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CHAPTER I.

Principal bundles and classifying spaces

1. Lie groups, Lie algebras, and the exponential map

This section merely introduces some notation and recollects some well-known facts from
the theory of Lie groups. For proofs we refer to [17] and [10].

Definition 1.1. A Lie group is a group G endowed with the structure of a smooth
manifold such that the group multiplication G x G — G, (g, k) — gk, is smooth.
Remark 1.2. By the inverse function theorem, the group inversion G — G, g — g~ !,
then necessarily is smooth as well.

Example 1.3.
(i) The circle S1 C C is a Lie group.

(ii) Products of Lie groups are again Lie groups. Thus, the n—torus 7" =[], S is
a Lie group.
(iii) Further classical examples of Lie groups are matrix Lie groups:

a) GL(n,R) and GL(n,C), the invertible real and complex (n X n)-matrices,
respectively;

b) O(n) C GL(n,R), the set of orthogonal matrices;
¢) U(n) C GL(n,C), the set of unitary matrices;
d) SL(n,R) and SL(n,C), the special real and complex groups.

(iv) If V is an n—dimensional K—vector space (K = R or K = C), then after a choice of
basis on V' we may identify the group of K-linear automorphisms Iso(V') of V' with
the group GL(n,K). Thus, Iso(V) becomes a Lie group too, and the Lie group
structure obtained in this way is independent of the choice of basis.

A Lie group homomorphism between Lie groups G and K is a smooth map f: G — K
which also is a homomorphism of groups. An immersed Lie subgroup of a Lie group G
is an abstract subgroup H C G admitting a Lie group structure for which the inclusion
i: H — G is an immersion. If ¢ is an embedding, then H is called an (embedded) Lie
subgroup of G.

Example 1.4.

(i) The subgroups of GL(n,K) given in example 1.3 are all embedded Lie subgroups.



(i) Consider subgroups S C T? of the form S = {(e*™,e?™) |t ¢ R} with A an
irrational number. These are immersed, but not embedded.

The following criterion is useful to check whether an (abstract) subgroup of a Lie
group is embedded. It in particular implies that kernels of Lie group homomorphisms
are embedded Lie subgroups.

Theorem 1.5. Let G be a Lie group and H C G be an (abstract) subgroup of G. If
H is closed as a subspace of G, then H admits a unique smooth structure such that H
becomes an embedded Lie subgroup.

Associated with a Lie group G is the subspace g C I'(T'G) consisting of all those vector
fields X which are left-invariant, that is, for which the equality (d¢y)i(X (k)) = X(gk)
holds for all g,k € G. Here, {;,: G — G denotes the map ¢,(k) = gk and (dly): TG —
Ty, G is its differential. The condition that a vector field X € g be left invariant shows
that X is determined by the value at any given point. Thus, as a real vector space g
is isomorphic to T.G, the tangent space at the identity element e € G, via the map
g— T.G, X — X(e).

Definition 1.6. A (real) Lie algebra is a real vector space V' together with an R—bilinear,
skew—symmetric map [-,-]: V x V' — V satisfying the Jacobi identity for all X,Y,Z € V:

(X, [Y,Z]|+Y,[Z,X]]+ [Z,[X,Y]] = 0.
Example 1.7.

(i) If G is a Lie group, then the space g together with the restriction of the commutator
[-, -] of vector fields makes g into an abstract Lie algebra and thus is referred to as
the Lie algebra of or associated to G.

(ii) If A is an R-algebra, define the commutator of elements a,b € A by [a, b] := ab—ba.
Then (A4, [-,]) is a Lie algebra.

(iii) The previous example applies to the space of all real matrices R"*". Since GL(n,R)
is an open subset of R™*"  the inclusion induced map 77, GL(n,R) — 17, R™*"
is an isomorphism. Moreover, there is a canonical isomorphism of vector spaces
Tr, R™™ — R™ " yielding an isomorphism of vector spaces gl(n,R) = R"*™,
which even is an isomorphism of Lie algebras.

If f: G — K is a morphism of Lie groups, then under the identification g =2 T,G there
corredponds to df. a unique R-linear map df: g — £ such that the diagram



is commutative. We call df the induced Lie algebra homomorphism. This is indeed a
homomorphism of (Lie) algebras: for all X,Y € g we have df ([X,Y]) = [dfX,dfY]. In
particular, if H C G is an (possibly immersed) Lie subgroup and i: H — G denotes the
inclusion, then di is injective, and hence we may identify h with the subalgebra di(h) C g.
Conversly, we have

Theorem 1.8. Let G be a Lie group and ) C g a Lie subalgebra (i. e. a subspace such
that [X,Y] € b for all X,Y € V). Then there exists a unique connected immersed Lie
subgroup H C G having Lie algebra b.

A further property of left invariant vector fields is that they are complete. Thus,
for every X € g there exists an integral curve yx: R — G of X with yx(0) = e, and
vx is actually a homomorphism from the Abelian Lie group (R,+) into G. The map
exp: g — G, X — vx(1), is smooth and called the exponential map of G. For fixed
X € g the map R — G, t — exp(tX), is again a morphism of Lie groups.

Proposition 1.9. The exponential map is natural. That is, for Lie groups G, K and
every Lie group homomorphism f: G — K we have a commutative diagram

d
expl iexp
G—K
f

The exponential map allows us to characterize the Lie subalgebra of an immersed Lie
subgroup H C G:

Theorem 1.10. We have h = {X € g|Vt € R: exp®(tX) € H}.

Example 1.11. For a matrix A € R™*™ there is the matrix exponential

o
1
A . L
et = I A",
k=0
Under the identification gl(n,R) = R™*™ the Lie group exponential exp: gl(n,R) —
GL(n,R) becomes the matrix exponential () : R"*" — GL(n,R), A — e”. Thus, by the
previous theorem and naturality of the exponential map, a Lie subgroup H C GL(n,R)

has Lie algebra {4 € R"*" |Vt € R: !4 € H}.

2. Lie group actions and principal bundles

In this section we introduce Lie group actions and principal bundles. These concepts can
be defined in the context of topological spaces and smooth manifolds, so in order to avoid
endless repetitions, let us agree on the following convention: if both X and Y are smooth
manifolds, we call a smooth map X — Y a morphism of smooth manifolds. If X and Y
are topological spaces, then a morphism X — Y is just a continuous map. We shall use
the term isomorphism to mean a diffeomorphism or homeomorphism, respectively.



Definition 2.1. Let GG be a Lie group and X a topological space or a smooth manifold.
(i) A (left) action of G on X is a morphism G x X — X, (g,z) — g.z, subject to the
following conditions:
a) ex =z for all x € X
b) (gh).x = g.(h.z) for all g,h € G and all x € M.
The space X then is called a (left) G—space.

(ii) The isotropy subgroup at or the stabilizer of a point x € X is the subgroup

G, ={g€G|gx =z}

(iii) The orbit through a point x € X is the subset G-z = {g.x |z € X} and the orbit
space is the space X/G = {Gz |z € X} of all orbits.

(iv) The set of fized points is the subspace X¢ = {z € X |Vg € G : g.x = x}.
Remark 2.2.

(i) We will always consider X/G as the topological space whose topology is the quo-
tient (or final) topology with respect to the canonical projection 7: X — X/G.
Recall that this topology is uniquely determined by the following condition: a map
f: X/G — Z is continuous if and only if f o 7 is continuous.

(ii) A morphism between G—spaces X and Y is a morphism f: X — Y which is G-
equivariant. This means that f(g.x) = g.f(x) holds for all g € G and all z € X.

(iii) In a similar fashion one can define right actions and right G—spaces. These notions
are essentially equivalent: if X x G — X, (p,g) — p.g, is a right action, then
GxX — X, (g,p) = p.g~!,is a left action and vice-versa.

Example 2.3.

(i) GL(n,K) smoothly acts on K" by the rule A.v = Av for all A € GL(n,K) and all
v € K", where the right hand side of the equation is the usual matrix product.
Similarly, if V' is a finite-dimensional K—vector space, then Iso(V) x V. — V,
(L,v) = L(v), is a smooth left action.

(ii) Every Lie group G acts on itself in (at least) three ways. The action by left—
translation is the left action given by G x G — G, (g,k) — gk. The action by
conjugation is the left action determined by (g,k) ~ gkg~', and the action by
right—translation is the right action sending (k, g) to kg.

(iii) The (special) orthogonal group O(n + 1) (respectively SO(n + 1)) acts smoothly
on S™ C R™! from the left by matrix multiplication.



As a further example, consider the 2-sphere S? C C x R. Then S' C C acts in a
smooth fashion on S? via S' x §? — S2, (z,(v,t)) — (zv,t). Observe that the orbit
space S?/S1 is homeomorphic to [0, 1], with endpoints corresponding to the fixed points
(0,+1) € S2. Thus, the orbit space of an action might not be a manifold, even though
the acting group is. Quotient spaces of free actions, that is, those actions for which G,
is the trivial subgroup for all z, are generally better behaved.

Theorem 2.4. If a compact Lie group G acts freely and smoothly on a manifold M, then
M/G can be endowed with a unique smooth structure such that the canonical projection
m: M — M/G becomes a submersion. In particular, a map f: M/G — N is smooth if
and only if f om is smooth.

We will prove theorem 2.4 in the exercises. There we will also see that in this situation
the map 7: M — M/G is a principal G-bundle.

Definition 2.5. Let G be a Lie group.

(i) A (locally trivial) principle G-bundle consists of topological spaces (or manifolds)
FE, B and a morphism 7: E — B with the following properties: G acts freely on E
from the right and for every point b € B there exists an open neighborhood U of b
admitting a trivialization of E|y := 7~1(U), that is, a G-equivariant isomorphism
Y: E|ly — U x G making the diagram

E‘U UxG

x pry
U

commute; here, pr; denotes the projection onto the first factor and we consider
U x G a right G—space via the action (U x G) x G — U x G, ((z,h),g) — (x, hg).
We call E the total space, B the base, and 7 the projection of the principal bundle
E 5 B.

(ii) A morphism between principal G-bundles E 5> B and Ey =% By is a pair (f,u)
where f: E — Eg and u: B — By are morphisms, f is G—equivariant, and

E—1.E,

B——= By
u
is a commutative diagram.

Remark 2.6. If f: £ — Ejis a G-equivariant map between the total spaces of principal
bundles E = B and Ey —> By, then we can always define a set map u: B — By with
mpo f = wom, because the bundle projection of a principal bundle is surjective. The map
u is actually a morphism, because principal bundles are locally trivial, and therefore it
is customary to just denote a morphism of principal bundles (g, v) between E L Band
Ey = By by g. The map v is then said to be the map induced or covered by g.



Example 2.7.

(i)

If H is a compact subgroup of a Lie group G, then the set of right cosets
G/H ={gH|g € G}

is the same as the orbit space of the H—action on G determined by H x G — G,
(h,g) — gh~'. Thus, according to theorem 2.4, the canonical projection 7: G —
G/H is a smooth principal H—bundle. This holds more generally whenever H is
a closed, not necessarily compact subgroup of G, cf. [17, Theorem 3.58]. We call
G/H a homogeneous space.

Consider the S'-action on S$?"*! C C"*! given by 2.(2q,...,2n) = (220, ...,22n).
This is a free, smooth action whose orbit space S?"*1/S1 is CP". The principal
S1-bundle 7: §?2"*t1 — CP" is the so—called Hopf bundle.

Suppose a Lie group G acts on a smooth manifold M and fix a point p € M. The
isotropy subgroup G), C G is closed, and so G/G), is a smooth manifold. The orbit
map G/Gp, — M, gGp — gp, in an injective immersion, and thus its image, G - p,
is an immersed submanifold of M. We will only be interested in the case that G is
compact. In this case G/G) is compact too and G - p is an embedded submanifold,
since G/G, — M is an embedding.

Let E 5 B be a topological K—vector bundle of rank r. The space
P(E) ={u: K" = E,|b € B, u is a K-linear isomorphism}

is the total space of a principal GL(r, K)-bundle P(E) = B, the frame bundle of
E. To see this, let eq,...,e, be the standard basis of K" and note that we can
consider P(FE) as a subspace of the r—fold product E" = E X ... X E via the map
u+— (u(er),...,u(ey)). Then P(E) is a free right GL(r, K)-space via the action
A — uo A, where on the right hand side we identify the matrix A € GL(r, K)
with the linear map K" — K", v — Awv. The bundle projection 7 is defined by
7(u) = b if v is a map K" — E}. To show that this bundle is locally trivial, choose
a trivialization ¢ : E|y — UXK", v — (¢1(v), ¥2(v)), of the vector bundle E 5 B.
Then the map

Yy P(E)|ly — U x GL(r, K),
u— (T(u), (Y2 o ule;))i=1,..r),

is an equivariant homeomorphism, hence a trivialization, and it follows that P(FE) =
B is a topological principal bundle. In case that the vector bundle is smooth, we
use the maps v, to define a smooth structure on P(E), and in this way P(E) = B
becomes a smooth principal bundle.



Note that the fiber Ej, = 7~(b) of a principal G-bundle E = B over a point b € B
is precisely a G-orbit. In fact, choose a trivialization ¢: E|y — U x G over some open
neighborhood U of b. We see that if E is smooth, then Ej is an embedded submanifold,
because so is its diffeomorphic image {b} x G. Now choose = € E} with ¢(x) = (b,e),
where e € G is the identity element. Then the map G — Ej, g — xg is an isomor-
phism, since by G-equivariance g = 1 ~1(b,e)g = ¥~1(b, g) is the composition of the
isomorphisms G' = {b} x G and ¢ x¢: {b} X G — E,. This observation leads to
the following

Proposition 2.8. Every morphism between principal G—bundles over the same base B
which induces the identity on the base is an isomorphism.

Proof. Let E 5 B and Ey =% B be two principal G-bundles and f: E — Ey a morphism
covering the identity. If x,y € E are such that f(z) = f(y), then also w(x) = m(y), since
f preserves fibers, i. e. because my o f = m. We have already seen that the fibers of
w: E — B are exactly G—orbits. Thus, there exists g € G with y = xg, and hence also
f(x) = f(x)g. But G—acts freely on Ey, whence g = e and = = y. This proves injectivity.

As for surjectivity of f: given xg € Ey, put b := my(zp) and choose any point z in Fj.
Then f(x) € (Eo)p, and since (Ey), = f(z) - G, we find g € G such that f(z)g = xzo. It
follows that f(xg) = xo, and f is surjective.

To see that f is an isomorphism, choose an open set U C B over which both E and
Ejy are trivial and define h: U x G — U x G by requiring that the diagram

f
Ely Eolu

gi lg

UxG-lsUxa

be commutative. Note that h is G—equivariant, because so are f and trivializations of
principal bundles. Hence, if go: U — G is the map with h(x,e) = (x,go(x)) for all
x € U, then also h(z,g) = (z,g0(z)g) for all g € G by G—equivariance. But this map is
an isomorphism, with inverse given by (z, g) — (, (go(z)) ™! - g), whence f locally is an
isomorphism. Since f is bijective, it must be a global isomorphism too. O

Given a morphism f: X — B into the base space of a principal G-bundle E = B,
the pullback

fTE=A{(z,p) € X x E| f(x) = n(p)}

together with the map f*E — X, (z,p) — =z, is again principal G-bundle. To see this,
note that the canonical free right G—action on X x FE restricts to an action on f*FE.
Moreover, if ¢ = (¢1,12): Ely — U x G is a trivialization of E over some open subset
U C B, then (f*E)|ly — V x G, (z,p) — (x,12(p)), is a trivialization over the open
subset V = f~1(U), with inverse given by (z,g) = (z,%~*(f(z),g)). As a consequence
of proposition 2.8 we have



Corollary 2.9. Let E 5 B and Ey =% By be principal G-bundles and suppose that
f: E — Ey is a morphism of principal bundles.

(i) If f covers u, then u*Ey is canonically isomorphic to E = B.

(ii) If E1 — By is another principal G-bundle and v: By — Bj is a morphism, then
u*(v*E1) and (vow)*Ey are canonically isomorphic.

Proof. Note that E — u*Ey, p — (7(p), f(p)), is a morphism of principal bundles over
the same base B and use proposition 2.8. This proves the first statement.

For the second, observe that (vou)*E; — u*(v*E1), (b,p) — (b,u(b), p) is a morphism
of principal G—bundles. O

Another way of constructing new bundles out of principal bundles is as follows. Let
E 5 B be a principal G-bundle and F a left G-space. Consider the free (left) action
(ExF)xG—=ExF,((e,f),g9) — (eg~',gf) and denote its orbit space by E xg F :=
(E x F)/G. Write 7: E Xg F' — B for the map 7([e, f]) = m(e); this is well-defined,
because the fibers of 7 are exactly the G-orbits of the G-action on E. Then ExgF = B
is called an associated bundle, the terminology being justified because of the following

Proposition 2.10. ExgF 5 B is a locally trivial fiber bundle over B with typical fiber
F. IfY = (¢Y1,¢2): Ely = U x G is a trivialization of E over some open subset U C B,
then (E xq F)lu = U x F, [e, f] = (w(e),va(e) - f), is a trivialization of E X F.

Proof. Tt suffices to prove that for each trivialization ¥ = (¢1,%2): E|ly — U x G of E
the map ¢.: (E xXg F)|ly = U X F, [e, f] = (7(e),¢2(e) - f), is a homeomorphism and,
if 7: E — B is smooth, that for any two trivializations v, ¢ of E the map v, o (¢.) "
is smooth. But (¢,)71(b, f) = [~ 1(b,e), f] for all b € U, f € F, thus proving both
statements. O

Example 2.11.

(i) Every (smooth or continuous) vector bundle over K = R, C is an associated bundle.
To see this, choose a vector bundle £ — B of rank k& and consider

P(E) XGL(K,k) Kk — E’ [U,’U] = U(U),

where P(E) is the frame bundle of £ and GL(K, k) acts on K¥ via the canonical
left action, see example 2.7 and example 2.3.

(ii) Let H be a Lie subgroup of G and E — B a principal G-bundle. A principal H—
bundle Q — B is a reduction of E — B if there is an H—equivariant map f: Q — F
covering the identity, where we view E as a right H—space via the restriction of
the principal G—action. The trivializations provided in proposition 2.10 show that
Q@ xpg G is a principal G-bundle, and the map Q xyg G — E, [z,g] — f(x)g,
is an isomorphism by proposition 2.8. Since Q@ — Q xg G, z +— [z,€e], is an
embedding of topological spaces (and in the smooth case also of manifolds), we



can identify ) with an H—invariant subspace of E intersecting each fiber £} non—
trivially. Conversly, if Q C F is a subspace which is H-invariant and such that
Q N Ey # 0 for all b, then @ is a principal H—bundle and thus an H-reduction of
FE, as trivializations of E restrict to trivializations of Q).

3. Universal bundles

Let G be an arbitrary Lie group. We shall construct a principal G-bundle £FG — BG
such that any principal G-bundle E' — B with suitable base space B admits a morphism
of principal bundles f: E — EG, and thus is isomorphic to the pullback v*EG along
the map u covered by f, cf. corollary 2.9.

The construction goes as follows. Recall that the cone of a topological space X is the
quotient space C(X) = (X x [0,1])/X x {0}. The join of a family of topological spaces
(X)ier is then the topological space whose underlying set is

X = %1 X; = { ([xi’ti])iel € HC(Xi) t; = 0 for almost all ¢ and Zti = 1} :
iel iel

we will denote the element ([x;,;])icr of X by > . t;xz;. Then there are canonical maps
tj: X = [0,1], >, tix; — t; and x;: t;l((O, 1]) = Xi, >, tiz; — x;, and the topology on
X is the smallest topology so that all the maps ¢; and x; are continuous. This topology
is characterized by the following universal property: a map f: Z — X from a topological
space Z is continuous if and only if #; 0 f: X — [0,1] and @; 0 f: f='(t;1((0,1])) — X;
are continuous for all 7. Note that in general, this topology is different from the subspace
topology inherited from [[,.; C(X;).
The Milnor construction now is EG := *,cnG. There is a free right G—action

EG x G — EG, <Z tigi,g) = Y ti(gig),

which is continuous by the universal property of the topology on EG. Denote by
p: EG — BG := EG/G the canonical map into the quotient.

Proposition 3.1. EG 2 BG isa topological principal G—bundle.

Proof. We only need to show that EG £ BG is locally trivial. The sets of the form
U= tj_l((O, 1]) cover EG and are G—invariant. Hence, V' = p(U) is open in BG and
EG|y = U. Moreover, EG|y is trivial with trivialization (>, tig:) = (>, tigil, 95), the
inverse of which is ¢ 1 ([>, tigil, 9) = >, ti(gigj_lg). O

Example 3.2. Consider the set R™ = {(¢;)jen € RN [¢; = 0 for allmost all j} endowed
with the final topology with respect to the inclusions R™ C R*°. That is, U C R*> is open
if and only if U NR™ is open for all n. We can exhibit EZs as the infinite-dimensional



sphere

e’}
Soo - (t JEN € ROO Z
7=0

via the isomorphism EZy — S, > t;zi — ((—1)%/t;)ien. Thus, BZy = S /Zy =:
RP° is the infinite—dimensional real-projective space.

In a similar way one can show that ES! = S (use the map > t;2; — (2iv/Ti)ien,
where we consider S! as a subset of C), and thus BS! = CP* is the infinite-dimensional
complex projective space.

The space BG is Hausdorff, but in general not paracompact, and so does not admit
partitions of unity subordinate to an arbitrary cover. However, BG is numerable:

Definition 3.3. A principal G-bundle E 5> B is called numberable if there exists an
open cover {Uy |k € N} of B such that E|y, is trivial for all £ € N and a partition of
unity (£x)ken subordinate to that cover (i. e. supp & C Uy for all k).

Remark 3.4. Usually one does not require the index set in the definition of a numerable
principal bundle to be N, that is, a principal bundle ¥ — B is said to be numerable if
there exists an open cover U = {U; | i € I} admitting a subordinate partition of unity and
such that E|y, is trivial, see for example [9, Definition 9.2] or [16, Section 13.1]. However,
by a theorem of Dold [6], in this case the bundle is also numerable in our sense, so for
the applications we have in mind the two definitions are essentially equivalent. See also
[9, Proposition 12.1] for a proof of this fact.

Proposition 3.5. The bundle EG 2 BG is numerable.

Proof. We have already seen in the proof of proposition 3.1 that EG is trivial over
V; = p(Uj), where U; = tj_l ((0,1]), and we now construct a partition of unity subordinate
to the cover V = {Vj|j € N}. For i € N consider the continuous function

w; :=max | 0,t; — th

j<i

We have w;(b) = t;(b) if 4 is the first index with #;(b) # 0, so W = {w;((0,0)) }ien
is an open cover of BG. Moreover, if w;(b) > 0, then also ¢;(b) > 0, and therefore W
refines V. Let us show that W is locally finite. Thus, choose by € BG arbitrarily and
let n € N be such that tx(by) = 0 for all & > n. The set O of all b € BG such that
> j<ntj(b) > 1/2 is an open neighborhood of by, as each ¢; is continuous, and if b € O
is arbitrary and k > n, then wy(b) = 0, because otherwise t;(b) > >, t;(b) > 1/2,
which is impossible, since ), t; = 1. Therefore, O only meets finitely many sets in W
and W is locally finite.

The family (wy/ )", wi)ken is a partition of unity, but it is not subordinate to the
cover V. To achieve this, put m := max;ey w;. This function is continuous, because the

10



maximum of a finite number of real valued functions is continuous and W is locally finite.
Also note that m is nowhere zero, because W covers BG. In particular, w; ' ((0,00)) =
(w;/m)~1((0,00). Thus, possibly passing from w; to w;/m if necessary, we may assume
that w; < 1 and that for each b € BG there exists some i, with w;, (b) = 1. Then let
7; := max(0, 2w; — 1) and note that 7;(b) > 0 only if w;(b) > 1/2. Hence

supp 7; C wi_l([l/2,oo)) Cc V.

Since 7, (b) = 1, the family {supp7; |7 € N} covers BG and is subordinate to the cover
V. It follows that (&;);eny with §; = 7,/ >, 7; is a partition of unity subordinate to V. O

Recall that a homotopy between morphisms f,g: X — Y of topological spaces (or
smooth manifolds) is a morphism H: X x [0,1] — Y, (z,t) — hi(x), such that hg = f
and h; = g. In this case, f and g are called homotopic. Being homotopic defines an
equivalence relation on the set of all morphisms X — Y and we denote the set of all
such equivalence classes by [X,Y]. The importance of the bundle EG — BG stems from
the fact that it classifies numerable principal G—bundles over a fixed base B in terms of
homotopy classes of maps B — BG.

Theorem 3.6. Denote by Bung(B) the set of isomorphism classes of numerable prin-
ciple G-bundles. Then the map

®: [B, BG] — Bung(B),
[f1= [T EG],

is a bijection. Any numerable principle G-bundle Ey — By for which the assignment
[B, By] — Bung(B), [f] — [f*Eo], is a bijection is called a classifying or universal
G-bundle and By is called a classifying space.

One part of this statement is a theorem in its own right:

Theorem 3.7. Let E 55 B be a numerable topological principal G-bundle and sup-
pose that f,g: X — B are homotopic morphisms. Then f*E and g*E are isomorphic
principal bundles.

Proof. If H: X x [0,1] — B is a homotopy from f to g, then f = H oig and g = H o,
where i;: X — X x [0,1], z — (z,t), and hence f*E = ij(H*E) and ¢*F = i{(H*E)
by corollary 2.9. Since the pullback of a numerable bundle is again numerable, it thus
suffices to consider the case B = By x [0,1] and f = ig, g = 1.

Step 1. If E s trivial over By x [0,t] and By X [t,1], then E is trivial. Choose
trivializations ¥ and p of E over By x [0,t] and By X [t, 1], respectively. Then

By x {t} x G — By x {t} x G,
(b,t,9) = v(p~ (bt 9)),

11



is a morphism of the trivial principal G-bundle By x {t} x G — By, and hence of the
form (b,t,g) — b(b,t,u(b)g) for some morphism u: By — G. Now E is trivialized by

Bx|[0,1] xG — E, (b,s,g) —
0,1] (b,5,9) {p—1<b,s,g>, ot

Step 2. There exists an open cover {Uy}aca of Bo, indexed by a countable set A, and
functions uq: By — [0, 1] such that E is trivial over Uy X [0, 1], {Supp ta }aca s a locally
finite cover of B subordinate to {Uy}aca, and such that maxaea ug = 1.

This is the most technical part. Start with a cover {V} |j € N} of By x [0, 1] over which
E is trivial and which admits a subordinate partition of unity (&;);en; this is possible,
since we assume the bundle in question to be numerable. Now consider for a multi-index
a € N" the morphism

Sq: Bg —[0,1], b+ H min &, (b, t).

i—1 3
iZItE[ r T

T

If we put U, = (sa) 1((0,00)), then U, x [©2,i] is contained in V,,, because &,, is
supported in V,,,. But E already is trivial over V,,, and so, by the first step, must also
be trivial over U, x [0,1]. To see that the {Ua|a € A}, where A = (J,5; N", cover

By, choose b € By and consider the strip {b} x [0,1]. It is covered by the open sets

§j_1((0, o)), so for r sufficiently large there will be indices a1, ..., a; such that &,; >0
on {b} x [:2,1], and then s,(b) > 0 too. Next, note that for fixed r the family {Uq}q|=r

is locally finite, where « ranges over all multi-indices of length r. In fact, the set of
supports of the partition of unity (§;);en is locally finite, so for a given b € By we know
by compactness of {b} x [0, 1] that there must be an open neighborhood W of b and a
finite set of indices J C N such that ; is non—zero on W x [0,1] only if j € J. Thus, if
S 1s non—zero on W for some « of length r, then necessarily ag,...,a, € J, and since
there is only a finite number of ways to choose r indices out of the finite set J, we see
that U, N W can only be non—trivial for finitely many « of length r.

To obtain a family of functions whose support is locally finite, independet of r, we
pass to the functions

to :=max [ 0,8, — | Z sg |
1Bl<|e]

note that the above expression is well-defined, as we just showed Z| Bl=r 58 is locally—
finite. We also see that the family 7 = {(t4)1((0,00))}aca is subordinated to the cover
{Uas}aca. If by € By is arbitrary, then we have already seen that there exists some «
with s4(bg) > 0, and we may assume that « has minimal length |o| among all § with
sg(bp) > 0. Then ty(bg) = sa(bp) > 0 and T covers By. To prove that 7 is locally
finite, define 2¢ = s4(bp) > 0 and choose r so large that that r¢ > 1 and r > |a].
For every 8 with |3] > r and all b in the open neighborhood (s,)~!((c,0)) of by we
have tg(b) = 0, since otherwise sg(b) > |f|so(b) > 1. Finally, the same argument as in
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the proof of proposition 3.5 shows that we may use the functions (t3)gea to construct
functions (ua)aca for which suppus C (to)"1((0,00)) and such that for every point
b € By there exists some a with uq(b) = 1.

Step 8. (ig)*E = (i1)*E. Let {Us}aca and (uq)aca be the cover and the functions
constructed in the previous step. Let 1, be a trivialization of E over U, x [0, 1] and define
ha: E — E to be idg on the complement of supp u, and on Ely, «[o,1) by commutativity
of the diagram

ha
Ely, Elu, x0.1]
i N
Uy x [0,1] x G Ua x [0,1] x G.

(b,t,g)H(b,max(ua (b) ,t),g)

This gives a well-defined G—equivariant morphism, since u, is supported in U,. Also,
for any point p € E, say with w(p) = (b, t), there exists some « with u,(b) = 1 and hence
ha(p) € Ep,1)- Moreover, the family of supports {supp ua }aeca is locally finite, so there
is a neighborhood W of b such that ha|E|wX[o,1] = idg for all but finitely many o € A.
Therefore, the expression

h(p) := H haj (p) = (hao 0 hayo...)(p)
3=0

is meaningful and defines a G—equivariant morphism F — E, where we have fixed,
once and for all, an enumeration N — A, j — «;, of A. By construction h covers the
morphism B x [0,1] — B x [0,1], (b,t) — (b,1), so

(i0)"E = E|px {0y b, Elpxqy = (1)'E

is a morphism of principal bundles inducing the identity on the base B. Then cccording
to proposition 2.8 it is an isomorphism. ]

Proof of theorem 3.6. According to theorem 3.7, the assignment is well-defined. Now let
us show that ® is surjective. Thus, choose a numerable principal bundle E = B, an open
cover {U;|i € N} of B over which E is trivial, say with trivializations E|y, — U; x G,
p — (m(p),¥i(p)), as well as a partition of unity (&;);en subordinate to this cover.
Define a map f: E — EG by f(p) =), &(7(p))vi(p) and note that f is continuous by
definition of the topology on EG. Moreover, f is G—equivariant, since the morphisms );
are, being part of a trivialization of E. Pulling back EG along the morphism u: B — BG
covered by f then produces a bundle isomorphic to £ — B, see corollary 2.9.

Now let f,g: B — BG be two morphisms such that f*EG and ¢g* EG are isomorphic
principal bundles. We will show in proposition 3.8 below that any two G—equivariant
maps £ — EG from a free G—space E are homotopic through a G-equivariant homotopy.
Granted this result, the proof that f and g are homotopic is as follows. Let L: ¢*EFG —
f*EG be an isomorphism of principle G-bundles. Then the projection B x EG — EG
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induces canonical G—equivariant maps u: ¢*FG — EG and v: f*EG — EG. Since
g*EG is a free G—space and L is G—equivariant, u and v o L are G—equivariant through
a G-equivariant homotopy (h¢)iec[o,1)- Define, for ¢ € [0,1], the map k;: B — BG by
ki(b) = p(hi(b,x)), where x € EGy) is arbitrary and p: EG — BG is the bundle
projection. The map does not depend on the particular choice of x, since h; is G-
equivariant. In particular, if ¥: ¢* EG|y — U x G is a trivialization over some open
neighborhood U C BG, then ki(b) = (p o h)(xp~1(b,e)) is continous for all (b,t) €
U x [0,1], that is, (k¢)se[o,1] is @ homotopy. But by construction of g* EG and f*EG we
have kg = g and k1 = f, so f and g are homotopic. O

Proposition 3.8. The identity on EG is G—-equivariantly homotopic to the map

a: BEG — EG7 Ztigi = (07 [g()atO]vov [glat1]707" )
i

In particular, EG is contractible and any two G—equivariant morphisms E — EG from
a (necessarily free) G—space E are G—equivariantly homotopic.

