solutions

with negative energy E = −ω2. In [GHP02] it is shown that these exist if there are

eigenvalues of the Lichnerowicz Laplacian on B satisfying

λ <
s̃

q(q − 1)

(
4− 1

4
(q − 5)2

)
. (1.2)
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3 The Lichnerowicz Laplacian

In this section we will give a definition of the Lichnerowicz Laplacian from a more

abstract point of view.

3.1 The curvature endomorphism

Let (Mn, g) be a Riemannian manifold with Levi-Civita connection ∇ and holonomy

group Hol = Hol(M, g).

Definition 3.1. The curvature operator R : Λ2M → Λ2M is defined by

g(R(X ∧ Y ), U ∧ V ) = g(RX,Y V, U)

for any vector fields X, Y, V and U on M . o

In a local orthonormal frame {ei}, R takes the form

R(ei ∧ ej) =
1

2
Rijrses ∧ er = −1

2
ek ∧Rei,ejek.

Using the identification of 2-vectors X ∧ Y with End(TM) given by (X ∧ Y )(Z) :=

g(X,Z)Y − g(Y, Z)X, we find R(X ∧ Y )(Z) = −RX,YZ.

For a general 2-form α a straightforward computations shows that

R(α)(X, Y ) = −1

2
R(ei, ej, X, Y )α(ei, ej).

Applying the Bianchi identity yields

R(α)(X, Y ) = R(ei, X, Y, ej)α(ei, ej). (3.1)

Recall that R̊ ∈ End(Sym2M) was defined as

R̊(h)(X, Y ) = R(ei, X, Y, ej)h(ei, ej) (3.2)

for h ∈ Sym2M .

Definition 3.2. For a representation π : Hol → Aut(E), let EM be the associated

vector bundle of π. Then there is a canonical fibre-wise action of hol on End(EM) given

and denoted by A? := dπ(A). We refer to this action as the induced action. o

Remark 3.3. If T is the defining representation of the tangent bundle TM and E is

in the tensor algebra of T , (i.e. EM is a subbundle of the tensor bundle) then the

induced action corresponds to the usual action of endomorphisms of TM on the tensor

bundle. �
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3 The Lichnerowicz Laplacian

Definition 3.4. For π : Hol→ Aut(E) a representation, let EM be as in Definition 3.2.

We define the curvature endomorphism q(R) ∈ End(EM) as

q(R) := −1

2
(fα)?R(fα)?

where {fα} is an orthonormal basis of hol. o

Lemma 3.5. The Lichnerowicz Laplacian ∆L satisfies

∆Lh = ∇∗∇h+ q(R)h (3.3)

for h ∈ S2M .

In particular,

q(R) = −Ric?−2R̊

where R̊ ∈ End(Sym2M) is defined as (R̊h)(X, Y ) := R(ei, X, Y, ej)h(ei, ej).

Proof. Assume Hol = SO(n) and let h ∈ Sym2M and A ∈ End(TM), then the induced

action is given by

−A?h(X, Y ) = h(AX, Y ) + h(X,AY ).

Therefore,

−2q(R)h(X, Y ) = h(R(ei ∧ ej)(ei ∧ ej)X, Y )

+ 2h((ei ∧ ej)X,R(ei ∧ ej)Y )

+ h(X,R(ei ∧ ej)(ei ∧ ej)Y )

where we have used R(ei∧ej)X⊗(ei∧ej)Y = (ei∧ej)X⊗R(ei∧ej)Y due to symmetries

of R.

But since

R(ei ∧ ej)(ei ∧ ej)X = 2R(X ∧ ej)ej = −2RX,ejej = −2 Ric(X)

the first and the third term can be simplified to Ric? h(X, Y ).

Finally, the second term

h((ei ∧ ej)X,R(ei ∧ ej)Y ) = −h((ei ∧ ej)X,Rei,ejY )

= −h(X iej −Xjei, Rei,ejY )

= −2h(ei, RX,eiY ) =: 2R̊h(X, Y )

concludes the proof.
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3.2 Generalized gradients

Remark 3.6. Using the curvature endomorphism we get a Laplace operator for any Hol-

representation π. These Laplacians are called universal Laplace operators . For example

in the case E = ΛkT we have the classical Weitzenböck formula ∆π = ∇∗∇ + q(R) =

dd∗ + d∗d for the Hodge Laplacian operating on k-forms. In particular q(R) = −Ric?

on 1-forms and q(R) = −Ric?−2R on 2-forms. �

3.2 Generalized gradients

The definition of the Lichnerowicz Laplacian and the universal Laplace operator is of

course compatible with the reduction of the principal bundle from SO(n) to Hol.

Consider a representation π : Hol→ E of the holonomy group and the decomposition

E ⊗ T =
⊕r

i=1 Vi into irreducible components and denote by pri : E ⊗ T → Vi the

orthogonal projection onto the i-th component. We then define the generalized gradients

Pi of the Levi-Civita connection ∇ as Pi := pri ◦∇ for i = 1, . . . , r. For example, the

rough Laplacian can be written as

∇∗∇ =
r∑
i=1

P ∗i Pi.

In [SW10] Semmelmann and Weingart expressed the curvature endomorphism using the

conformal weight operator

Ba⊗bψ := prhol(a ∧ b)?ψ ∈ Homhol(T ⊗ T,EndE)

for a, b ∈ T , ψ ∈ E and prhol the projection prhol : Λ2T → hol. The curvature endomor-

phism acting on a section ψ of EM can then be written as

q(R)ψ = B(∇2ψ) = Bei⊗ej∇2
ei,ej

ψ.

The conformal weight operator B can be seen as an equivariant endomorphism of E⊗T ,

thus acting as a scalar on irreducible components by Schur’s lemma. Then q(R) takes

the form

q(R) = −
r∑
i=0

biP
∗
i Pi

where the numbers bi are the eigenvalues of B on the irreducible components Vi of E⊗T
and the universal Laplace operator can be written as

∆π =
r∑
i=1

(1− bi)P ∗i Pi.
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3 The Lichnerowicz Laplacian

In the case Hol = SO(n) and E = Sym2
0T consider the irreducible decomposition

T ⊗ Sym2
0T = Sym3

0T ⊕ T ⊕ Γ(2,1)

with corresponding generalized gradients P1, P2 and P3. Here Γ(2.1) is the irreducible

representation corresponding to the highest weight (2, 1, 0, . . . , 0) for a choice of roots

and dominant weights as in Section 6.3. A computation of the eigenvalues (c.f. [SW10,

Corollary 3.4]) of B yields b1 = 2, b2 = −n, b3 = −1. Consequently,

∆L = −P ∗1P1 + (n+ 1)P ∗2P2 + 2P ∗3P3.

Notation. Let A,B ∈ End(EM) for some vector bundle EM over a compact manifold

M . We write

A ≥ B :⇐⇒ 〈h,Ah〉 ≥ 〈h,Bh〉 for all h ∈ Γ(EM). �

Proposition 3.7 ([PP84, SW12]). If ∆L is restricted to traceless and divergence-free

symmetric 2-tensors, then

∆L ≥ 2q(R) (3.4)

where equality is achieved for h ∈ S2M , trh = δh = 0 if and only if P1h = 0.

Moreover, if (M, g) is a naturally reductive homogeneous manifold M = G/H with

G-invariant metric g, then the eigenvalues of q(R)x for x ∈M do not depend on x and

∆L ≥ 2σ, (3.5)

where σ is the smallest eigenvalue of q(R). If additionally (M, g) is Einstein, then

σ = 2s/n− 2κ and

∆L ≥ 4s/n− 4κ (3.6)

where κ is the largest eigenvalue of R̊.

Proof. If h is divergence-free, then P2h = 0. Indeed, the map pr2 : ∇h 7→ δh is

equivariant. Thus

∆L − 2q(R) = ∇∗∇− q(R) = 3P ∗1P1 ≥ 0.

In the case that M = G/H is naturally reductive homogeneous, q(R) is invariant under

G acting by isometries and by [KN96, Chapter X, Theorem 2.6], ∇q(R) = 0 for the

canonical connection ∇ of M . Hence, the eigenvalues of q(R) and R̊ are constant on M

and

〈h, q(R)h〉 ≥ min
h∈S2M

〈h, q(R)h〉 ≥ σ‖h‖2 for all h ∈ S2M.

Remark 3.8. The projection P1 corresponds to the symmetrization of ∇h. Tensors

satisfying P1h = 0 are known as Stäckel tensors. �
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It is well known [DNP84,DFG+02] that Einstein product manifolds are physically unsta-

ble as they admit a trace- and divergence-free solution in the kernel of the Lichnerowicz

Laplacian that corresponds to shrinking one factor and expanding the other while keep-

ing the volume constant. In the following we will derive this result using holonomy

theory.

