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Nearly parallel G2-manifolds

Definition:
A nearly parallel G2-structure on a manifold M7 is given by a stable 3-form ϕ ∈ Ω3

+(M7) such that, w.r.t.
to the metric and the orientation determined by ϕ, we have dϕ = λ ∗ ϕ for some real number λ 6= 0. Here
stable, in the sense of Hitchin, means that ϕ in any p ∈M lies in an open orbit of GL(7) acting on Λ3TpM .

Properties and Motivation: Nearly parallel G2-manifolds have the following interesting properties:

• The induced metric gϕ is Einstein with positive scalar curvature.

• The defining condition is equivalent to the existence of a Killing spinor Ψ, i.e. ∇XΨ = λ
4
X ·Ψ, ∀X.

• The metric cone M̂ = M × R with metric ĝ = r2g + dr2 has holonomy Spin(7).

• There exists a canonical metric connection with skew-symmetric and parallel torsion.

• All associated submanifolds (calibrated by ϕ) are minimal. There are no co-associatives (cf. part C).

Facts and examples:

1. There are three classes of nearly parallel G2-manifolds:

(i) 3-Sasakian manifolds =̂ 3-dim. space of Killing spinors

(ii) Einstein-Sasaki manifolds =̂ 2-dim. space of Killing spinors

(iii) proper =̂ 1-dim space of Killing spinors

2. We have classified homogeneous nearly parallel G2-manifolds in [FKMS97]. Proper instances (iii) are:

(i) The squashed sphere: S7
sq

(ii) The Aloff-Wallach spaces: N(k, l) := SU(3)/U(1)k,l, (k, l) 6= (1, 1)

(iii) The Berger space: SO(5)/SO(3)max

3. The second Einstein metric in the canonical variation of a 3-Sasaki 7-manifold provides examples
of proper nearly parallel G2-structures, by our work in [FKMS97], e.g. on N(1, 1). Prototype non-
homogeneous examples have a maximal isometric T 3-action and arbitrary second Betti number.

Remarks:
(1) Nearly parallel G2-manifolds are in many respects very similar to 6-dimensional nearly Kähler manifolds,
i.e. 6-dimensional manifolds with a Killing spinor. Many examples thereof, with T 3-symmetry, have been
recently constructed from a second order ODE by Moroianu and Nagy.
(2) The focus of our project is on compact manifolds. However, the sine-cone construction over nearly Kähler
manifolds provides a large class of non-complete nearly parallel G2-metrics.
(3) A spin manifold (Mn, g) admits a Killing spinor iff it is the standard sphere or it has one of the following
structures: Einstein-Sasaki (n = 2k + 1), 3-Sasaki (n = 4k + 3), nearly Kähler (n = 6) or nearly parallel G2

(n = 7). In all cases the metrics are Einstein with positive scalar curvature.

A) Stability of Einstein metrics

Definition:
A closed Einstein manifold (Mn, g) is (linearly) stable if the second variation of the total scalar curvature
functional is non-positive on tt-tensors h, i.e. tensors h ∈ Γ(Sym2TM) with tr(h) = 0 = δh. Equivalently
∆L ≥ 2scal/n on tt-tensors, where ∆L = ∇∗∇ + q(R) is the Lichnerowicz Laplacian w.r.t. the Levi-Civita
connection ∇. Here q(R) is a symmetric endomorphism depending linearly on the Riemann curvature R.

Facts and examples:
Linear instability implies linear instability with respect to the ν-entropie and, for scal > 0, also dynamic
instability with respect to the Ricci flow [Kröncke]. The following classes of manifolds are known to be stable:

• Kähler-Einstein manifolds with scal ≤ 0

• Most symmetric spaces with scal > 0, including the standard sphere [Koiso80]

The following manifolds are known to be unstable:

• Aloff-Wallach spaces N(k, l) and many classes of non-homogeneous Einstein-Sasaki manifolds

• Nearly Kähler manifolds in dimension 6 with non-trival cohomology, by our recent work [SWW19].

Except for a few symmetric spaces there are no known examples of stable manifolds with scal > 0. It seems
to be very likely that manifolds admitting Killing spinors (not isometric to the standard sphere) are unstable.
This is already checked in many cases. An important remaining class are the nearly parallel G2-manifolds.