Proof. Let E be a G-space and f: F — EG an arbitrary morphism, not necessarily
G-equivariant, and let f; be the i—th component of f. Thus, f(p) = (fo(p), f1(p),.--)
for all p € E. Let us also set s[g,t] = [g, st] for all s, € [0,1] and all g € G.

We show that f is homotopic to o f. To this end, choose a strictly decreasing sequence
1=ag>a1 >ay>...a, >0 with lim,,_, a, = 0 and for each i a continuous function
Ait laiy1, a;] — [0, 1] such that A\;(a;) = 0, Ai(aj+1) = 1. Then define h;: E X [a;11,a;] —
EG by

Hi(p,t) = (fo(p), .- -, fi-1(p), Xi(®) fi (D), 11: () fi(P), Ni () fi1 (D), 12: () fira1 (D), - - ),

where we have set pu; := 1 — \;. By definition of the topology on EG and since f
is continuous, we see that h; is continuous. Note that H;(-,a;+1) = Hiy1(, ait1), and
therefore these functions assemble to give a continuous map H: Ex[0,1] — EG, (p,t) —
hi(p) such that H|gy(a,,,,a;) = Hi and hg = f. Since hy = aof, it follows that f and ao f
are homotopic. Observe that each h; is G—equivariant if f is G-equivariant. In particular,
« is G—equivariantly homotopic to the identity. This proves the first statement. To prove
the remaining statements, let

ﬁ: EG — EG, (ei)ieN — (60, 0, e1, O, .. )
and observe that for any two G—equivariant morphisms f,g: £ — EG the map

E x[0,1] = EG, p = (tgo(p), (1 —t) fo(p), tg1(p), (1 — ) fi(p),--.)

is a G-equivariant homotopy connecting a o f with 8 o g. In particular, 8 is G-
equivariantly homotopic to the identity too and thus f and g are G—equivariantly homo-
topic. If f and g are not necessarily equivariant, then the previous construction shows
that f and g still are non—equivariantly homotopic, and thus FG is (non—equivariantly)
contractible. O
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The Milnor construction is functorial with respect to morphisms of Lie groups. That
is, if f: G — K is a homomorphism of Lie groups, then there is bundle morphism

G- 2L pK

|

BG —— BK

where the undecorated vertical maps are the respective bundle projections. Explicitly,
Ef(>;tigi) = >_;tif(g:). Note that the map is G—equivariant if we consider FK as a
G-space via EK x G — EK, (z,9) — xf(g).

For example, if H is a Lie subgroup of a Lie group G and i: H — G the inclusion, then
the map Bi can be used to characterize the existence of H-reductions (cf. example 2.11).

Proposition 3.9. Let E — B be a numerable principal G-bundle and f: B — BG its
classifying map, that is, a morphism such that f*EG and E — B are isomorphic. Then
E — B admits an H-reduction if and only if f can be lifted, up to homotopy, to a map
into BH, i. e. if and only if there exists a morphism fo: B — BH such that

BH
fo iBi
B—— BG

f
commutes up to homotopy.

Proof. Observe that we have a morphism of principal G-bundles

EH %y G [z.9]—FEi(z)g EG

L

BH Bi BG

because Fi is H—equivariant. Thus, Bi is the classifying map of EH Xy G by corol-
lary 2.9. Hence, if fo: B — BH is a morphism such that f and Bi o fj are homotopic,
then we have the following chain of isomorphisms of principal G—bundles

[TEG = (fo)" (Bi'EG) = (fo) (EH xu G) = ((fo) EH) xu G;

the first isomorphism is theorem 3.6, the second follows from corollary 2.9, and the last
isomorphism is realized by the assignment (b, [z, g]) — [(b,x),g] for all b € B, z € EH,
and g € G. But (fp)*EH is a principal H-bundle and a reduction of ((fo)*EH) xg G,
so f*EG and hence E — B admits an H-reduction.

Conversly, let Q — B be an H-reduction of E — B and fy: B — BH the classifying
map of () — B. The last two isomorphisms in the displayed equation above show that
Bio fy is the classifying map for Q x gy G — B. But @ xyG — B is isomorphic to ¥ — B
(cf. example 2.11), and the latter bundle also has classifying map f, so by theorem 3.6
f and Bi o fy must be homotopic. O
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Proposition 3.10. Let E = B be a numerable principal G-bundle and write ME =
x;enE for its infinite join. Then M E 4 MB= ME/G is a classifying bundle for G.

Proof. First, assume that £ = B x G is a trivial bundle. ME 4 MB still is locally
trivial over the sets V; = q(U;) with U; = (t;)~*((0,00)) via the map ME|y, — V; x G,
> opdel = ([, ties], ej), so the proof of proposition 3.5 carries over verbatimly and shows
that ME % M B is numerable in this case.

Now let E be completely arbitrary. By assumption, we find a cover {V;|i € N} of E
over which E is trivial. Set U; := Ely,. Then U; 4y Vi is a trivial bundle and hence
M(U;) - M(V;) is a numerable principal G-bundle. Let {V; ;|j € N} be a cover over
which M (Uj;) is trivial and which admits a subordinate partition of unity. By definition
of the topology on the join, the inclusion M (U;) < ME is a homeomorphism onto its
open image {) . tryer | Vk: e, € U;}, and since quotient maps onto orbit spaces are open,
it follows that M(V;) — M B too maps homeomorphically onto some open subset of
MB. We can trivially extend a partition of unity on M (V;) which is subordinate to
Vi to a partition of unity on M B which still is subordinate to V; ; C M B, and thus
ME % MB is a numerable principle G-bundle.

Fix a point pg € E and consider the morphism

Ztigi > [Z ti(pogi)] :

According to corollary 2.9, o* M E and EG — BG are isomorphic principal bundles. On
the other hand, since ME % M B is numerable, it is classified by some map 3: M B —
BG. Then foa is a classifying map for EG — BG, and hence must be homotopic to idpg
by theorem 3.6. Next, observe that the proof of proposition 3.8 still applies with M E in
place of EG. Since (3 is covered by the canonical projection Gy: f*MFE — EG, which is
G—equivariant, and « too is covered by a G—equivariant morphism ag: EG — M E, the
morphism ag o fy: ME — MFE is G—equivariantly homotopic to ida;g. This homotopy
then descends to a homotopy between oo § and idgg.

Thus, M B and BG are homotopy equivalent and [By, BG] — [Bo, M B], [f] — [ao f],
is a bijection with inverse [f] — [8 o f]. It follows that ME % MB is G-universal. [

a: BG — MB,

Corollary 3.11. If H C G is a closed subgroup of a Lie group G, then EG — EG/H
1 a universal bundle for H.

Proof. Just observe that G — G//H is a smooth principal bundle, cf. example 2.7. [
Example 3.12.

(i) We already know that ES! = S see example 3.2. Since we can consider each
cyclic group Z, as a subgroup of S 1it thus follows that the infinite-dimensional
lens space ¢, = S°°/Z, is the classifying space for Z, and that S* — ¢, is its
universal bundle.
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(ii) In the exercises we will show: if G and K are Lie groups with respective universal
bundles EG — BG and EK — BK, then the product of bundles EG x EK —
BG x BK is universal for G x K.
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CHAPTER II.

Cech cohomology

1. Sheaves

Definition 1.1. A category C consists of
(i) a class of objects

)
(ii) a family of disjoint sets hom¢(A, B), one for each pair A, B;
(iii) for each object A of C an element 14 € hom¢(A4, A);

)

(iv) for each tripe of objects A, B, and C a function

home (B, C) x home(A, B) = home (A4, C), (9, f) = go f;

subject to the following conditions.

(a) for any two objects A, B of C and every morphism f € hom¢(A, B) we have
lpof=fand foly=f.

(b) for all objects A, B, C, and D of C and all morphisms f € hom¢(A,B), g €
home (B, C), and h € hom¢(C, D), we have ho (go f) = (hog)o f.

We write A € C to mean that A is an object of C. A category is small if its underlying
class is actually a set. The element 14 is called an identity, and in general, an element f
of hom¢ (A, B) is called a morphism or arrow and also written f: A — B. If there exists
g: B— A such that go f =14 and f o g = 1, then we say that f is an isomorphism.

Example 1.2.

(i) The category Sets is the category consisting of all sets and with homges(X,Y) the
set of all (set) maps X — Y. The composition is the usual composition of maps
and the identity element of a set X is the identity map idx.

(ii) For a fixed commutative ring R, the category R—mod has as objects all R—modules
and as morphisms the homomorphisms of R-modules. Similarly, R-alg is the
category whose objects are R—algebras and with morphisms the homomorphisms
of R—algebras.

(iii) The category of topological spaces has as objects topological spaces, morphisms
are continuous maps.
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(iv) The category of smooth manifolds has as objects smooth manifolds and as mor-
phisms the smooth maps. Note that the notion of morphism and isomorphism we
introduced earlier for topological spaces and smooth manifolds coincides with this
categorical definition.

(v) The morphisms of a category need not be actual maps of sets. For example, if G
is a group then we can consider G as a (small) category C with one object x and
with home(x,%) = G. Composition is the group multiplication and the identity
element of home (x, x) is the neutral element e of G.

(vi) If C is a category, then its opposite category C°P has as objects the objects of C.
For objects A, B of C° we let hom¢op (A, B) = hom¢ (B, A). The composition of
morphisms f: A — Band g: B — C in C° is defined as go f := fg, where on the
right hand side the composition in C is used.

Definition 1.3. Let C and D be categories.

(i) A (covariant) functor F': C — D is an assignment associating to every object A
of C an object F(A) of D, and to every morphism f: A — B of C a morphism
F(f): F(A) — F(B) in such a way that

) F(go f)=F(g)o F(f) for all morphisms f: A — B and g: B — C of C,
b) F(14) = 1p(a) for every object A of C.

53

(ii) A contravariant functor F: C — D is a covariant functor F': C°? — D.

(iii) A natural transformation n: F = G between functors F,G: C — D is an assign-
ment associating to every object A of C a morphism 7n4: F(A) — G(A) in such a
way that

|
=
Q

is commutative for all morphisms f: A — B of C.
Example 1.4.

(i) If G and H are groups, each considered as a category with one element, then a
functor F': G — K is just a homomorphism of groups.

(ii) Let C be the category of smooth manifolds. We can consider formation of the
tangent bundle as a functor T: C — C: namely, to a manifold M associate its
tangent bundle T'M and to a smooth map f: M — N the bundle map T'(f) = df
induced by the differential of f.
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(iii) Let k be a field. In this case the category k—mod is just the category k—vect of
all k—vector spaces with morphisms the k-linear maps. We have a contravariant
functor *: k—vect — k—vect which takes a k—vector space V to its dual V* and a
k-linear map f: V — W to the dual map f*: W* — V*.

(iv) Let C be the category of Lie groups and D be the category of Lie algebras. We
have a functor Lie: C — D which takes a Lie group G to its Lie algebra Lie(G) = g
and a homomorphism of Lie groups f: G — K to its induced map df: g — ¢.
The statement that the exponential map of a Lie group is natural with respect
to morphisms can be rephrased by saying that we can consider exp as a natural
transformation Lie = ide: this just amounts to saying that for every morphism
f: G — K the diagram

G
|1
exp

P K

exp
g
dfl
¢
commutes, which it does by proposition 1.9.

Any topological space X can be considered as a small category as follows. As objects
we take the open subset U of X. The set of morphisms V' — U consists of the inclusion
map tyy: V = U, x— x,if V C U, and is empty otherwise,

Definition 1.5. Let X be a topological space, consideres as a category, and C a category.

(i) A presheaf on X with values in C is a contravariant functor F: X — C. f U C X
and V C X are open subsets with V' C U and s € F(U), then we write resyy :=
F(wyy) and s|y :=resyy(s). Elements of F(U) are called sections over U.

(ii) A presheaf F: X — C is called a sheaf, if it satisfies the following axioms:

(a) If {U;|i € I} is a collection of open subsets of X and s,t € F(U), where
U = U, Ui, are two sections such that sy, = t|y, for all i € I, then s = t.

(b) Let {U;|i € I} be a family of open subsets of X and (s;);cs a family of section
with s; € F(U;) for all i € I. If (s;)|u,nu; = (s5)|v;ny; holds for all 4,5 € I,
then there exists a section s € F(U), U = [J;; with s|y, = s; for all ¢ € I.

Example 1.6. Let X be a topological space.

(i) Let R be a fixed ring and M an R-module. The constant presheaf M on X is the
presheaf with

(M, U0,
ww) {4 T2

and which assigns to any inclusion V' < U the identity map M — M, unless
V =, in which case it assigns the unique map M — {Og}.
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The constant presheaf M is not a sheaf: consider, for example, the case that
X = {1,2} is a discrete space with two distinct points and let M be any R-
module having at least two disctinct elements m and n. Consider m as an element
in M({1}) and n as an element in M ({2}). Since {1} N {2} = 0, for M to be a
sheaf, there must exist an element t € M(X) = M with t[;;; = m and t[(9y = n.
However, t|(1) =t and t[{9y = t, so this is impossible.

(ii) Let A be an arbitrary object of a category C. The locally constant sheaf A is
the presheaf which assigns to every open subset U the set of all continuous maps
U — A, where A is viewed as a discrete space, and resyy just restricts a map
U — A to V. As the name suggests, A is a sheaf: if U = Uicr Ui and we are given
continuous maps s;: U; — A such that s; and s; agree on their common domain
U; NUj, define s: U — C by s(x) = s;(x) whenever x € U;. This is well-defined
and continuous, since s (V) = U, (s:)"H(V).

(iii) More familiar examples of sheaves are the sheaf of continuous functions with values
in Y, which assigns, for a fixed topological space Y, to an open subset U C X the
set of continuous maps U — Y, or, if X and Y are smooth manifolds, the sheaf of
smooth maps with values in Y, which assigns to U set of the smooth maps U — Y.

(iv) If f: X — Y is a continuous map into a topological space Y and F' is a presheaf
on X, then f.F, the direct image of F' under f, is the presheaf on Y defined by

(fF)(U) = F(f~(U))

and by (f«F)(tvu) = tp-1(vy 1)

Given presheaves F' and Fjy on X, a morphism of presheaves k: F — Fy is a natural
transformation k: F' = Fj. If G is a presheaf on a topological space Y, then a morphism
between (X, F') and (Y,G) is a pair (f, k) consisting of a continuous map f: X — Y
and a morphism of presheaves k: G — f.F. Following [5], we will also call k£ an f-
cohomomorphism.

Example 1.7. Let F' be a presheaf on a topological space X and U C X an open subset.
Every open subset V' C U is also open in X, and thus we may define the restriction of F'
to U. This is the presheaf (F|U) on U with (F|U)(V) = F(V) and restriction maps the
restriction maps of F. If ¢.: U < X is the canonical inclusion, then there is a canonical
t—cohomomorphism ¢*: F' — 1, (F|U) which takes an open set W of X to the restriction
map resynww : F(W) — F(UNW) of F.

2. Cech cohomology of covers

Definition 2.1. Let X be a topological space, R a (commutative, associative) ring and
F a presheaf of R—modules such that F'(() = {Or}. Denote by P(X) the power set of
X.
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(i) A (Cech) cover of X is an indexed open cover of X, i. e. map i : I — P(X),
i — 8, such that X = J;c; 4 and I # 0.

(i) A p-simplex of 4 is a tuple o: {0,...,p} — I, k + 0y, i. e. an element of 1P+,
We also write (oo, ...,0p) in place of o.

(iii) The (Cech) p—cochains of a Cech cover {1 with values in F, p > 0, are

] Feo)

oelrtl

where U, = Uy N ... N4y .
(iv) The p-th coboundary map &,: CP(8; F) — CPYL(U; F) is given by

p+1

(6pc) (o) = Z(_l)j C(U|{0,...3,...,p+1}) "

J=0

(v) The Cech complex of 1 with values in F is C*(i; F) = D,>0 CP(4; F) together
with 6 := €P,>( dp- Elements in ker § and im 6 are called cocycles and coboundaries,
respectively.

Remark 2.2. The p—cochains form an R-module with respect to pointwise addition
and scalar multiplication.

Proposition 2.3. The Cech complex (C*(8; F),8) is a complez, i. e. 6> = 0.
Proof. Let ¢ € CP(4; F) be arbitrary. Then

p+2
2 |
(820(0) = > (=1 (5)(0lyo,. 5. 1)),
j=0 7
P2
+
= YT eloly )]+
7=0r<y ’
p+2
1+j
ZZ S ’ ¢ O-|{077‘/]\7’§»7p+2})‘u
7=0 s>j5 7
p+2
+
=S ol 5,
7=0r<y 7
p+2

1+j
ZZ s J 0"{07 7.]7 7§77p+2})‘ua

s=0 j<s
=0. O
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Definition 2.4. The p-th Cech cohomology group of I with values in F is

oo . ker(0) N CP(U; F)
B ) = im(0) N CP(YU; F)

Remark 2.5. Note that, despite its name, HP(8(; F) actually is an R-module.

Proposition 2.6. The canonical map F(X) — CO(i; F) induced by restriction descends
to a map ®: F(X) — HO(8; F) which is an isomorphism if F is a sheaf.

Proof. Let s € F(X) and denote by § € CO(4; F) the cochain with 3(i) = s|y,. We have
(08)(4,5) = 3(9)ly,; — 3(Dly

s0 4 is a cocycle and thus defines an element ®(s) := [3] in HO(L, F).

Now assume that F is a sheaf. The map @ is injective, for if [] is the trivial element,
then § is trivial, because there are no 0-boundaries. Thus, §(i) = s|y, vanishes for all
i € I, and then s = 0, because i is a cover of X and F is a sheaf.

To show surjectivity of @, let [c] € HO(L; F) be arbitrary. Similarly to the computation
above, the fact that ¢ is a cocyle is equivalent to saying that c(i)|uij = c(j)|uij for all
i,7 € I. But then, using again that F' is a sheaf and that 4l is a cover of X, there must
be a global section s € F/(X) with s|y, = ¢(¢) for all i € I, and so ®(s) = [c]. O

ij i (8]t sty = (slet) sy = O,

Example 2.7. In the exercises we will see that for a fixed base B every principal G-
bundle F — B can be obtained by a gluing process. More precisely, given an (ordinary)
open cover U of B and for ever pair U,V € U with non—empty intersection a morphism
gvu: UNV — G suppose the following, so—called cocycle condition is satisfied: if U, V,
and W are sets of U with UNV NW # (), then

gwu = gwv - gvu

holds on U NV N W. In this case one can construct a principal G-bundle ¥ — B
admitting trivializations ¢y : E|y — U x G for each U € U with transition functions
Yyo(y) :(UNV)xG = (UNV)xG,
(2.9) = (. 9vu(x) - 0).

If G is Abelian, this process is related to a particular Cech complex. Fix an open cover
U of B and consider the Cech cover i: Y — P(B), U — U. There is a canonical map

®: HY(4; C5(GR)) — Bung(U),

where Bung (i) is the set of isomorphism classes of (not necessarily numerable) principal
G-bundles which are trivial over the sets of U and Cp(G) is the sheaf of G-valued
morphisms on B. The map ® is given as follows. Any element of H'(i; Cp(G)) is
represented by a cocyle ¢ € C1(4; C5(G)). This cocyle assigns to any pair of sets U,V €
U a morphism ¢(U,V): UNV — B, unless UNV is empty. Define ®([c]) to be the bundle
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E glued together using the transition functions (gyy)vy with gyy = ¢(U, V). In the
exercises we will verify that this assignment is independent of the chosen representative
¢, that the cocycle condition amounts to ¢ being a cocycle (hence the name), and that
® actually is a bijection.

Definition 2.8. Suppose that we are given two covers 4: I — P(X) and U: J — P(X)
of X. We say that U is a refinement of U, if there exists a function «: J — I, called
(refinement) projection, such that ; C i, for all j € J.

Let a: J — I be a refinement projection. It induces a map a.: CP(L; F) — CP(0; F),
¢ — ay(c), defined by

al(€)(0) = e(al(0), ., a0)), -

This is a map of cochain complexes, since

p+1
(ba(e))(0) =D (=1)F - au(e) (00, Tks -, Op1) gy,

k=0

p+1

—

=Y (-1* - c(alo0)...,alon). .., o)
k=0

o

= (d¢)(a(00); - - s x(0p11))ls,

= Oé*((SC)(Jo, s Up+1)7
and so induces a map a.: H*(4; F) — H*(0; F) on the level of cohomology.

Proposition 2.9. Let U be a refinement of L. For any two refinement projections
a,B: J — I the induced maps H*(U; F) — H*(U; F) agree, i .e. o, = Bx.

Proof. We define, for each p > 0 and every 0 < r < p, maps
~ ~ p .
Hyp: CPYY (G F) — CP(B; F) and Hy = » (1) Hyj,
§=0
where
Hyr(c)(o) = c(aloo), ..., alor), B(or), Blorsa), - - -, B(op))ly, -

These maps assemble to give a chain homotopy between o, and By, i. e. we claim

Bx —ax=00H, 1 +Hpod
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holds on CP(0; F). To see this, let ¢ € CP(; F') be arbitrary. We compute

(5Hp 10)(0'0, ey O'p)

= Z(_l)k Hp 1( )(007 . aa"'70—p)“130
k=0

- DM e(a(o0). ... a(0r). B(ar). .- Blow). ... Blop)| | +
2 .
Z DM e(alon), . alow). -, alor). Blon).... Blop)|
k=0 k o

and on the other hand

(Hpdc)(oo, ..., 0p)
P

=Y (1) (Ge)(a(o0). .-, a(on), B(0r). ... B(p))]y,
r=0

=Y Y0 elalon), - alon).. - alon). Blov). . Blop)| |+
r=0 k<r o
>3 U cla(oo).- - a(0r), B0 Blow)s - Blon)|
r=0 k>r o
=3 0 elalon). . alow). . .alor). Blor).... . Bloy))|, +
k=0 er o
DD (0 elalo0), - alor), Blov) - Bl Bl
k=0 r<k -

Thus, adding up the two terms, we obtain

(Hpdc+ 0H,—1¢)(00, . ..,0p) = c(a(og), ..., a(op-1), B(ok), .., Blop))|y. —

o

M- I

c(a(00), -+, a(ok), B(Okt1), -5 Bop))ly,

iy
o

= (B«c)(00, ..., 0p) — (axc) (00, ..., 0p),

hence the claim.

3. Direct limits

Definition 3.1.
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(i) A directed category is a non—empty category I with the following properties.

a) For any two objects i, j of I there exists at most one morphism i — j,
indicated by writing 7 < j.

b) If i < j and j <k, then also i < k.
c) If 4,5 € I, then there exists an object k of I such that i < k and j < k.

(ii) A directed category I is called a directed set if I is small.

(iii) A cone for a functor A: I — C, i — A;, consists of an object C' of C and for each
object ¢ of I a morphism f;: A; — C such that the diagram

N

commutes for all objects i, j of I with i < j.

A;

A

(iv) A (direct) limit of A is a cone (L, (g;)ier) for A with the following universal prop-
erty: if (C,(fi)icr) is another cone for A, then there exists a unique morphism
«a: L — C such that f; = aog; for all ¢ € I. The situation is captured by requiring
that the diagram

be commutative for all 7,5 € I with i < j.

Proposition 3.2. Let I be a directed category and A: I — C a functor. If i,5 € I and
i < j, write Aj; :== A(i — j) for the image of the unique morphism i — j in I.

(1) If (L, (fi)ici) and (L', (f])icr) are two limits of A, then there exists a unique mor-
phism o: L — L' such that

A

|\

L?L/

i

commutes for all i € I, and this map « is an isomorphism.
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(ii) If I is small and C is either the category Sets of sets, the category R-mod of

R-modules, or the category R-alg of R—algebras, then

Eggfqu:: (];Ix4i> /f\

el icl

is a limit of A, which we refer to as the limit of A. Here, the equivalence relation
~ is declared by a; ~ a; if and only if there exists some k € I withi <k and j <k
such that Ay;(a;) = Agj(ay).

Proof.

(i)

(i)

Since L' is a cone for A, the universal propert of L guarantees the existence of a
unique morphism «: L — L’ such that f/ = ao f;. We need to show that « is an
isomorphism. Now, by the universal property of L’ there exists a unique morphism
B: L' — L with f; = o f!, and so, o o is a morphism which satisfies

(Boa)o fi=pBo fi=f;

for all ¢ € I. But the identity morphism 17 too satisfies 17 o f; = f;. Since by the
universal property of L there is a unique such map, we see that Soa = 1;. A
completely analgous argument shows that ao 8 = 15/, that is, « is an isomorphism.

First, suppose A is a functor into Sets and let us prove that ~ is an equivalence
relation. Since A is a functor, A;; = idy,, and therefore ~ is reflexive. Clearly, ~
is symmetric, so suppose a; ~ aj and a; ~ a; for elements 4, j,k € I. This means
that there exists an element r € I with i <r, j <7, and A4,;(a;) = Ayj(a;) as well
as an element s € [ with j <, k <s, and Ayj(a;) = Ag,(ag). Since I is directed,
there exists an element ¢ € I such that s <t and r < ¢, and because there exists
at moste one morphism between any two objects of ¢ and A is a functor, we have

N
<
—
S
S8
~
I
N
oy
3
N
3
—
£
~—
~—

This is exactly the statement a; ~ ai, hence ~ is transitive.

Let 1j: Aj < [l;c; Ai be the canonical inclusion map and 7: [];c; A; — liglAi
the quotient map. We set f; := mo ;. It is an immediate consequence of the
construction of hg A; that fjo0 Aj; = A;, so hg A; together with the maps (f;)ier
is a cone. That lim A; is universal is seen as follows. If (C, (gi)ier) is another cone,
define @: [[,.; Ai — C by a(a;) = gi(a;) for a; € A;. Since C is a cone, if a; ~ aj,
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then also g;(a;) = gj(a;), and so @(a;) = @(aj). Therefore, @ induces a unique
map «: lim A; — C with @ = oo 7. In particular, oo f; = g; for all i € I, and if
B: ligAi — (' is another map with § o f; = g;, then o7 = @, whence 8 = a.
Hence, hAl A; is a limit of A.

Now if A is a functor into R—mod, then each A; is an R—module and each morphism
Aj; is R-linear. Therefore, lim A; can be endowed with a unique structure of
an R—module making the maps f;, which we constructed earlier, into morphisms
of R—modules. For example, if z,y € li_ngAi, choose representatives x = [a;],
y = [a;], and an element k € I with ¢ < k and j < k, which is possible since
I is directed. Again it follows from the construction of lim A; that the element
[Ai(a;) + Agj(aj)] does not depend on the specific choice of k, and similarly we
see that x +y := [A;(a;) + Agj(a;)] is independent of the choice of representatives
for x or y. That hﬂ A; is a limit in case A maps into R-alg is proved analogously.

O

Remark 3.3. Let I be a directed set and A: I — C a functor into one of the categories
Sets, R—mod, or R-alg. Let further (L, (g;)ics) be a limit of A.

(i)

(i)

(i)

If A maps into R—mod or R-alg and if z; € A; is such that g;(x;) = 0, then it follows
from the uniqueness statement in proposition 3.2 and our explicit construction of
lig A; that there must be some j € I with ¢ < j and Aj;(x;) = 0.

Every element y € L is contained in the image of some g;. Indeed, we can once
more appeal to the construction of the direct limit of A to conclude this; or we
can note that the subset Lo := (J;c;im(g;) of L together with the family (g;)icr
consisting of the morphisms g; := ¢;: A; — Lo is a cone for A. Moreover, Lg
satisfies the universal property of a limit, because L does and we can restrict any
morphism starting on L to Lg. Thus, there is a unique morphism «: Ly — L so
that a0 g; = ¢; holds for all ¢ € I, and this morphism is an isomorphism. But
the inclusion ¢: Ly < L satisfies ¢t o §; = ¢; as well, whence + = « must be this
isomorphism and Ly = L.

Example 3.4.
Let F be a presheaf on a topological space X. The stalk of F' at a point z € X is
F, = hgq F(U),
Usx

where the limit ranges over all open neighborhoods U of .

If (X;)er is a family of topological spaces, index over a directed set I, then the set
X :=lim X; also is a limit in the category of topological spaces: just endow X with
the final topology with respect to the canonical maps f;: X; — X; this amounts
to saying that a set U C X is open if and only if (f;)~*(U) is open for all i € I.
Then by construction, if Y is a cone for (X;);cs, the set map a: X — Y whose
existence is guaranteed by the universal property of the limit in Sets is continuous,
and this proves that X indeed is a limit.
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(iii) We already encountered limits of topological spaces in the exercises: the infinite—
dimensional Stiefel manifolds V4 (K*°) and the infinite-dimensional Grassmanians
Gri(K*°) are categorical limits of their finite-dimensional counterparts. More
generally, if G is a Lie group, put E,G := %!_;G, n > 1, and observe that that
the canonical inclusion E,G — EG is a homeomorphism onto its image, by the
universal property of the topology of the join. Since FA/G C E2G C ... is an
increasing sequence and EG = J,,~; EnG, it follows that EG carries the final
topology with respect to the inclusions E,G < EG. In fact, if U C EG is a set
such that U N E, G is open for all n, then by definition of the subspace topology we
can choose U,, C EG open with U,NE,G = UNEG. There is no loss of generality
in assuming that U, C U, 41, because

(Un UUps1) N EpG = (Up N E,G) U (Upyy N E,G)
= (UNEpG) U ((Ups1 N Epi1G) N EG)
= UNE,G,

and then we see that U N E,G = J,,~, (Un N E;G) for all k, whence U = J,,~, Un
is open in EG. This observation is particularly useful if G is compact, since
E,G C[[;., C(G) carries the subspace topology of the n—fold product of the cone
C(G) in this case (denote by E,, the set E,,G endowed with the subspace topology;
being a closed subspace of a compact space, E, is compact, and since E,G is
Hausdorff, the continuous map id: E,, — E,G must be a homeomorphism).

Definition 3.5. A functor T: J — I between directed categories is called cofinal, if
for every i € I there exists some j € J with ¢ < T'(j). A subcategory K of I is called
cofinal, if so is the inclusion functor K — I (a category D is a subcategory of a category
C if every object of D is also an object of C, if for all objects A, B of D we have
homp(A, B) C hom¢(A, B), and if the composition law in D is the restriction of the
composition law in C).

Proposition 3.6. Let I be a directed category, T: J — I a cofinal functor, and A: I — C
a functor. Put Aj; == A(i — j) and suppose that (C,(f;)jer) is a cone for AoT.

(i) For each i € I there exists a unique map g;: A; — C such that

Aryi
Ay —= Az)

x lfj

C
commutes whenever j € J is such that ¢ < j.
(ii) If (C,(fj)jer) ts a limit for Ao T, then (C,(gi)icr) is a limit for A.

Proof.
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(i) Given ¢ € I we can choose, by definition of a cofinal functor, an element j € J
with ¢ < T'(j). Put g; :== f;j o Ap(;),- To show that g; has the desired property,
choose another element k € J with ¢ < T'(k). Since J is directed, we find ¢ € J
such that j < ¢ and k < £. Then consider the diagram

Ar) 5
A .
Ap TOTG) h

A; AT(K) C
AT (oyT (k)
AT (k)i e
AT (k)

It commutes, because there is at most one morphism between any two objects of
I and J, so that AT(E)Z’ = AT(()T(k) o AT(k)z as well as AT(E)i = AT(Z)T(j) o AT(j)i7
and because C' is a cone. Since the composition of the upper two vertical maps is
precisely g;, it thus follows that

AT (k)i
A;

A

N

C

commutes as well. That g; is uniquely determined follows from the commutativity
of the above diagram for k = j.

(ii) By construction (C,(g;)icr) is a cone for A. Let (D, (h;)icr) be another cone for
A and put kj := hp(;) for all j € J. Then (D, (k;j);es) is a cone for Ao T, whence
by the universal property of the limit C' for A o T' there exists a unique morphism
a: C — D such that k; = ao f; for all j € J. Now given ¢ € I, pick j € J with
i <T(j). Then the diagram

commutes, and this shows that (C, (g;)icr) satisfies the universal propery of a limit,
because any other morphism g: C' — D satisfying h; = 5o g; for all ¢ € I must be
equal to a by the universal property of C for Ao T.