Consider h ∈ End(TM) such that h is g-symmetric and ∇h ≡ 0. On End(TM) the

induced action of A ∈ End(TM) is given by

A?f = A ◦ f − f ◦ A, for f ∈ End(TM).

It follows, that R(X ∧ Y )?h = RY,X ◦ h − h ◦ RY,X = RY,Xh, which is identically

zero, since h is parallel. Now, recall from Lemma 3.5 that ∆L = ∇∗∇ + q(R) where

q(R) = −1
2
(ei ∧ ej)?R(ei ∧ ej)?. We have thus just proved the following proposition:

Proposition 4.1. Consider h ∈ End(TM) such that ∇h ≡ 0. Then ∆Lh = 0.

Existence of parallel endomorphisms (or sections of vector bundles in general) is closely

tied to holonomy theory, in particular to the decomposition into irreducible components

of TxM as a Holx(M, g)-representation. The following proposition is a consequence of

the holonomy principle [Bau09, Satz 5.3] and Schur’s lemma.

Proposition 4.2. Let (M, g) be a connected Riemannian manifold, h ∈ End(TM) g-

symmetric and fix x ∈M . Consider the direct sum decomposition of

TxM = E1 ⊕ . . .⊕ Er

into irreducible Holx(M, g)-representations. Let Ek be the corresponding involutive dis-

tribution attained by parallel transport of Ek and denote by

prk : TM = E1 ⊕ . . .⊕ Er → Ek

the projection onto the k-th distribution.

Then ∇h = 0 if and only if h =
∑r

k=1 λk prk for some λk ∈ R.

Proof. Let h be a g-symmetric endomorphism with ∇h = 0. Then by [Bau09, Satz 5.3]

∇h = 0 is equivalent to hx being invariant under the action of Holx(M, g) for x ∈ M .

This action is the usual action on endomorphisms given by (g · hx)(v) = ghx(g
−1v)

for g ∈ Holx(M, g), v ∈ TxM and invariance is equivalent to hx ◦ g = g ◦ hx for g ∈
Holx(M, g). Consequently, hx is a Holx(M, g) equivariant endomorphism and by Schur’s
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4 Parallel endomorphisms

lemma it is of the form hx =
∑r

k=1 λk(prk)x for some λk ∈ R. Since h is the tensor field

attained by parallel translation of hx and the prk are parallel themselves, h is of the

form h =
∑r

k=1 λk prk.

The converse is clear.

Remark 4.3. A special case of a parallel endomorphism on M is the metric g itself. It

corresponds to setting λk = 1 for k = 1, . . . , r.

We can use this to turn any parallel endomorphism h =
∑r

k=1 λk prk into a traceless

one by setting h̃ = h−(
∑r

k=1 λknk)g where nk = rank(Ek). h̃ is divergence-free, traceless

and satisfies ∆Lh̃ = 0. �

Theorem 4.4 ([PP84]). Let (Mn, g) be a locally reducible connected Riemannian man-

ifold. Then there exists an h ∈ S2M , h 6= 0 such that trh = δh = 0 and ∆Lh = 0.

Moreover, if 2 ≤ n ≤ 8, then M is physically unstable.

Proof. Since (Mn, g) is locally reducible we have a decomposition of the tangent bundle

into parallel distributions TM = E1 ⊕ . . .⊕ Er with r > 1. Thus we can choose λk ∈ R
such that

∑
k rank(Ek)λk = 0. Then h =

∑
k λk prk is a trace- and divergence-free

solution in the kernel of the Lichnerowicz Laplacian.
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5 Kähler manifolds

In this section, after a short introduction on Kähler manifolds mostly following [Mor07]

and [BG08], we will give an identification of primitive harmonic J-invariant 2-forms with

symmetric 2-tensor fields in the kernel of the Lichnerowicz Laplacian.

5.1 Preliminaries

5.1.1 Complex manifolds

Let M be a smooth manifold of real dimension 2m. We call an atlas of M holomorphic

if for any two coordinate charts u : U → Cm and w : W → Cm the coordinate transition

map u ◦ v−1 is biholomorphic. A coordinate chart of a holomorphic atlas is called

a holomorphic coordinate chart of M . Any holomorphic atlas uniquely determines a

maximal holomorphic atlas called a complex structure of M .

We say M is a complex manifold of dimension m if it comes equipped with a holo-

morphic atlas.

Definition 5.1. An endomorphism J ∈ End(TM) satisfying J2 = − id is called an

almost complex structure. We will refer to the pair (M,J) as an almost complex manifold .

o

Example 5.2. R2m is an almost complex manifold in a canonical way. Denote by

{e1, . . . , e2m} the standard basis and define jm ∈ End(R2m) via jm(ei) = ei+m for i =

1, . . . ,m and j2
m = −1 . Then jm corresponds to complex scalar multiplication by i if we

see R2m as the underlying real vector space of Cm. We will call jm the standard complex

structure of R2m. We drop the “almost”, as in this case jm comes indeed from a complex

structure. In the standard basis it is of the form

jm =

(
0 − idm

idm 0

)
. �

Remark 5.3. (1) Note that the dimension of an almost complex manifold is necessarily

even. The almost complex structure turns TM into a complex vector bundle by

defining complex multiplication on the fibres via J .

(2) A complex manifold is an almost complex manifold in a natural way. However,

the converse is not true in general. �
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5 Kähler manifolds

5.1.2 Complexified tangent bundle

Let (M,J) be an almost complex manifold.

We would like to diagonalize the endomorphism J . To do this, we have to consider

the complexified tangent bundle

TMC = TM ⊗R C.

Sections of TMC will be called complex vector fields . Any such complex vector field Z

can be uniquely written as Z = X + iY , where X, Y are vector fields on M .

We will denote by T 1,0M (resp. T 0,1M) the eigenbundle of J in TMC corresponding

to the eigenvalue i (resp. −i). These bundles have the form

T 1,0M = {X − iJX | X ∈ TM}
T 0,1M = {X + iJX | X ∈ TM}

and

TMC = T 1,0M ⊕ T 0,1M (5.1)

The following theorem by Newlander and Nirenberg gives a sufficient condition for

(M,J) being a complex manifold.

Theorem 5.4. Let (M,J) be an almost complex manifold. The almost complex structure

J comes from a complex structure if and only if T 0,1M is integrable.

Remark 5.5. (1) If M is a complex manifold, we may pick a specific type of coordi-

nates. Consider a holomorphic chart (U, φU) and let zα = xα + iyα be the α-th

component of φU , α = 1, . . . ,m. Denote by {e1, . . . , e2m} the standard basis of R2m

and let jm be the standard (almost) complex structure such that jm(eα) = eα+m.

We can define J locally via J = (φU)−1
∗ jm. This definition is independent of the

chosen coordinate system since holomorphy of a map f : Cm → Cm is equivalent

to f∗ ◦ jm = jm ◦ f∗.

By definition,
∂

∂xα
= (φU)−1

∗ eα
∂

∂yα
= (φU)−1

∗ em+α

and

J

(
∂

∂xα

)
=

∂

∂yα
.

We easily see that

∂

∂zα
:=

1

2

(
∂

∂xα
− i ∂

∂yα

)
,

∂

∂z̄α
:=

1

2

(
∂

∂xα
+ i

∂

∂yα

)
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5.1 Preliminaries

are local sections of T 1,0M and T 0,1M , respectively. Moreover, they form a local

basis for each point of U .

(2) The map Z = X + iY 7→ Z̄ = X − iY is an involution on TCM and a complex

conjugate linear isomorphism from T 1,0M to T 0,1M .

Similarly, the maps

TM → T 1,0M,X 7→ X1,0 := X − iJX, TM → T 0,1M,X 7→ X0,1 := X + iJX

are complex linear and conjugate complex linear vector bundle isomorphisms, re-

spectively, if we consider TM together with J as a complex vector bundle. �

5.1.3 Complexified exterior bundle

There is a similar decomposition for the complexified exterior bundle Λk
CM = ΛkM⊗RC.

We define two subbundles of Λ1
CM = T ∗CM

Λ1,0M := {ξ ∈ Λ1
CM | ξ(Z) = 0 ∀Z ∈ T 0,1M} = {ω − iω ◦ J | ω ∈ Λ1M},

Λ0,1M := {ξ ∈ Λ1
CM | ξ(Z) = 0 ∀Z ∈ T 1,0M} = {ω + iω ◦ J | ω ∈ Λ1M}

and we also have

Λ1
CM = Λ1,0M ⊕ Λ0,1M.

Let us denote by Λk,0M (resp. Λ0,kM) the k-th exterior product of Λ1,0M (resp. of

Λ0,1M) and by Λp,qM the tensor product Λp,0M ⊗ Λ0,qM .

Using the following formula for exterior products of direct sums

Λk(V ⊕W ) ∼=
k⊕
i=0

ΛiV ⊗ Λk−iW

we finally get

Λk
CM
∼=
⊕
p+q=k

Λp,qM.