O]
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Remark 3.7. Note that the converse statement is also true: if (L, (fi)ier) is a limit for
A, then (L, (kj)jes) with kj := fp(;) also is a limit for Ao T'. In fact, if (C, (hy);es) is a
cone for Ao T, then according to proposition 3.6 we may extend C to a cone (C, (g;)ier)
for A, that is, gp(;) = hj for all j € J, because gr(jy = hj o Ap(jyr(;) and Ariyre) = id.
By the universal property of L there is a unique map a: L — C with a o f; = g; for all
t € I. In particular, co kj = h; for all j € J. It remains to show that « is unique. So
let 3: L — C be another morphism with 3o k; = h; for all j € J and pick i € I. By
cofinality of T', there exists T'(j) >4, j € J, and then

Bo fi=PBo fry) o Ay = Bokjo Ary = hjo Aty = i-
The universal property of L for A now implies « = 3, so L is also a limit for Ao T.

Proposition 3.8. Let I be a directed set and A, B,C: I — R-mod be functors having

limits (La, (ga,i)ier), (LB, (9B.i)icr), and (Lc, (gci)icr), respectively. Suppose further
that for each v,j € I with ¢ < j we are given a commutative diagram

A
o Bj ‘

Aj4>Bj4>

<

whose rows are exact. Then so is the sequence

La% g Le.
with o, B determined by ao ga; = gp,ioa; and fogp; = gc,io Pi for alli e I.
Proof. If we let v =0 or v = B o a, then the diagram

A;

gco,ioBioa;
gAi

LAT>LC

commutes for all ¢ € I. However, by the universal property of L4 there can be only one
such map «, whence 5 o o = 0. This shows that im « is contained in ker 3.

To prove the converse inclusion, it suffices to show that every element y € ker 8 can
be written as gp j(z) for some x € ker 3;. Now we already know from remark 3.3 that
there exists some ¢ € I and some z; € B; with y = gp i(z;). Thus,

0= B(y) = B(gB.i(xi) = gc.i(Bi(ws)).

But by the same remark we also know that this is possible only if there exists some j > i
such that Cji(B;(xi)) = 0. Since Cji(Bi(x:)) = Bj(Bji(wi)) and gp;(Bji(xi)) = gp,i(wi),
it follows that = Bj;(x;) is contained in the kernel of 3; and maps onto y under
gB,j- D
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Remark 3.9. The previous proposition can be slightly generalized as follows. Let I be
a directed category such that

o Bi
A

. -~ B, - C

Al K2
-
A% ;2

<

commutes for all 7,7 € I. Suppose that T': J — I is a cofinal functor from a directed set
J and further suppose that the rows of the diagram above are exact whenever 4, j € im7T'.
Then the sequence Ly — Lp — L¢ is exact as well, where L4, L, and L are arbitrary
limits (which exist by proposition 3.2 and proposition 3.6). Indeed, by remark 3.7 L4,
Lp, and Lo are also limits for AoT, BoT, and C o T, respectively, thus, as J is a set,

Ry iy

is exact by proposition 3.8, where o’ and ' are the maps determined by o' o g4 () =
9B,T(j) © a1(;) and B o 9B,T(j) = 9c,1(j) © Br(j) for all j € J. But since Ly, Lp, and Lo
are cones and T is cofinal, we must have o/ 0 ga; = gp,ioa; and B’ o gp ;) = gc,i o B for
all7€ I, and so o =« and 8/ = 3.

4. Cech cohomology

Note that if 4: I — P(X) and U: J — P(X) are two Cech covers on X, then there is a
common refinement 20: I x J — P(X) declared by 2U; ; := ; N'*Y;. Thus, the category
Cx whose objects are the Cech covers of X and whose morphism set homg, (41, 0) consists
of exactly one element if and only if U refines 4l is a directed category. Moreover, for
F and p fixed, we have a functor H?(—; F): Cx — R-mod, sending a Cech cover { to
HP(44; F) and sending the unique morphism 4 — 9 to the unique morphism HP(L(; F') —
H(V; F) induced by any refinement projection.

Proposition 4.1. The set of all Cech covers $: X¥ — P(X), with the convention
X0 .= {x}, is a cofinal subset in Cx.

Proof. Let C be the set in question. As already noted, if {: X* — P(X) and U: X* —
P(X) are two Cech covers, then 20: X**+¢ = X* x Xt — P(X), (z,y) = U, NV, is a
Cech cover refining 4 and . Therefore, C is directed. To prove that it is cofinal, let
20:J — P(X) be a Cech cover. Since U is a cover of X, we find a function a: X — .J
such that z € U, () holds for all z € X. Then U := Yo« lies in C and refines V. [

Definition 4.2. The p-th Cech cohomology group with values in F is

HP (X F) :zligﬂp(il;F),
14

where I ranges over the directed set of all Cech covers : X* — P(X), k > 0.
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Proposition 4.3. HP(X; F) is a limit for H?(—; F).

Proof. By proposition 4.1 the set C of all Cech covers : X* — P(X) is cofinal in Cx,
so the claim follows from proposition 3.6, because HP(X; F') is a limit of HP(—; F)|¢c. O

Example 4.4 (Dimension axiom). Suppose that X = {x} consists of one point only. In
this case, F'({z}) = F, and we claim that

. F =0
HP(X; F) = {Ow’ §> N

To see this, first note that every Cech cover of X is refined by the cover &l: X — P(X)
with 8, = {z}, whence HP({(; F) — HP(X;F) is an isomorphism. Next, observe that
there is exactly one p-simplex o of 4, namely, the constant simplex o, ), = . Since by
assumption F(0)) = 0, any p—cochain ¢ thus is determined by the value it takes on the
simplex o ,. Now, if p is odd, then

p+1

(6¢)(oapt1) = Z(—l)jc(am,) = c(0ap),

J=0

so in particular ﬁp(ﬂ; F) = 0 for odd p, because there are no non—trivial p—cocycles.
Similarly, we see that if p is even or 0, then (dc)(ozpt1) = 0, whence 6 = 0 and every
p—cochain is a cocyle. However, if p is even and p > 0, then according to the previous
computation 6: CP~L(4U; F) — CP(U; F) is surjective, and so HP(L; F) = 0 for such p,
and HO(L; F) = F,.

Example 4.5. If F is a sheaf on X, then by proposition 2.6 the canonical map F(X) —
HO(4; F) is an isomorphism for every Cech cover {f of X and hence remains an isomor-
phism upon passing to the limit by proposition 3.8: F(X) = H(X;F). The same is
true if F' = M is a constant presheaf and X is connected. Indeed, if  is a cover of X
defined on the index set I and ¢ € C°(4; M) is a cocycle, let I,,, C I be the set of indices
i such that c(i) = m, where m € M. Then X = (J,,c)/(U;c;, i) is a disjoint union, for
it U; NUj is non—empty and if ¢ € I,,, j € I, then, since c is closed,

m = C(i)’umuj = C(j)‘ﬂiﬂﬂj =n.

Since X is connected, we thus have I = I,,, for some m € M. Hence [c] is contained in
the image of the canonical morphism F(X) — H°(4; M). Since the latter is injective
anyway, it follows that it induces an isomorphism F(X) — HO(X; M).

5. Induced maps

Let X, Y be topological spaces and F', G presheaves on X, Y, respectively. Further
suppose that we are given a morphism (f,k): (X,F) — (Y,G). Every Cech cover
U: J —P(Y) of Y gives rise to Cech cover

fI0: T = P(X), j— £1(3)),
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of X and, since a p-simplex o of f~1 also is a p-simplex of U, thus also to a map

(f.k)": CP(0:G) = CP(f10; F),
e (o= k(c(0))).

This map is a chain map, because for any simplex o of f~10

p+1
(OB e)o) = D (=1 (£ k)@l 5 piny)|

j=0

p+1

- z%(—l)j k(C(‘T’{O,...J,.-.,erl})) ‘(f—lm)g
=

(f710)s

= (—1)jk (C(U‘{o7...,§,,..,p+1})’m )

Thus, (f,k)* induces a map HP(U; G) — HP(f~'0; F) which composed with the map
into the limit gives a map HP(; G) — HP(X; F). Note that induced maps are natural
with respect to refinement projections; that is to say, if 20 refines U with refinement
projection «, then the diagram

Qx X

CP(9;G) CP(2; G)
(f,k)*l l(f,k)*
CP(f710; F) ——— CP(f~'20; F)

is commutative, hence remains commutative when passing to cohomology. Thus, we can
consider HP(X; F) as a cone for the functor H?(—; G) defined on the category of all Cech
covers of Y, and taking limits over Cech covers of Y we obtain a map, again denoted
(f,k)* or just f*, so that the diagram

fr(0; G) — e (-1 )
H(Y; @) — L~ HP(X; F)

commutes for all Cech covers U of Y.

Example 5.1 (Additivity). If X = ][, .4 X, is a topological sum, i. e. a disjoint union
of open subspaces, and i,: X, < X denotes the inclusion, then

[1Ga)": BP(X; F) — [ B”(Xa; Flx,)
acA a€A
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is an isomorphism for all p. This can be seen as follows. Denote by C the subcategory of
Cx consisting all Cech covers i: T — P(X) with the property that for every index i € T
there exists some a € A with $l; C X,. Such covers can be assembled from Cech covers
gt Ig = P(Xy), © = Uy i, by declaring

S H I, x {a} = P(X), (i,a) = Uy,

a€A

and then i, !4 simultaneously refines {, for all a € A, since a refinement projection
[pea Iy x{b} — I, is given by sending (i, a) to i and (4, b) to any element of I, if a # b, as
(ia)_lil(j,b) = XoN4;p is empty in this case. Thus, since maps into limits are eventually
surjective (cf. remark 3.3), we can find for a given element y in [], H?(X,; F|x,) a Cech
cover 4 in C such that y is contained in the image of the map

[T 076 "% Flx,) = [ B2(Xos Fla,),
acA acA
where each component is given by the map into its respective limit.

Likewise, if 2 € HP(X; F) maps to 0 under [, 4(ia)", then there exists a Cech cover
il of X so that z lies in the image of HP(i; F') — HP(X; F'), because each X, is open
in X and C thus is cofinal. Using that an element maps to zero under the limit map
HP(i'4U; Flx,) — HP(X,; Flx,) if and only if it is eventually zero, we see that it will
suffice to show that

[1Ga)": 8P F) — ] 827G, ' Flx,)
acA acA

is an isomorphism for all Cech covers {f: T — P(X) in C.

To this end, decompose I as [ = HaeA I, in such a way that ; C X, for all ¢ € I,
and all a € A. To show injectivity, let ¢ € CP(4; F) be a cocycle such that i’([c]) = 0
for all a € A. By definition we can find, for each a, an element d, € CP~1(i;'4; F) with
d(da) = i’ (c), where d;, = 0 and § = 0 if p = 0. Also note that if o is a p-simplex of
$ then either o(0),...,0(p) € I, for some a € A or U, = (), as the X} are mutually
disjoint. Hence, if 4, # 0 and o(0) € I,, then F(,) = (F|x,)((i;'4),), so we may
define d € CP~1(8; F) by d(0) = du(0), whenever ¢(0) € I,. It follows that for every
p-simplex o with U, # () there is some a such that

p

(0d)(0) = Z(—l)j d(al{o,...,;,...,p})‘

Uy

p
=3 el )

(iz'4)s
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so ¢ = dd is exact and [c] = 0. Thus, the map in question is injective.

Its surjectivity is verified similarly. Given p-cocycles ¢, of i, il for every a, define
c € CP(U; F) by (o) = co(0) if o is a p-simplex with ¢(0) € I,. Then (ig)*(c) = c,
by construction, and a similar computation as above shows that for every p + 1-simplex
o of U with ¢(0) € I, we have (0c)(c) = (d¢q)(0) = 0. Therefore, ¢ is a cocycle and
surjectivity follows.

Remark 5.2. If in the previous example A was a finite set, then the conclusion would
follow at once from remark 3.9, since in this case [[,. 4 HP(Xq; Flx,) is a limit for
the functor sending a Cech cover U to [[ ., HP(i; 4 F|x,), so that [],(is)* is an
isomorphism if so is the map [, (ia)*: HP(84; F) — HP(i; 14; F|y,) for all Cech covers
of C. For infinite A, however, this is no longer true, because limits do not commute with
arbitrary products in general.

6. Relative cohomology

Let f: X — Y be a morphism of topological spaces and G a presheaf on Y. The pullback
or inverse image of G is a presheaf on X, defined by

(IO = lim GW),
W2f(U)

where the limit is taken over all open subsets W C Y that contain f(U). If AC X is a
subspace, F' is a presheaf on X, and ¢: A < X is the inclusion map, we also write F'|4
instead of «*F'. Note that if A is open this definition agrees, up to canonical isomorphism,
with the restriction of the presheaf F' defined earlier, cf. example 1.7.

By a Cech cover of the pair (X, A) we shall mean a tuple (4,44) consisting of a
Cech cover : I — P(X) and a Cech cover {4: I4 — P(X) such that 4 C I and
(¢780)| 1, = $hy; that is, for every element i € T4 we have ;N A = (804);. Note that $ly
canonically refines :~!4( via the refinement projection I4 — I, i > 1.

Definition 6.1. The p-th relative Cech cochain group of (X, A) with respect to a Cech
cover (U, 44) and with coefficients in F is

CP(U, $h4: ) = ker (th: CP(L F) 25 CP(M Fly) — CP (84, F|A)) .

It is useful to spell out what it means for a cochain ¢ € CP(4; F) to be in the kernel
of hyg(,: this is the case if and only if (¢*)g, (c(o)) = 0 for all p-simplices o of 4 with
00,...,0p € I4, where o*: F — 1,(F|4) is the canonical t~cohomomorphism.

Since induced maps and refinement projections are chain maps, it follows at once
that C*(U,4U4; F) is a subcomplexr of C*(4; F), i. e. the coboundary § restricts to an
endomorphism on C* (U, 4y; F). Thus, it makes sense to consider the cohomology of this
subcomplex, whose p—th graded component

_ CP(UUa; F) Nker d
©OP(U, 8a; F) Nim &

HP (8, 8043 F) :
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is the p—th relative cohomology group of (X, A) with respect to the cover (4, 414).

Our goal now is to make the relative cohomology groups independent of a specific
cover, and we proceed analogously as in the absolute case. Thus, if (0,0 ,4) is another
Cech cover of (X, A), with U defined on the index set J and U4 defined on the index
set Ja, then a (refinement) projection is a refinement projection a: J — I from U to
U with a(Js) C I4 and whose restriction aly,: Ja — I is a refinement projection
from V4 to Uy. If a refinement projection exists, we say that (0,8 4) refines (LU, Lly).
In this case, the induced chain map o, : CP(L; F) — CP(; F) restricts to a chain map
oy CP(U, U s F) — CP(B, WV 4; F). To see this, just recall that induced maps are natural
with respect to refinement projections, so we have a commutative diagram

CP(44; F) L CP(L T F ) CP(84; Fa)
a*i a*l <a|JA>*l
CP(0; F) L CP( I ) CP(Ba; Fa).

Alternatively, we can appeal to the explicit characterization of the elements in the
kernel of hy(, (respectively hgg,) given earlier. Using this characterization, we see
that the operator Hy,: CPT!(8l; ) — CP(; F) defined in the proof of proposition 2.9
restricts to a map CPTH(U, Uy; F) — CP(U,V4; F). Hence, we have

Proposition 6.2. Let (0,0 4) be a refinement of (44,844). Any two refinement projec-
tions induce the same map HP (8, 8h4; F) — HP(B,V4; F).

Therefore, we may consider HP(—, —; F) as a functor on the category Cx,a whose
objects are the Cech covers of (X, A) and with one arrow (U, U4) — (T, Y 4) if and only
if (0,2 4) refines (U, 844).

Proposition 6.3. The category of all Cech covers of (X, A) is directed and the set of
all Cech covers (U, 4U4) of the form U: X¥ — P(X) and h4: A¥ — P(A) is cofinal.

Proof. Tf (4,44) and (B,24) are Cech covers of (X, A) defined on pairs of index sets
(I, 14) and (J,Jy), respectively, then the Cech cover (20,20,4) defined on the pair of
index sets (I x J, 15 x J4) and given by 20; ; := ;N Y; and (Wa)rs := (Ua)r N (Va)s
refines both (4, 44) and (U, 4), with refinement projections the canonical projections
IxJ—TandIxJ—J.

The proof that the set of covers of (X, A) whose underlying pair of index sets is of the
form (X*, A*) is cofinal is almost the same as in the absolute case, the only modification
being this: if (4, 44) is a Cech cover of (X, A), then, as {4 covers A, we may first choose
a function ay: A — I4 such that a € (ilA)a(a) for all a € A and extend « to a function
a: X — I such that @ € Uy, for all z € X — A. Since (17 '44)[1, = U, it follows that
(Uoa,ily oay) refines (LU,4l4) and is of the desired form. O

Definition 6.4. The p-th Cech cohomology group of (X, A) with values in F is

HP(X, A F) o= lim HP(4, 445 F),
(Utla)
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where the limit ranges over all Cech covers (£, 44) of (X, A) with & defined on X* and
14 defined on A* for some integer k > 0.

It is immediate from proposition 6.3 and proposition 3.6 that HP(X, A; F) is a limit for
HP(—, —; F) on Cx 4. However, HP(X, (); F) also is a limit for H?(—; F) on Cx. In fact, if
U: I — P(X) is a Cech cover of X, then Ug: I — P (), i — 0, is a cover of () and (4, i)
is a cover of (X,0). This shows that the functor 7: Cyy — Cx taking a Cech cover
(U, 8h4) of (X, A) to 4l is cofinal. On the other hand, for every cover (i, 4ly) of (X, 0)
the complexes C*(i~'4; F|y) and C*(Ua; F|y) are trivial, and so C*(8,8ha; F) is just
the absolute Cech cochain complex C*(4; F). In particular, HP (8, $hy; F) = HP(LL; F).
Therefore, H?(—, —; F) coincides with the functor HP(—; F) o T, and since HP(X, §; F) is
a limit of the former, it must also be a limit for H?(—; F) by remark 3.7.

We now would like to relate the relative cohomology H®(U,44) = H*(U, U4; F) to
the absolute cohomologies H*(4l) = H*(L; F') and H®(s) = H*(4; F|4). To this end,
recall that in the exercises we have shown that every short exact sequence of cochain
complexes induces a long exact sequence in cohomology. But while the sequence

0 — CP(SL,804) — CP(U) 2 CP(Ly)

is always exact for all p > 0, the map h = hy g, need not be surjective, as is demonstrated
by the following example.

Example 6.5. In X = R consider the subspace A = R — {0} and the locally constant
sheaf F' = Z. As a cover of (X, A), take 4 = {R} and 4y = {R — {0}}. Then A is not
surjective in degree p = 0: we have a commuative diagram

CO () i CO(tl0)
F(R) F(R—{0}),

where the lower horizontal map is given by restriction and the vertical maps evaluate a
cochain ¢ on the unique O-simplex of U, respectively i{4. The horizontal maps are not
surjective, because the locally constant function s € F(R — {0}) which equals —1 on
(—00,0) and 1 on (0,00) does not extend to a locally constant function on R.

To circumenvent this problem, we follow [13] and replace CP(444) by im(hyy(,) in the
sequence above. By construction, we obtain a short exact sequence of complexes

. . h
0 — C*(84,804) = C*(81) =4 im by, — 0
and thus also a long exact sequence

Oy, 11 4

HP (8, $04) HP (1) HPHL(8, 804)
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with Oy, the connecting homomorphism and H®(im Ay, ) the cohomology of the sub-
complex im hy(g(, of C*(44). Note that the assignment (L, 8[4) — im hg s, is functorial,
since we already saw that hy ¢, is natural with respect to refinement projections of pairs.
Moreover, this functor admits a limit H?(im hx 4) by proposition 3.2, since there is a
cofinal set of coverings of (X, A) by proposition 6.3. Thus, there is a canonical map
j: HP(imhx 4) — HP(A) making the diagram

Hp(im hﬂ,ﬂA) —— I:Ip(ﬂA)

L,

HP(im hx 1) —— HP(A)

commute for all Cech covers (L, 464).

Theorem 6.6. Let X be a topological space, F' a preasheaf on X, and A C X a subspace.
For every integer p > 0 there exists a morphism 0 = 0,: HP(im hx 4) — HPHL(X, A) with
the property that for all Cech covers (4, 844) of (X, A) we have the following commutative
ladder with exact rows:

ITRTN

- - . BMYUA o 1
L HP(8l, 8l y) HP (1) HP(im hy g, ) ——> HPFL(8, 804) — ..

T T

. ——HP(X, A) —— HP(X) — 5 HP(im hx ) HPH (X, A) —— ...

Here, the map q is such that *: HP(X) — HP(A) factors as 1* = joq. The bottom row is
called the long exact sequence of the pair (X, A) and 0 is its connecting homomorphism.

Proof. Consider the functor T': Cx a4 — Cx sending a cover (L, 44) to T'(4, thy) = L. Tt
is cofinal: if 4 is a Cech cover of X and ¢: A — X denotes the inclusion, then (&1, .714()
is a Cech cover of (X, A) mapping onto { under 7. Next, observe that by remark 3.7
HP(X) is a limit for HP(—) o T. Therefore, we obtain maps ¢ = g,, k = k,, and 9 = 9,
making the diagram

. y hy, Ay, .
HP (8, 4 1) HP (8) —4 HP(im hy g, ) ——> FPHL(SL,814)
HP(X, A) —F ~ AP(X) — L HP(im hyx 1) —2— HPHL (X, A)

commute for all covers (U, 44) of (X, A). Exactness of the ladder now is a consequence
of proposition 3.8. For example, to see that
HP(imhx 4)

AP (X, A) HPH (X))
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is exact, note that

O,
HP (im by, ) —ot

HPHL(SL, 804) HPL(81)

is exact for all pairs (4, 44), because this is a part of a long exact sequence, and apply
proposition 3.8. It remains to show that +* factors through ¢. But this is immediate
from the commutative diagrams

HP (1) = HP(u 1Y) P(Ua)
HP (8) — < HP(im hy ) TP (804)
HP(X) HP (im hx 4) — HP(A)
and
HP (41) —— HP (1 7'8) P (814)
HP(X) - HP(A)
together with the uniqueness statement about maps from the limit HP(X). O

Example 6.7. Here are two cases in which we can take HP(im hx 4) = HP(A).

(i)

If F = M is a constant presheaf, then hyg, is surjective, since we can triv-
ially extend any cochain ¢ € CP(U4) to a cochain ¢ € CP(4). In particular,
HP(im hy g, ) = HP(U4). In the proof of theorem 6.6 we already observed that
the functor sending a Cech cover (X, A) to A is cofinal, and thus we see that also
HP(A) is a limit for the functor (4, 44) + HP(im Ay, ).

If A is an open subset of X, then the covers (4, 4(4) of (X, A) such that (L4); C A
for all ¢ are cofinal. For if (8,804) is an arbitrary cover of (X, A), defined on the
pair of index sets (I,14), let J :=1TU (I4 x {o0}), J4 := I4 x {o0}, and define a
cover ‘U of X on the index set J by

0. = ﬂj jEI,
T sinA, j=(i,00) € Ix x {oo}.

There is a canonical refinement projection « from U to U given by a(i) = ¢ and

a(i,00) = i for all i@ € I, and this refinement projection shows that (0,%|;,)
refines (L, 404).
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Now if (L1,4L4) is a cover of (X, A) defined on the pair of index sets (I,I4) and if
we have (£4); € A for all 4 € I, then we can extend any ¢ € CP(il4), as in the
case of constant coefficients, to a cochain ¢ € CP({): just note that the canon-
ical t—cohomomorphism ¢*: F' — ,(F|a) yields isomorphisms (.*)y: F(U) —
(tx(F|a)(U) for all open subsets U C A, so we may define

(0) = {((L*)HG)l(C(U)L 00,---,0p € La,

0, else.

Therefore, hy g, is surjective and we can set HP(im hx 4) = HP(A).

There is also a notion of morphism of pairs of spaces: if X, Y are topological spaces
with presheaves F' and G, respectively, and if A C X, B C Y are subspaces, then a
morphism (f,k): (X, A, F) — (Y,B,G) is a morphism (f,k): (X,F) — (Y,G) with
f(A) C B. Such a morphism induces a map HP(Y, B) — HP(X, A) as follows. If (0, U3)
is a cover of (Y, B) defined on a pair of index sets (J,Jg), then (f~19, (f|4)"'Up) is
a cover of (X, A) defined on the same pair of index sets: indeed, (f|4) 'Up is a Cech
cover of A, and for all j € Jp we have

(f7o);n A= f7H(G) N A= (fla)7H (TN B) = (f14)" ((Ts);) = (£14)""Vs);.
Moreover, we have a commutative diagram

hag 05 “

CP () im hy o, CP(Up)

lf" l(fA)* (flA)*i

CP(f~10) Im hy—aqg ()~ 105 CP((f|a)~'Up)

F710,(fla) " 19

h

and this shows that the chain map f*: CP() — CP(f~'9) restricts to a chain map
f*: CP(0, ) — CP(f~19, (f|a)"'Vp), which in turn induces a map on the level of
cohomology. We define f*: H?(Y, A) — HP(X,A) to be the unique map making the
diagram

117 (%, 0 5) L BB, (fla) " Vs)

| |

i (Y, B) i P (X, A)

commute for all covers (U, Up) of (Y, A); here, as usual, the undecorated vertical maps
are the maps into the limit.

Proposition 6.8. The long exact sequence of pairs is natural with respect to maps of
pairs of spaces, i. e. if f: (X, A) — (Y, B) is a map of pairs of spaces, then we have a
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commutative ladder:

HP(Y, B) HP(Y) —L> HP(im hy ) HPHL(Y, B)
if* J{f* l(ﬂA)* J/f*
P (X, A) HP(X) — > HP(im hyx o) —— HPHL(X, A)

Proof. This follows at once from the naturality of long exact sequences in cohomology
induced from short exact sequences of complexes. Consider, for example, for any Cech
cover (U,Up) of (Y, A) the diagram

HP (im hoy ) g P 1(2, U p)
/ (714" /
HP(im hy, ) 9 Hr(Y, B) f*
l f*
(fla" HP(im Ay vag (7] -150) —— HP+L(£190, (f]4) ')
HP(im hx 4) 5 HPTL(X, A)

The bottom and top horizontal faces of this diagram commute by theorem 6.6, and
the left and right vertical faces commute by construction of induced maps. Since
the back face of this diagram commutes due to naturality of long exact sequences, so
must the two maps H?(im hy y,) — HP+1(X, A) obtained by composing the limit map
HP(im hy 5, ) — HP(im hy 5) with either 9o (f|4)* or f*0d. Then the uniqueness state-
ment in the universal property of HP(im hy p) implies that the front face must commute
as well. Commutativity of the other parts of the ladder is concluded similarly. O

7. Excision

Let X be a topological space and F' a preasheaf on X. As in the previous section, we
consider all subspaces A of X with the restricted presheaf F'|4 and suppress coefficients
in the notation.

Theorem 7.1. Let Z C X be a non-empty subspace admitting an open neighborhood
W such that W (closure of W in X ) is contained in A (interior of A in X ). Then the
inclusion induced map H*(X, A) - H*(X — Z, A — Z) is an isomorphism.

Proof. Let Dx be the subcategory of all Cech covers (4, £04) of (X, A) with the following
properties: (4, l4) refines the cover ({X — W, A}, {A-W, A}) and if (I, 14) is the pair
of index sets on which (4, 4l4) is defined, then ; C A only holds if i € I4. This is a
cofinal subcategory, because by assumption X is covered by X — W and /i, and because
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if (8,814) is such that $; is contained in A for some i & I, then (U r—giy, YLalr—gay) still
is a cover of (X, A), since A already is covered by all sets {l; with j € 4.

Now let (4, 84) € Dx be a cover defined on the pair of index sets (I,I4) and extend
(4, 4L4) to a cover (L, 44) defined on the index set (I,14) = (IU{*},I4U{x}) for some
point * ¢ I by declaring $, = W. We claim that the canonical refinement projection
a: I — T induces an isomorphism a,: CP( ) — CP(U,4U4). In fact, a, certainly is
surjective, because we can trivially extend any cochain d € CP(4,414) to a cochain in
CP(,804). Thus, let ¢ € CP(U,44) be such that a.(c) = 0 and let o be a p-simplex of

L. If none of the vertices oy, ..., 0, equals *, then
0 = (axc)(o) = c(o)ly, = c(0).

On the other hand, if o; = *, then, since i,, = W and (4, 44) is a cover in Dy, we have
U, = () unless Zl(,j C A for all Jj, that is, unless o; € T4 for all j. But then c¢(c) = 0
holds anyway, because c is a relative cochain, and therefore «, is injective.

A completely analogous argument shows that the subcategory Dy _ of all Cech covers
(2, 4_7) of (X — Z, A— Z) which refine the cover ({X —W,A—Z}, {A-W,A—Z})
and which are defined on pairs of index sets (K, Ka_z) with 20, C X — W unless
k € K4_y is cofinal. Moreover, the extension (20,204_z) of such a cover (20,204_7) to
the index set (K, Ka_z) = (KU {*}, K4o_zU{x}) by the set W — Z admits a canonical
refinement projection inducing an isomorphism CP(25,204_7) — CP(25,W4_7).

Next, let us show that for every cover (4,44) € Dx the map *: CP(U,Uy) —
CP(t='4, 7 "U,) induced by the inclusion of pairs t: (X — Z,A — Z) — (X, A) is an
isomorphism. Indeed, given d € CP(v~'4l,.7'44) and a p-simplex o of i, suppose that
there is at least one vertex o; with o; & I4. Then i,, C X — W and hence Y, too is
contained in X — W. But this is an open subset of X which does not meet Z, so the
canonical (—cohomomorphism ¢* induces an isomorphism

(), : F(Uy) = te(Flx—z)(Us).

Defining c(o) € F(4y) by (¢*)y, (c(0)) = d(o) and putting c¢(o) = 0 if all vertices of o
are contained in I, we see that t*(c) = d, because d vanishes on simplices o of ¢ =14
whose vertices are all contained in I4. This shows that (* is surjective. Injectivity is
concluded similarly: if we suppose that ¢*(¢) = 0 holds for a cochain ¢ € CP(L,8l,),
then for a p—simplex o such that o; & I4 for some ¢ and i, # (), the map (+*)y, is an
isomorphism, whence 0 = ¢*(¢)(c) = (¢*)y, (c(0)) necessarily implies ¢(o) = 0; and on
simplices o with o, ...,0, € I4 the relative cochain c¢ vanishes anyway.

The proof now follows thus. Let Dx denote the subcategory of Dx consisting of
those covers (4, 4l4) for which there is some index i with (4); = W. This is a directed
subcategory, for if (4, 44) and (2,0 4) are two covers in Dx and (20,20 4) is a refinement
of these covers, not necessarily contained in Dy, then (2,2 4) still is a refinement of
both (4,4 4) and (U,V4), and is contained in Dx. Indeed, if (4,4 4) is defined on (I, 1)
and (20,204) is defined on (K, K4), and if a: J — I is a refinement projection, then
we can extend a to K by setting a(x) = i whenever i € I4 is an index with &; = W,
and this shows that (4, 4(4) is refined by (20,204). Note that this also shows that the
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functor T: Dx — Dx taking (44,44) to (£f,8hy) is cofinal. In a similar way we see
that the functor S: Dx_z — Dx_z taking (20,2 4_z) to (2, W_z) is cofinal in the
subcategory Dx_z of covers (20,204 7) in Dx_z with (Wa_z)r = W — Z for some
index k. Now since

TP (8, T4 HP (81, 814

~.

HP(X, A)

is a commutative diagram avnd we have shown thfit the upper horizontal map is an
isomorphism, it follows that H?(X, A) is a limit for H?(—, —)|5oT. By proposition 3.6,
HP(X, A) then also is a limit for HP(—, —)|z. Similarly, we see that H?(X —Z, A—Z) is a
limit for HP(—, —)|5—, and therefore we can consider «*: HP(X, 4) — H/(X —Z, A-2)
as the unique map making the diagram

TP (81, 81 4) Y HP( L )
P (X, A) “LHP(X — Z,A— 2)

commute for all Cech covers (4,44) € Dx. Thus, by proposition 3.8, to conclude that
t* is an isomorphism, we merely need to show that the functor Dx — Dx_yz taking
(84, 44) to (714U, .714L,) is cofinal. So suppose (W, Wa_z) is a cover in Dy _z, defined
on a pair of index sets (K, K4_z), and choose for each k € K an open subset Uy C X
with 90, = Uy, — Z. Since (0,204 7) is an object of Dx_z, we may assume that Uy is
chosen such that U, C X — W or U;, C A for all k, and that the latter inclusion only
holds if k € K 4. Moreover, if x € K47 is such that 20, = W — Z, we may assume that
U, = W, and then the cover (4, 4l4) defined on (K, K4_z) and determined by L = Uy,
is contained in Dx and satisfies (¢: 71U, .7 14y) = (W, Wa_2z). O

Remark 7.2. In singular cohomology the conclusion of theorem 7.1 already holds if
Z and A are subsets of X such that Z C A, see for example [8, Section 3.1]. The
following example shows that Cech cohomology in general fails to satisfy excision for
such triples, even for constant coefficients and if all spaces are compact (however, if the
spaces are also assumed to be Hausdorff, then theorem 7.1 does holds under these weaker
assumptions, see example 7.3). Consider the unit interval [—1,1] with its standard
topology O inherited from R. We define a new topology 7 on [—1,1] by declaring a
subset U C [—1, 1] to be open if U € O and one of the following conditions is satisfied:

(i) UC (_171)7
(i) U=[-1,1 or U = [-1,0) U (0,1],

(iii) U C [-1,1) and there exists € > 0 such that [-1,0) U (0,¢) C U, or
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(iv) U C (—1,1] and there exists € > 0 such that (—¢,0) U (0,1] C U.

Let us check that this really defines a topology on [—1, 1]. Thus, let (U;);cs be a collection
of 7—open subsets and put U := J;c; U;. If —1,1 € U, then necessarily [-1,0)U(0,1] C U
and U is 7—open. If —1 is contained in U but not 1, then there must some ¢ > 0 with
[-1,0) U (0,¢) C U, and since U C [—1,1), U is again open. Similarly, we see that U is
open if 1 € U and —1 ¢ U. Finally, if neither 1 nor —1 is an element of U, then U is
open because each Uj; is open in [—1, 1].

To see that 7 is closed under finite intersections, let U,V € 7. If U = [—1, 1], there is
nothing to show. If U = [-1,0) U (0,1], then U NV =V — {0} is 7-open, and the same
is true if U C (—1,1), because then also U NV C (—1,1). Therefore, we may assume
that either 1 or —1 is contained in U, but not both. By the same reasoning, there is no
loss of generality in assuming that either 1 or —1 is contained in V, but {—1,1} C V.
If UNV C(—1,1), then this intersection is T7—open. Otherwise, say, if 1 € U NV, there
are €,6 > 0 such that (—,0)U(0,1] C U and (—6,0)U[0,1] C V. Taking 7 := min(e, 9),
we see that U NV C (—1, 1] containes (—+,0) U (0, 1] and hence is 7—open.

We denote the topological space [—1,1] with the topology 7 by X. Put Z = {-1,1}
and A = [—1,0) U (0,1]. The set A is open in X and Z = X — (—1,1) is closed, so
certainly Z C A. Next, observe that X is not Hausdorff. In fact, if U, V, and W are
open neighborhoods of —1, 0, and 1, respectively, then U NV N W is non—empty. This
implies that for any non—trivial Abelian group G, fIl(X JA) = H! (X, A;G) is trivial. To
see this, let us first note that covers of (X, A) of the form (L, 404) with T4 = {r, s} and
i =[=1,0) U (0,¢) and s = (—&,0) U (0, 1] are cofinal. For if (L, 4l4) is an arbitrary
cover of (X, A), defined on the pair of index sets (I,I4), then there must be indices
r,s € Ip with —1 € U, and 1 € U,;. By construction of the topology on X, there
then exists € > 0 such that [-1,0) U (0,¢) C 4, and (—&,0) U (0,1] C 45, whence the
claim. Furthermore, we can assume that {; C A only if i € I4 = {r, s}, since otherwise
(U] 7—giy, tha) still is a cover of (X, A) and refines (4, 44).

Now choose a cocycle ¢ € C(81,814) for some such cover (4,444) of (X, A) and put

d(i) = {c(r,i), if 4. NY; #0,

0, otherwise,

for all ¢ € I, where r € I4 is the index such that —1 € il.. The 0-cochain d is an
element of C’O(il, $14), because ¢ vanishes on 1-simplices o whose both vertices og, o1
are contained in Iy = {r,s}. In particular, on such simplices we have c(c) = (dd)(0),
and we claim that this identity remains true for all simplices o = (4, ). The observation
to make here is that 4, always intersects U, non-trivially, because 4l; (respectivelly ;)
either is a neighborhood of 0 or it is contained in A, whence ¢ = r or ¢ = s by choice of
I. Thus, G(8, N4l.) = G and since c is closed, it follows that

(0d)(0) = d(j) — d(i) = c(r,j) — c(r,i) = c(i, ) = (6¢)(r, i, ) = c(0).

In other words, ¢ is exact and H'(X, A) = 0.
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However, X — Z is just (—1,1) with its standard topology, and A—Z = (—1,0)U(0, 1)
too carries the topology inherited from R. By the long exact sequence of the pair
(X — Z, A— Z) we then have an exact sequence

(X -2)-H0A-2)-H0Y(X -Z,A-2).

Since X — Z is connected and A — Z has two connected components, the above map
G =H%X-2) - H(A—-Z) = G& G is not onto, and hence H' (X — Z, A — Z) is
non-trivial. In particular, H'(X, A) — HY(X — Z, A — Z) cannot be surjective.

Example 7.3. Suppose that X is normal, that is, any two disjoint closed sets can be
separated by open neighborhoods. In this case, if Z, A C X are such that Z C A then
H*(X,A) - H(X - Z,A—Z) is an isomorphism. To see this, note that by assumption
Z does not meet the boundary 94 = A — A of A. Since X is normal, we thus can
find open neighborhoods W of Z and V of OA which are disjoint. Intersecting W with
A if necessary, we may assume that W C A and since X — V is closed, we see that
W C X — V; in particular, W does not meet JA. Therefore,

WCA—0A=A,

and so the assumptions of theorem 7.1 are satisfied.

8. Homotopy invariance

Let X be a topological space, A C X a subspace, and fix a presheaf FF on X. Let
g: X x [0,1] — X be the canonical projection map and put ¢;: X — X x [0,1], z —
(z,t), for t = 0,1. Since ¢ is an open map, we can consider the presheaf F x [0, 1]
on X x [0,1] given by (F x [0,1])(U) = F(q(U)) for all open subsets U C X x [0,1];
up to canonical isomorphism, this is just the pullback ¢*F. Observe that «; induces a
canonical morphism (X, F) — (X x [0,1], F x [0,1]), for if U C X x [0,1] is an open
subset, then (1;)1(U) C q(U), so we have a restriction map F(q(U)) — F((¢;)~*(U)).
These restriction maps assemble to give the desired morphism.

Theorem 8.1. The maps H*(X x [0,1], A x [0,1]; F x [0,1]) — H*(X, A; F) induced by
to and 11 coincide.

The proof makes use of the following

Lemma 8.2. Let G be a presheaf on a topological space Y, B C Y a subspace, and
(U, Up) a Cech cover of (Y,B). Every cocycle ¢ € CP(U,Up;G) is cohomologous to a
cocycle that vanishes on simplices containing two adjacent equal indices; that is, there

exists a cocycle d € CP(4, Up; G) representing the same cohomology class as ¢ and such
that d(c) =0 if o(k) = o(k + 1) for some k =0,...,p

Proof. Let I be the index set on which i is defined. Given an index i € I, denote
by i®" the element (i,...,i) € I". Then every g-simplex o admits a decomposition
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o= ((009)®%, ..., (0m)%*) for certain indices oy, . . ., 0y, € I and integers ag, . .., am > 1
and m > 0 in such a way that o, # o4 for all k =0,...,m — 1. Let us further write

SE={((i0)®™, ..., (im)®*) € 19| Tk : a), > £}
for the set of simplices containing at least ¢ adjacent equal indices and
C} ={ce ClUUUp)|Vo € S} : c(o) = 0}

for the set of g—cochains vanishing on such simplices. Notice that for trivial reasons
C’g o = C’q(ﬂ, p), so to prove the lemma, we only need to show that for all £ > 2 every
cocycle in C’g 41 1s cohomologous to a cocycle in C’g.

The first observation to make is that the boundary operator on g—cochains reads

3(e)((i0)¥™, - . (im)®*™)

m at—1

= S (=t ST 1) e((i) 0, ()P L ()
t=0 j=0

= 3 (1t (i), L (i) 2 L (i) ).

t: a; odd

In particular, if £ is even and ¢ € C’f 41 1s a cocycle, then ¢ necessarily is an element of
C?: indeed, if o = ((09)®%, ..., (0,)%%) is a p-simplex and aj, = ¢, say, then

0= 5(6)((00)®a0, e (Uk)®£+17 e (Um)®am) — (_1)0«0+...+ak—1 . 6(0)7

since c¢ is closed and vanishes on simplices with ¢ + 1 adjacent equal indices. Hence-
forth, we shall suppose that ¢ is odd. Then consider for each k& > 0 the operator
Ty: CP(U,4p) — CP~H (U, Up) defined on a (p — 1)-simplex 7 = ((10)®%, ..., (7,)®b)
with 74 # 7441 by

(fl)bo“‘"""bk—l . C((Tg)®b0, ce (Tk)®bk+1, R (Tn)®b”), k<n,

0, else.

(Tie) (1) = {

Since for a p-simplex o only those indices with a; odd contribute to (67c)(o) and £+1 is
even, it follows that §7Ty maps C’g’ 1 into itself. To conclude the lemma, let us further de-
note by Dy, C C’fﬂ those cochains that vanish on p-simplices o = ((00)®%, ..., (0,)%)
such that a; = ¢ for some j = 0,...,k—1. We claim that if ¢ € Dy, is closed, then c—0T}c
is contained in Dy 1. This will prove the lemma, because Dy = C? '\, and D), = cy.

So suppose we are given a cocycle ¢ € Dy, and let o be a p-simplex such that a; = ¢

for some j =0,...,k. If j <k, then

0 = (Tyéc)(o)
= (=1)%TF%-1. ()%, ..., (Jj)@’g_l, o ()BT () ®m)
— (0Ti)(0)
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because c is closed and contained in Dy. If j = k, then
(6Tpe) (o) = (=1)20F=F%=1 (Te)((00)®29, ..., (o)L, ..., (om)Z™),
because ¢ vanishes whenever ¢ + 1 consecutive indices are equal. But by construction
(Tre)((00)®%, ..., (0) L, L, (04)®9m) = (—1)%0FFa-1 . ¢(g),
whence we have (¢ — 0Tc)(o) = 0 in this case too. O

Proof of theorem 8.1. We treat the absolute case A = (), since the relative case only
requires minor modifications. Choose a cofinal family (&;)¢>o of Cech covers of [0, 1]
with the following properties:

(i) & is defined on the index set {1,...,2¢};
(i) 0 € (&)1, 1€ (Sp)ye, and (Sp)m N (Sp)mt1 # 0;
(iii)

)

i) (Spp1)ok, (Srg1)26+1 € (Sp)i;
(iv) (&) C (Sgy)ko only if £y > L.

For example, such a family can be constructed recursively by starting with the cover
So = {]0,1]} and then writing (&) as a union of two open intervals (&yy1)9r and
(Sp41)2k+1 of diameter 3/4 - diam (&y),. Note that we have a canonical refinement
projection 711 from Sppy to &, defined by 7y 41(2k — 1) = 70041(2k) = k for all
k=1,...,2¢ and hence also for each n > 1 a refinement projection from S, to Sy

TOl+n = T0L+1 O TY41442C -+ - O Tp4n—14+n-

Having fixed this family, let 0 be a Cech cover of X defined on some index set J and
without any non-trivial inclusion relations, that is, such that X; C X; only if i = j.
Consider the subcategory D(%) of Cech covers 4 of X x [0, 1] such that $f is defined on
an index set I C J X Zxo, for each j € J there exists an integer ¢(j) = ly(j) > 1 with
(j,m) € I if and only if m € {1,...,2/0)}, and such that $L;,, = U; x (&¢(j))m- Observe
that by definition of D(2) the cover U canonically refines both (19) !4 and (¢1) 71U via
the refinement projections o, 8: J — I with a(j) = (j,1) and 8(j) = (4, 29)). We will
show that o o (10)* and S, o (11)* induce the same map HP(8; F x [0,1]) — HP(; F).
This implies the claim, because the category D whose objects are the objects of D(0)
for all possible choices of covers U of X is a cofinal subcategory, since every Cech cover
of X x [0,1] admits a refinement by a cover in D(*J) for some cover U of X without
non—-trivial inclusion relations, X X [0, 1] being endowed with the product topology and
(&¢)¢>1 being cofinal.

Thus, fix a cover U of X, defined on some index set J and without non—trivial inclusion
relations. To begin with, note that if 20 € D(0) refines 4 € D(Y), then there exists a
canonical refinement projection 7y gy from 20 to 4. Indeed, in this case for every index
(j,m) there is an index (jo,mp) such that 20;,, C ;) m,. In particular, U; C U,
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which by choice of 2 is only possible if j = jo, and (S (j))m € (Sgy(j))mo Which is only
possible if loy(j) > ly(7) for all j. Therefore, we may set

Yo (j,m) = {(j’ m), Ly(j) = Lan(J),
o (Js Tew(j),ban () (M) Lut() < Lan(5)-

A

For the remainder of the proof, we also fix a cover #f € D(). Our goal now is to
construct an operator H: C*(U; F x [0,1]) — C*(0; F) which satisfies the identity a, o
(t0)* — Bao (11)* = 6H + H§ on the subspace C§(4; F x [0,1]) of all cochains ¢ which
vanish on simplices with at least two adjacent equal indices. Since by lemma 8.2 every
cocycle ¢ is cohomologous to an element of C§(4l; F x [0, 1]), this will give the desired
result. Thus, let ¢ € C*(U; F x [0,1]) be a (p + 1)-cochain and let o be a p-simplex
of U. Further suppose that 20 € D(U) is a cover refining 4 and satisfying loy(og) =

. = lyy(op) = r for some integer r > 1. By construction of the presheaf F' x [0,1] and
because (&) N (S, )mi1 # 0, we see that

(F X [O, 1])(mgo’m N...N Qﬂgj,m N Qngj7m+1 N...N mgp7m+1) = F(%g),

forall j =0,...,pand all m=1,...,2". Therefore, it makes sense to set
2"—1 p

HQUC ZZ ’YHQH )((00>m)7‘-w(gjam)v(o-jum—’_1)7"'7(0-p7m+1))‘
m=1 j=0

Note that a cover 2QJ with the required properties always exists: indeed, pick any integer
r > r(o) := max{ly(0g), ..., ly(op)} and define W = W(o,r) € D(V) by

2 . m] X (6r)m7 ] S {O'(),...,O'p}7
Jjm =
Wjm, else.

In general, the expression (Hgyc)(o) depends on the chosen cover 20, whence we let
(He)(o) = (Hy(o,r(o))c)(0). If, however, c is a (p + 1)-cochain in C3(8 F x [0,1]),
we claim that (Hyypc)(o) is independent of the specific cover chosen. To see this, first
note that the definition only depends on the sets 0y, m, which, in turn, only depend on
the number loy(0g) = ... = loy(op) = r. Hence, it suffices to show that the definition
of (Hyc)(o) yields the same result for 20 = (o, r) and all integers r > r(o). We
begin with the choices r = r(o) and r = r(0) + 1. Thus, let 20 = (o, r(0)) and
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T =2W(o,r(c) +1). Using that T refines 2 and that vy s = yy90 © Yay,z, we compute

2T p
(Hso)(o) =D > (=1 ((ruz)«c) (00, 2k = 1), , (0, 2k — 1), (0, 2k), ..., (0p, 2k)) +
k=1 j=0
2T—1J P '
> (=1 ((ruz)«c) (00, 2k), . ., (05,2K), (0,2k + 1), (0p, 2k + 1))
k=1 7=0
T
=3 > (=1 ((vwaw)«€) (00, k), ..., (0, k), (0, k), ..., (0p, ) +
k=1 j=0
2"—1 p
Z(—l)j(('mgn)*c) ((00, k),....(c5,k),(cj,k+1),...,(0p, k+ 1))
k=1 j=0
= (Hac) (o)

by definition of the refinement projection 7,41 and because ¢ vanishes on simplices with
two adjacent equal indices. Inductively we then see that (Hyy(sr)(c)) = (Hay(o,r+)(¢))
for all s > 0. We are ready to prove the identity Sy o (¢1)* —ax o (10)* =doH + Hod on
C(84; F x [0,1]). To this end, let ¢ € CJ(L; F x [0,1]) be a p-cochain, o a p-simplex of
¥, and W = W(o,r(0)). A computation similarly to that in the proof of proposition 2.9
shows that

(6 Hype) (o) + (Hadc)(o)
or(e) 1

= Z ((’711,917)*0)((0-0’ m + 1)’ ) (U;Dv m+ 1)) - ((’Y}J,QU)*C)((UOa m)v SRR (Upa m))

m=1
= (B«(11)"c)(0) = (ax(w0) ) (o),
and since we have just seen that (§Hc)(o) = (0Hyyc) (o), the claimed identity holds. [

Let Y be a topological space and G a presheaf on Y. We say that two morphisms
frg: (X, F) — (Y,G) are homotopic, if there is a morphism H: (X x [0,1], F x [0,1]) —
(Y,G) such that f = H o1y and ¢ = H o1 as morphisms (X, F) — (Y,G). As an
immediate consequence of theorem 8.1 we have
Corollary 8.3. If f,g: (X, F) — (Y,G) are homotopic morphisms, then f* = g*.

Example 8.4. For us, the most important case of the previous corollary is that of
constant coefficients: if f,g: X — Y are two homotopic continuous maps, then for any
R-module M the induced maps H*(Y; M) — H*(X; M) coincide. In particular, if X
and Y are homotopy equivalent, then H*(Y; M) = H*(X; M). Specializing even more,
we see that any space X which is homotopy equivalent to a point has

. M =
P (X; M) = {0 | §>8

by example 4.4.
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Combining the previous theorem with the long exact sequence of a pair yields

Theorem 8.5. Let X be a normal space and F' = M a constant presheaf on X. If A is a
closed subspace of X which is a (strong) deformation retract of some open neighborhood
U of A, then, if we denote by m: X — X/A the canonical quotient map and by v: A — X
the inclusion, there is an exact sequence

0 —HO(X/A, AJA) — HO(X) = FO(A) —= H(X/A) T H(X) > HH(A) — . ..

L ——HP(X/A) == TIP(X) S HP(A) — OPHLH(X/A) — ...

Proof. Since we are considering coefficients in a constant presheaf, the long exact se-
quence of the pair (X, A) reads

. . * 0, .
L o HP(X,A) - HP(X) 5 HP(A) 22 APHY(X,A) — .
Then consider the commutative diagram

IP(X/A, AJA) ~ TP(X/A,U/A) —=TP(X/A — AJA,UJA — A/A)

|- - -

HP(X, A) HP(X,U) HP(X — AU — A).

All horizontal maps are induced by inclusions of pairs of spaces and are isomorphisms:
the horizontal maps on the right hand side are so by excision, cf. example 7.3, and the
maps on the left portion of the diagram are because A and U are homotopy equivalent,
see corollary 8.3. But the map of pairs 7: (X —A,U—A) —» (X/A—-A/A, U/A—A/A) is,
by definition of X/A, a homeomorphism, so all vertical maps in the above diagram must
be isomorphisms too. Now the long exact sequence of the pair (X/A, A/A) shows that
H*(X/A, AJA) = H*(X/A) for all p > 0, because A/A has trivial cohomology in positive
degrees by example 4.4, and therefore the sequence in question is exact for all p > 0.
That the beginning portion is exact as well follows because the long exact sequence of
pairs is natural, so that

O(X/A, AJA) —= (X /A)

giﬂ* l,,*

0 O(X, A) O(X) —= HO(A)

is a commutative diagram whose lower row is exact. O

Example 8.6. Let D" CR", n > 1, be the closed ball of length 1, centered around the
origin. The (n — 1)-sphere S"~! C D" is closed and a deformation retract of an open
neighborhood (take, for example, D™ — {0}), so the previous theorem applies. Note that
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D"/S"~! is homeomorphic to S™ and that D" is homotopy equivalent to a point, and
therefore the exact sequence of theorem 8.5 yields the exact sequences (with coefficients
in M)

0= HP(S", ¥) — HP(D") — HP(S"1) — TPHL(S™) — 0;
note that HP(S™, *) = 0, because S™ is connected. We show by induction on n that

iy 20 2200
0, else.

For the induction base n = 1, fix an identification o: HO(D') = M. Since i,: {2} —

D' induces an isomorphism for every point & € D!, we obtain induced identifications

9o ((iz))"t: HO({z}) — M. On the other hand, S® = {—1,1}, so by example 5.1 the

inclusion maps {£1} < S° induce an isomorphism H?(S?) = HP({—1}) @ HP({1}) which

combined with our chosen identifications makes the diagram

H°(D") H°(5%)
_i A m—(m,m) _i
M Mo M

commute. Thus, H'(S') = (M @ M)/A(M) = M, and since both D™ and S° have
trivial cohomology in positive degrees, also H?(S') = 0 for p > 2. As S! is connected
and hence H°(S') 2 M by example 4.5, the induction base is established.

Now consider the case n > 1. Then H(D") — H(S™!) is an isomorphism, and
hence HP(S™) — HPF1(S"*1) too is an isomorphism. Using the induction hypothesis
and that S™ is connected, we hence see that HP (S™) is trivial unless p =0 or p = n, in

which case HP(S™) = M.

Example 8.7. We can also use theorem 8.5 to compute H®*(CP") = H*(CP™; M). The
claim here is that

I:Ip((CP”) ~ M, p even,
0, podd.
In fact, we shall show that for all n > 1 the embedding
f:cpt - cpn, [z0: .. zp—1] = 200 ...t 2p—1 1 0],

induces isomorphisms f*: H?(CP™) — HP(CP" 1) in degrees p < 2n. The proof is again
by induction on n > 1, the induction base being true because CP! is homeomorphic to
S2. Now observe that im(f) C CP" is a deformation retract of CP™ — {[0:...:0: 1]}
and that the surjective morphism

D" CC" = CP", 2= (20, %n_1) zo:...:zn_l:\/1—|z|2},
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induces a homeomorphism $** =~ pD?n/§?n=1 — CP"/im(f). Thus, we have exact
sequences

0 = H***H(CP"/im(f)) — AX*FTH(CP™) — H**(im(f)) = 0,
so H* (CP™) vanishes in odd degrees. Also, for k > 0, we have exact sequences
0 — H?*(5?") - A% (CP") — H?*(im(f)) — 0,

and this sequence shows that for & < n we have H2*(CP™) = H?**(im(f)), that is, that
f* is an isomorphism in degrees p < 2n; and that H?"(CP") = M. Since the map f
factors through the inclusion im(f) — CP™, the claim follows.

9. Tautness and change of coeflicients

Let X be a topological space and n: FF — G a morphism of presheaves on X. We can
consider n as a cohomorphism for the identity morphism idx: X — X, and so obtain a
morphism (idx,n): (X,G) — (X, F). Write n. = (idx,n)*: H*(X; F) — H*(X;G) for
the induced morphism on the level of cohomology.

Theorem 9.1. Every short ezact sequence 0 — F 2 F' £ F" —5 0 of presheaves on X
induces a long exact sequence

Lo H(XGF) DS (X F) B AP (XG P - BPTY(XG F) s L
Proof. For ever cover 4l of X we have a short exact sequence of chain complexes
0— H(W; F) 25 HO (U F) 25 B (W, F7) — 0
and hence also a corresponding long exact sequence in cohomology:
Lo P F) IS BP(U F) B BP (U P — BPPL G ) s L
Passing to the limit then gives the desired result. O

Proposition 9.2. Let X be a paracompact space and F a presheaf on X all of whose
stalks F, are trivial. Then H*(X;F) = 0.

Proof. By definition, every open cover of X admits a refinement by a locally finite open
cover, so it suffices to show that for every such cover { every cocycle ¢ € CP (L F)
eventually becomes zero. To this end, let x € X and let ¢ be a p—simplex such that
x € Uy. Since F, = 0 and hence c¢(o)|, = 0, we see that there must be an open
neighborhood V' of x such that already c(o)|v = 0. But U is locally finite, so there is
an open neighborhood V, of x meeting only finitely many Ll;. In particular, the set of
p-simplices o with U, NV, # () is finite. Shrinking V. if necessary, we thus may assume
that c(o)|y, = 0 for all simplices o, because for those simplices o not meeting V, we
have F'(4, N'V,) = 0 anyway. Now let 20 be a cover of X refining both 4l and the cover
{Vz |z € X}, and « a refinement projection from 4 to 20. If 7 is a p-simplex of 20, let
x € X be a point such that 20, C V. Then c(a(7),...,a(7))|v, = 0 by construction,
and hence also (a.c)(7) = c(a(7))]9y, = 0. O
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Corollary 9.3. Let X be a paracompact space andn: F — G a morphism of presheaves
on X inducing isomorphisms 1,: Fy — G, for all x € X. Then also n,: H*(X; F) —
H*(X; G) is an isomorphism.

Proof. Consider the presheaves kern, imn, and cokern on X given by (kern)(U) :=
kerny, (imn)(U) := imny, and (cokern)(U) := cokerny for all open subsets U C X.
Then n factors through the inclusion ¢: im7n — @G, giving a morphism of presheaves
n: F'— imn, and we obtain an exact sequence of presheaves

0 —im7n = G — cokern — 0

However, since 7,: F, — G, is an isomorphism, it follows that every stalk (cokern),
must be trivial: any element in (cokern), arises as the restriction c|, of some element
¢ € (cokern)(U) for some open neighborhood U of z. By definition, ¢ = ¢ 4+ imny for
some element ¢ € G(U), and since 7, is an isomorphism, after possibly shrinking U we
see that there is an element d € F(U) such that ny(d)|, = (¢)|,. Shrinking U once
more if necessary, we may assume that 7y (d) = ¢, and so ¢ = 0. Therefore, (cokern), =
0. Now according to proposition 9.2, the long exact sequence induced by this short

exact sequence of presheaves (theorem 9.1) reduces to isomorphisms ¢, : H*(X;imn) —
H*(X;G). In a similar way we see that the short exact sequence of presheaves

0—>kern—>Fi>imn—>O.

induces an isomorphism (7),: H*(X; F) — H*(X;im7), and as n = ¢ o7, also 7* must
be an isomorphism. ]

Corollary 9.4. Let X be a paracompact space, F a presheaf on X, and A C X a closed
subspace. Consider the presheaf FA on X given by

FU), ANU #0,
0, else.

(FH() ::{

Then the canonically induced morphism H®(X; FA) — H*(A; F| ) is bijective.

Proof. Let G be a presheaf on A and denote by ¢: A < X the canonical inclusion. We
claim that the canonical morphism H®(X;:.G) — H*(A; G) which is induced by ¢ and
the identity cohomomorphism k: ¢,G — .G is bijective. In fact, the functor taking a
Cech cover $ of X to the cover :~ 1§l of A is cofinal, because any cover U of A can be
extended to a cover of X by adding the set X — A. Moreover, for every Cech cover il of
X the morphism

HP(44;1,G) — HP (714U G)
induced by (¢, k) is an isomorphism, since for a simplex o of 4 we have (1.G)(Uy,) =

G((t7'4),). Hence, H*(X;1,G) — H*(A;G) is an isomorphism as well. Applying this
reasoning to G = F|4, we see that the morphism H®(X; 1. (F|a)) — H*(A; F|4) is an
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isomorphism. But the canonical morphism of presheaves F4 — 1,(F|4) is a stalk-
wise isomorphism, because A is closed. Furthermore ¢: (A, F|4) — (X, F4) factors
through the morphism (X, 1.(F|4)) — (X, F4), so by corollary 9.3 the composite map
H*(X; F4) — H*(A; F|4) is an isomorphism too. O

Theorem 9.5 (Tautness). Let X be a paracompact Hausdorff space, F a presheaf on
X, and A a closed subspace of X. Then the inclusion induced morphism

lig HP (N3 Flv) — HP(A; F|a)

N
s an isomorphism for all p, where the limit ranges over all closed neighborhoods N of
A (that is, closed subspaces N whose interiors contain A).

Proof. For every closed neighborhood N of A we have, by corollary 9.4, a commuative
diagram

HP(X; FN) —— HP (X F4)

| |

HP(N; F|y) — HP(A; F|4)

so it will suffice to show that lim HP(X; FN) — HP(X; F4) is an isomorphism. Consider
the presheaf G on X given by

G(U) = lim FY(U),
N

where the limit again ranges over all closed neighborhoods N of A. For every such
neighborhood N denote by sy : FY — G the limit map. Our first claim is that for every
locally finite Cech cover il of X the morphism x making the diagrams

Cr(yU; FN)
| e
CP=lim  CP(Lh FM) -~ CP(U; @)

commute for all closed neighborhoods N of A is in fact an isomorphism. Surjectivity
of k is easily verified: if ¢ € CP(U; G) is arbitrary and o is a p-simplex of i, then by
definition of G there is some closed neighborhood N of A such that (kn)gy, (ds) = c(0)
for some element d, € FVN (Uy). Considering each such element d, as an element in
F(4,), we can define a cochain d € CP(i; F) by d(o) := d,, and this cochain satisfies
(kx)«(d) = ¢, because kx factors through xy for every closed neighborhood N of A.
Now let us show that « is injective. According to remark 3.3, this will be the case if we
can show that given a closed neighborhood N of A every cochain ¢ € CP (& FNY) with
(kn)«(c) = 0 eventually becomes zero. To see this, let 3 be those p—simplices o with
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c(0) # 0 and define M := N — (U, x5 Ho). This is a closed set and we claim that it is a
neighborhood of A. Pick a € A and choose an open neighborhood V' of a meeting only
finitely many sets Ll;; this is possible, because il is assumed locally finite. In particular,
the subset ¥/ C ¥ of simplices o with V N4, # 0 is finite. Since (kn)«(c) = 0 there
exists for each o € ¥’ a closed neighborhood N, of A such that ¢(o) maps to zero under
the canonical map F™(8,) — FN(4,); and because c(c) # 0 this is only possible if
FNe(4,) = 0, that is, if 4, does not meet N,. Then W = NNV N Nyesy No is an
intersection of finitely many neighborhoods of a, whence W is a neighborhood of a as
well which by construction does not meet | J ves Uy, Thus, W C M and a is an interior
point. Furthermore, F'™ (Uy) = 0 for all ¢ € X, so ¢ is mapped to the zero cochain under
the map CP(; FV) — CP(U; FM) induced by the canonical map FY — FM_ Tt follows
that k is injective.

Next, let us show that G and F4 have the same stalks. Namely, if a € A, then
for every closed neighborhood N of a and every open neighborhood U of a we have
FN(U) = FA(U) = F(U), whence G, = (F4), = F, in this case. If x ¢ A, then, since
X is paracompact Hausdorff and hence normal (see e. g. [4, Theorem 1.12.5]), we find
open neighborhoods V' of x and W of A intersecting trivially. Then N := X —V is a
closed neighborhood of A, because W C N, and F¥(V) = 0. Hence also G(V) = 0 and
consequently G, = 0. Therefore, the canonical map G — F4 is a stalkwise isomorphism
and the induced map HP(X;G) — HP(X; F4) is an isomorphism by corollary 9.3.

The remainder of the proof is mostly algebraic. First, observe that the boundary maps
Sn: CP(U; FNY — CPHL (4, FN) induce a differential 6 on C* with respect to which &
as well as the limit maps C? (U F N ) — CP become cochain maps. Next, note that the
exact sequences

0 — ker 6y — CP(U; FN) 6—N>im6N—>O

remain exact upon passage to the limit, so the maps hg N ker oy — ker d and li nim oN —
im ¢ induced by the maps into the limit C? are in fact isomorphisms. Therefore, the
composition

limg HP (8 FNY S HP(C*,6) = BHP(U; G)
N
which is just the limit map induced by the canonical maps HP(L; FV) — HP(4; G), is an

isomorphism. The claim of the theorem now follows upon noticing that hgrl N I:Ip(X (V)
is a limit for the functor & — lim HP(4; FY). O

10. Mayer—Vietoris

Another way of computing the cohomology of a space is in terms of a cover by two subsets.
In the following, we only consider cohomology with values in a constant presheaf M.