Sections of Λp,qM are called forms of type (p, q). The space of all forms of type (p, q)

is denoted by Ωp,q(M) ⊂ Ωp+q
C (M).

It is easy to check that a k-form ω is of type (k, 0) if and only if Z yω = 0 for all

Z ∈ T 0,1M . More generally, ω ∈ Ωp,q(M) if and only if ω vanishes when applied to p+ 1

vectors from T 1,0M or to q + 1 vectors from T 0,1M .

The following statement will be needed later.
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5 Kähler manifolds

Lemma 5.6. Let ω ∈ Ω2k
C (M). Then ω is of type (k, k) if and only if J?ω = ω, where

A? denotes the induced action of A ∈ End(TM) on Λ2k
CM .

Proof. We will show the statement for the case k = 1.

Let X, Y ∈ TCM . Decompose X = X1,0 + X0,1 and Y = Y 1,0 + Y 0,1 according to

Eq. (5.1). Then a straightforward computation shows that (J?ω)(X, Y ) := ω(JX, JY ) =

ω(X, Y ) if and only if

ω(X1,0, Y 1,0) + ω(X0,1, Y 0,1) = 0.

Since the components can be chosen independently, this is true if and only if each

summand is zero which is equivalent to ω ∈ Λ1,1M .

Remark 5.7. For a complex structure J and a local holomorphic coordinate system

zα = xα + iyα we can extend the exterior derivative by C-linearity to dzα = dxα + idyα

and dz̄α = dxα − idyα. They form a local basis for Ω1,0(M) and Ω0,1(M) respectively

and are dual to the bases defined in Remark 5.5. A local basis of Ωp,q(M) is given by

{dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq , i1 < . . . < ip, j1 < . . . < jq}. �

The Nijenhuis tensor

NJ(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

is a (2,1)-tensor that can be interpreted as a kind of torsion of the almost complex

structure J .

The following proposition summarizes conditions under which J is indeed a complex

structure.

Proposition 5.8. Let J be the almost complex structure of a real manifold M . The

following statements are equivalent:

(i) J is a complex structure.

(ii) T 0,1M is integrable, i.e. [Z1, Z2] ∈ T 0,1M for Z1, Z2 ∈ T 0,1M .

(iii) d(Ω1,0(M)) ⊂ Ω2,0(M)⊕ Ω1,1(M).

(iv) d(Ωp,q(M)) ⊂ Ωp+1,q(M)⊕ Ωp,q+1(M).

(v) NJ = 0.
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5.1 Preliminaries

5.1.4 Kähler manifolds

Definition 5.9. (1) Let (M, g, J) be an almost complex Riemannian manifold. We

say that the metric g is Hermitian if

g(JX, JY ) = g(X, Y )

for all vector fields X, Y on M . An (almost) complex manifold together with a

Hermitian metric is called an (almost) Hermitian manifold .

(2) On an almost Hermitian manifold (M, g, J) we define the fundamental 2-form of

the Hermitian metric g as Ω(X, Y ) := g(JX, Y ).

(3) Let E →M be a complex vector bundle of rank k. A Hermitian structure h on E

is a smooth field of Hermitian products on the fibres of E. E together with h is

called a Hermitian vector bundle.

o

Remark 5.10. Let (M, g, J) be an almost Hermitian manifold. Then the complex bilinear

extension of g to TCM satisfies

g(Z̄1, Z̄2) = g(Z1, Z2),

g(Z1, Z2) = 0 for all Z1, Z2 ∈ T 1,0M ,

g(Z, Z̄) > 0 unless Z = 0.

That is, h(Z1, Z2) := g(Z1, Z̄2) defines a Hermitian structure on TCM . �

Definition 5.11. Let g be a Hermitian metric on an almost complex manifold (M,J).

Then g is called a Kähler metric if J is a complex structure and the fundamental 2-form

Ω is closed.

An almost Hermitian manifold together with a Kähler metric is called a Kähler man-

ifold . o

There are various equivalent definitions which we will summarize in the following

proposition.

Proposition 5.12. Let (M, g, J) be a 2m-dimensional almost Hermitian manifold with

fundamental 2-form Ω and Levi-Civita connection ∇. Then the following are equivalent:

(1) g is a Kähler metric.

(2) NJ = 0 and dΩ = 0.

(3) ∇J = 0.

(4) The holonomy group of M is a subgroup of U(m).
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5 Kähler manifolds

5.2 Primitive forms

For this section, assume (M, g, J,Ω) is a Kähler manifold of real dimension 2n.

We define two real operators acting on differential forms

L : ΛkM → Λk+2M, ω 7→ Ω ∧ ω =
1

2
ei ∧ Jei ∧ ω

and its formal adjoint Λ satisfying

Λ : Λk+2M → ΛkM, η 7→ 1

2
Jei y ei y η

and define their action on Λ∗CM by linear extension.

Remark 5.13. These operators, more precisely their complex extensions to Λ∗CM , and

their commutator H := [Λ, L] span a Lie algebra isomorphic to sl2(C). One can check

that [H,Λ] = 2Λ and [H,L] = −2Λ. So Λ, L and H correspond to the standard basis

vectors of sl2(C)

X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)
, H̃ =

(
1 0

0 −1

)
. �

Definition 5.14. We say α ∈ ΛkM is primitive if Λ(α) = 0.

Since Λ∗ has constant rank on ΛkM its kernel defines a subbundle, the bundle of

primitive forms of degree k denoted by (ΛkM)0. o

Lemma 5.15. A 2-form ω is primitive if and only if g(Ω, ω) = 0.

Proof. This follows from the duality of L and Λ (more specifically of the duality of the

interior and exterior product):

Λ(ω) = g(Λ(ω), 1) = g(ω,Ω ∧ 1) = g(ω,Ω).

5.3 Decompositions of the exterior bundle

Let (M, g) be a 2n-dimensional compact almost complex Riemannian manifold. Then J

acts on Λ2M as an involution, yielding the splitting

Λ2M = Λ+
JM ⊕ Λ−JM (5.2)

into eigenspaces of J corresponding to the eigenvalue 1 and −1, respectively.
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Their complexifications relate to the decomposition of the complexified exterior bundle

Λ2
CM = Λ2,0M ⊕ Λ1,1M ⊕ Λ0,2M as follows

Λ+
JM ⊗ C = Λ1,1M, (5.3)

Λ−JM ⊗ C = Λ2,0M ⊕ Λ0,2M. (5.4)

Henceforth, let M be almost Hermitian of dimension four with fundamental form Ω.

Then the Hodge-de Rham operator ∗ of a Riemannian metric also acts as an involution

on Λ2M . This induces a splitting of the bundle Λ2M into so-called self-dual and anti-

self-dual parts

Λ2M = Λ+
gM ⊕ Λ−gM. (5.5)

The splittings (5.2) and (5.5) relate as follows:

Λ+
JM = RΩ⊕ Λ−gM, (5.6)

Λ+
gM = RΩ⊕ Λ−JM, (5.7)

Λ−gM ∩ Λ−JM = 0. (5.8)

We want to relate these facts to de Rham cohomology and harmonic forms. Denote

by Hk
dR(M,R) the k-th de Rham cohomology group of M (i.e. closed k-forms modulo

exact forms) and by Hk(M) the space of harmonic k-forms.

Since the Laplacian on forms commutes with ∗, Eq. (5.5) also holds for H2(M), thus

H2
dR(M,R) ∼= H2(M) = H+

g (M)⊕H−g (M).

Let Z2(M) denote the closed 2-forms and Z±g (M) := Z2(M)∩Ω±g (M). Recall that a

form α is co-closed if and only if ∗α is closed and thus Z±g (M) = H±g (M). Define

H±g (M) = {a ∈ H2
dR(M,R) | ∃α ∈ Z±g : [α] = a}

and clearly H±g (M) ∼= H±g (M). Set b±2 (M) := dim(H±g (M)) then b2(M) = b+
2 (M) +

b−2 (M) where b2(M) is the second Betti number.

Lemma 5.16. Let (M, g, J,Ω) be a four dimensional almost Hermitian manifold. The

primitive forms in Λ+
J are the anti-self dual forms, i.e.

(Λ+
JM)0 = Λ−gM.

Moreover,

H+
J (M)0 = H−g (M),

where H+
J (M)0 denotes the primitive J-invariant harmonic 2-forms.
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Proof. The first claim follows from Lemma 5.15 and Eq. (5.6). The second claim is

obvious.

In the Kähler case, the complexifications of the cohomology subgroups H±J (M) relate

to Dolbeault cohomology analogously to Eqs. (5.3) and (5.4):

H+
J (M)⊗ C ∼= H1,1

J (M) (5.9)

H−J (M)⊗ C ∼= H2,0
J (M)⊕H0,2

J (M). (5.10)

Corollary 5.17. Let (M, g, J,Ω) be a four dimensional Kähler manifold. Then

h1,1(M) = b−2 (M)− 1

where hp,q(M) = dimC(Hp,q(M,C)) are the Hodge numbers of the Riemannian structure.