Theorem 10.1. Let X be a topological space and A, B C X subsets whose interiors
cover X, that is, such that X = AUB. Further suppose that at least one of the following
conditions is satisfied:
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(i) A and B are closed; or
(ii) X is normal.

Then the inclusion induced maps ka: H*(X,A) — H*(B,ANB) and kg: H*(X,B) —
H*(A, AN B) are isomorphisms and the Mayer—Vietoris sequence

s ar(x) PO ey @ rB) YS9 A B) & PFU(X)
is exact. The map O is the composition 0 = q(x,4) © (ka)~to 9(B,AnB), where OB anp)
is the connecting morphism in the long exact sequence of the pair (B, AN B) and q(x,a)
is induced by the inclusion of the relative subcomplex of the pair (X, A). All other maps

appearing in the sequence above are induced by inclusions.

Pmof In order to prove that k4 is an 1somorphlsm we just need to observe that X — B C
A ifze X—B B was not contained in A then, as the interiors of A and B cover X,
necessarily = € B, which is impossible, because B is an open set not meeting X — B.
Now under the assumptions of the theorem the pair (A, X — B) satisfies the requirements
of excision (theorem 7.1), because either X is normal, and then (A4, X — B) is excisive by
example 7.3, or B is closed, and then X — B is open. In any case, k4 is an isomorphism,
and for the same reasons kg is too.

Ezactness at HP(A) @ HP(B). Suppose that a € HP(X) and b € HP(B) are such that
alanB = blanp, where we write a|anp instead of (j1)*(a) and similarly for (j2)*(b). By
naturality of long exact sequences of pairs, we have a commutative diagram

4(x,A) 9(x,4)

HP(X, A) fr(x) — " fp(a) AP+ (X, A)

k’Ai (i2)*l i(jl)* lk‘A

HP(B, AN B) Hr(B) HP(ANB) HPTY(B, AN B)

(j2)* 9(B,ANB)

4(B,ANB)

with exact rows. As k, is an isomorphism, we have a € ker J(x 4) and there exists an
element zo € HP(X) such that (z0)|4 = a. In particular, ((zo)|s — b)|ans = 0, and so
we find @1 € im q(x 4y with (z1)[p = (0)|p — b. Setting z := xg + 1, we see that

z|la = (x0)|a = a and z|p = (z0)|5 + (v1)[B = b;

in other words, the pair (a,b) is contained in the image of (i1)* @ (i2)*. The converse
inclusion is immediate.
FEzactness at HP(X). Let © € HP(X) be such that 2|4 = 0 and z|p = 0, and consider
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the commutative diagram

0P~ (AN B)
(B, An B)" 24" fir(B)
ym* wﬁ
fP(X, A) — X e (x) — L fip(a)

whose rows are parts of the long exact sequences of the pairs (X, A) and (B, AN B).
Since |4 = 0, we find y € HP(B, AN B) such that z = q(x,4)(ka(y)), and since the
diagram commutes, we see that qg anp)(y) = z[p = 0. Therefore, y € im (g anp),
and then z € imd too. Conversly, if we start with an element z € HP~!1(A N B), then
the above diagram readily shows that d(z)|a = 0, because (i1)* o ¢(x,4) = 0 and also
d(2)|B = 0, because ¢, anB) © d(B,anB) = 0.

Exactness at HP (AN B). As a preliminary result, let us show that the map

¢: HP(X, A) @ HP(X, B) — H?(X, AN B)
(z,9) = z|(x,4nB) T Yl(x,AnB);

is an isomorphism. Injectivity is easily seen to hold, for if ¢(z,y) = 0, then also

0 = (2, y)|(B,anB) = 2|(B,AnB) + Yl(B,AnB) = ka(2),

because the inclusion induced map HP(X, B) — HP(B, AN B) factors through the inclu-
sion induced map 0 = HP(B, B) — HP(B, AN B). Since k4 is an isomorphism, z = 0.
In a similar fashion one shows that y = 0. To see that ¢ is surjective, note that for
any = € HP(X, AN B) we can find elements a € H?(X, A) and z € HP(X, B) such that
7|(a,4nB) = bl(a,anB) and z|(p anB) = al(B,anB), since k4 and kp are isomorphisms.
Then z = = — a|(x,anB) — bl(x,4nB) satisfies 2|4 anp) = 0 and z|(p anp) = 0, and so it
will suffice to show that z = 0.

Thus, assume z € H?(X, A N B) is such that zl(a,anB) = 0 and 2| anp) = 0, and
consider the commutative diagram

fr-1(4) — 50 fp(x, A) i (X, B)
T
Hr~1(An B) — HP(X, AN B) HP(X)

e |
HP(A, AN B) HP(B, AN B) H?(B)

It shows that also z|p = 0 and hence there exists xp € HP(X, B) such that z|x = z|x.
In particular, z and xp|(x anp) only differ by some element 0 x anp)(up) With up €
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HP~'(A N B). Similarly, we see that z = ral(x,anB) + 9(x,anB)(ua) for some element
x4 € HP(X, A) and some element uy € HP~1(A N B). Therefore,

O(a,anB)(ua) = O(x,anB)(ua)|(4,4nB) = 2|a,4nB) — Tal(4,4nB) = 0,

because x4 € HP(X, A). This means that uy lifts to an element wy € HP~1(A), i. e.
wal(anBy = ua. Similarly, we see that up lifts to an element wp € HP~1(B). Now we
compute

¢(za+9x a)(wa), —2p — 9x p)(wp)) = 2 — 2 =0,

and since ¢ is injective, this is only possible if x4 +9(x 4)(wa) = 0. But then z = 0 too,
and hence ¢ is surjective.

Exactness of the Mayer—Vietoris sequence at H?(A N B) is now concluded as follows.
Given x € HP(A N B), let a and b be elements such that Ocx,anB)(x) = ¢(a,b). Then

d(x) = (qx.a) 0 (ka) ™ 0 0(,anp)) (2)
= (qex,ay© (ka)™") (Ox,a0m) (@) (B,4nB))
= q(x,4(a|(B,AnB))
=alx.

Similarly, if we set A := q(x,p)© (kp)~'o d(A,AnB), then one computes A(x) = b|x. But
im d(x anB) = ker q(x,anp) by the long exact sequence of the pair (X, AN B), so

0 = 9x,anB)(7)|x = alx +b|x,

and 0 = —A. Because 0o (j2)* = 0 and A o (j1)* = 0, it follows that (j1)* — (j2)*
has image contained in ker 9. Conversly, if = € HP(A N B) is such that d(x) = 0, then
alx = blx = 0. Then consider the commutative diagram

HP(X) HP(B)
fir(A) P(A N B) — A4 fip+1(A, AN B)

a(B,AﬂB)l \ T
9(x,AnB)

HP+Y(B, AN B) HP+Y(X, AN B)

T

Hrt+1 (X)

The diagonal in this diagram is exact, so from a|x = 0 and b|x = 0 we see that we
find elements a’,b" € HP(A N B) such that dx anp)(a’) = al(x,anpy and J(x,anp) (V) =
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b]( X,AnB)- But since the columns of this diagram are exact too, the element x — a’ must
lift to an element u € HP(B), because

OB,anp)(x — d') = O(x anp)(x — d')|(B,anB) = al(B,anB) + bl(B,anB) — al(B,anB) = 0.

In the same way we see that = — b’ lifts to an element v € HP(A), and a similar reasoning
shows that x —a’ — ¥ lifts to an element z € HP(X). In total we have

(j1)*(v—=2]a) — (o) (—u) =2z =V —(z—d = V) +z—d =2z. O

11. Cup product

Within this section F' is a presheaf of R—-algebras on X, that is, for every open subset
U C X we assume that F'(U) is not only an R-module, but also an (associative) R—
algebra and that all restriction maps are morphisms of R—-algebras. In this situation it
is possible to define a ring structure on H*(X; F) as follows. Let 4 be a Cech cover of
X and ¢ € CP(4), d € C4(4). Define a new cochain ¢ — d € CP(4l), the cup product
of ¢ and d, by

(¢ —d)(0) = c(olfo,.p1)lst, - (O] (p,...p+q}) st
where the multiplication is taken in the ring F'({,).

Proposition 11.1. The coboundary map 6§ is an anti—-derivation with respect to the cup
product: for c € CP(U), d € C1(U) we have

d(c—d) = (6c) — d+ (—=1)P - c— (6d).
Proof. We compute (omitting restrictions)

p+1
((de) — d) (o) = D (~1)e(olyy 5 pi1y) - d@lgprr, prginy)

j=0
p .

=> (=1 (c—d)(00, ..., G}, Oprqi1)+
0

j:
(—1)p+10(0|{0,...,p}) : d(U’{p+1,...,p+q+1)
and
ptq+1

(e — (6d))(0) = (=1)"- D (=1 e(alqo,.p) - d(@l g 5. prars))

Jj=p
= C(U\{O,...,p}) : d(U‘{p+1,,..,p+q+1})+
ptq+1

(P Y (=1 (c—d)(o0,....J,-- P+ q+ 1)
Jj=p+1

Adding up the two terms we see that the left and right hand side of the claimed identity
give the same result when evaluated on o. O
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The previous proposition shows tha the cup product ¢ — d of two cocycles ¢ and d is
again a cocycle. Moreover, the cup product is R-bilinear, and so the cohomology class
¢ — d only depends on the cohomology class of ¢ and d, because ¢ — (de) = +d(c — e),
as c¢ is a cocycle, and similarly (§f) — d = £0(f — d).

Also observe that if A C X is a subspace and if (4,804) is a cover of (X, A), defined
on the pair of index sets (I,4), then the cup product reduces to a well-defined map

—: CP(U) x CU(L, ) — CPTI(U, 8 y),

because if ¢ is a p—cocycle, d is a relative g—cocycle, and o is a (p + ¢)-simplex with
vertices 00, ...,0ptq € Ia, then in (F|4) (s N A)

(¢ = d)(0)ly,na = (c(olio,. )5t - (Ol ip... prap)lsty) litona
= C(U’{O,...,p})’ilaﬂ/\ : d(a‘{p,...,p-&-q}”ﬂaﬁfl
0;

here we use that also (F'|4) canonically is a presheaf of rings on A in such a way that
the limit map F(U) — (F|4)(U N A) is a morphism of rings for every open set U C X.
In total, we see that the cup product descends to a cup product

— HP(LU) x HY(U, Uy) — HPTI(L LL)

which in turn induces a cup product —: HP(X) x HI(X, A) — HPT9(X, A), because of
the following

Proposition 11.2. Let I and J be directed categories, and A: I — R-mod and B: I —
R-mod functors having limits L4 and Lp, respectively. Form the category I x J whose
objecs are pairs of objects (i,j) with i € I and j € J and make this is a directed
category by the rule (i,7) < (ig,jo) if and only if i < iy and j < jo. Then the functor
A x B — R-mod taking (i,j) to A; x Bj has limit Ly ® Lp = La x Lp.

Proof. Suppose we are given a cone ((h; ;)i j,C) for A x B and fix j € J. Use the
universal property of L4 to obtain a morphism making

hij

\fj T

Ly

commute for all ¢ € I, where the diagonal map is the limit map and the left horizontal
map is the canonical inclusion of R-modules 4; = A; ®0 C A; P B;. We claim that
this morphism is independent of the choice of j: indeed, if j < k, then we have for each
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1 € I the commutative diagram

L, A; ® Bj A; @ By, La
hi 7 hi,k
f] fk
C

and so by the uniqueness statement in the universal property of L4 we have f; = fj.
Since J is directed, it follows that f = f; is independent of the choice of j. In a similar
fashion we obtain a morphism g = ¢;: Lp — C. Let then (a;,b;) € A; ® B; be arbitrary
and denote by @ € L4 and b € Lp the images of a; and b; under the limit maps A; — L4
and Bj — Lp, respectively. Then we have

(f @ 9)(a,b) = f(a) +g(b) = fi(a) + gi(b) = hij(ai,0) + h; ;(0,b5) = hi j(ai, b;),

and this means that

Ai®Bj —L—~C
[
La®Lp
commutes for all (¢, j). O

Applying this proposition to the categories Cx and Cx a of Cech covers of X and
(X, A), respectively, we see that the functor Cx x Cx 4 — R-mod sending (4, (U, 4))
to HP(U) x H9(,V4) has limit HP(X) x H(X, A). But the functor Cx,.a—Cx xCx.a
sending (20,204) to (20, (20,2 4) is cofinal, since if given (L, (U,V4), then (L UN A)
also is a cover of (X, A) and we can simultaneously refine this cover and (0,204), as
Cx. 4 is directed. Therefore, HP(X) x H9(X, A) also is a limit for the functor sending a
cover (81, 804) of (X, A) to HP (L) x HI(4, 4L4). By a similar reasoning, there also is a cup
product —: HP(X, A) x HI(X) — HPtI(X, A).

The cup product is compatible with morphisms (f,k): (X, F) — (Y,G), provided
that G is also a presheaf R-algebras and that the cohomomorphism k: G — f.F is a
cohomomorphism of R-algebras.

Proposition 11.3. The induced morphism (f,k)*: H*(Y;G) — H*(X;F) is a mor-
phism of rings whenever k is a cohomomorphism of R—algebras. If G and F are presheaves
of unital R—algebras and k is a cohomomorphism of unital R—algebras, then (f,k)* is a
morphism of unital rings.
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Proof. If 0 is a Cech cover of Y, then already on cochain level we have the commutative
diagram

CP(V;G) x C1(V; G) — CrHa(0; @)
(f,k)*X(f,k)*i l(f,k)*
CP(f~190; F) x C(f~10; F) = Crra(f=19; F)

Indeed, if ¢ € CP(U; F) and d € C4(; F) are arbitrary and ¢ is a (p + ¢)-simplex of
f~193, we compute

(f, k) (c — d)(0) = ks, ((c — d)(0))

= ky, (6(007 e vap)’%g : d(Uzn e 7Up+q)"17[,)
..... o (C(00, - 0p))lu, ki, (A(0ps - 0pig)) |,
= ((f,k)"(c) — (f, k)" (d)) (o),

because we are assuming that k£ is a cohomomorphism of algebras. If in addition F' and
G are unital algebras, and k is a cohomomorphism of unital algebras, then each of the
algebras F(f~'0,) and G(U,) possesses a unit, and these are mapped onto each other
by ky,. Hence, (f,k)* preserves the units of C*(0; G) and C*(f~'0; F'), which are the
constant 0—simplicies o +— 1. O

A relative version of the previous proposition holds as well. More delicate, yet funda-
mental, is the following

Theorem 11.4. If F is a presheaf of commutative R—algebras, i. .e. if F(U) is a
commutative R—algebra for all open subset U of X, then the cohomology cup product is
graded—commutative: if c € HP(X) and d € HY(X), then ¢ — d = (—=1)P4-d — c.

Proof. For the proof we cite the following generalization of lemma 8.2 (see [13, Section
20, Proposition 2]): if 4 is a cover of X, then every cocycle in cr (L) is cohomologous to
an alternating cocycle. Here, a cochain f € C"(4l) is said to be alternating if (i) f(o) = 0
whenever two different vertices of o are equal and (ii) f(o) = sgn(7) - f(ox(0)s- -+ Tn(r))
for every permutation 7 on {0, ...,r}. With this result at hand, the proof of the theorem
is as follows. Consider for each r > 0 the map v: C" () — C" (&) given on an r—cochain
c by
r(r+1)

(ve)(o) = (1) 2 -c(oy,...,00).

Note that if ¢ is alternating, then v(c¢) = ¢, because

c(o)=(-1)"-clo1,...,00,00)
= (=) e(oy,... 00, 01,00)
= (_1)T+(T_1)+.“+1C(0—T7 SR UO)

= (16)(0).

63



Moreover, ~ is a chain map, because

r+1

(6vc)(o) = Z(*l)j(’70)(J‘{O,A..,j,.“,rﬂ})

J=0

ril r(r+1)

=Y (~1)(=1)" 2 - c(0rs1,-- -0 ds- -5 00)
j=0

r+1

r(r+1) r s —
= (=172 Y (=) (01, Gri1 gy -5 00)
=0
r(r+1)
= () (1) (30 (0 00)
r(r+1) r (r4+1)(r+2)
=(-1) 2 ()T ()T - (vée)(o)

— (730)(0).

Now let ¢ € CP(4) and d € C9(4) be alternating cocycles. Then ¢ — d is cohomology
to an alternating cocycle, that is, there exists an alternating cocycle f € CPT9(4) and
a cochain e € CPY4~1(Y) with ¢ — d = f + de. In particular, y(c — d) = f + dve,
and on the other hand, since F' is a presheaf of commutative R—algebras and ¢, d are
alternating,

(C ~ d)(O'p+q, oo ,0’0) = C<0'p+q, ces 7Uq)|ﬂg : d(O'q7 v ,0'0)’}40
a(q+1) p(p+1)
=(-1)"2 - (-1) 2 (yd = c)(o)
q(g+1) p(p+1)
=(-1)" =z - (=1) 2 (d—)(o)
It follows that,
(p+a) (p+g+1) a(g+1) p(p+1)
Ae— d) = (1) HEE L ) )"l = o)(0)

= (=1 - (d —¢)(0)

and so

Therefore, —: HP(U) x HI(U) — HPTI(4) is graded commutative, and passing to the
limit, the cup product on cohomology is graded—commutative too. O
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CHAPTER III.

Spectral sequences

1. Abstract spectral sequences

Throughout this chapter, we fix a commutative ring R and denote by W either the
category R—mod of R—modules or the category R—alg of R-algebras.

Definition 1.1. Let I be an Abelian group, M an R—module, and A an R—algebra.

(i) A collection of R-submodules (M7)yer of M is aI'-grading of M it M = P, . M7.
In this case M is said to be a I'-graded module.

(ii) A I'-grading of A (as an algebra) is a I'-grading (A”)cr of the R-module A which
in addition satisfies A7- A7 C A7 for all ~v,7 € T'. We call A aT'—graded algebra.

(iii) A morphism f: M — N between I'-graded objects M and N is just a morphism
in W. We say that f is homogeneous of degree v, where v € T', if f(MV/) C N7
holds for all 4/ € T.

Example 1.2.

(i) Let Z/27 = {0,1} be the group on two elements and consider the subgroups
Zg=1{2z|z € Z} and Zy = {0,222+ 1|z € Z}

of Z (generated) by the sets of even and odd integers, respectively. Then Z =
Zy @ Zy is a Z/27 grading of the Z-module Z. However, this is not a grading of
algebras: if it was, then Z5 - Zy € Z7 would have to hold, but the product of an
integer with an even integer is again an even integer.

(ii) For any topological space X and any presheaf of R—modules F' on X, H* (X, F) =
D,z HP(X; F) is a Z-graded module, where we have set HP(X; F) = 0 for p < 0.
If F is a presheaf of R—algebras, then, considering fI'(X ; F) as an R—algebra via
the cup product, this grading is even a Z-grading as an algebra.

Our objects of interest are not arbitrary graded objects, but complexes. A (cochain)
complex of modules is a pair (C,d) consisting of a Z-graded module C, say with grading
(CP)pez, and a differential d: C — C, i. e. a morphism of R-modules which is homoge-
neous of degree 1 with respect to the grading (CP),ez and such that d*> = 0. If C is an
algebra, (CP),cz is a grading of algebras, and if d in addition is an anti-derivation, i. e.

d(z-y) =d(z)-y+(=1)" z-dy)
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holds for every homogeneous element = of degree n, then we call (C,d) a (cochain)
complex of algebras.
Given a complex (C,d), its cohomology is, as usual, H*(C) = @pEZ HP(C), where

_ kerdn MP

imdn Mp’

A morphism or chain map a: (C,d) — (Co,dy) between complexes C' and Cj is a
morphism «: C — Cj of the underlying objects, homogeneous of degree 0, with « o
d = dp o a. Note that these conditions ensures that a induces a well-defined map
a,: H*(C') — H*(Cp), homogeneous of degree 0.

H?(C)

Definition 1.3. Let a be an integer. A spectral sequence in VW (starting at a) consists
of the following data.

(i) For each integer r > a a (Z x Z)-graded object E, = D, ez Er?, called the r-th
page. The object E, is the initial page of the spectral sequence and elements of
EP? are said to be homogeneous of bidegree (p,q) and total degree p + q.

(ii) For each r > a a morphism of R-modules d,.: E, — E,, homogeneous of bidegree
(r,—r + 1), which is an anti—derivation on FE, with respect to total degree if W is
the category of R—algebras: that is to say,

de(z-y) =dp(x) -y + (=1)" -z dr(y)
must hold for all z,y € E, if x is homogeneous of total degree n.

(iii) Isomorphisms ®,: H**(E,) — E,41 for all r > a, homogeneous of bidegree (0, 0).
Here, H**(E;) = @, ,cz H?I(E;) is the (Z x Z)-graded object with

kerd N EP4
HE) = A BT

Any (Z x7Z)—graded object C' = G}n qez CP1 can be regarded a Z-graded object by col-
lecting elements of the same total degree. Namely, consider the Z—grading (Tot(C)") ez
on C with with Tot(C)" = @,,,_, C"?. If we wish to indicate that we consider C
as Z-graded space with this gradation, we write Tot(C') in place of C, but note that,
Tot(C) = C holds as ungraded modules. For example, if (E,),>, is a spectral sequence,
then each map d, is a differential on the total complex Tot(F,) in the previously defined
sense and FE,; is obtained as the cohomology of this total complex.

A morphism between spectral sequences (E;);>q and (E.),>, is a collection of homo-
geneous morphisms f,.: E, — E! of bidegree (0,0), one for each integer r > a, such that
frod, =d, o f, and such that

oo () L 1 ()

«pri l@:

E7'+1 E;ﬂ—‘rl

r41
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commutes for all r; here, ®, and @/ are the isomorphisms provided with the respective
spectral sequence and (f,), is the morphism induced by f, on the level of cohomology.

Given a Z-graded object C' = @pez CP of W, a (decreasing) filtration of C is a
function F,C' assigning to every integer p € Z a submodule F,C := (F,C)(p) of C' which
is a graded submodule in the sense that (FpCﬂCk)kez is a grading of F,C' and such that
Fp,1C C F,C for all p € Z. If W is the category of R-algebras, then we additionally
require F,C - F,C' C F,,,C to hold for all p,q € Z. The associated graded object of a
filtration FoC then is the (Z x Z)—graded object

F,Cncrta

_ 4 i q_ )
gr(F,C) = @ g1, (FeC)? with gr,(FoC)? = FynC O

D,qEL

notice that gr(F,C) really is a graded algebra if C' is an algebra, because the mul-
tiplication in C induces a well-defined “multiplication” gr,(FeC)? x gr,, (FeC)" —
grp i (FeC)1t™ as F,C' is decreasing. With all these concepts at hand, we are ready to
explain the notion of convergence of spectral sequences. Namely, a spectral sequence of
modules (E;),>q converges or abuts to a Z-graded module C if

(i) for every pair of integers p, ¢ there is some r such that Ef? = EY, for all k > 0.

M p’q PR p’q PR p7q
We write 5! := E;’? and set Ey := ®p7qEZ ELY.

(ii) There exists a filtration FoC of C' together with isomorphisms of graded modules
Ey = gr(F,C).

If (E,)r>q converges to C, we indicate this by writing E'Y = C. Of course, this
notion also is defined in the category of R-algebras: if C is a Z-graded algebra and
(Er)r>aq is a spectral sequence of algebras, then we say that (E,),>q converges to C
(as a spectral sequence of algebras) if (E,);>q abuts to the graded module C' and if in
addition the isomorphism Eo, = gr(F,C) is an isomorphism of graded algebras; here, the
ring structure on E, is defined as follows. If we denote by r(p,q) the smallest integer
such that EY? = EP'Y, for all r > r(p, q), then the multiplication is defined so that

Ef,q % E;n,n E;H-m,q—irn

| |

BRI x B —— ERETat

Y

commutes for all r > max{r(p,q),r(m,n),r(p +m,q+ n)}, where the upper horizontal
map is the multiplication in F,.

2. The spectral sequence of a filtered complex

In many situations a complex (C,d) in W comes equipped with a particular filtration
from which we can build a spectral sequence converging to H*(C'). In more detail, a
(decreasing) filtration of the complex (C,d) is a filtration FeC' of C' which in addition
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satisfies d(F,C) C F,C for every integer p. Notice that in this case the differential d
on C induces a differential on gr(F,C), homogeneous of (bi-)degree (0,1). If F,C is a
filtration on (C,d), then we say that (C,d) is a filtered complex. A morphism between
filtered complexes C' and D with respective filtrations FoC' and F,D is a chain map
a: C' — D preserving the filtrations, that is, with a(F,C) C F,D for all p € Z.

We will mostly encounter bounded filtrations: these are filtrations FoC such that for
every integer n there exists integers ¢t and s with

C":Ftﬂcn:_)Ft+1ﬂCn D...0F, 1NC*"DF,NC"=0.
A filtration is said to be canonically bounded if s =n+1 and t = 0.

Theorem 2.1. For every filtration F,C of C there exists a spectral sequence (Ey)y>1,
called the spectral sequence associated to FoC, with the following properties.

(i) There exists an isomorphism of graded objects E1 — H**(gr(F,(C)).

(ii) If FoC is bounded, then the spectral sequence converges to H*(C') with respect to
the filtration FoH of H*(C) induced by F,C, i. e. the filtration in which F,H is
induced by the inclusion of complexes F,C — C.

(iii) If C is another filtered complez with filtration FoC and if a: C — C is a morphism
of filtered complexes, then a induces a morphism of spectral sequences

(047«: E, — ET)TZP

where (E,),>1 is the spectral sequence associated to FyC. Moreover, the diagram

(o5} -

Eq E,

e

H**(gr(F,C)) —= H**(gr(F,C)),

with the isomorphisms coming from the first item, commutes, as does the diagram

Egca)q Qoo Eﬁ;}q
ar (FUH)1 - gr (FH)o

for all p, q, where FoH is the filtration of H*(C) induced by FoC and the isomor-
phisms are those with respect to which (E,)y>1 and (E,),>1 converge.

Proof. Let ZP' = {c € F,C N CP*1|d(c) € Fp.,C} be those elements in F,C which are
homogeneous of bidegree (p,q) and cocycles modulo Fj4,C, and observe that

d(ZP9) C F,y,CNCPHY = F L .O 0 OP+r)+(g—r+1)
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because d is homogeneous of degree 1. Since d? = 0, it follows that d(ZF?) C zptra—rtl

and hence it makes sense to set, for all r > 1,

er7q
p—r+1,q+r—2 p+1,q—1°
d(erl ) + erl

P.q . —
BP9 =

With this choice, we can define d,. so as to make the diagram

d —r41
qu Z719+r7q r+

| |

dp#] _ 1
qu r E713+r7q r+

commute, where the vertical maps are the canonical projections. Carefully observe that
d, becomes an anti—derivation with respect total degree if C' is a complex of algebras.
Now we notice that if ¢ € ZP*? is such that d,(7(c)) = 0, then by construction

d(e) € d(ZP5 ") + 27T

or in other words, upon adding a suitable element u € ijll 1 we have ¢+ u € VAR
But ¢ and ¢ + u represent the same class in EF'?, and since 7 is surjective, we see that
ker d¥’? is contained in W(fol). Conversly, by the diagram above, every element in
m(Z)) is contained in the kernel of di’?, and therefore the canonical map
P,q p+1,9-1
ZrJrl + ZT*l
“rlgir—2 g1
A TR g

r—

— W(fol) = ker dP?

induced by 7 is an isomorphism. Next, observe that 7 induces

—rg+r—1 +1,g—1

dZF 7 )+ L g (greratro1)) = et

d(Zp_I+1’q+T_2) +Zp+11,q—1 - 7T( ( T )) = 1ma, ’
r— r—

p—r+1,q+r—2

. . . — -1
because Z!~] already is contained in ZF~"9%"

. Therefore,

, +1,g—1 ,
202 erdd

— -1 Tqg—1 — . - —1
d(ZE~TITTY - ZP im dp "

and this isomorphism is again induced by . Now consider the inclusion induced map

Pq D4 p+1,g-1
E‘p,q1 _ Zr+1 N Zr-i—l + Zr—l
+1 = —rqtr—1 Tq—1 —rqtr—1 Tg—1
r d(Zf rqtr ) + Zf+ g d(Zf rqtr ) + Zfi—l g
This map is certainly surjective. It is injective, for if ¢ € ZY, is such that ¢ = d(b) + =

for some b € Z27"T" 1 and some z € ZPT 97! then d(c) = d(z), so z € ZETH! and

hence ¢ represents the zero class in EX/,.
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Set B, = EP?. What we have just shown is that the morphism

p,qEL =T
_ D.q . Dsq o0
o, = P ot P EXY, - H(E,)
P,qEL D,qEL

with ®29([c]) = [¢] is bijective, where on the left hand side [¢] denotes the equivalence
class of ¢ € ZI!; in E'!, and on the right hand side the equivalence class of ¢ in H**(E,.).
Therefore, (E,),>1 is a spectral sequence. Its first page is

VA
d(F,CnCrtra-l)y + F,,,CNCPHa

Dq _
E =

and an element ¢ € F,C N CP*? is contained in Z'? if and only if d(c) = 0 modulo
F,1C. This is exactly the condition for ¢ to represent an element in the kernel of the
induced differential gr,,(FoC)? — gr,(FoC)?*!. Thus, we have a commutative diagram

P,q
Zl

|

EP? ——HP(gr(F,C))

where the vertical map is the quotient map and the diagonal map is induced by the
quotient map n: Z}? — gr,(F,C)?. In particular, the horizontal map is surjective.
Unwinding definitions we also see that is injective: indeed, an element ¢ € Z"? maps to
zero under the diagonal map if and only if 7(c) is contained in the image of the differential
on gr(FeC'). This in turn means that ¢ = d(b) modulo F,1C for some element b € F,C,
and hence c represents 0 in EP7.

Now suppose that the filtration is bounded. Consider the filtration F,H of H*(C)
given by F,H := im(H*(F,C) — H*(C)), where the map is induced by the inclusion
of complexes F,C — C. This filtration will verify that the spectral sequence just
constructed converges to H*(C'). To see this, fix integers p and ¢. If r is chosen so large
that F,,C N CPT4Tt =0 and F,_,.,C NCPHI~1 = CPHa=1 then

ker d N F,C' N CPTe

EP4 —
! d(Crta=1) N F,C + kerd N F,41C N CP+a’

so (Ef ’q),?l stabilizes. On the other hand we have the chain of canonical isomorphisms

F,H NHPTI(C)
Fp_HH N Herq(C)
N ker d N F,C N CPT4 + d(CPra—t)
kerd N Fp11C N CPHa 4 d(CPHa—1)
~ kerdnF,CN CPra 4 d(CPrayn E,C
kerd N F,11C N CPFa + d(Crta—1) N F,C

— P9
_Eoéa

grp(F‘H)q =
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where for the second isomorphism we once more use that FeC' is a decreasing filtration,
so if z 4+ d(b) € F,C for some element z € F),1C, then also d(b) € F,C.

Finally, let us discuss naturality of the spectral sequence. So assume that a: C' — C
is a morphism of filtered complexes, where F,C is the filtration on C. Let Zf’q be the
elements in Fpé which are cocycles modulo FpH@ and homogeneous of bidegree (p, q),
and let F, = eap,qEZ Ef’q be the r—th page of the spectral sequence associated to F,C.
Since « preserves filtrations and commutes with the differentials, we can define «,. to be
the unique morphism making commutative the diagram

N

L

o TP,
pra__or g

for all ¥ > 1 and all p,q € Z. From this we immediately see that o, commutes with
the differentials on E,. and E,, and because the isomorphisms E,,; — H**(E,) and
E,1 — H**(E,) are induced by inclusions, it follows that (c,.),>1 is a morphism of spec-
tral sequences. Moreover, the commutativity of the diagram above shows that a; corre-
sponds to o under the isomorphisms EY? — HPH9(gr(F,C)) and E;? — HPH9(gr(F,C))
constructed earlier. Analogously, since for fixed integers p, ¢ we have E&! = EP? and
EZ% = EPY for sufficiently large r, and since the isomorphisms E2? — gr,(FeH)? and
E5 — grp(F.ﬁ)q are induced by inclusions, we see that under these isomorphisms the
map Qe = - just corresponds to the map o : grp(F.H)q — grp(F.F)q. O

Remark 2.2. In categorical terms, we can rephrase theorem 2.1 as follows. Denote by
F (W) the category of filtered differential complexes, in W i. e. pairs (FoC, ('), where
C'is a complex in W and F,C is a filtration of this complex, and by £(W) the category
of spectral sequences in W starting at a. The statement of theorem 2.1 then is that
there exists a functor E: F(W) — E£(W) such that E(F,C,C) is a spectral sequence
whose first page is isomorphic to H**(gr) and such that E(F,C,C) is convergent if FoC
is bounded.

Note that we can actually replace the first page of E(F,C,C) with H**(gr) and
still obtain a functorial assignment F(W) — £(W). More generally, and more ab-
stractly, this can be seen as follows. If C is any category and E: C — E(W) is a
functor, let Gr(W) be the category of Z x Z-graded objects and p: C — Gr(W) the
functor which assigns to an object C of C the r—th page FE, of the spectral sequence
E(C) = ((Er)r>a, (dr)r>a, (Pr)r>q). Suppose that g: C — Gr(W) is a functor and that
7n: p = q is a natural isomorphism, i. e. a natural transformation such that nc is an
isomorphism for all objects C' of C. Then we can define a new functor E: C — £(W) by
letting E(C) = ((E})r>a, (dr)r>a; (P1)r>a) be the spectral sequence which equals E(C)
on all pages except the r—th, which we define to be

E,:= q(C)7 dr :=mncod,o (770)71; and 67" =®, 0 ((770)*)71-
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Here, (nc)«: H**(E,) — H**(E,) is the map induced by n¢, which by construction
commutes with the differentials d, and d, and is an isomorphism by assumption. Then
E(C) is again a spectral sequence whose r—th page now equals ¢(C).

This general reasoning applies to the functor E: F(W) — E(W) of theorem 2.1,
because the isomorphism between the first page of E(F,C,C) and H**(gr(F,(C)) is a
natural by the second item of theorem 2.1.

3. Double complexes

Let C' =D, 47, C"? be a (Z x Z)-graded object and dy, dj, two R-module morphisms
on C'. We call the triple (C, d,, d},) a double complezx in W if the vertical differential d,, is
homogeneous of bidegree (0, 1), the horizontal differential dj, is homogeneous of bidegree
(1,0), if dydy, = —dpd,, and if the total complex Tot(C') together with d = d,, + dj, is a
complex. A morphism of double complexes C' — C” is just a morphism of the underlying
graded objects commuting with the horizontal and vertical differentials.

Every double complex C' admits two canonical filtrations of Tot(C'), the filtration by
rows and the filtration by columns, denoted by VoC and H,C| respectively, and given by

VoC= @ CPand H,C= P CP

q>q0,pEZ P>p0,qEZ

To ensure that the spectral sequences associated to these filtrations converge against
H*(Tot(C)), we assume that C' is a first quadrant double complex, that is, CP? = 0
unless p, ¢ > 0, or more generally that C is bounded in total degree, which means that
Tot(C)" = B, 4y
sequences (E;),>1 and (I,),>1 associated to V,C and H,C, respectively. By the same
theorem, the first page of the spectral sequence associated to the filtration by columns
is By = H**(gr(H,C)). But

CP1 is a finite sum for each n. By theorem 2.1 there are two spectral

0 H,C N Tot(C)Pta & opa
H,.1C N Tot(C)rta ’

gr,(HaC)

the isomorphism just being induced by the inclusion. Moreover, the differential on
gr(H,C) is just the differential induced by d, and since dp(H,C) C Hp1C, we see
that under this identification the differential on gr(H,C') corresponds to d,. Therefore,
E, = H**(C,d,) as (Z x Z)-graded objects. An entirely analagous computation shows
that I, = H**(C*?, d}), where C* = C' as ungraded objects, but (C?)P4 = C%P,

Theorem 3.1. For every double complex C' there exists a spectral sequence (Ey)r>2
having the following properties.

(i) The initial page is By = H**(H**(C,d,), dp).

(ii) If C is bounded in total degree, then the spectral sequence converges to H*(Tot(C'))
with respect to the filtration induced by the filtration by columns.
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(iii) If (C',d,, dy) is another double complex and if a: C — C’ is a morphism of dou-

s Wy
ble complexes, then a induces a morphism (ay)r>2 between the spectral sequences

(Ey)r>2 and (E),;>2 which on the second page equals
(a): HY*(H**(C,dy), dy) — H** (H**(C, d), d},).

Moreover, if C and C' are bounded in total degree, then the following diagram
commute for all p, q:

Qoo

R (EL )P
ar (FUH)T % o (FLH')0

where FoH and FoH' are the filtrations of H*(Tot(C)) and H*(Tot(C")) induced
by the filtrations by columns and the isomorphisms are those with respect to which
(Ey)p>2 and (E),;>2 converge.

Proof. We will have to reexamine parts of the proof of theorem 2.1. Consider the hori-
zontal filtration HeC of the total complex Tot(C). Recall from the proof of theorem 2.1
that E?) the (p,q)-th graded part of the first page of the spectral sequence (E;),>1
associated to HeC), is as a certain quotient of the set Z1"Y C H,C N Tot(C')P*? of homo-
geneous cocycles modulo Hy,1C. But H,C NTot(C)PT? = CP4 and an element ¢ € CP4
satisfies d(c) € Hp41C if and only if d,(c) = 0, because d, is homogeneous of bidegree
(0,1), and thus ZP? = ker d,, N CP4. Moreover, the differential d; on Fj is defined so as
to make the diagram

Z{),q d Z{Hl,q

-

Ef’q y E‘f“’q
1

commute, where the vertical maps are quotient maps. Also recall that

P,q
Zl

[

By —— HP(gr(HL0))

is commutative, where the vertical map again is the quotient map and the diagonal map
is induced by the quotient map Z"? — gr,(Ho,C)?. But we just checked in the paragraph
preceeding this theorem that H?4(C, d,) — HP4(gr(H,C')) and that this isomorphism is
induced by the quotient map CP? — grp(H.C)q. Thus, the kernel of the diagonal map
above is precisely im d, N CP4 and so 7 induces an isomorphism 7: H??(C, d,) — E.
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Since dj, descends to a well-defined map on H**(C,d,), we hence have a commutative
diagram

Hp,q(C, d'u) L an(a dv)

| I

D:q p+1,9
Ey Ey

di

in which both vertical maps are isomorphisms. Therefore, T induces an isomorphism
H**(H**(C,d,),dn) — H**(E;) of graded objects. Since H**(E;) in turn is isomor-
phic to Fy as a (Z x Z)-graded object, we can replace Eo with H**(H®**(C,d,), d)
in the spectral sequence (E,),>1, provided that this replacement defines is natural (cf.
remark 2.2), and then all claims will be consequences of theorem 2.1.

Thus, let us now suppose that a.: C — C” is a morphism of double complexes. Then o
commutes with dy,, d,, and hence in particular with d. Also, « is homogeneous of bidegree
(0,0), so « is a chain map between the Z-graded complexes (Tot(C),d) — (Tot(C"),d)
and preserves the horizontal filtrations on Tot(C') and Tot(C”). That is to say, « is
a morphism of filtered complexes and hence induces, by theorem 2.1, a morphism of
spectral sequences (o, : E, — E),>1, where (E),>1 is the spectral sequence associated
to the horizontal filtration H,C’. Now consider the diagram

H**(C, d,) H**(C", d;)
> o <
Ho*(gr(H.C)) @) He(gr(H.C")).

The outermost rectangle commutes, as do the left, right and lower triangles. Since
E{ — H**(gr(Hl.C")) is injective, it follows that the upper triangle commutes as well.
But then so does the diagram

(@)«

He* (H**(C, d,), dy) He* (H**(C", d.)), d})

|

(1)«

1%

H**(E) H**(EY)
Fs a2 E}

where the lower vertical maps are the isomorphisms coming from the respective spectral
sequence. Thus, the spectral sequence associated to a double complex is functorial. [
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Proposition 3.2. Let a: C — C' be a morphism between double complezes C' and C'
which are bounded in total degree, and let (ay)r>2 be the induced morphism between the
spectral sequences (Ey)y>2 and (E]),>2 of C and C', respectively. If o, is an isomorphism
for some r, then also . : H*(Tot(C)) — H*(Tot(C")) is an isomorphism.

Proof. If o, is an isomorphism, then, since «, 1 corresponds under the isomorphisms
H**(E,) = E,41 and H**(E,1) = E]_ | to the map induced by a, it follows that a,41

T
is an isomorphism. Inductively we see that each o, is an isomorphism, and then o

must be as well. Let then Fo H and Fy H' be the filrations of H®*(Tot(C')) and H®*(Tot(C))
with respect to which (E,),>2 and (E]),>2 are convergent. Since for all p, ¢ we have
isomorphisms E&! = gr (FyH)? and (E., )" = gr,(FyH')? under which o, corresponds
to the map a,: gr(FeH) — gr(FeH') induced by «, it hence follows that the latter map
is an isomorphism.

To conclude that a,: H*(Tot(C)) — H*(Tot(C")) is an isomorphism, choose n suf-
ficiently large so that F,,H N H"(Tot(C)) and F,H' N H"(Tot(C")) are trivial. This
is possible, because we are assuming that the double complexes are bounded in total
degree, whence the filtrations Fy H and FyH' are bounded as well. Then consider the
restriction ., : F,,_pH N H"(Tot(C)) — F,_H N H*(Tot(C")). This map trivially is
an isomorphism for k& = 0, and proceeding inductively, suppose that this map is an
isomorphism for some k — 1. Consider the commutative diagram

0— F,y 1 HNH"(Tot(C)) — F,,_H N H*(Tot(C)) — gr,,_p(FeH)* —0

0— Fpy1 pH NHY(Tot(C")) — F,_xH NH"(Tot(C")) — gr,,_(FeH)¥ -0

We just observed that the right vertical map is an isomorphism, and we are assuming
that that the left vertical map is an isomorphism. Because the rows of the above diagram
are exact, it follows that the middle vertical map is an isomorphism for k, thus proving
that the middle vertical map is an isomorphism for all choices of & > 0. Using once more
that the filtrations FoH and FeH' are bounded, we conclude that o, : H"(Tot(C)) —
H"™(Tot(C")) is an isomorphism. O

As a first application of the spectral sequence of a double complex, let us prove the
Universal Coefficent Theorem in cohomology. It asserts that for a space X and an R—
module M the cohomology groups H®(X; M) can be expressed in terms of H*(X; R) and
torsion products between ﬂ'(X ; R) and M. To make this statement more precise, we
have to introduce some notions from homological algebra.

First, recall that an R-module M is called free, if there exists an isomorphism of
R-modules @, ; R — M for some index set I. This is equivalent to demanding that
there be an R-basis, that is, a collection of elements (b;);c; of M such that every element
m € M can be uniquely expressed as m = ), _; ;b; for certain coefficients r; € R, finitely
many of which are non—zero. Every R—module M can be resolved by a free R—module,
which means that there exists a surjective map F' — M from some free R—module M:
simply consider the free R-module F' = @, .5, R and let ' — M be the map which
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takes an element f € F, say with components f = (fm)men, to >,,car fmm. Note that
this expression is well-defined, because by definition of the direct sum only finitely many
of the components of f are non—zero. Resolving the kernel of this map F — M and
proceeding inductively, we see that every R—module M admits a free resolution, that is,
there exists an exact sequence

RPN o R A NN gy
with each Fj a free R-module. For an R-module N, the n-th torsion group Tor(M, N)

then is defined to be

ker(idy ®r dp,)

Tor®(N, M) =
ot (N, M) im(idy ®r dpt1)’

where idy ®prd,: N ®r F, - N ®g F,_1 is the map induced by d,,. One can show that
the isomorphism class of Torf‘(M ,N) does not depend on the particular choice of free
resolution, see [11, Theorem III.6.1].

Theorem 3.3 (Universal Coefficient Theorem). Let R be a principal ideal domain and
M an R—module. Then for every p and all Cech covers t of X there is a commutative
diagram

0——=HP(S; R) @ M 2> HP(81; M) — Torf (AP (8 R), M) —— 0
0—HP(X;R) @ M *— HP(X; M) — Torl(HP*!(X; R), M) —0

wn which all vertical maps are induced by limit maps and where py is induced by the map
CP(U; R) ®r M — CP(U; M) sending a homogeneous tensor ¢ @ m to the cochain ¢ m
with (¢ xm)(o) = c(o)m for all p—simplices o.

Recall that a (commutative, associative) unital ring R is a principal ideal domain if
R is an integral domain and every ideal I C R is of the form I = Rx for some x € R

Proof. We shall use without proof that for a principal ideal domain R and every free
R-module N also every submodule ¢ C N is free. In particular, if we resolve M as
F — M for some free R—module F', the kernel of this map automatically is free, and
hence M admits a free resolution of the form

0= F S F 2 Mo

By definition, we thus have Tor®(N, M) = keridy ®r a for all R-modules N. Now let
i be a Cech cover of X and consider the double complex

CP9:=CP(U; R) ®p Fq,

where we have set F;;, = 0 for ¢ # 0,1. The vertical differential d, is just id ®r «,
trivially extended to all of C', and the horizontal differential dy, is determined by dj,|cr.a =
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(—1)%6 ®p id, where 6: CP(U; R) — CPTY(U; R) is the boundary operator. Note that
this double complex consists of two rows and lies in the first quadrant. To compute the
cohomology of Tot(C') and to provide an explicit isomorphism, we introduce the complex

(C')P4 .= CP,R)@r M, q=1,
0, q# 1.

with trivial vertical differential and with horizontal differential d;l = —§ ®p id. Observe
that we can consider id ® g 3 as a morphism of double complexes C' — C’: indeed, since
im o = ker 3, we see that id®@g 3 vanishes on C*?, and hence maps into C’ and commutes
with the differentials. We claim that id ® g 8 induces an isomorphism between the
cohomology of the total complexes, and to prove this assertion, we consider the spectral
sequences (FE,),>2 and (E!);>2 of the double complexes C' and C’. To determine FEs, let
I be the index set on which 4 is defined and consider first the commutative diagram

C'p(u; R)@r F1 — [, cppr F1
id®RaT THUEIP-H «
CP(U R) @ Fy —[1,epoi1 Fo

where the horizontal maps send a homogeneous tensor c®g f with f € F, to the element
(c(0)f)yerp+1. These maps are injective: if (by)rex is a basis of Fy, then every element
in CP(4; R) ®p Fy is of the form ), ¢ ®p by, with only finitely many ¢;, different from
0, and

> ek @rby (Z ck(a)bk)> .
oelrtl

keK k

If the right hand side is 0, then every component is 0, and thus ), c¢;(0)by, = 0 holds for
all simplices 0. But since (by)rex is a basis, we must have c¢x(o) = 0 for all simplicies o
and all £ € K, and then ¢ = 0 for all £k € K. It follows that in the diagram above the
map on the left must be injective, because the map on the right is, « being injective.
Since for any R—module N the sequence N ®r Fy - N ®r F} - N ®g M — 0 is exact
(see e. g. [11, Theorem V.5.1]), we thus see that

0 — CP(; R) @ Fo S28% ¢P(1(; R) @ Fy 2222 CP(4 R) @ M — 0

is an exact sequence. This shows that

Cp(uvﬁ) ®RM7 q:]-a

HP(C, d,) =
0, q#1,
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the isomorphism being induced by id ® g 5. Then
Ey? =HPH**(C,dy), dp)
N {H”(O'(u;R) ®r M, ~0@pid), q=1,
0, q# 1,
— (B
where the isomorphism again is induced by id ® g 5. But this just says that the map of

spectral sequences induced by id ® g 8 is an isomorphism on the second page, and so, by
proposition 3.2, id ® g 8 induces an isomorphism

H"(Tot(C)) = H™(Tot(C")) = H" 1 (C*(8; B) ®p M).

Now we compute H"(Tot(C)) in a different way. Consider the double complex C! = C
with grading (C*)P4 = C%P, vertical differential d!, = dj, and horizontal differential
dl, = d,,. We have Tot(C") = Tot(C') as Z—graded modules, and so the spectral sequences
(EL);>2 of C still converges against H*(Tot(C)). However, if F is a free R—module and
0+ A— B — C — 0is an exact sequence of R—modules, then also 0 - A ®r F —
B®rF — C®prF — 0 is exact, and this shows that

ker(§ ®pid: C¥P — CITLP)
im(§ ®@pg id: C1—Lp — CoP)

HP(C*,d!) = = HY(U R) @R Fy,

the isomorphism being induced by the projection ker(é ®pg id) = ker(d) ®gr F, —
HY(sk; R) @ F,. By definition we then have
(B)™ = H™I(H*(C", dy), d},) = Tor{' (HI(t R), M).

On the other hand, F%, if FoH' is the filtration of H®*(Tot(C)) with respect to which
(EL),>2 converges, then, because FyH' N H"(Tot(C)) = H"(Tot(C)), we have the exact
sequence

0 — FyH' N H*(Tot(C))

H"(Tot(C)) gro(F HY)" —— 0

lid@Rﬁ l%

H"1(C* (& R) @g M) Torj'(H"(&; R), M)

and we just checked that id ® g 8 is an isomorphism. It thus remains to determine the
image of id @ 8 on FyH' N H"(Tot(C)). But FyH! is just the filration induced by the
filtration H,C", the filtration of C? by columns, and

H,C! = @ (CHP1 = @C’q’l = @C’q(ﬂ; R) ®g Fi.

p>1,q€Z qEZ qEZ

Since the horizontal differential d’;L = d, is zero on on H;C" and Fj is a free R-module,
we see that

H"(H,CY) = H'"" (¢, dl) = H 1 (8 R) @R FY,
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as already observed earlier. It follows that

FUH A HY (Tot(C)) H"(Tot(C))
\Lid®Rﬁ iid@)}?ﬂ

H(C* (8 R) 9 M — = H" 1 (C*(&; R) @5 M)

commutes, where p is determined by p([c] @ m) = [c®m] for all cocycles ¢ € C™"1(4; R)
and all m € M. After identifying H**(C*(; R) ®g M) with H*~1(C*(U; M) via the
isomorphism induced by the canonical isomorphism R ®p M — M, we hence arrive at
the exact sequence

0 — H"™Y(C* (& R) ®p M % H'H(C* (4 M) — Torl(I" (4 R), M) — 0.

The remaining statement is purely algebraic and is a consequence of proposition 3.4
below. O

Proposition 3.4. Let R be a principal ideal domain, M an R-module, and A: I —
R-mod a functor from a directed set I. Then the limit induced maps

lig (A; @ M) = (lim A;) © M and lim Tor{'(A;, M) — Tor{*(lim A;, M)
i€l i€l i€l i€l

are isomorphisms.

Proof. As already remarked in the proof of theorem 3.3, we can choose a free resolution
of M of the form 0 — Fy — Fy — M — 0. Since exact sequences are preserved under
limits, we then obtain the commutative diagram

lignAZ'@RFl hﬂAi(@RFO @Ai®RM4>O

|

(ﬁgﬂAi)®RF1*>(ﬁglAi) ®RF0*>(hﬂAi) ®r M —0

with exact rows. The vertical maps are surjective, because the limit maps A; — lim A;
are exhaustive. Both left vertical maps are injective: to see this, just observe that for
ever free R—module F' and all j € I we have, by definition, a commutative diagram

A; ©p F——lim A; ©r F

T~

(hgﬂ A;) @r F
If an element x is in the kernel of the diagonal limit map, then, since (—) ®pg F sends

exact sequences to exact sequences, we may express « as a (finite) sum z = Zk ar @R fr
with each ay, in the kernel of the limit map A; — hﬂ A;. Hence, we can find jo > j such
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that each aj maps to zero under the map A; — Aj;, and then x also lies in the kernel of
the map A;@rF — hg A; @R F, because the latter factors through A;@rF — Aj,QrF.
Thus, in the first diagram the left vertical maps are isomorphisms, and since the rows of
this diagram are exact, also the right vertical map must be an isomorphism. This proves

the first statement. In order to prove the second assertion, we consider the diagram

OH@TOI"{%(AZ-,M)H@AZ'(@RFH lim A; ®p Fo

l | |

OHTorf(thi,M) — (thZ) ®p F1 — (lim 4;) ®r Fo

where the left vertical map is the limit map induced by the maps Tor{%(Aj,M ) —
Aj®p F1 — (hg A;) @ Fy for varying j. The rows of this commutative diagram are
again exact, and we just saw that the middle and right vertical maps are isomorphisms.
Then the left vertical map must be an isomorphism too. ]

4. Collapsing of spectral sequences

We say that a spectral sequence (E,),>q collapses on the b-th page, if the differentials
d, are trivial for all r > b.

Example 4.1. Suppose that (E,),>, is a spectral sequence consisting of a single row,
that is, we assume there exists an integer go such that EL? = 0 unless ¢ = qo. Then the
spectral sequence collapses. The same is true if the spectral sequence just consists of a
single column.

Example 4.2. Let us assume that we are given a spectral sequence (E;),>, which con-
verges against a Z—graded module C' = @pez CP with respect to a canonically bounded
filtration FoC, and that for each n, Tot(E,)" = @, =n ERY consists of at most one
non—trivial summand. Fix n and let E2? be this non—trivial summand. Then EX? is
the only possibly non-trivial summand in Tot(E,)" for all subsequent pages, and in
particular E55° = 0 for all pairs (r, s) with 7 + s = n, unless (r,s) = (p,¢). Hence, since
the spectral sequence is convergent, also gr,(F,C)*® is trivial unless (r,s) = (p,q). It
follows that F,CNC™ = F,1CNC™ for all r # p, and since the filtration is canonically
bounded, that is, FpC NC™ = C™ and F,,;1C NC™ = 0, we thus have

n <
FrCﬂC”Z{C’ T_p7

Therefore, Tot(gry(FeC)) = C' as Z-graded modules, and hence also Tot(Ej,) is isomor-
phic to C' as a Z—graded module.

If C'is a Z—graded algebra and the spectral sequence is a spectral sequence of algebras,
then the isomorphism Tot(E,) = C' is, in general, not an isomorphism of Z-graded
algebras: for example, it might happen that the multiplication map

gr,(FC)? x gr,(F.C)® — gr, . (FuC)o**

ptr
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is trivial, simply because the target (or equivalently EEI™9%%) is trivial, even though
the corresponding multiplication in C' is not (we will encounter such a phenomenon in
the computation of BZ, for p a prime, see remark 5.2). However, if none of EX!, E5J,
and EEI771® are trivial, then, because of our assumption that only one summand in
Tot(E,)™ is non—trivial, we have a commutative diagram

P.q 7,8 ptr,qts
B X Bl e

| |

g1, (FoC)9 x gr, (FoC)® ——gr, ., (FoC)T*

Cptatrts

ptr

Cp+q X CT+5

where all horizontal maps are the respective multiplications. This show for example that
the previously constructed isomorphism Tot(E,) = C is an isomorphism of Z-graded
algebras if the spectral sequence just consists of the single row E>Y or column EC°.

Example 4.3. As a further application of the spectral sequence of a double complex,
let use prove the de Rham Theorem. It states that for a manifold M Cech cohomology
H*(M;R) coincides with the de Rham cohomology HS (M), which is the cohomology of
the complex (2°(M), d) of alternating forms on M, equipped with the exterior derivative
d of forms. For the proof, we follow [2, Example 14.16].

Consider for each g the sheaf 2 on M which assigns to an open subset U C M the R—
algebra (Q9)(U) := Q4(U) of alternating ¢—forms on U. Our first claim is that HP(L(; Q9)
is trivial for all p > 1, where for the moment { is an arbitrary Cech cover of M. In fact,
if I is the index set on which 4 is defined, let (&;);cr be a partition of unity subordinate
to the cover {Ul; |7 € I} of M. Now assume that c is a cocycle in CP(4;Q9) and define
feCP 1 (4;Q9) on a (p — 1)-simplex 7 by

F) =& cli,mo,... mpm1);
el
this expression is well-defined, because the right hand side is a finite sum at each point
of M. Observe that for every p—simplex o and every index i € I

p

0 = dc(i,00,...,0p) = c(0)|y;ny, — Z(—l)jc(i, 000y 0p)|stne, -
j=0

Since (&;)ier is a partition of unity and subordinated to {{{; | € I'}, it thus follows that

(o) =D Y (~1)& - cli,o0,...,65,...,0p)

i€l j=0

= (6/)(o),
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and hence HP(4(; Q9) = 0.

Next, consider the double complex C' = CP1 with

P,qEL
P = CP (8 ),

with horizontal differential dj, = ¢ induced by the boundary of the Cech complex and with
vertical differential d,|cr.e = (—1)Pd induced by the exerior derivative. We assume that
il is chosen such that i, is smoothly homotopy equivalent to a point for all simplices
o. Covers of this form (named “good covers” in [2]) are cofinal: for example, if we
choose an auxiliary Riemannian metric on M, then every point has a neighborhood
basis consisting of open and (geodesically) convex subsets, and the intersection of such
subsets is again convex, hence smoothly contractible, see [15, Ex. 32(f)]. Then, since
whenever 0 - A — B — C' — 0 is an exact sequence of presheaves on M also 0 —
C*(U; A) — C*(U; B) — C*(4;C) — 0 is an exact sequence of complexes, we see that

ker(d: CP(4; Q9) — CP(y; Qatl
o, - P s
im(d: CP(; Q1) — CP(8;Q9)
~ CP(U; ker d|qq)
 CP(im(d]ge-1))
= CP(U HiR),
where Hfp is the presheaf with (Hip)(U) = Hiz(U) for all open subsets U C
However, since i, is contractible for all simplices o, also CP(4; HgR) = 0 unless g =

0.
On the other hand, the canonical map R — HgR induces an isomorphism CP(;R) —
CP(U; HYR), and therefore

0, q>0,

HP(H*(C, dy), dn) = {f{p(u- R), ¢=0

In particular, the spectral sequence (E;),>2 of the double complex C' consists of a single
row; hence, it collapses, so Fy & E, and Tot(FEy) = Tot(C) as graded R-algebras by
example 4.2 and example 4.1 above. On the other hand, we can also apply theorem 3.1
to the double complex €' = C with grading (C*)P? = C%P. The resulting spectral
sequence (E!),>2 has as second page

EY =H**(H**(C",dy), dy)

and we already observed that H9P(C? dj,) = HP(4;Q9) is non-trivial only if p = 0.
Moreover, under the canonical isomorphisms Q4(M) — H°(4; Q9) the vertical differential
d, = d just corresponds to the exterior derivative d: Q9(M) — Q4T1(M), and so

0, q>0,

(B =
HgR(M), qg=0.

Again we see that E} = E  and that Tot(E. ) = Tot(C") as graded R-algebras. But

Tot(C*) = Tot(C), and so Tot(E}) = Tot(Fs) as graded R-algebras. Since Tot(E%)"™ =
H%: (M) and Tot(E>)" = H*(4;R), the de Rham Theorem follows.
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5. Edge maps

If (E,);>q is a first quadrant spectral sequence (i. e. EF? = 0 only if p,q > 0) which
converges against a Z—graded object C' with respect to a canonically bounded filtration
F,C, then there are two canonically defined edge maps: since the spectral sequence lies
in the first quadrant, we see that no differential enters E? *, so H*(E,) is a submodule
of E>*°. Hence, using the given identifications H**(E,) = E,1; of the spectral sequence,
we have for each n and all sufficiently large k£ a chain of injections
0, 0, 0n ~ pOn ~ ~ On _ 10,
E" B . Bl 2R, 2 2B =B

On the other hand, since the spectral sequence converges against C, there is given an
isomorphism E%" = gro(FeC)™. Since C™ surjects onto gro(FeC)", we thus obtain a
map ep: C" — EO™. This is the first edge map.

For the second edge map, observe that the differentials on EY are all trivial, so
H*?(E,) is a quotient of Ey 0 and, using once more the identifications provided by the
spectral sequence, we have a chain of surjections

,0 0 0~ ,0
EYY - E" ...~ Ey, = EY.
Then B = gr, (FoC)? = F,CNC™, and the resulting map ep: EM F,cCncrccn
again is what we call an edge map.

Proposition 5.1. Let (E,),>q be a first quadrant spectral sequence convering against
a Z-graded object C with respect to a canonically bounded filtration FoC. If (Ey)r>q
collapses on the a—th page, the edge map ep: E;“O — C"™ is injective and the edge map
ep: C" — E™ s surjective for all n.

Proof. If the spectral sequence collapses on the initial page, then each of the maps

ngf — E:fg 1 in the definition of the edge map is an isomorphism, and hence the edge

map ep: Ei’ — F,C' N C™ is an isomorphism too. Similarly, all maps ngg 1 nge
appearing in the definition of the edge map er must be isomorphisms, and then the edge

map ep: C" — EQ™ still is surjective. O

If A=@,zA" and B = @, B? are Z-graded R-algebras, then the (graded—
commutative) tensor product of A and B is the R—module A ®r B = P AP ®p BY
with multiplication given by

P,qEL

a®b-d @b = (-1 (ad) @ (bV)

whenever a € AP, o’ € AP, b € B?, and I/ € B?. Under certain situations, we have a
converse to proposition 5.1:

Proposition 5.2. In the situation of proposition 5.1, additionally suppose that

(1) (Er)r>q is a spectral sequence of R—algebras,
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(ii) that E, = A®RgB is the graded—commutative tensor product of Z—graded R—algebras
A and B,

(i4i) and that A and B are unital R—algebras.

Then, if the edge map ep: C™ — EZ;’O is injective for allm, the spectral sequence collapses
on the initial page.

Proof. 1f the edge map is surjective, then all the maps E;L_’& o E;L_’& appearing in the

definition of the edge map must be isomorphisms, because they are already injective.
Therefore, each of the differentials d,| R0 in the spectral sequence must be trivial, and
since the spectral sequence lies in the first quadrant, also the differentials d,| pro must
be trivial. But (E;),>, is a spectral sequence of algebras, so the differentials d, are
anti—derivations with respect to total degree. In particular, for x € AP, y € B? we have

do(x @y) =tdy(zR14-1pRY) = £ds(x) @14+ 1R da(y) =0,

because necessarily 14 € A and 15 € B°, as A and B are graded algebras. Thus, d, is
trivial and E,11 =2 A®p B as (Z x Z)—graded algebras. Proceeding inductively, we see
that all differentials d, are trivial. ]

6. The sheaf associated to a presheaf

To any presheaf F' (of R—modules) on a topological space X one can associate its etale
space or sheaf space FT. This is the space defined by

FT:=F/., with F := H Ux FU),

UCX
U open

where for each open subset U C X we consider F'(U) as a discrete space and two
elements (u,s) and (v,t) with u € U and v € V are equivalent if v = v and s, = t,.
The canonical projection F — X induces a well-defined continuous map 7: F+ — X,
which is a local homeomorphism. Indeed, since the projection F — X is an open map
and I is endowed with the quotient topology, also m must be an open map. Moreover,
if V' C X is any open subset and A C F(V) is arbitrary, then the under the quotient
map q: F — F7T the set V x A maps to an open subset of Ft by definition of the
quotient topology, because for any open subset U and any s € F(U) with s|, = t|, for
some t € A there must be a whole neighborhood W C U NV of x with s|w = t|w by
remark 3.3. This shows that ¢: F' — F* is an open map, so in particular V x {t} C F™
is open for every t € F(V). Now we certainly have 7w(V x {t}) =V, and if [u, s|, [w, 7]
are two elements in V' x {t} with 7([u, s]) = 7([w,r]), then v = w and s|, = t|, = 7|,
whence [u, s] = [w,r] and 7| is a homeomorphism onto V.

One then defines a presheaf on X, again denoted by F'* and called the sheaf associated
to F (also: sheaf of sections or sheafification of F), by declaring F(U) to be the set
of all sections over U, that is, continuous morphisms s: U — FT such that 7o s = idy.
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Note that F'™ actually is a sheaf and that for every open subset we have a canonical
map F(U) — F*(U), which associates to s € F(U) the section U — F*, z ~ [z,s].
That is to say, there exists a canonical morphism of presheaves F' — FT. In particular,
for every # € X we also have a map F, — (F1),.

Proposition 6.1. Let X be a topological space, F a presheaf on X, FT its sheafification,
and ®: F — F7T the canonical morphism of presheaves.