5.4 Harmonic J-invariant 2-forms and the Lichnerowicz Laplacian

The one-to-one correspondence of real symmetric J-invariant bilinear forms and Λ+
JM

is well known [Bes87, Paragraph 2.26]. In the following we will show that in the Kähler

case this also holds for harmonic J-invariant 2-forms and symmetric 2-tensors the kernel

of the Lichnerowicz Laplacian.

Definition 5.18. Let (M, g, J) be an almost complex manifold. We define the bun-

dle morphism j : Λ+
JM → Sym2M which maps α ∈ Λ+

JM to β ∈ Sym2M given by

β(X, Y ) = α(X, JY ).

If we identify α via the metric as a skew-symmetric endomorphism of the tangent

bundle, then the corresponding symmetric endomorphism of j(α) is given by α ◦ J . o

It is straightforward to check that if α is primitive then j(α) is traceless.

Lemma 5.19. Let (M, g, J,Ω) be a Kähler manifold.

The bundle morphism j commutes with the universal Laplacian in the sense that

(∆L ◦ j)(α) = (j ◦∆)(α), for α ∈ Ω+
JM (5.11)

where ∆ is the Hodge-Laplacian on 2-forms.

Proof. Recall that ∆L = ∇∗∇ − Ric?−2R̊ and ∆ = dd∗ + d∗d = ∇∗∇ − Ric?−2R
on 2-forms. Using ∇J = 0 it easily follows that [∇∗∇, j]α = [Ric?, j]α = 0. Finally,

(j ◦ R) = (R̊ ◦ j) follows from Eqs. (3.1) and (3.2).
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Proposition 5.20. Let (M, g, J,Ω) be a compact Kähler manifold. If h1,1(M) > 1, then

the Lichnerowicz Laplacian ∆L acting on traceless divergence-free symmetric endomor-

phisms has a non-zero kernel.

In particular, this is the case if M is of dimension four and if b−2 > 0.

Proof. Using Lemma 5.15 we see that

H+
J (M) = RΩ⊕ (H+

J (M))0.

By Eq. (5.9) the real dimension of H+
J (M) corresponds to h1,1(M) and h1,1(M) > 1 thus

guarantees the existence of 0 6= α ∈ H+
J (M)0. Then β := j(α) defines a symmetric and

traceless (0, 2)-tensor field. Computing the divergence of β yields

(δβ)(X) = −∇eiα(ei, JX) = (δα)(JX) = 0,

since α is harmonic and thus co-closed. By Lemma 5.19

∆Lβ = (∆L ◦ j)α = (j ◦∆)α = j(∆α) = 0.

The four dimensional case follows from Corollary 5.17.

Corollary 5.21. If M is a compact Kähler manifold of dimension 4, 6 or 8 and

h1,1(M) > 1, then M is physically unstable.

Example 5.22. (1) The standard example of a four dimensional Kähler manifold is

the complex projective space CP 2. We have b+
2 (CP 2) = 1 and b−2 (CP 2) = 0.

By a result of Donaldson [Don83] and Freedman [Fre82] all simply connected 4-

manifolds with positive definite intersection form are homeomorphic to the k-fold

connected sum CP 2 # . . .#CP 2. Now if M is a simply connected 4 dimensional

Kähler manifold with b−2 = 0, then its intersection form is positive definite and M

is homeomorphic to CP 2 # . . .#CP 2.

(2) The blowup of a point p in Cn is obtained by replacing a neighborhood U of p with

Ũ = {(z, l) ∈ U × CP n−1 | z ∈ l}. Then the projection π : Ũ → U , (z, l) 7→ z

is biholomorphic on U \ {p} and the fibre over p is just CP n−1. This operation

can also be applied to manifolds. In terms of n-dimensional complex oriented

smooth manifolds the blowup M̃ of M at p ∈M corresponds to the connected sum

M̃ = M #CP n where the overline indicates the choice of the opposite orientation

with respect to the standard one. Blowing up a manifold increases the Hodge

numbers (for details, we refer to [GH94])

hi,i(M̃) = hi,i(M) + 1, i > 0,
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in particular h1,1(M̃) = h1,1(M) + 1, thus by Corollaries 5.17 and 5.21 we can

conclude that physically stable Kähler 4-manifolds are not blowups.

The del Pezzo surfaces Pk are the blowup of k points in general position on CP 2

for 1 ≤ k ≤ 8. However, Pk only admits Einstein-Kähler metrics for k ≥ 3.

(3) The product S2 × S2 has Betti numbers b+
2 = b−2 = 1 and is thus unstable. �

Remark 5.23. We say the first Chern class c1(M) is positive (resp. negative) if it can be

represented by a (1, 1)-form whose corresponding symmetric 2-tensor via j is positive

(resp. negative). The Ricci form ρ := j(Ric) of a compact Kähler manifolds represents

the first Chern class c1(M). Thus a necessary condition for the existence of Einstein-

Kähler metrics is that c1(M) can be represented by a (1, 1)-form. In fact, the Calabi

conjecture, which was proved by Yau in [Yau78], states that any (1, 1)-form representing

c1(M) is the Ricci-form of some Kähler metric on M . This implies the existence of Ricci-

flat metrics if c1(M) = 0. If c1(M) is negative, existence of Kähler-Einstein metrics has

been independently proved by Aubin [Aub76] and Yau [Yau78]. However, the case where

c1(M) > 0 and, consequently, s > 0 is more subtle. In fact, it turns out that c1(M) > 0

is not a sufficient condition for the existence of Einstein-Kähler metrics. For example,

the del Pezzo surfaces Pk do not have any Kähler-Einstein metrics for k = 1, 2. �
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6 Symmetric spaces

In this section we will present a representation theoretical method to compute the eigen-

values of the Casimir operator acting on sections of associated bundles over homogeneous

spaces. If the homogeneous space is symmetric, the Casimir operator will turn out to

be the universal Laplacian which will allow us to compute the eigenvalues of the Lich-

nerowicz Laplacian acting on sections of symmetric 2-tensors.

6.1 Casimir operator

Let G be a compact semi-simple Lie group with Killing form B. Since G is compact

B is negative definite, so g = −B becomes an invariant Riemannian metric on G. The

Casimir operator Casπ ∈ EndV of a representation π : G→ V is defined as

Casπ := −
∑
i

π∗(Xi)
2

where {Xi} is an orthonormal basis of g relative to g = −B on g. Note that if we chose

{Yi} to be orthonormal with respect to the Killing form B then Casπ =
∑

i π∗(Yi)
2.

The Casimir operator is independent of the choice of a g-orthonormal basis for g and

commutes with π(g) and, by Schur’s lemma, acts as a scalar on irreducible representa-

tions. Let V be an irreducible representation with highest weight λ and ρ = 1
2

∑
α∈∆+ α

be the half-sum of the positive roots. Then this scalar is given by (λ + 2ρ, λ) =

‖λ + ρ‖2 − ‖λ‖2. For details and proofs see [Hum73, section 6.2] or [GW09, section

3.3.2]. Note that since λ is dominant, the Casimir is positive.

Moreover, on compact naturally reductive homogeneous spaces M = G/H the Casimir

operator corresponds to aG-invariant second order differential operator which is reflected

in the following

Lemma 6.1 ([MS10]). Let G be a compact semi-simple Lie group and H ≤ G a compact

subgroup such that M = G/H is a naturally reductive homogeneous space with the Rie-

mannian metric induced by −B and denote by ∇ the canonical homogeneous connection

on M = G/H. Let π : H → E be a H-representation and let EM := G ×π E be the

associated vector bundle over M.

If we consider the space of sections Γ(EM) as a G-representation via the left-regular

representation l, then the differential operator ∆π = ∇∗∇ + q(R) acts on Γ(EM) as

∆π = CasGl .

Remark 6.2. The canonical homogeneous connection ∇ coincides with the Levi-Civita

connection only in the case when G/H is a symmetric space. �
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Proof. Since M is naturally reductive there is an Ad(H)-invariant decomposition

g = h⊕m, [h, h] ⊂ h and [h,m] ⊂ m.

The canonical homogeneous connection A ∈ Ω1(G, h) in the principal H-bundle G →
G/H is given by A = prh ◦µG where µG ∈ Ω1(G, g) is the Maurer-Cartan form. As a

consequence the horizontal distribution is T hg G = dLg(m).

Let s ∈ Γ(EM) be a section and denote by s̄ ∈ C∞(G,E)H the corresponding H-

equivariant function. We can then write the covariant derivative ∇ = ∇A at the origin

o = eH as (∇Xs)eH = [e,X∗(s̄)e] for X ∈ ToM . But the horizontal lift X∗ of X at e is

simply given by the identification of m with ToM ∼= m via dπ. The directional derivative

X(s̄) is just minus the differential of the left-regular representation X(s̄) = −l∗(X)s̄.