(i) The induced map on stalks ®,: F, — (F'1), is an isomorphism.

(i) ® is an isomorphism if and only if F is a sheaf.

Proof.

(i)

Any element in the stalk Fj is represented by some element s € F(U) for some
open neighborhood U of z. If ®,(s|;) = 0, then @ (s)|, = 0, and hence shrinking
U if necessary, we can assume that ®r(s) = 0. In particular (®y(s))(z) = [z, ]
is trivial. Hence, on some even smaller neighborhood W of 2 we have s| = 0,
whence s|, = 0. It follows that ®, is injective. To see hat ®, is surjective, represent
any given element of (F'T), by f € FT(U) for some open neighborhood U. By
definition, f(z) = [z, s] for some element s € F(W) and some open neighborhood
W C U of z, and shrinking W if necessary, we may assume that 7T|7T—1(W) is a
homoeomorphism onto W. In particular, y = 7([y, s]) for all y € W, which shows
that f(y) = [y, s] on W. Hence @y (s) = f and &, is surjective.

First, assume that F' is a sheaf and let U C X be an open subset. We wish to
show that @y : F(U) — F(U) is injective, so suppose that ®y(s) = ®y(t) holds.
By definition, this means that for every x € U we have

[z,5] = (Pu(s))(x) = (Pu(t) () = [z, ]

and thus s|, = t|;. Then there must exist an open neighborhood U, C U of x with
slu, = t|lu,, and then s = ¢, because F is a sheaf and (U, ),ey covers U. Thus,
is injective. To show that ® is surjective, let f € FT(U) be given, U C X open.
For every point x € U we find an open neighborhood U, of x and an element
sy € F(Uz) with f(y) = [y, sy for all y € U,. Note that this just asserts that
Oy, (sz) = flu,. In particular,

@y, v, (8zlv.nv,) = flu.nu, = Pu.nu, (Sylu.nu,)s

and since we just showed that ® is injective, we see that s.|v,nv, = sylv.nu,- As
F' is a sheaf, there thus exists s € F(U) with s|y, = s, for all z € U, and so

Py (s)lv, = Pu,(s2) = flu.
and hence @ (s) = f, because F't is a sheaf.

Now assume that ® is an isomorphism, let s € F(U), and let U = |J;c; U; be a
cover such that s|y, = 0. Then in particular s|, = 0 for all z € U, and by definition
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of F™ we have ®y(s)(z) = [z,s] = 0 for all z € X. Since ® is assumed to be an
isomorphism, s = 0. On the other hand, suppose that U = | J;c; U; is a cover and
that we are given s; € F'(U;) for each 7 in such a way that s;|y,nu;, = sj|v;nv; holds
for all 4, j. This says that the element f € F*(U) with f(z) = [z, s;] whenever
x € U; is well-defined and continuous. But @y is surjective, so there must be an
element s € F(U) with ®¢(s) = f. Hence,

(I)Ui(S|Ui) = (I)U(S)|Ui = f|Uz = (bUi(Si)a

the last equality being satisfied by definition of ®;, and f, and so, by injectivity
of @, we have s|y, = s;. O

Proposition 6.2. Let f: X — Y be a morphism of topological spaces and G a presheaf
on X. Then there is a canonical morphism of presheaves a:: f(GT) — (f.G)T making
the diagram

(f:G)(V)

L

(f*G)Jr(V) Tov f*(G+)(V)

commute for all open subsets V C Y.

Proof. On an open subset V' C Y, the map ay is defined as follows. If s € (f.G)* (V) is
any section and z € f~1(V), then s(f(x)) = [f(x),t] for some element t € (f.G)(W) =
G(f~Y(W)), where W is an open neighborhood of f(x). Thus, f~!'(W) is an open
neighborhood of x and it makes sense to set

(avs)(x) = [z,1].

Note that this definition is independent of the particular representative ¢ of s(f(x)):
if also s(f(x)) = [f(w),to], then t|s4) = (to)|f(z), by construction of the equivalence
relation on (f«G)T. That is to say, there exists an open neighborhood @ C Y of f(z)
such that t|g = (to)|g, where the restriction maps are those of the presheaf (f.G)(Q).
But by definition of f.G, these are precisely t|g = t[-1(g) and (to)lqg = (to)lf-1(Q);
where the right hand side is the restriction map of the presheaf G. Hence, t|; = (to)|, in

G, and so [z,t] = [z,to] in GT. This also shows that ay (s) is a continuous map: given
x € f~1(V) we can always choose the neighborhood W so small that s(f(y)) = [f(y), ]
holds for all y € f~1(W), and then (ays)(y) = [y, t] is continuous. O

Remark 6.3. In general, this morphism is not an isomorphism.

7. The Leray spectral sequence

Let X be a topological space and F' a presheaf on X. The g—th Leray presheaf on X is
the presheaf HY(—; F') on X given by

H(—; F)(U) = H(U; Fly).
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Note that if (f,k): (X, F) — (Xo, Fp) is a morphism, where Fy is a presheaf on the
topological space Xy, then (f, k) induces a natural transformation (f,k): HY(—; Fp) =
f«HY(—; F). In fact, if V' C X is an open subset, then consider f\fq(v) as a morphism
flp1ny: f~Y(V) — V. We can restrict the f-cohomomorphism k: Fy = f.F to

klv: (Fo)lv = (flp-)«(Flp100)

and hence obtain a morphism (f|s-1(y), k|v): (f_l(V),F|f_1(V)) — (V,(Fb)|v). Thus,
we have an induced map (f|s-1(v), klv)": HIY(V, (Fy)|v) — I:Iq(f_l(V);F|f71(V)) which
is compatible with restrictions and hence provides the desired natural transformation.

Theorem 7.1. Let X and Y be paracompact Hausdorff spaces, F a presheaf on X and
m: X =Y a continuous map. There exists a first quadrant spectral sequence

Ey? = BV (Y;m Y (— F)) = HPHI(X; F),
called the Leray spectral sequence of 7, with the following properties.

(i) The spectral sequence converges with respect to a canonically bounded filtration
F,H.

(i) The spectral sequence is natural with respect to commutative diagrams

x,F) L (%, F)
[

That is to say, if (E,)y>2 is the Leray spectral sequence of 7, then there is an
induced morphism of spectral sequences (E, — E,)y>2 which on the second page
equals the morphism

(9, (f, k)" HP(Y; 7l (= F)) — HP(Y; mHY(—; F)).

Moreover, if FoH is the filtration with respect to (E,)r>2 converges, then the mor-
phism (f,k)*: H*(X; F) — H*(X; F) is filtration preserving and makes the follow-
ing diagram commute for all p, q:

P,q T P,q
EL EY

i (fk) l

grp(F°H)q - grp(F'F)q

(iii) If F is a presheaf of R—algebras, then the spectral sequence converges as a spectral
sequence of R-algebras. The multiplication on E3'* is given by c-¢’ = (—l)qp/-c -
whenever ¢ € EY? and ¢ € EY 1.
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We will mostly be interested in applying theorem 7.1 for coefficients in the constant
presheaf M associated to some R—module M and when 7 is a locally trivial fiber bundle
with typical fiber F', because we can say more about the Leray presheaf in this situation:
observe that any local trivialization ® = (®1,®2): X|y — U x F of m over some open
subset U C Y provides a morphism of R—modules

(P2lr—1(v))" s HI(F; M) — HI(x~H(V); M)

for all open subsets V' C U and that the right hand side of this map is just the value of
the presheaf m,H?(—; M) on V. Considering the left hand side as a constant presheaf,
we thus obtain an induced morphism

fo: HY(F; M) — (mH(—; M))|y

between the constant presheaf on U associated to HI(F; M) and the restricted Leray
presheaf (7, HY(—; M))|r. Since the stalks of a presheaf and its restriction are canonically
isomorphic, we thus obtain a commutative diagram

HY(F; M) (mHY(—; M)y
(H9(F; M)y —— o (r09(—; M) o),

and we denote the upper horizontal map again by (fs),. Note that for fixed y € U, we
also have a map going in the opposite direction: namely, we can define he , to be the
unique map making the diagram

(m HI(W; M)) HY(F; M)

l hq)‘y

(W*Hq(—§M))y

commute for all open neighborhoods W C U of y, where the upper horizontal map is
induced by the map F — X, C W, p+— ®~1(y,p). We certainly have hg 4 o (fo), = id,
but in general hg , is not injective.

Proposition 7.2. The map (fs)y is an isomorphism with inverse he, for ally € U
whenever at least one of the following conditions is satisfied:

(i) Y s locally contractible or
(i) F is homotopy equivalent to a compact Hausdorff space.

Proof. Note that this is a purely local question: since Y is paracompact Hausdorff, hence
normal, the closed neighborhoods are cofinal in the set of all neighborhoods (cf. the ar-
gument given in example 7.3), so we can shrink U and assume that U C N for some
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closed neighborhood N C Y of y and that ®: X |y — N x F still is a homeomorphism.
Then N and X |y are paracompact Hausdorff, as they are closed subsets of the para-
compact Hausdorff spaces Y and X. Moreover, for each open neighborhood W of y we
have a commutative diagram

HI(F) =——=H4(F)

| |

(Fay | HIW x F) =2 HYW|p) | (fa)y

| |

((p1)+H9(=))y — (mH(-)),

in which all horizontal maps are isomorphisms, induced by ®, and p1, p2 are the canonical
projections from N x F onto N, F', respectively; here and in what follows, cohomology is
taken with coefficients in the constant presheaf associated to M. Thus, we may assume
that X =Y x F is trivial, so 7 = p; and ® = id, and in particular ®5 = ps.

Then if Y is locally contractible, the set of all contractible open neighborhoods V'
of y is cofinal in the set of all open neighborhoods of y, so in the formation of the
limit ((p1)+H?(—)), we may restrict to such neighborhoods. However, for any such
neighborhood the map py: V' x F' — F induces an isomorphism, and hence (fiq)y is an
isomorphism.

Now let Y be completely arbitrary and assume that F' is homotopy equivalent to a
compact Hausdorff space. Passing to a trivial bundle Y x Fy with Fjy compact Hausdorff
and homotopy equivalent to F' if necessary, we can assume that F'is compact Hausdorff.
Then consider the commutative diagram

((p)J19())y —1limg,_ F19(Z x F) < liy, . TN x F)

where the rightmost limit ranges over all closed (in Y') neighborhoods N of y and the
centered limit is taken over all (arbitrary) neighborhoods Z of y. The horizontal maps,
which are the limit maps, are isomorphisms, because the set of all open and closed neigh-
borhoods of y are cofinal in the set of all neighborhoods of y: for the open neighborhoods
this is immediate, and for the closed neighborhoods this is a consequence of normality

89



of Y, as already observed earlier. Next, we note that

R

liny _ HI(N x F) HI({y} x F)

/

i g HOCA 2 F)

e (F)

commutes, where now the lower limit ranges over all closed neighborhoods A CY x F
of {y} x F. Certainly, the upper diagonal map is an isomorphism. As F' is compact
Hausdorff, Y x F' is paracompact Hausdorff and {y} x F'is closed in Y x F'. Therefore,
the lower diagonal map is an isomorphism by the tautness property of Cech cohomology
(theorem 9.5), and we wish to show that the lower vertical map is an isomorphism. To
do so, it will suffice to show that the set of all neighborhoods of the form N x F for N a
closed neighborhood of y is cofinal in the set of all closed neighborhoods A C X x F of
{y} x F. Thus, let A be a closed neighborhood of {y} x F'. Because F' is compact, there
must be an open neighborhood W of y such that W x FF C A x F. Then if we let NV be a
closed neighborhood of y with NV C W, we have N x F' C A x F as required. Therefore,
(fa)y: HI(F) — ((p1)+H9(—)), is an isomorphism, and since we already observed that
hey o (fo)y = id, its inverse must be given by hg . ]

For a locally trivial fiber bundle 7: X — Y with typical fiber F', let us say that the
associated Leray presheaf with coefficients in some R-module M is simple if there is a
cover (Uj)ier of Y by open subsets and for each i € I a local trivialization ®;: X|y, —
U; x F over U; with the following properties.

(i) For each i € I, all y € U, and every ¢ the induced map (fo,),: HI(F; M) —
(mH(—; M)), is an isomorphism.

(ii) For all i,j € I, all y € U; N Uy, and all ¢ the following diagram commutes:

He(F; M) id He(F; M)

(fo,)y 5 (fo,;)y
(mH(—; M),

Proposition 7.3. Let m: X — Y be a locally trivial fiber bundle with typical fiber F' and
M an R-module. Suppose that the associated Leray presheaf m.H®*(—; M) of 7 is simple.
Then in the Leray spectral sequence (Ey)r>2 of m we may take

ERY =HP(Y;HI(F; M)).

If M is an R—algebra, then this equality holds as bigraded R—algebras (with multiplication
on Ey defined as in theorem 7.1).
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Proof. For the sake of simplicity, we assume that M is an R-algebra and suppress
coefficients in the notation. We collect the various Leray presheaves into one presheaf
mH* (=) == @ >0 7, H9(—), which then becomes a presheaf of R-algebras via the cup
product. Let then H? be the sheaf of R—modules associated to the ¢—th Leray presheaf
7,H?(—) and H* the sheaf of R-algebras associated to m,H*(—). Let further (®;);cs be
a collection of local trivializations of X as in the definition of a simple Leray presheaf.
For a non-empty open subset V C Y we define a morphism ¥y = ¥, : HY(F) — HY as
follows. Given ¢ € HI(F), the section ¥y (c): V — (mHI(—))T is defined by

Uy (e)(y) = [y, ((Pi)2)"(c)]

whenever y € U;. This definition is independent of the particular trivialization chosen,
since ((®;)2)*(¢)|y = ((®;)2)*(c)|y holds by definition of simplicity. This also shows that
Uy (c) is continuous and that Uy is a morphism of R-modules, so the various Uy piece
together to give a morphism of preshaves of R-modules W: H(F) — H9. Note that if
y € V, then the diagram

HqIF) — (W*qu))y
HI(F) —' s (H9),

Y

commutes and that the upper horizontal map is an isomorphism, because we are assum-
ing the Leray presheaf to be simple. Hence, the lower map is an isomorphism as well.
Now consider the canonical morphism 7,H9(—)) — H9 of proposition 6.1. It induces
stalkwise isomorphisms and therefore also an isomorphism in cohomology

ERY 5 HP(Y; HY) =: APY

for all p, g, because Y is paracompact Hausdorff. These isomorphisms assemble to an
isomorphism of bigraded R—modules Fo — A®® = @p’ 4 AP4. Declare a product on A
by

HP(Y; H9) x 158 (Y; Hq’) Hete' (Y; Hq+q’)

| ]

HP(Y; 1) x 77 (v He) 2 et (v )

where the left vertical map is induced by the canonical morphisms of presheaves H? — H*®
and H? — H°*, and the right vertical map is induced by the canonical morphism of
presheaves H® — H9+4", Then the isomorphism Fo — A®* is actually an isomorphism
of (Z x Z)—graded R-algebras, because by definition of the multiplicative structure on
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FE> we have a commutative square

AP x AP Apt+Pa+d

’ot / /
Equ X Eg q E§+p ,4+4q

/

7Y, H®) x TP (Y ) COT = e (v, 1)

T

AP (Y m e (=) x B (v e () 2

P _ L , J
S B (v (<)

in which all diagonal maps are isomorphisms, as they are induced by maps from a
presheaf into its associated sheaf. Similarly, we can make B®**® = @p g B! with BP? =

HP(Y;HI(F)) a (Z x Z)-graded R-algebra by

HP(Y;HY(F)) x HP'(Y; HY (F))

|

HP (v H*(F)) x BV (v H*(F))

HrtP' (Y; Hatd (F))

|

P (VS (F))

(—1)2’ —

This R-algebra structure is exactly the algebra structure claimed, and ¥ induces an
isomorphism of (Z x Z)-graded R-algebras B*®* — A®°®. As these isomorphisms are
natural, the claim follows from remark 2.2. O

Corollary 7.4. In the situation of proposition 7.3, suppose that M is a free R—module.
Then we even may take

EPY = HY(Y;R) ®p HP(F; M),

as (Z x Z)—graded R—modules. If M is an R—algebra which is free as an R—module, this
equality also holds as graded (Z x 7Z)—-graded R—-algebras, where the right hand side is
to be understood as (the (p,q)-th graded component of) the graded—commutative tensor
product of the R—algebras H*(Y; R) and H*(F; M).

Proof. If M is a free R—module, this is an immediate consequence of the Universal
Coefficient Theorem (theorem 3.3) and remark 2.2, since under these assumptions we
have Torf(N, M) = 0 for all R-modules N. If M is an R-algebra which is free as an
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R-module, we in addition observe that
HP(%; R) @ g HI(F; M) x H'(U; R) @ H*(F; M) — HP*7(T; R) @ HOHS(F; M)

MmX/mJ/ ium

FP(; T (F; M) x T (20; 15 (F; M) — 27— P+ (20; HOts (F; M)

commutes, where the undecorated horizontal map is multiplication. This is because
for all cocycles ¢ € CP(U; R) and ¢ € C"(V; R), all elements d € HI(F; M) and d' €
H*(F; M), and all (p + r)-simplices ¢ we have, in the notation of theorem 3.3:

((cxd) — (¢ d))(0) = (€(00,. ., 0p) - d) — ((0ps .-, 0pir) - )

(00y. -y 0p)C(Opy .oy Opir) - (d—d)
(c— ) * (d—d))(o),

=c
= (
since the cup product is R—bilinear. ]

Example 7.5. Let 7: E — B be a (locally trivial) fiber bundle, where E, B are para-
compact Hausdorff and B is locally contractible or the typical fiber F' is homotopy
equivalent to a compact Hausdorff space. Suppose there exists a cover (U;);cr of B by
open subsets and trivializations ®;: E|y, — U; x F' such that for all 4, j for which U;NU;
is non—empty and all x € U; N U; the pointwise transition functions

1
o®; |y,

(b.
tjiw: F={z} x F — L{z)x F=F

induce the identity map on cohomology. Then the Leray presheaf of © with coefficients
in any R-module M is simple: in fact, ¢;; , makes the diagram

(tji,@)”

HY(F) He(F)
((‘I’j)l)*T T((%)l)*
HY(E,) HY(E,)
HY(Elw) HY(E|w)

commute for all open neighborhoods W C U; N U; of y. Hence, also the diagram

(tjie)™ -

HY(F) HI(F)
hd)]-,xT Théi,z
(mHY(=))s (mHY(=))s

is commutative. Since (¢j;,)* = id by assumption and (he,.) ! = (fo,)s as well as
(hq>j,x)_1 = (fo,). by proposition 7.2, it follows that the Leray presheaf of 7 is simple.
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Example 7.6. Assume that £ = FEy X F' is associated to a principal G-bundle 7: Ey —
B and that G acts trivially on H*(F). That is to say, for any g € G, let Ty: F = F
be the map T,(p) = gp and assume that (7,)* = id. Then, if E, B are paracompact
Hausdorff and B is locally contractible or F' is homotopy equivalent to a compact space,
the previous example applies and shows that the Leray presheaf of 7: £ — B is simple.
To see this, recall that if we choose a trivialization ® = (&1, ®2) of Ey — B over U, then
by proposition 2.10 we obtain an induced trivialization of F — B over U given by

Ely = U X F, [z,p] = (7(x), ®2(2)p)-

Thus, if ¥ is another trivialization of Ey — B over some open subset V, then the
transition function ® o W~!|;qy is given by

(UNV)xF = (UNV)xF, (z,p) — (z,22(¥(z,1))p),

so the pointwise transition function F' — F over z is just the map T}, for g = ®o(¥~!(x, 1)).
Note that G always acts trivially on F' if G is connected, for any path ~ from v(0) = g
to y(1) = 1 provides a homotopy F' x [0,1] — F, p — ~(t)p between T, and idp.

8. Edge maps in the Leray spectral sequence

Proposition 8.1. Let m: X — Y be a locally trivial fiber bundle between paracompact
Hausdorff spaces and that the Leray presheaf of w is simple.

(i) If the typical fiber F = w~'(x) is connected, then in the Leray spectral sequence
(Ey)r>2 of ™ the edge map

ep: Ey° — H'(X;R)
is, up to isomorphism on E;’O >~ H"(Y; R), the projection 7*: H*(Y; R) — H*(X; R).
(ii) IfY is connected, then, up to isomorphism on Eg’n >~ H"(F; R) the edge map
ep: H'(X;R) — Eg’n
equals the fiber inclusion H*(X; R) — H"(F;R).
Proof. Consider the commutative diagram

X-—T1sY

Wi lidy
idy

Y —Y

We have an induced map (o, : E, — E,);>2, where E, is the spectral sequence of 7 and
E,. is the spectral sequence of idy, the latter considered as a locally trivial fiber bundle
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with fiber * a point with 7=!(x) = F. Since (q;),>2 is a map of spectral sequences, we
have a commutative diagram

~

By ——Ey B > gr, (RH) ——=H"(Y)

- -

By’ — By —— . —— B — gr,(F H)? — H"(X)
in which FyH and F,H are the filtrations with respect to which the spectral sequences
(E,)r>2 and (E,),>2 converge, respectively; the composition of the upper and lower
vertical maps gives the edge maps of the corresponding spectral sequence. But since
Y — Y has fiber x, the spectral sequence (E,),>2 is a single row, concentrated in
bidegrees (e,0). In particular, it collapses on the second page, F,, H N H"(Y) = H*(Y),
and its edge map ep is an isomorphism by proposition 5.1. Moreover,

A (Y HO(x)) =—=E3 "
(idY»(WlF)*)*l icw
H"(Y; HO(F) —— EJ°

commutes, where (7|r)*, the map on cohomology induced by 7|p: F' — x*, is an iso-
morphism, because F' is connected. Thus, as is an isomorphism and the edge map
ep: EyY — H(X) is as desired.
To identify the other edge map, we once more exploit naturality of spectral sequences

and consider the commutative diagram

X

lw

Y

F
ﬁpl
*x

Let (E,)r>2 be the spectral sequence of 7|p and (3,: E, — E,),>2 the map of spectral
sequences arising from the commutative diagram above. We have a commutative diagram

—_—

R

H™(X) — gro(FH)" —— EXT, Eo" Eo"
l l 5n+1i iﬁ3 lﬁ2

TN Tr\n = +=0,n —=0,n —0,n

H"(F) —— gro(FoH) By By By

and the spectral sequence (E,),>2 is a single column, concentrated in bidegrees (0, o).
Hence, it collapses, gro(FeH )" = H"(F'), and its edge map €f is an isomorphism. Then
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since Y is connected, the vertical maps in the commutative diagram

HO(Y; HY(F)) == EY"
(WvaidF)*l lﬁz
HO (+; H? (F) —— By

are isomorphisms, and we see that ep: H"(X) — Eg’n has the required properties. [

Corollary 8.2. (Vietoris—Begle Mapping Theorem) Let w: X — Y be a locally trivial
fiber bundle between paracompact Hausdorff spaces and suppose that Y is locally con-
tractible or that the typical fiber F' of m is homotopy equivalent to a compact Hausdorff
space. Then if H1(F; M) = H9(x; M) for all ¢ < N and some R-module M, also

o HI(Y; M) — HI(X; M)
18 an isomorphism for all g < N.

Proof. Under these assumptions, the stalk (W*Hq(—))y of any point y € Y is isomorphic
to HY(F; M). But by assumption this group is trivial unless ¢ = 0, in which case
HO(F; M) = M. Therefore, since Y is paracompact Hausdorff, corollary 9.3 implies that
the Leray spectral sequence (E,),>2 of 7 has as initial page

ras |0 0<g<N,
2 — -~
HP(Y; M), q=0,

for all ¢ < N. This means that also EX'? = 0 for all » and all 0 < ¢ < N, and in particular
all differentials d2? with 0 < ¢ < N must be trivial. However, since (Ey)r>2 is a first
quadrant spectral sequence, the only possible differentials d5" such that im(d,‘f’t) C EF 0
for some p are those with ¢ < p, which is why we must have Eg’o = ELY for all p<N. In
particular, the edge maps ep: Eg’o — HP(X; M) are injective and hence isomorhisms for
all p < N, and these maps are, by the same reasoning as in the proof of proposition 8.1,
up to isomorphism equal to 7*: H?(Y; M) — HP(X; M) for all p < N. O

Example 8.3. Suppose X and Y are connected, paracompact Hausdorff spaces and that
Y is locally contractible or that X is homotopy equivalent to a compact Hausdorff space.
The canonical projection w: Y x X — Y is a locally trivial fiber bundle with typical
fiber X, and the associated Leray presheaf is simple: the identity map ¥ x X — Y x X
is a trivialization and induces a stalkwise identification H9(X;K) — mHI(—;K) by
proposition 7.2. Hence, by corollary 7.4 we have

By = (v AP K)) = BP(YSK) o B K) = By

as graded K-algebras. We claim that the spectral sequence (E3)r>2 and hence also
(E2)r>2 collapses on the second page. To see this, it suffices by proposition 5.2 to show
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that the edge map er: H*(X) — H*(Y x X) is surjective. But this edge map is up to
isomorphism just the fiber inclusion ¢*, and we have the projection 7: Y < X, which
satisfies m ot = idx. Thus, t* o " =id and ¢* is surjective. It follows that

H'(Y x X;K) = @ BP(Y;K) ok H(X;K)
ptq=n

as K—vector spaces. This is a weak form of the Kiinneth Theorem, which states that this
abstract isomorphism of K—vector spaces can in fact be realized by an isomorphism of
K-algebras: namely, by the maps y ® z +— (p1)*(y) — (p2)*(z) for all y € H?(Y;K) and
T € ﬂq(X ; K), where p; and py are the canonical projections onto the factors of Y x X.
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CHAPTER 1IV.

Equivariant cohomology

Within this chapter, unless stated otherwise, cohomology will always be taken in a
constant presheaf K for some field K.

1. Definition and first computations

Definition 1.1. Let X be a topological space and p: X x G — X a (left—) action. The
equivariant cohomology of p (or G, if there is no ambiguity) is H%(X) := H*(EG xg X),
where EG xg X is the total space of the fiber bundle with fiber X associated to the

universal principal G-bundle G — BG arising from the Milnor construction. We set
HZ, := H*(BG).

Remark 1.2. If G and X are compact and X is Hausdorff, we can compute Hp(X)
using any principal G-bundle £ — B such that F is compact Hausdorff and such that
HY(E) = H9(x) for all ¢ < n. To see this, first of all note that EG = |J, -, E,G is a
countable union of compact subspaces and hence paracompact, cf [12, p. 66]. Also, EG
is Hausdorff, whence EG and BG are paracompact Hausdorff. Now view E x EG as a

G—space via the product action and consider

(Ex EG) xg X

EXGX EGXGX

where p; and psy are induced by the canonical projections from E x EG x X onto E x X
and EG x X, respectively. Note that p; is a locally trivial fiber bundle with typical fiber
EG, which is contractible, and that (F x EG) xg X is paracompact Hausdorff, because
E and X are compact Hausdorff. Hence, by the Vietoris—Begle Theorem (corollary 8.2)
(p1)* induces an isomorphism in cohomology. Similarly, since F has the homotopy type
of a point in degrees less than n, (p2)* induces an isomorphism in degree n and so
((p1)*)~! o (p2)* provides an isomorphism between H%(X) and H"(E xg X).

Principal G-bundles E — B such that H9(E) = HI(*) for all ¢ < n are called n—
universal, and n—universal bundles with compact Hausdorff total space always exist for
compact Lie groups. In fact, one can simply take ExnG — ByG for N large enough,
because one can show (but we will not) that HY(ExyG) = 0 for all 0 < ¢ < N — 2. In
the case of most interest to us, namely, if G is a subgroup of an r—torus T' = (S!)", we
can be explicit, however. In this case, we can just take F = (S%_l)" with the standard
S'-action and B = E/G for any k > n, since by the Kiinneth formula H9(E) is trivial
in degrees 0 < ¢ < k (see also example 1.3 below).
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Example 1.3. Let us use the previous reasoning to show that as K—algebras

H*(BT) = K[t1, ..., 4]

for T = (S')" an r—torus and r > 1, where t1,...,t, € H(BT). To this end, fix k > 1
and consider S2¢*1 C CF*! as an S'-space via the action of S1 C C given on S2¢*!
by multiplication in each factor. Then E = (S**1)" is a T-space with B = E/S! =
(CP*)". In example 8.7 we already computed that CP* = K[xz]/(z**!) for some element
x € H2(CP*) in the image of the inclusion induced map H2(CP¥) — H2(CP?), and so by
the Kiinneth formula we have

H(B)= P H'(CP)@k... ok B (CPF) =2 K[z,..., ],
pi1+...+pr=q

as K—algebras in degrees ¢ < 2k. The reasoning of remark 1.2 thus shows that also
HY(BT) = Hi.(x) 2 HY(B) 2 K%[z1,..., 7]

holds as K-algebras in degrees ¢ < 2k. Since k was arbitrary, we see that fI'(BT ) is as
claimed.

Remark 1.4. Note that the existence of n—universal bundles for compact Lie groups
G allows us to generalize remark 1.2. Namely, if X is a compact Hausdorff G—space,
FE — B is an n—universal bundle, and F is paracompact Hausdorff, then we have maps

EXGX%(EXENG) XgX—>ENG XgX%(ENGXEG) XgX—>EG><GX

each of which induce isomorphisms in cohomology in degrees p < n, provided that N is
sufficiently large.

Theorem 1.5. Let G be a compact Lie group which acts smoothly and freely on a
compact manifold M. Then the projection m: EGxgM — M /G induces an isomorphism

H*(M/G) — HE(M).

Proof. Since G acts freely on M, the projection M — M /G is a principal G-bundle,
and so m is a locally trivial fiber bundle with typical fiber the contractible space EG.
Since M is compact, so that EG xg M is paracompact Hausdorff, the Vietoris—Begle
Theorem applies and shows that 7* is an isomorphism. ]

Example 1.6. Consider the S' action on S? C C x R given by multiplication in the
first factor, i. e. the action by rotation around the {0} x R axis. Let N = (0,1) and
S = (0, —1) be the north and south poles of S? and consider the open neighborhoods
U=5%—{N}and V = S? — {S}. Note that these are S'-invariant subsets and that
ES!' xg1 8?2 = ES' xg1 UU ES! xg V is a union by open subsets. Furthermore, both
of the sets on the right hand side are homotopy equivalent to a point, because there is
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an S'-equivariant deformation retract of U and V onto S and N, respectively. Hence,
we can apply the Mayer—Vietoris sequence (theorem 10.1) and obtain an exact sequence

0 — H% (5%) = HL(U) @ HY (V) = HL (U NV) — He (S%) —

.= HL (8%) - HE (U) @ HE, (V) = HE, (UNV) —
Note that U NV deformation retracts in an S'-equivariantly fashion onto the equator
St x {0} C S? and that the restricted action of S on this equator is just the action by

left multiplication. Since this action is free, theorem 1.5 shows that HY, (UNV) = HP(%).
Therefore, in degrees p > 2 the sequence reduces to

0 — HY, (S%) — HE, (S) @ HE, (N) — 0

where the map is induced by the inclusions {S} < S% and {N} < S2. In degree 0 we
have the exact sequence

K KoK

0 — HY, (52) — HY%, (U) @ HY, (V) —= H%, (U N V),

so for dimensional reasons the last map must be surjective, and also H}gl (8?) = Hgl (S)e
H}gl (N). In total, we see that the inclusion induced map HY, (8?) — HY, (S)oH (N)
is an injection. If we choose elements u € H%, (S) = H?(BS') and v € Hgi (N) such that
H%, (S) = Klu] and HY, (N) = K[v], then

K[u] & Kv]
{(f,9) € K[u] @ K[v] | f(0) = g(0)}

imep =

2. The module structure

The equivariant cohomology Hg,(X) of a G—space X is not only a K-algebra, but even
a Hg,—algebra: the projection 7: EG xg X — BG of the locally trivial fiber bundle
EG xg X — BG induces a map 7*: Hg, — HZ,(X), and since H%(X) is a ring via the
cup product, we hence obtain a module structure H% x H%(X) — H&(X), (f,s) —

T (f) — 5.

Example 2.1. Let GG be a Lie group, K C G a Lie subgroup and X a G—space. Restrict-
ing the G—action to K, we also can consider X as a K—space. By functoriality of the
Milnor construction, the inclusion K < G induces maps EK — EG and BK — BG,
and these induce the upper horizontal map in the commutative diagram

FK xg X —=FEG xg X

| !