Thus if {ei} denotes a g-orthonormal basis in m, the rough Laplacian ∇∗∇ translates

into the sum −l∗(ei)l∗(ei) = CasGl −CasHl . Since ∆ = ∇∗∇ + q(R) it remains to show

that q(R) = CasHl = CasHπ .

Since the Killing form B and, consequently, the metric is invariant under automor-

phisms of g, the isotropy representation is orthogonal. We assert that the differential

λ∗ : h → so(m) ∼= Λ2m of the isotropy representation is given by λ∗(A) = 1
2
ei ∧ [A, ei]

for any A ∈ h. To see this, recall that (X ∧ Y )(Z) = g (X,Z)Y − g (Y, Z)X. Then

(ei ∧ [A, ei])(X) = g (ei, X) [A, ei]− g (X, [A, ei]) ei

= [A,X] +B(X, [A, ei])ei

= [A,X] +B([X,A], ei)ei = 2[A,X]

for X ∈ m, which proves the assertion.

The curvature operator R : Λ2m→ Λ2m can be expressed as

R(X ∧ Y ) = −1

2
ei ∧RX,Y ei =

1

2
ei ∧ [[X, Y ]h, ei] = λ∗([X, Y ]h)

for any X, Y ∈ m where we have used that RX,Y = −λ∗([X, Y ]h) and where the subscript

h denotes the projection onto h (for details see [KN96, Chapter 10.2]).

Consider the bundle of orthonormal frames PSO(m) of M = G/H. Then any SO(m)

representation π̃ defines a H-representation via π = π̃ ◦ λ. Moreover, the principal

H-bundle G→ G/H can be seen as a λ-reduction of PSO(m), i.e. we can identify

EM = PSO(m) ×π̃ E = G×π E.
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Let {fk} denote a g-orthonormal basis of h. Then by definition of q(R) we have

q(R) = −1

2
π̃∗(ei ∧ ej)π̃∗(R(ei ∧ ej)) = −1

2
π̃∗(ei ∧ ej)(π̃ ◦ λ)∗([ei, ej]h)

=
1

2
π̃∗(ei ∧ ej)π∗(fk)B([ei, ej], fk)

=
1

2
π̃∗(ei ∧ ej)π∗(fk)B(ej, [ei, fk])

= −1

2
π̃∗(ei ∧ [fk, ei])π∗(fk) = −π∗(fk)π∗(fk) = CasHπ .

We have thus shown that q(R) ∈ End(EM) acts fibre-wise as CasHπ . Let Z ∈ h,

g ∈ G and f ∈ C∞(G,E)H . Then, by equivariance, π∗(Z)f(g) = −Z(f)g = (l∗(Z)f)(g).

Hence, q(R) = CasHπ = CasHl and ∆π = CasGl .

Corollary 6.3. Every Riemannian symmetric manifold (Mn, g) of compact type is phys-

ically stable if n ≥ 9.

Proof. Since the Casimir is positive and λcrit ≤ 0 for n ≥ 9 the claim immediately

follows.

6.2 Induced representations, Frobenius reciprocity and the

Peter-Weyl theorem

Let G be a compact Lie group with closed subgroup H associated to the homogeneous

space M = G/H. Consider a finite-dimensional H-representation (E, π) and let EM =

G×π E be the associated vector bundle.

We are interested in a decomposition into isotypical summands of the infinite dimen-

sional H-representation of smooth sections Γ(EM).

Definition 6.4. Let G be a compact Lie group and consider a not necessarily finite

dimensional G-representation V of a vector space V . The finite-dimensional subrepre-

sentations of V generate a subrepresentation Vs of V . Vs is called the locally finite part

of V . V is called locally finite if V = Vs. o

Definition 6.5. For compact Lie groups H ⊂ G and a finite-dimensional H-repre-

sentation E, the induced G-representation IndGH E is defined as

IndGH E : = C∞(G,E)H

= {f : G→ E | f(gh) = h−1f(g) for h ∈ H, g ∈ G}.

Endowed with the supremum-norm, (IndGH E, ‖ · ‖∞) becomes a Banach-space and the

left-regular G-action (gf)(u) = f(g−1u) is continuous. o
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Note that IndGH E is an infinite-dimensional G-representation unless H has finite index

in G. In any case, the locally finite part of iEs := (IndGH E)s admits a decomposition

into isotypical summands ([BtD85, Proposition III.1.7])

iEs ∼=
⊕
λ∈Ĝ

Γλ ⊗ HomG(Γλ, IndGH E),

where Ĝ are the dominant integral weights of G.

By the generalized Peter-Weyl theorem iEs is dense in IndGH E (for details, see [BtD85,

Chapter III.5]).

Let E be an H-representation and U a G-representation. Frobenius reciprocity states

that any H-module homomorphism ϕ : E → U extends uniquely to a G-module homo-

morphism ϕ̃ : IndE → U , i.e.

HomH(E,ResGH U) ∼= HomG(IndGH E,U),

where ResGH U is the restriction of U to an H-representation.

Combining Frobenius reciprocity with the isotypical decomposition and the fact that

the space of sections Γ(EM) is isomorphic to C∞(G,E)H we get the decomposition

C∞(EM) ∼=
⊕
λ∈Ĝ

Γλ ⊗ HomH(ResGH Γλ, E). (6.1)

Now ResGH Γλ decomposes as an H-representation into ResGH Γλ =
⊕

λ̄∈Ĥ Γλ̄. With-

out loss of generality we will henceforth assume that E itself is an irreducible H-

representation. Then, by Schur’s lemma, HomH(ResGH Γλ, E) is just the multiplicity

of E in the decomposition ResGH Γλ.

We have thus reduced the problem of determining the spectrum of ∆π acting on

C∞(EM) to finding the irreducible G-representations whose restrictions to H contain

E. This can for example be done by using so-called branching rules as is illustrated in

the following example.

6.3 Spectrum of the Lichnerowicz-Laplacian on the sphere

As an example, we will consider the sphere M = S2n = SO(2n + 1)/ SO(2n). We set

r = [n/2] and choose our root system and its partial order in such a way that the

dominant weights of so(n) satisfy

λ1 ≥ . . . ≥ λr ≥ 0, for n odd and

λ1 ≥ . . . ≥ λr−1 ≥ |λr| for n even.
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6.3 Spectrum of the Lichnerowicz-Laplacian on the sphere

Lemma 6.6 (Branching rule, [FH91]). Consider the complex Lie algebras so(2n) ⊂
so(2n+1) and the irreducible representation Γλ of so(2n+1) given by the highest weight

vector λ = (λ1 ≥ . . . ≥ λn ≥ 0).

Then the restriction

Res
so(2n+1)
so(2n) (Γλ) =

⊕
λ̄

Γλ̄

decomposes into irreducible so(2n)-representations Γλ̄ for highest weight vectors λ̄ satis-

fying

λ1 ≥ λ̄1 ≥ λ2 ≥ λ̄2 ≥ . . . ≥ λ̄n−1 ≥ λn ≥ |λ̄n|.

Example 6.7. (1) Consider the trivial representation E = C with highest weight

λ̄ = 0. Then by Lemma 6.6 the irreducible so(2n + 1) representations containing

E are given by the highest weights λk = (k, 0, . . . , 0), k ∈ N0. The corresponding

irreducible representations are Γλk = Symk
0(C2n+1). Note that sections of this

bundle are just functions on M . The eigenvalues of the Casimir operator and thus

of the Laplacian on functions are given by

µk := g (λk, λk + 2ρ) = k(2n− 1 + k).

(2) The standard representation E = C2n of so(2n) correponds to the highest weight

λ̄ = (1, 0, . . . , 0). In this case we have two series of admissible highest weights of

so(2n+ 1)-representations:

λ1
k = (k, 0, 0, . . . , 0), µk = k(2n− 1 + k),

λ2
k = (k, 1, 0, . . . , 0), µk = k(2n− 1 + k) + 2n− 2, k ≥ 1.

The eigenspaces of the first series actually come from eigenfunctions of the Lapla-

cian on C∞(M). This is simply due to the fact that the differential d commutes

with the Laplace operator on forms ∆ = dd∗ + d∗d and thus ∆df = µk df if

∆f = µkf . Also, recall that for so(m) we have E ∼= E∗ via g as representations.

(3) The bundle of 2-forms corresponds to the representation E = Λ2C2n with highest

weight λ̄ = (1, 1, 0, . . . , 0). Then the admissible highest weights with eigenvalues

are

λ1
k = (k, 1, 0, 0, . . . , 0),

λ2
k = (k, 1, 1, 0, . . . , 0), µk = (k + 2)(2n− 1 + k), k ≥ 1.

Again, we note that the differential d maps Laplace eigenspaces on vector fields

into Laplace eigenspaces of 2-forms.
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(4) In the interesting case where E = Sym2
0(C2n) and λ̄ = (2, 0, . . . , 0) ∆π is the

Lichnerowicz Laplacian and there are three series of admissible highest weights λik
with eigenvalues µik:

λ1
k = (k, 0, 0, . . . , 0), µk = k(2n− 1 + k), k ≥ 2

λ2
k = (k, 1, 0, . . . , 0), µk = k(2n− 1 + k) + 2n− 2, k ≥ 2

λ3
k = (k, 2, 0, . . . , 0), µk = k(2n− 1 + k) + 2(2n− 1), k ≥ 2. �

The following proposition shows the nature of the first two series of irreducible repre-

sentations arising in Example 6.7.(4).

Proposition 6.8 ([SW12, Corollary 5.1]). Let (M, g) be an irreducible locally symmetric

space of compact type. Then any Laplace eigenspace on functions or vector fields is

mapped into an eigenspace of the Lichnerowicz Laplacian on symmetric 2-tensors for

the same eigenvalue. For functions this map is given by f 7→ Hess(f) and for vector

fields by X 7→ LXg.

Furthermore, the image of each map is a subspace of Im(δ∗).

Proof. The first claim follows from [SW12, Theorem 4.2] which states that the Laplacian

commutes with the covariant derivative ∇ on symmetric spaces.

A direct computation shows that Ldf∗g = 2 Hess(f).

We conclude this example with the following corollary and refer to [Bou09] for a

comprehensive computation of the eigenvalues with multiplicities of the Lichnerowicz

Laplacian on the sphere.

Corollary 6.9. The eigenvalues of the Lichnerowicz operator on Sn acting on symmet-

ric, traceless and divergence-free 2-tensors are given by µk = k(n− 1 + k) + 2n− 2 for

k ≥ 2. It follows that Sn is physically stable for all n ≥ 2.

6.4 An algorithm to compute the smallest eigenvalue

Let (g, k) be the Lie algebras of a simply connected and irreducible symmetric space

M = G/K of compact type. Then g is real simple, gC is a complex simple Lie algebra and

k is a maximal compact subgroup and g = k⊕m where m is the isotropy representation

of h. Set E = Sym2
0m.

Let ω1, . . . , ωn be the fundamental weights of g. Let µ be a dominant weight. Then

µ =
∑

i kiωi. Define the height ht(µ) of a dominant weight µ as ht(µ) :=
∑

i ki. We

recall that the eigenvalue of the Casimir operator on the irreducible representation with
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highest weight µ is given by λµ = (µ+2ρ, µ). It easily follows that for dominant weights

µ1 and µ2 such that ht(µ1) < ht(µ2) we have λµ1 < λµ2 .

By Eq. (6.1) the irreducible g representation Γµ is an eigenspace of ∆L if and only if

HomH(ResGH Γµ, E) 6= 0, i.e. ResGH Γµ and E have common irreducible h factors.

Our algorithm will inductively construct g-representations Γµ for linear combinations

µ of the fundamental weights of g to a given height and check for common factors of

ResGH Γµ and E using branching rules.

Example 6.10. The algorithm was implemented with the computer algebra software

sage [S+12] for the symmetric space M = G2/ SO(4). The source code can be found in

Listings 1 and 2 of the Appendix. The decomposition g2 = so(4)⊕m can be constructed

following [Mur65, Théorème 1] and is illustrated in Fig. 1. It follows that the highest

weight of m is given by 3ω̃1 + ω̃0 where ω̃i are the fundamental weights corresponding to

the simple roots α0 and α1 of so(4).

The output of the algorithm is the following:

Lowest height weights: [(2, 0, -2), (3, -1, -2), (4, -2, -2)]

Corresponding eigenvalues: [28, 42, 60]

Lowest eigenvalue: 28

We can conclude from the proof of Theorem 6.11 and Table 1 in the following section

that the inequality (3.4) is not sharp in the case of M = G2/ SO(4) and, consequently,

that G2/ SO(4) does not admit Stäckel tensors. �

α1

α2

µ = 3α1 + 2α2

α0 = −µ

α1

µ = 3α1 + 2α2

α0 = −µ
λ

Figure 1: In the left diagram we see the root system of g2. The maximal root is µ =

3α1 + 2α2. In the right diagram the root system of so(4) with simple roots α1

and α0 = −µ is depicted. The weight spaces of the isotropy representation m

are shown as black dots. They correspond to the remaining root spaces. Its

highest weight is given by λ = −α2.
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6.5 General Riemannian symmetric spaces of compact type

Riemannian symmetric spaces were first classified by Élie Cartan in 1926 [Car26]. Let

M = G/K be a simply-connected irreducible Riemannian symmetric space of compact

type. Then M is of one of the following types (c.f. [Bes87]):

(I) G is simple.

(II) There exists a simply-connected compact simple Lie Group H such that G = H×H
and K = H where H is understood as the diagonal subgroup of H ×H.

Spaces of type II are already known by the classification of compact simple Lie groups.

The classification of type I is a consequence of the classification of the real simple Lie

groups and their maximal compact subgroups.

Type G/K n s/n κ λcrit λmin stable

A1 SU(2)×SU(2)/SU(2) A1×A1/A1 3 2 -1 3 12 yes

A2 SU(3)×SU(3)/SU(3) A2×A2/A2 8 3 3 0.75 0 no

AI1 SU(3)/SO(3) A2/B1 5 3 1.5 3 6 yes

AII SU(4)/Sp(2) A3/C2 5 4 2 4 8 yes

AIII SU(2)/S(U(1)×U(1)) A1/T 2 2 -2 3.5 16 yes

SU(3)/S(U(2)×U(1)) A1/A1×T 4 3 1 3.75 8 yes

SU(4)/S(U(3)×U(1)) A1/A2×T 6 4 1 3 12 yes

SU(5)/S(U(4)×U(1)) A1/A3×T 8 5 1 1.25 16 yes

SU(4)/S(U(2)×U(2)) A1/A1×A1×T 8 4 2 1 8 no

BI SO(5)/SO(3)×SO(2) B2/B1×T 6 3 2 2.25 4 no

CII Sp(2)/Sp(1)×Sp(1) C2/C1×C1 4 6 -1 7.5 28 yes

Sp(3)/Sp(2)×Sp(1) C3/C2×C1 8 8 4 2 16 no

G G2/SO(4) G2/A1×A1 8 12 6 3 24 yes

Table 1: Values for the lower bound λmin of eigenvalues of the Lichnerowicz Laplacian

for Riemannian symmetric spaces of dimension n < 9 which are not spheres.

The last column shows whether the space is stable in the sense of Definition 2.8

and should not be confused with physical stability.

In his paper [Koi80], N. Koiso used the method of classification described in [Mur65]

involving the classification of involutive automorphisms of the complexified Lie algebra

of G to determine which Riemannian symmetric spaces of compact type are rigid or

mathematically stable by computing the eigenvalues of R̊ on the irreducible components
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of Sym2T as a K-representation. This method automatically gives s/n as this is the

eigenvalue of R̊ on the trace component R · g of Sym2T .

We will be using his results to compute a lower bound for the eigenvalues of the

Lichnerowicz Laplacian using the inequality we found in Proposition 3.7 to prove the

following theorem.

Theorem 6.11. All irreducible Riemannian symmetric spaces of compact type are phys-

ically stable.

Proof. Let (M, g) be a Riemannian symmetric space of compact type such that M =

G/K for Lie groups G and K. We know from Proposition 3.7 that

∆L ≥ 4s/n− 4κ (3.6)

where κ is the largest eigenvalue of R̊.

In table Table 1 we have computed the lower bound λmin := 4s/n−4κ for all irreducible

Riemannian symmetric spaces of compact type whose dimension n is smaller than 9 and

are not spheres. By comparison with the values of λcrit which also can be found in the

table and by Corollaries 6.3 and 6.9 we can conclude that all Riemannian symmetric

spaces of compact type, except for spaces of type A2, are physically stable.

For type A2, following [KN62,Koi80], the smallest eigenvalue of ∆L has been computed

to be 16/3. Hence, ∆L ≥ 16/3 > λcrit and A2 is physically stable.

Remark 6.12. Although not listed in Table 1, it turns out that on the spheres the

Inequality (3.4) is sharp and, as a consequence, admits Stäckel tensors. �
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In this section we will be considering Riemannian spin manifolds admitting Killing

spinors. Following [Wan91], we will establish a connection between the Rarita-Schwin-

ger operator D3/2 and the Lichnerowicz Laplacian and derive a result of [GHP02] that

all Riemannian spin manifolds with positive scalar curvature admitting Killing spinors

are physically stable. Interestingly, the lower bound turns out to be exactly the critical

value of the physical stability criterion.