BK BG
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Taking cohomology of this diagram, we see that the map Hg,(X) — HY (X)) is a morphism
of Hg—modules, where the H,—module structure on H% (X) is given by “restricting”
elements H¢, to Hj, via the map induced by BK — BG and then using the Hf—module
structure.

Proposition 2.2. Let T be a and S C T a closed subgroup. Then the canonical map
HY% — HY has a non-trivial kernel if S is connected or K is a field of characteristic 0.
In particular, in such cases, for any compact T -space X the S—equivariant cohomology
H%(X) is a H}—torsion module: that is to say, for every element v € HY(X) there exists
a non—zero element f € HY such that fx = 0.

Proof. Let us first assume that S is connected and hence a torus. Since S C T', we see
that dim S < dim 7, and because dimyg H'(S) = dim S and dimg HY(T) = dim T, the
map ¢*: HY(T) — H'(S) induced by the inclusion ¢: S — T must have a non-trivial
kernel. Now consider the spectral sequences (E,),>2 and (E,),>2 of ET — BT and
ES — BS, respectively. By functoriality, ¢ induces maps Fv: ES — ET and Bt: BS —
BT, which in turn induce a morphism of spectral sequences (o : E, — E,),>2. Since S
and T are connected, the Leray presheaf is simple and so on the second page s is just
the map

(B)* @k (1*): 0} @ H*(T) — HY @k H(S).

On the other hand, since the spectral sequence (E,),>2 converges against H®(ET) and
ET is contractible, the differential ds is an isomorphism on Eg’l. Hence, if we let
x € HY(T) be a non-trivial element in the kernel of *, then y := do(l Rk z) is a
non-zero element and

as(y) = do(az(1 ®k 7)) = da2(1 @k *(x)) = 0.

But H(T) = K- 1, so if we write y € H2 ®g H(T) as y = >, y; ®x \; for elements
Ai € K, then as(y) = > ;(Bt)*(yi) ®k Ai, because ¢* is a morphism of rings, and so
> ; Aiyi is a non—zero element in the kernel of (Bt)*.

Now suppose that S is an arbitrary proper subgroup of 7', not necessarily connected,
but that K is a field of characteristic 0. Let Sy be the identity component of S and
consider the commutative diagram

ESy/So —= ES/Sy —= ES/S

~ .7

BT

in which all maps are induced by inclusions. The left horizontal map induces an iso-
morphism H*(ES/Sy) — Hg, , because ES — ES/Sp is a classifying bundle for Sy by
corollary 3.11 and because the base spaces of any two universal bundles of a fixed Lie
group are homotopy equivalent. The map ES/Sy — ES/S = BS is a covering map
with finite fiber S/Sp, since ES — BS is a principal S-bundle. Hence, it induces a
monomorphism Hg — H*(ES/Sy) by proposition 2.3 below. Therefore, as HY — HY,
has non-trivial kernel, also H}, — H% must have a non-trivial kernel. O
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Proposition 2.3. Let f: X — Y be a k—sheeted covering map. Then there exists a
morphism o: H*(X) — H*(Y) such that oo f* = kid. In particular, if k is invertible in
K, then f* is injective.

Proof. Consider pairs (4,) consisting of Cech covers 8 of X and U of Y with the
following properties:

(i) U is defined on the index set I and 4l is defined on the index set I x {1,...,k}.
(ii) for fixed 4 and all j = 1,...,k the map fly, : t;; — U; is a homeomorphism.

We claim that the assignments sending such a pair (4,2) to 4 and U are cofinal in the
category of all Cech covers of X and Y, respectively. For Y this is immediate, because
f is a covering map. To see that the assignment (L,0) — 4l is cofinal, let 2 be an
arbitrary Cech cover of X. Let y € Y be arbitrary and choose an open neighborhood
V C Y such that f~1(V) = Uy U... U Uy is a disjoint union of open subsets such that
flu,: Ui — V is a homeomorphism. Then f~!(y) = {x1,...,2;} for certain elements
x; € U;. Let j1,..., jr be such that z; € 20;, and consider

By = f(W;, NUL)N...N0 f(W;, NU;) CV.

This is an open neighborhood of y and f restrict to a homeomorphism from ,; =
fHWy) N U; onto Vy: it is immediate that fly, , is injective. To see that this map
surjects onto Uy, let z € °Y,. By definition, there exists an element x € J;, N U; with
f(z) =z, and so z € Y, ;.

Now for such a pair of covers (,U) consider the map oy u): CP(U) — CP(Y) given
by

O‘(U,Q])(C)(J) - ZC((Uo,j), SRR (Uimj))

j=1

for all p-simplices ¢ = (0p,...,0p). This map is certainly a chain map and hence
induces, by passage to the limit, a map «: HP(X) — HP(Y). To see that o has the
claimed properties, let (4,0) again be a pair of covers as before. Observe that 4l is
a refinement of f~'90, because f~1(U;) = th;1 U... U x by choice of 4. An explicit
refinement projection is given by p(i,j) = i. Hence we have a commutative diagram

*

0P () ——HP(f~'9)

Hp(il) (aqst,m))* ﬁP(Qj)
HP(Y) HP(X) —*—HP(Y)
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But if ¢ € CP(0) is a p-cocycle, then

k
() ops o f)e)(0) = D (S ) ((00,)s - - -+ 0k, 5)) = ke(o),

j=1
so ao f* = kid. O

Remark 2.4. Proposition 2.3 is a result of its own interest: it shows for example that
if K is a field of characteristic 0 or different from p, then H*(BZ,;K) = 0, because we
have the p-sheeted covering FZ, — BZ, and EZ, is contratible.

Example 2.5. Let T be a torus, X a T—space, and fix a point p € X. We want to
compute the T-equivariant cohomology of the orbit Tp as an H}—module. To this end,
consider the continuous map

f: ET/T, — ET xr (Tp), T, — [z, p].

It is well-defined, because [zt,p] = [z,tp] = [z, p] holds for all ¢ € T); it is surjective,
because [z, tp] equals [zt, p] in ET xp (Tp); and it is injective, for if [z, p] = [y, p], there
must exist an element ¢ € T such that (x,p) = (yt,t !p), and this means that t € T,
and hence 27T}, = yT,,. Thus, by the Vietoris-Begle Theorem, f induces an isomorphism
on cohomology. On the other hand, we the commutative diagram

BT, = ET,/T,
ET/T, ET xr (Tp)

in which the upper vertical map is induced by ET),, — ET, which in turn is the map
induced by the inclusion 7, < 7', and the lower vertical map is the canonical map
ET/T, — BT = ET/T induced by the identity; the map 7 is the bundle projection.
Note that BT, - ET/T, induces an isomorphism on cohomology, because both ET'/T),
and BT, are classifying spaces for 7). Hence, by commutativity of the diagram above,
HY, = H}(T'p) as Hy—modules, where the Hj—module structure on Hj, 'is induced by the
map BT, — BT. In particular, if p is not a T-fixed point and if T}, is connected or K is a
field of characteristic 0, then H}, — H%.(T'p) has a non-trivial kernel by proposition 2.2.

3. Localization

If a torus acts on compact Hausdorff space, then there is a strong connection between
the equivariant cohomology of the space and the equivariant cohomology of the fixed
point set of the action, and this connection can be concisely stated using the notion of
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localization. We shall quickly review this concept in what follows, referring the reader
to [7, Section 1.2] for more details.

Let R be a commutative (associative), unital ring. A subset S C R is multiplicatively
closed, if 1 € S and if whenever s,t € S also st € S holds. For an R—-module M we
then define the localization of M at S to be the set M[S™!] := (M x S)/ ~, where
(m,s) ~ (n,t) holds if and only if there exists an element u € S such that utm = usn.
We denote the equivalence class of (m, s) by m/s and make M[S~!] a group by

m on tm + sn

st st
Note that we can in particular localize R at S and that R[S™!] is in fact a ring, with
multiplication defined by
o
s’ ss!

w |3

Also, if we localize an R-module M at S, then M[S~!]is an R[S~!]-module with scalar
multiplication given by

w |3

m._rmm

t st
forallr € R, me M, and s,t € S.

We can consider localization as a functor R-mod — R[S~!]-mod: all that remains to
be observed is that if f: M — N is a morphism of R—modules, then we have an induced
morphism of R[S~!]-modules

Lomps o nps—y, ™ L0

1 s s

For us, the most important property of localization is that it preserves exactness:

Proposition 3.1. Localization at a multiplicatively closed subset S of a ring R is an
exact functor. That is, if

0—>Ai>Bi>C—>0

is an exact sequence of R—modules, then so is the sequence

g/1

0 A5~ 5 BIs1 L s s o

Proof. 1t is immediate that g/1 is surjective and that im(f/1) C ker(g/1). To show
that the latter inclusion is an equality, let b/s be an element with (g/1)(b/s) = 0. Since
(g/1) is R[S~!]-linear and s/1 is invertible, we see that g(b)/1 = 0, which by definition
of localization means that there exists t € S with tg(b) = 0. But g is R-linear, so
tb € ker g, and hence by exactness tb = f(a) for some element a € A. Then

b th  f(a)

S_E ts
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and im(f/1) = ker(g/1). Similarly, if a/s € ker(f/1), then there exists ¢ € S with
f(ta) = 0. Since f is injective, we have ta = 0, and since /1 is invertible in A[S™!], it
follows that a/s = ta/ts = 0. Therefore, f/1 is injective. O

Proposition 3.2. Let T be a torus, X a compact Hausdorff T—space, and A C X a
T—invariant closed subspace. We have

limg H3-(N) = H(4),
NDA

where the limit ranges over all closed, T—invariant neighborhoods N C X of A and the
map is induced by the inclusions A — N for all such neighborhoods N.

Proof. Fix an integer p > 0 and recall from remark 1.2 that we can find a compact
princpial T-bundle ' — B such that each of the maps

ExrY <« (EXET)xpY - ET x7Y

induces isomorphisms in cohomology in degree p for all T—spaces Y. Since these maps
are natural with respect to T—equivariant morphisms, it thus suffices to show that

ling HP(E x1 N) — HP(E xp A),
NDA

is an isomorphism. This will be a consequence of the tautness property of Cech coho-
mology (theorem 9.5) if we can show that the sets of the form E xp N, with N C X
a closed invariant neighborhood of A, are cofinal in the set of all closed neighborhoods
of Exp ACFE xp X. So,let W C E xp X be a closed neighborhood of E xp A and
7: Ex X — E xp X the canonical projection. Write Wy := 7~ (W) and note that this
is a T—invariant neighborhood of F x A in F¥ x X. Hence, by compactness of FE, we can
find for each point a € A a closed neighborhood N, of a such that £ x N, C Wy. As T
acts diagonally on F x X, we then have

WoDT-(ExNg)=EX(T-N,),

and T'- N, is a compact, hence closed, T—invariant neighborhood of a in X. As A is com-
pact, we therefore can find finitely many closed T—invariant neighborhoods Ny, ..., Ng
covering A and such that £ x N; C Wy foralli=1,...,k. Then N := Ny U...U Ny is
a T—invariant closed neighborhood of A with E x N C W,. Since E x7 X is Hausdorff,
E xp N C W is a compact and thus closed neighborhood of E x7 A. O

Theorem 3.3 (Borel Localization). Let X be a compact Hausdorff T —space, where T is a
torus. Assume that K is a field of characteristic 0 and denote by XT = {p e M |T, =T}
the set of T—fized points in X. Then the inclusion XT — X induces an isomorphism

HE(X)[(Hy - 0)71] = HR(X)[(HF - 0)7].
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Proof. Let us first suppose that X7 is empty. Then the statement is that H%.(X)[(H% —
0)~!] is trivial, or equivalently, that H$(X) is a H%torsion module. To see this, let
x € X be an arbitrary element. By tautness of equivariant cohomology (proposition 3.2)
we can find a closed, T—invariant neighborhood N of = such that the inclusion induced
map HY.(N) — HY.(Tz) is an isomorphism. Because z is not a fixed point, H}. — HY.(N)
has a non—trivial kernel by example 2.5. As X is compact, we hence can find finitely
many such neighborhoods Ni,...,Nj covering X and non-trivial elements f; € HY
such that f;|N; is zero, where we the latter denotes the image of f; in H%.(N;). Then
f = fi — ... — fr is a non-—zero element (because H}. is a polynomial ring over K
in dim 7 variables) which restricts to zero in each H%.(1V;), and we inductively show
that f? restricts to zero on Ny U...UN;, for all i = 1,...,k. We just argued why this
statement is true for ¢ = 1, so assume that the claim holds up to some integer i < k.
Write A := Ny U...UN;, B := N;y1, and consider

H3(ANB) S HMY(AUB) — HY(A) ® H(B),

which is a part of the Mayer—Vietoris sequence. Since fi|4 = 0 and f’|gp = 0, we see
that f|aup = 9(z) for some z € H%.(A N B). But since already f|p = 0, we also have
flane = 0, and because 0 is H}—linear, we see that

Fo a0 = flavs - 0(z) = O(f|anp - x) = 0.

Hence HY}, — HY.(X) has non-trivial kernel and H%.(X) is an H}—torsion module.

Now let X7 be arbitrary. Since X7 is a closed T-invariant subspace, we can find a
closed T-invariant neighborhood A of X7 such that H%(A) — H%(XT) is an isomor-
phism. Note that A is an open T-invariant neighborhood of X7, so B = X — Ais a
closed T—invariant neighborhood such that A U B = X. We again consider the exact
sequence

H3(ANB) & HY(X) — H(A) @ H(B),

coming from the Mayer—Vietoris sequence. Because localization is an exact functor
(proposition 3.1), we still have an exact sequence after localizing each term in the se-
quence above. However, A N B and B are compact Hausdorff spaces without T—fixed
points and hence are H}.—torsion by what we have just shown. Therefore, the localized
sequence reduces to an isomorphism H%(X)[(H$ — 0)7!] — H%(A)[(HS — 0)71], and
since H3(X) — H%(XT) factors through the isomorphism H$(A) — H%(XT), the claim
follows. O

4. More on the module structure

Let C be a Z-graded K-algebra and (E,),>2 a first quadrant spectral sequence of al-
gebras convering to C' with respect to a canonically bounded filtration FoC'. Suppose
further that Fo = A ®k B is the graded commutative tensor product of Z—graded K-
algebras A and B. If B is unital, then we can consider C' and the associated graded
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K-algebra gr(F,C) as (ungraded) A—algebras via the module structure induced by the
edge map ep: E;’O — C'" indeed, since (E;),>2 converges against C, we have preferred
isomorphisms ESL ~ gro(F,C)° C C, and by definition the edge map is the composition
of this map EXY < C with a map ep: E5 0 E%Y. Since the edge map is a morphism
of rings, so is

A Aox1C Aok B <2 ES0 =~ g1, (F,C)°,

and hence we can use this map to turn gr(F,C) into an A—algebra.

Theorem 4.1. In this situation, suppose further that A is an integral domain and write
Q = A[(A —0)7!] for the quotient field of A. Then

(i) gr(FoC)[(A — 0)71] admits a basis (x;/1)ic; with each z; € gr(FyC) homogeneous
of bidegree (pi, qi), and

(ii) for each such basis, the map of Q—vector spaces

X; T

g(FO)(A =0 = ClA-0)7], T = T

is an isomorphism, where T; € F, C N CPit% s a lift of x; with respect to the
canonical projection F,, C N CPit% — gr,, (FeC)%.

Proof. We write G := gr(F,C) and G(g) := G[(A—0)"1] as well as C(gy := C[(A—0)""].
To see the first item, we just need to adjust the well-known argument that every vector
space has a basis. In more detail, assume that G g is non-trivial and consider the set

B = {B C G(y)| B linearly independent and Vb € B3p,q € Z3b € Gp:b= b/1}.

It is non—empty, because G(g) = Q - G and G() is non—empty, and partially ordered by
inclusion. Moreover, if C C B is a chain, i. e. a totally ordered subset, then C':= | Jg B
is linearly independet and an upper bound for each element B € C. Hence, by Zorn’s
Lemma, B has a maximal element B, and this is the desired homogeneous basis.

Now fix a basis (2i/1)ier of Gy with each z; € G homogeneous of some bidegree
(pi» i), and let T; € F,,C N CPit% be a lift. The statement in the second item is
equivalent to the statement that (7;/1);cs is a basis of C(gy, and this is what we will
show. So, suppose that

in%:o

el

holds, where only finitely many \; € @) are non—zero. Clearing denominator of each );
and using the definition of Cg), we see that this holds if and only if there exist elements
a; € A, finitely many of which are non-zero, such that ) a;7; = 0 holds in C. Let
(a;)r be the k-th graded component of a;, so a; = Y, (a;); and (a;)x € AFand let
n = max{k|(a;)r # 0} be the maximal non—zero component occuring among all a;.
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Likewise, let £ = max{r|a; # 0,p; + ¢; = r} be the maximal total degree of an element
T; whose coefficient a; is non—zero, and denote by c¢; the k—th component of ¢ € C. Then
by definition of the module structure in C, we have

0= (Z az-:ci) = Z(aj)nfj,
n+4

icl jed

where now J C I denotes the set of all indices ¢ € I such that p; + ¢; = ¢. Hence, if
we can show that (a;), = 0 for all j € J (and thus also (a;), = 0 for all i € I), then
a; = 0 follows by induction. Thus, we are left with showing that if we are given lifts
zr € F,,CN C* of elements z1,. ..,z € G which are homogeneous of bidegree (vk, wi),
total degree vy, + wy = ¢, and such that 21/1,...,2,./1 € G(g) are linearly independet,
then ), ayZr = 0 can only hold for elements a1,...,a, € A" if a1 = ... = a, = 0.
Assume that v; > ... > v, and note that the diagram

A" x (Fy, N CY) —— (Fypyn N C™HY

| |

A" G G

vp+n

commutes for all k, where the horizontal maps are the scalar multiplication maps of the
A-modules C' and G, and the vertical maps are induced by the identity map A™ — A™
and the canonical quotient projections. Hence, if v; = ... = v > vg41, then since the
filtration FoC' is decreasing also

a1z1+ ...+ a2 € Fv1+n+10 N Cn—M

and thus ajz; + ... + agzr = 0. But 21/1,...,2;/1 are linearly independet, and so
a1/l =...=ap/1 =0, and then a; = ... = a = 0, because A is an integral domain.
Repeating this argument, we conclude that a; = ... =a, =0.

We still need to show that (7;/1);e; generates Cg), and for this it suffices to prove
that each F,C N C? C Cg) is generated by the 7;/1. We shall prove by induction on
k > 0 that F,11_x N C™ is generated by the Z;/1, for all n. Since the filtration is
canonically bounded, F,1CNC™ = 0, so the induction base k = 0 is etablished. Hence,
suppose that the induction hypothesis holds up to some k and let n be arbitrary. We
need to show that in this case also F,,_;C N C™ is generated by the Z;/1. Hence, let
¢ € F,_;C N C™ and consider its image ¢ € G¥_, . Since (2;/1)ies is a basis of G(g), we
can find elements A\; € @, finitely many of which are non-zero, with ¢/1 = >, \jz;/1.
Again, we clear denominators and use the definition of G gy to conclude that then

SC = E a;T;
A

must hold in G for certain elements a;,s € A. First, assume that s is homogeneous
of degree . Then, as ¢ and all z; are homogeneous, we may assume that each a; is
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homogeneous, and so sc — ), a;z; = 0 in Gfl_k_H, implies that
SC — Zaifi € Fh_kir1CN ontT,
i
By induction hypothesis, we thus have
sc a; Ti Z;
1211 zl: Hig

for certain elements p; € Q. Since s is invertible in C(g, we see that ¢/1 lies in the span
of the 7;/1 if s is homogeneous. If s is arbitrary, let s, be the highest non—vanishing
component of s. Then, denoting by tj € G} the (p, q)-component of t € G,

k
500 = (50 ey = D (@50
A

and because each x; is homogeneous, the right hand side equals Zl(az)f;xl, where t;, s;

are such that t; + p; =n — k+r and s; + ¢; = k. By the previously dealt with case, ¢/1
again lies in the span of the Z; /1. O

As a corollary, we obtain the following
Theorem 4.2. Suppose a torus T acts on a compact Hausdorff space X. Then
(i) H%(X)[(HS. — 0)71] is a finite-dimensional vector space over Q = H.[(H$ —0)~1],
(ii) dimg He"(MT) < dimg HV (M) and dimg H°4(MT) < dimg HO(M),
(iii) dimg H*(MT) = dimg H*(M) holds if and only if the Leray spectral sequence of
ET xp X — BT collapses on the second page.
(iv) xx(M) = xx(M"),

Proof. Since X is compact and 7T is connected, the Leray presheaf of m: ET x7 X — X
is simple by example 7.6. Hence the Leray spectral sequence of 7 has as second page

By = HY} ox H*(X),

which is a graded—commutative tensor product. Now endow each page E, with the
H%-module structure induced by the maps

EyY 5 HYO(Ey) = B3 - H*O(E3) 2 By — ... — EY

Since HY. is an evenly-graded space, the subspaces Tot®**"(E,.) and Tot®d4(E,) of even—
and odd-degree elements in Tot(E,) (which as an ungraded H}—module is just E,) are
H%-submodules. Also note that since dimg H*(X) is finite (because X is compact),
we have F, = E,, for some n and that, by definition, the edge map ep is just the
composition of the above map for r = n with the map ES — H*(BT) = HY%.. Moreover,
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the differential d, on E, is Hj-linear, since E, lies in the first quadrant and d, is
an anti—derivation with respect to total degree. Thus, since localization is an exact
functor (proposition 3.2) and the isomorphisms H**(E,) & E, ;1 restrict to isomorphisms
H*(Tot®V*"(E,)) = Tot®*"(E,11) of H}—modules, we see that

dimy HV(X) = dimg (Tot*"(E2)) o)
> dimg (Tot*"**(E3)) o)

Z dlmQ (Toteven (Eoo))(o)
= dimg (H7**(X))(0),

where the first equality holds, because the module structure defined on Fs is just the
module structure induced by multiplication with elements of Eg’o = HY, and the last
equality holds by theorem 4.1 if we consider Hy(X) as a module over E;O = HY via
the edge map eg. However, by proposition 8.1, the edge map is, up to isomorphism on
HY, just the map 7* induced by ET' x7 X — BT, and hence the module structures on
H7(X) coming from ep and 7* coincide up to isomorphism of H}—modules. In particular,
(H3(X))(0) is a finite-dimensional @-vector space with respect to the module structure
coming from 7*. This proves the first part. Moreover, since T acts trivially on X7,
combining the previous inequalities with the Borel Localization Theorem, we obtain:

dimg H"(X) > dimg(HF*™ (X)) (o) = dimg(HF*(X™))g) = dimg HV*(XT).

The same reasoning shows that dimg H°d4(X) > dimg H°44(X7), and thus the second
item follows. If both of these inequalities are equalities, then

holds as @-vector spaces, and so dimg (E2)) = dimq (ker d2)(g), meaning that dp in-
duces the trivial map on (Eg)(o). But Es is a free H}-module, in particular an integral
domain, so this is only possible if ds is trivial. Moreover, the isomorphism H**®(Es) = Fs
is an isomorphism of (ungraded) Hf-—modules, so E3 also is a free H}.-module. Induc-
tively we see that each F, must be a free H:-module and that all differentials are trivial.
Hence, the spectral sequence collapses.

Finally, to prove the statement about the Euler characteristics, let (V,d) be a finite—
dimensional complex over () which is Zo—graded; that is, V = V5 @ V; is a finite—
dimensional Zs—graded vector space and d is homogeneous of degree 1 in the sense that
that d(Vp) € V4 and d(V;) C V. Then also H(V,d) = Ho(V,d) ® H1(V,d) is Zo—graded,
where

kerd NV}
imdNV;

kerdN 'V

Ho(V.d) = imdNVy'

and H1 (V, d) =

In particular, if we set x(W) = dim Wy — dim W for every Zs—graded Q—vector space,
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then by the dimension formula,

X(H(V)) = dim Ho (V) — dim H, (V)
= dim(kerd N Vp) — dim(imd N'V;) — dim(kerd N V1) + dim(im d N Vp)
=dimVy —dimV;
=x(V).

We apply this reasoning to the Q-vector spaces (Tot(E}))): Tot(E,) = Tot™"(E;) &
Tot°d(F,) is a Zy-grading of H}~modules, and thus induces a Zo-grading on (Tot(Er)) 0
with respect to which the map induced by the differential d, is homogeneous of degree
1. Therefore,

X (X) = dimg A" (M) — dimg H°4(M)
= dlIIlQ (Toteven(Eg))(O) — dlIIlQ (TOtOdd (EQ))(O)
= dimq (Tot*"*"(Ex)) o) — dimg (Tot*™(Ex)) o)
= dimg (HF*" (X)) o) — dimg (H$*(X)) ),

where the last equality again holds by theorem 4.1. But by the Borel Localization
Theorem, the latter is equal to

dimg (HF* (X)) o) — dimg (HF*(X™)) o)
= dimg H*"(XT) — dimg H°4(XT)
= XK(XT). O

5. Finite groups acting on spheres

Theorem 5.1. If K = Z, is the field with p elements, p prime, then H%p = Zpls] as
graded K—vector spaces, with s of degree 1.

Proof. Recall from remark 1.2 that ﬂ”(BZp) can be computed using any n—universal
bundle £ — B with compact Hausdorff total space E. Consider then the principal
Z,-bundles S?+1 — §2n+l/7,  where we regard S?"T! as a subset of C"*! and the
Z,—action is the restriction of the standard free action of S* C C on C"*! (i. e. the
diagonal action). Let us first observe that H!($%7+1/Z,) is non-trivial: we already saw in
example 2.7 that there is a bijection between H'(X; Cg(X)) and the set of isomorphism
classes of principal G-bundles over X, where C(X) is the sheaf of G—valued functions
on X. In particular, if G = Z, and X is connected, Cg(X) is the constant presheaf
associated to Z,, and hence also H! (X)) bijectively corresponds to the set of isomorphism
classes of principal Z, bundles. Thus, to show that H'(S2"*!/Z,) is non-trivial, it
suffices to construct a non-trivial bundle over S"™!/Z,. But $?"*! — §27F1/7 is one
such bundle: indeed, if this bundle was trivial, then $?"*! and (5?"*1/Z,) x Z,, would be
homeomorphic, which is impossible, because S?"*! is connected, while (S?*"*!/Z,) x Z,
is not.
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Next, consider the compact, connected, Abelian Lie group S := S/ Zy, and the prin-
cipal S-bundle $*"+1/7,, — §27+1 /51 = CP" induced by the identity map. Its Leray
presheaf is simple, because S is connected (example 7.6), and hence the second page of
the Leray spectral sequence (E;),>2 of this bundle reads

EDY = 1IP(CP") @ HY(S).

In particular, since S = S' as Lie groups, it consists of the two rows E;’O >~ H*(CP")
and Eg’l >~ [*(CP"), and E3 = E, is the final page. The differential dy: Eg’l — E22’0 o~
H2(CP") must be trivial: as Eg’l = K, the latter statement will be true if dy has a non-
trivial kernel on Eg’l, and this is the case, because Ex’ = 0, so that Eu' = T (82717,
and hence Eg’l = Eggl must be non—trivial. As ds is an anti—derivation, it follows that
ds = 0, the spectral sequence collapses, and

Hk(S2n+1/Z ) ~ IfIkil((CPn), k Odd,
g H*(CP"), k even

= KHs)/ (2+)
as Z—graded K—vector spaces with s of degree 1. O

Remark 5.2. Consider the Leray spectral sequence (E,),>2 of the principal S = S*/Z,—
bundle BZ, — CP>°, where we consider Z, as a subgroup of S 1 and BZ, as BZ, =
S /Z,. Because S is connected, the second page is

ED? = HP(CP™) @k HY(S),

and as in the proof of theorem 5.1 it follows that the spectral sequence collapses on the
second page. Thus, as algebras over K = Z,, we have Ey, = K[s]/(s?) @k K[t], where s
is an element of degree 1, corresponding to the generator of H'(S), and ¢ is an element
of degree 2, corresponding to the generator of FIQ(CIP’OO). However, it is known (e. g. [3,
p. 373]) that H*(BZy) = K[s] as K-algebras, so even though Tot(E.,) consists of one
non-trivial summand, H*(BZ,) and Tot(FE,) need not be isomorphic as algebras.

Corollary 5.3. No group Zy, ® Z,, with m > 2 can act freely on a sphere S™.

Proof. Suppose that G = Z,,, ® Z,, would act freely on S™, n > 1, for a contradiction.
Since every cyclic group Z,, contains a subgroup 7Z, with p-prime, we may assume
that m = p is prime. Now consider the Leray presheaf m,H9(—;Z,,) = 7, H(—) of
m: EG xg S" — BG with coefficients in Z,. We claim that this Leray presheaf is
simple. In fact, since 7 is associated to a principal G-bundle, we only need to show that
every element of G acts trivially on ﬂ'(S”), cf. example 7.6. For p = 2 this is automatic,
because there is only one non—trivial morphism of groups on Zs. Thus, let us assume
p>2andlet p: GxS™ — 8", (g,) — pg(x), be the action map, and g € G a generator
of Z, x {0} C G. Consider first the action of (py)* on H*(S™;Z). Since H"(S™Z) = Z
and py is a homeomorphism, (py)* = +id. However, k := g? still is a generator of Z,,
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because p is prime and p > 2, and in addition py = (py)? = id. Therefore, p, = id. Now
consider the commutative square

H"(S™; Z) ®7 7, — H"(S™; Z,)

(Pg)*®Zidl i(ﬁg)*
H™(S™; Z) ®g Z — H"(S™; Zy)

The horizontal maps are the isomorphisms of the Universal Coefficient Theorem (theo-
rem 3.3), and we just checked that the left vertical map is the identity. Hence also the
right vertical map must be the identity. Applying the same argument to the other Z,
factor of G, we see that the Leray presheaf is simple.

The Leray spectral sequence of 7 thus has as second page

EYY = HP(BG; Zy) @x HY(S™; Zy)

which just consists of the two rows E 0 fe (BG) and E;™ = H*(BG). In particular,
Ey =2 E3 =2 ... =2 FEyyq and dp41 is the only possibly non—trivial differential. On the
other hand, since G acts freely on S™, we know from theorem 1.5 that 7* induces an
isomorphism Hg,(S") = H*(S"/G). As S"/G is an n-dimensional smooth manifold,
H"#(S™/G) is trivial for all & > 0, and hence the same must be true for abutment
HZ,(S™) of the spectral sequence (F;),>2. Therefore, the differentials

. pkn n+k+1,0
A1t Byl ———E,

ig

) - I:In+k+1(BG; @)

H*(BG;Z

-p

are isomorphisms for all £ > 0. That is to say, the Z,-cohomology of H*(BG) is periodic.
But BZ, x BZ, also is a classifying space for G, and hence also

dimz, H*(BG) = > dimg, H"(BZ,) - dimg, H*(BZ,) = k + 1,
r+s=k

by the Kiinneth Formula (example 8.3) and theorem 5.1 above. This is impossible. [
As a further corollary we obtain a classical result by P. Smith [14].

Corollary 5.4. If a finite group G acts freely on a sphere S™, then all of its Abelian
subgroups are cyclic.

Remark 5.5. Finite groups with all Abelian subgroups cyclic have been classified by
Suzuki-Zassenhaus, see [1, Theorem 6.15].
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Proof. Let us first show that Z, ® Z, can only act freely on S™ if p and ¢ are coprime.
If this was not the case, then there would exist an integer 1 < k < p, ¢ dividing both p
and ¢, that is, there would exist integers r, s > 1 such that kr = p and ks = ¢q. But then
Ly ® Ly — Ly ® Ly, (i,j) — (ir, js) would be an injection and Zj, x Zj, would act freely
on S™, which we know is not the case. Hence, p and ¢ are coprime.

Now let G be a finite Abelian group acting freely on S™. Then G is of the form
G=1Zy ®...8 7L, where each ¢; = (p;)™ is a non-trivial power of a prime p;. We
just observed that p; # p; for all ¢ # j, and if p and ¢ are coprime, then Z,,; — Z, © Zq,
k — (k, k), is an isomorphism. Hence, G & Z,, with m = ¢; - - - ¢, is cyclic. O
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