7.1 Preliminaries

Let (Mn, g) be a compact Riemannian spin manifold. Let P be the Spin(n)-principal

bundle. Then the spinor bundle S is given as the associated vector bundle S = P×Spin(n)

∆n, where ∆n is the spinor representation. On S we will denote by ∇ the connection

induced by the Levi-Civita connection of M which we also denote by ∇. The Clifford

multiplication µ : S ⊗ TM → S is the bundle morphism defined on the fibers as the

Clifford multiplication on the spinor module.

Definition 7.1. The operator D = µ ◦∇ : Γ(S)
∇−→ Γ(S ⊗ TM)

µ−→ Γ(S) is called the

Dirac operator of S. o

Remark 7.2. (1) Locally, we have Dψ = ei · ∇eiψ for ψ ∈ S

(2) One can generalize the definition of the Dirac operator on the spinor bundle to

arbitrary Clifford bundles. Clifford bundles W are complex vector bundles with

Clifford multiplication µ : W ⊗ TM → W such that

(i) each fibre is a Clifford module,

(ii) the Clifford multiplication is skew-symmetric with respect to the induced

metric on W ,

(iii) the induced connection ∇W is metric and

(iv) ∇W (X · w) = (∇X) · w +X · ∇Ww for all X ∈ Γ(TM) and w ∈ Γ(W ).

Generalized Dirac operators are elliptic formally self-adjoint first order differential

operators and thus have a discrete spectrum on compact manifolds. �

Definition 7.3. Let ψ ∈ Γ(S), ψ 6= 0. If ψ satisfies the field equation

∇Xψ = µX · ψ

for a constant µ ∈ C and for all vector fields X, then ψ is called a Killing spinor and µ

is called its Killing number . o
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Manifolds admitting non-trivial Killing spinors require certain geometric conditions

and are in some sense complementary to the types of manifolds we discussed in previous

chapters:

Proposition 7.4 ([BFGK91]). Let (Mn, g) be a connected Riemannian spin manifold

with non-trivial Killing spinor ψ and Killing number µ. Then the following statements

hold.

(1) (Mn, g) is Einstein with scalar curvature s = 4µ2n(n − 1). In particular, µ is

either real or purely imaginary.

(2) If µ 6= 0, then M is not Kähler.

(3) If µ 6= 0, then M is locally irreducible.

(4) If M is a symmetric space of compact type and µ > 0, then M has constant

sectional curvature 4µ2 and is conformally flat. Moreover, the universal cover M̃

is a round sphere.

7.2 The Rarita-Schwinger operator

We will consider spinor-valued 1-forms, i.e. sections Γ(S⊗TCM). The bundle S⊗TCM
is called the twisted spinor bundle. The operator

DT : Γ(S ⊗ T ∗CM)
∇−→ Γ(S ⊗ T ∗CM ⊗ T ∗M)

µ⊗id−→ Γ(S ⊗ T ∗CM)

is called the twisted Dirac operator . Locally, (DTψ)(X) = ei · ∇ei(ψ(X)) = D(ψ(X)).

Lemma 7.5. The twisted Dirac operator DT is formally self-adjoint.

Proof. The bundle S ⊗ TCM with Clifford multiplication X · (φ ⊗ ω) = (X · φ) ⊗ ω

for X ∈ TM , φ ∈ S and ω ∈ TCM is a Clifford bundle. Then the twisted Dirac

operator corresponds to the Dirac operator of the twisted bundle and thus is formally

self-adjoint.

Similarly as in Section 3.2, we have a decomposition of the twisted spinor bundle into

associated bundles of Spin-representations given by

S ⊗ TCM ∼= S ⊕ ker(µ).

We will use the same notation and choice of root system as in Section 6.3. The

highest weight corresponding to the bundle ker(µ) is γ = 1
2
(3, 1, . . . , 1) for n odd. If
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n is even, then ker(µ) corresponds to the sum of irreducible representations of highest

weight γ± = 1
2
(3, 1, . . . ,±1). Note that γ and γ± is the sum of the weights of the spin

representation and of the standard representation of so(n).

The bundle ker(µ) is also denoted by S3/2. In the even case, ker(µ) = S+
3/2 ⊕ S−3/2

where S±3/2 are the associated bundles of the irreducible representations of weight γ±.

Lemma 7.6. The embedding ι : S → S ⊗ TCM is given by ι(φ)(X) = −1/nX · φ for

X ∈ TCM . Then p1 = ι ◦ µ and p2 = 1− ι ◦ µ are the projections onto ι(S) and ker(µ).

Theorem 7.7 ([Sem95, Satz E.5]). If (M, g) is Einstein, then D2
T leaves the decompo-

sition S ⊗ TCM = S ⊕ ker(µ) invariant. Moreover,

D2
T (ι(φ)) = (ι(D2φ)− s

n
ι(φ)) +

1

n
(Ric− s

n
idTCM) · φ

where the first summand and the second summand lie in ι(S) and ker(µ), respectively.

Definition 7.8. The Rarita-Schwinger operator D3/2 is given by

D3/2 = p2 ◦DT ◦ p2. o

In the following section we will construct special sections of S3/2 with the help of

Killing spinors. This method was first used by Wang [Wan91] in relation with metric

deformations and establishes a connection between the Rarita-Schwinger operator D3/2

and the Lichnerowicz Laplacian.

7.3 Killing spinors and the Lichnerowicz Laplacian

Define Ψ(h,σ)(X) = h(X) ·σ, for a g-symmetric h ∈ End(M) and Killing-spinor σ. Then

Ψ(h,σ) ∈ Γ(S ⊗ T ∗CM) and locally Ψ(h,σ) = h(ei) · σ ⊗ e∗i .

Theorem 7.9 ([Wan91,GHP02]). Let (M, g) be a Riemannian spin manifold admitting

a non-zero Killing spinor σ with Killing number µ. Suppose h is a g-symmetric, traceless

endomorphism of TM satisfying δ(h) = 0. Furthermore, assume that its corresponding

symmetric 2-tensor is an eigentensor of the Lichnerowicz Laplacian ∆L to the eigenvalue

λ. Let Ψ = Ψ(h,σ) be defined as above. Then

(DT − µ)2Ψ = λΨ− Λ

(
4− 1

4
(n− 5)2

)
Ψ,

where Λ := 4µ2 = s
n(n−1)

.

If additionally M is of positive scalar curvature, then

λ ≥ Λ

(
4− 1

4
(n− 5)2

)
.
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We will do some basic computations needed for the proof in the following lemmata.

Lemma 7.10. With Ψ(h,σ) defined as above for g-symmetric h ∈ End(M) and with

Θ ∈ Γ(S ⊗ T ∗CM) defined as Θ(X) = ei · (∇eih)(X) · σ we have

(1) µ(Ψ(h,σ)) = − tr(h)σ and

(2) δ(Ψ(h,σ)) = −δ∇(h)σ + µ tr(h)σ,

(3) (DTΨ(h,σ))(X) = Θ(X) + µ(n− 2)Ψ(h,σ)(X),

where δ is the adjoint covariant derivative and δ∇ is the codifferential.

Proof. Using the definition of Clifford multiplication µ(ψ) = ei · ψ(ei), one gets

µ(Ψ(h,σ)) = ei · h(ei) · σ = g (h(ei), ej) ei · ej · σ = − tr(h)σ.

Secondly,

δ(Ψ(h,σ)) = −∇ei(h(ei) · σ) = −(∇eih)(ei) · σ − µh(ei) · ei · σ
= −δ∇(h) · σ + µ tr(h)σ.

And lastly another straightforward computation shows

(DTΨ(h,σ))(X) = ei · ∇ei(h(X) · σ)

= ei · (∇eih)(X) · σ + µei · h(X) · ei · σ
= Θ(X) + µ(n− 2)Ψ(h,σ)(X),

where we have used the identity ei · ej · ei = (n− 2)ej.

Lemma 7.11. If h ∈ End(M) is g-symmetric and δh = trh = 0, then

(1) δ(Ψ(h,σ)) = µ(Ψ(h,σ)) = 0, i.e. Ψ(h,σ) ∈ Γ(S3/2), and

(2) δ(Θ) = µ(Θ) = 0.

Proof. Part 1 follows immediately from Lemma 7.10.

As h is traceless and g-symmetric, so is its covariant derivative ∇Xh. Thus,

µ(Θ) = ej · ei · (∇eih)(ej) · σ

=
∑
i 6=j

ej · ei · (∇eih)(ej) · σ − (∇eih)(ei) · σ

=
∑
i 6=j

g ((∇eih)(ej), ek) ej · ei · ek · σ = 0
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7.3 Killing spinors and the Lichnerowicz Laplacian

and similarly,

δ(Θ) = ∇ej(Θ(ej)) = ∇ej(ei · (∇eih)(ej) · σ)

= ei · (∇ej∇eih)(ej) · σ + µei · (∇eih)(ej) · ej · σ
= ei · ∇ei(δh) · σ = 0.

The following lemma was first proved in [Wan91, Proposition 2.4] and is the last step

we need to be able to show our theorem. However, we will skip the proof of the lemma

as it involves some tedious computations.

Lemma 7.12. With Θ ∈ Γ(S⊗T ∗CM) defined as in Lemma 7.10 and tr(h) = δ∇(h) = 0,

(DTΘ)(X) = µ(4− n)Θ(X)− 4µ2nΨ(h,σ)(X) + (∆Lh)(X) · σ.

Proof of the theorem. Let Ψ = Ψ(h,σ). We will compute (DT − µ)2Ψ. By Lemma 7.10,

(DT − µ)2Ψ = (DT − µ)(Θ + µ(n− 3)Ψ)

= DTΘ + µ(n− 3)DTΨ− µΘ− µ2(n− 3)Ψ.

Now, after using Lemma 7.12, the terms involving Θ cancel out. The remaing terms are

(DT − µ)2Ψ = −µ2(16− (n− 5)2)Ψ + (∆Lh) · σ

where we interpret (∆Lh) ·σ as a spinor valued 1-form. Finally, using 4µ2 = s
n(n−1)

from

Proposition 7.4 and ∆Lh = λh by assumption, we find

(DT − µ)2Ψ = − s

n(n− 1)
(4− 1

4
(n− 5)2)Ψ + λΨ

and the first claim follows.

Since DT is formally self-adjoint and s ≥ 0 implies µ ∈ R, (DT − µ)2 is positive.

Therefore

λ ≥ Λ

(
4− 1

4
(n− 5)2

)
.

Corollary 7.13 ([GHP02]). If (M, g) is a Riemannian spin manifold with positive scalar

curvature admitting a non-zero Killing spinor, then M is physically stable.
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7 Spin manifolds

7.4 Examples

We close this chapter with some examples of manifolds admitting Killing spinors. Killing

spinors on odd-dimensional manifolds are closely related to Einstein-Sasaki structures,

i.e. contact structures with a certain regularity condition. In [BFGK91], the authors

prove existence of Killing spinors on simply connected Einstein-Sasaki manifolds.

Theorem 7.14 ([BFGK91]). Let M be a simply connected Sasaki-Einstein manifold.

Then M admits non-trivial real Killing spinors. In particular,

(i) if M is of dimension 4m + 1, then M admits exactly one Killing spinor for each

Killing number µ = ±1
2
,

(ii) if M is of dimension 4m + 3, then M admits at least two Killing spinors for one

of the Killing numbers µ = ±1
2
.

The key to the proof is considering the connection ∇±XΨ = ∇XΨ± 1
2
X · Ψ on S and

certain subbundles of the spinor bundle S that are parallel with respect to ∇±. It turns

out that ∇± is flat on these subbundles and thus admits constant sections which are the

Killing spinors.

One can realize simply connected Einstein-Sasaki manifolds as certain S1-bundles

over Einstein-Kähler manifolds. This construction method dates back to Kaluza [Kal21]

and Klein [Kle26] who were trying to unify electromagnetism with general relativity by

considering a five dimensional spacetime which is a S1-bundle over the four dimensional

spacetime.

We will give a brief sketch of this method and refer to [BFGK91, Chapter 4] for further

details.

Proposition 7.15. Let (M2m, g, J,Ω) be an Einstein-Kähler manifold of dimension 2m

with positive scalar curvature normalized to s = 4m(m + 1) and denote by c1(M) ∈
H2(M,Z) its first Chern-class. Recall that isomorphism classes of S1-bundles over M

are in one-to-one correspondence with elements of H2(M,Z). Consider the S1-bundle

π : P → M with Chern class c1(π) = 1
A
c1(M) where A ∈ Z maximal and η ∈ Ω1(P, iR)

a connection on P such that the curvature form dη of P satisfies dη = 2(m+1)
A

iΩ.

Then by defining a metric on P by

ḡ = π∗g − A2

(m+ 1)2
η ⊗ η,

P becomes a simply connected Einstein-Sasakian manifold with spin structure.
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An element of H2(M,Z) is said to be positive (resp. negative) if it can be represented

by a real J-invariant 2-form such that its associated symmetric bilinear form is positive

(resp. negative). Since c1(M) is represented by the Ricci form c1(M) is necessarily

positive.

The only four-dimensional Kähler manifolds with positive first Chern class are ana-

lytically equivalent to S2 × S2 (∼= CP 1 ×CP 1), CP 2 or to one of the del Pezzo surfaces

Pk (i.e. CP 2 blown up in k points in general position) for 1 ≤ k ≤ 8. It can be shown

(see, e.g., [BFGK91]) that if a metric on S2 × S2 or CP 2 is Kähler-Einstein, then it is

the standard metric. On P1 and P2 there are no Kähler-Einstein metrics. On Pk for

3 ≤ k ≤ 8 existence of families of Kähler-Einstein metrics was shown by Tian and Yau

[TY87].

The resulting five dimensional Sasaki-Einstein manifolds turn out to be V2(R4) →
S2 × S2, S5 → CP 2 and M5

k → Pk for 3 ≤ k ≤ 8. Here, M5
k is diffeomorphic to the

k-fold connected sum of S2 × S3 and V2(R4) = SO(4)/ SO(2) ∼= S3 × S2 is the Stiefel

manifold of oriented orthonormal 2-frames in R4. The S1-structure on V2(R4) is given

by interpreting S2 × S2 as the Grassmannian Gr2(R4) of 2-planes in R4 and taking the

map V2(R4)→ S2 × S2 as the projection onto Gr2(R4).

The bundles S3×S2 and S5 are examples of homogeneous Sasaki-Einstein manifolds.

In fact, it turns out that there is a one-to-one correspondence between complex gen-

eralized flag manifolds and simply connected homogeneous Einstein-Sasaki manifolds.

Moreover, every homogeneous Einstein-Sasaki manifold is of the form M/Zk for M

homogeneous Einstein-Sasaki, simply connected and k ≥ 1 [BG08, Theorem 11.1.13].
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8 Appendix

Listing 1: Main routine

1 load "functions.sage"

2

3 ###

4 ### G2/SO(4)

5 ###

6

7 G2 = WeylCharacterRing ("G2" ) ;

8 A1xA1 = WeylCharacterRing ("A1xA1" ) ;

9

10 #Symmetric square o f the i s o t r o p i c r e p r e s e n t a t i o n without

11 #t r i v i a l f a c t o r

12 S20 = A1xA1 (1 ,−1 ,1 ,−1) + A1xA1 (1 ,−1 ,3 ,−3) + A1xA1 (0 ,0 ,2 ,−2) ;

13

14 rho = G2 . space ( ) . rho ( ) ;

15 fw = G2 . fundamental_weights ( ) ;

16

17 results = find_reps (G2 , A1xA1 , "extended" ,S20 , max_height=8) ;

18

19 if len ( results ) == 0 :

20 print "No results found"

21 else :

22 eigenvals = [ w . inner_product (w+2∗rho ) for w in results ] ;

23 print "G2/SO(4):"

24 print "Lowest height weights: " , results ;

25 print "Corresponding eigenvalues: " , eigenvals ;

26 print "Lowest eigenvalue: " , min ( eigenvals ) ;

Listing 2: Definitions of functions

1 def getLinearCombination ( fw , coeff ) :

2 fwlist = fw . list ( ) ;

3 result = fw . first ( ) ∗0 ;

4 for i in range (0 , fw . cardinality ( ) ) :

5 result += coeff [ i ]∗ fwlist [ i ] ;
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8 Appendix

6 return result ;

7

8 def convertTuplesToInt ( tuples ) :

9 result = [ ] ;

10 for tup in tuples :

11 if tup . length ( ) == 0 :

12 result . append (0 ) ;

13 else :

14 result . append ( tup [ 0 ] ) ;

15 return result ;

16

17 def has_nonempty_intersection ( list1 , list2 ) :

18 for elm in list1 :

19 if elm in list2 :

20 return true ;

21 return false ;

22

23 def find_reps (G , K , rule , S20 , max_height ) :

24 fw = G . fundamental_weights ( ) ;

25 results = [ ] ;

26 bFound = false ;

27 for k in range (1 , max_height+1) :

28 # Generate a l l l i n e a r combinat ions o f he ight k

29 linear_combinations = PartitionTuples (k , fw . cardinality ( ) )

30 print "Searching at height" , k , "with" , linear_combinations .

cardinality ( ) , "possibilities"

31 for lc in linear_combinations :

32 lc = convertTuplesToInt (lc ) ;

33 w = getLinearCombination (fw , lc ) ;

34

35 #Branch the cons t ruc ted G−r e p r e s e n t a t i o n

36 pi = G (w ) . branch (K , rule ) ;

37 if has_nonempty_intersection ( S20 . monomials ( ) , pi . monomials ( ) ) :

38 bFound = true ;

39 results . append (w ) ;

40 if bFound :

41 break ;

42 return results ;
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