Project goal: Prove that nearly parallel G2-manifolds (with non-trivial cohomology) are unstable.

Related to this topic is the following problem. By the work of Koiso the question of stability is decided for
all symmetric spaces except for: HP2, Sp(n + m)/Sp(n)× Sp(m), n ≥ m ≥ 2 and F4/Spin9. Here stability
is an open and challenging question, which we plan to consider.

Methods:
In our proof of the instability of 6-dimensional nearly Kähler manifolds with non-trivial cohomology in
[SWW19] we used an invariant identification, mapping harmonic forms to eigenforms of the Lichnerowicz
Laplacian ∆L corresponding to subcritical eigenvalues. An important tool was the canonical Hermitian
connection with skew-symmetric and parallel torsion having holonomy SU(3).

• Generalisation to nearly parallel G2 manifolds M with b2(M) 6= 0 or b3(M) 6= 0 will explore the effect
of mapping harmonic forms via the algebraic identification: Λ3

27
∼= Sym2

0T on small eigenvalues of ∆L.
The inclusion Sym2

0T ⊂ Sym2(Λ2
14) leads to a notion of square for harmonic forms in Λ2

14 on which we
will attempt to calculate the action of the Lichnerowiz Laplacian ∆L.

• For the Berger space SO(5)/SO(3)max, which is a homology sphere, we plan to use Killing tensors. Kil-
ling tensors are symmetric tensors h with (∇Xh)(X, . . . , X) = 0 for all tangent vectors X. If divergence
free they satisfy the equation ∆Lh = 2q(R)h. Key to this approach is that q(R) is determined by the
Casimir operator on normal homogeneous spaces. To compute the space of Killing tensors methods of
harmonic analysis will be used.

B) Rigidity of nearly parallel G2-structures

Definition:
An infinitesimal deformation of a nearly parallel G2-structure (M7, ϕ) is a tangent vector v ∈ Ω3(M) to a
curve ϕt of nearly parallel G2-structures with ϕ0 = ϕ. A G2-structure ϕ is called rigid if there exists (up to
diffeomorphims) no curve of G2-structures through ϕ, i.e. ϕ defines an isolated point in the moduli space.

Recall that any nearly parallel G2-structure defines an Einstein metric. So G2-deformations are a subclass of
Einstein deformations.

Facts: The following statements for proper G2-structures we proved in [AS12]:

• The space E of infinitesimal deformations is a subspace of a certain ∆-eigenspace on 3-forms. More
precisely, an infinitesimal deformation v ∈ Ω3(M) has to satisfy: ∗dv = −λv and v ∈ Ω3

27(M).

• The squashed 7-sphere and the Berger-space are rigid, since they do not have infinitesimal deformations.

• The second Einstein metric on the 3-Sasaki Aloff-Wallach space N(1, 1) = SU(3)/U(1)1,1 has an 8-
dimensional space of infinitesimal deformations.

Other important results: Pedersen and Poon showed that 3-Sasaki metrics are rigid. However, in the toric
case they can be deformed through smooth families of Einstein-Sasaki metrics, as showed by van Coevering.

Project goals: Develop (reformulate) the full deformation theory for proper nearly parallel G2-manifolds.
Describe the obstruction to deformations. We plan to test the new approach on the following open problems:

• Determine the space of infinitesimal deformations for the Aloff-Wallach spaces N(k, l) with (k, l) 6=
(1, 1) and for the second Einstein metric on 3-Sasaki manifolds in dimension 7. Moreover give explicitly
obstructions to deformations.

• Prove rigidity for the second Einstein metric on the 3-Sasaki Aloff-Wallach space N(1, 1).

Note the somewhat mysterious role of SU(3): the nearly Kähler SU(3)/T 2 has infinitesimal deformations as
well as the nearly parallel G2-manifold SU(3)/T 1. The integrability of infinitesimal Einstein deformations of
the symmetric metric on SU(3), shown to exist by Koiso, is a longstanding open problem. In this respect it
could be interesting to use that SU(3) carries a harmonic PSU(3)-structure defined by a stable 3-form ψ.

Methods: Use Hitchin’s duality map for stable forms T 7→ T̂ and the preliminary observation that the
deformations theory is governed by a Maxwell type operator D(T ) := dT̂ − λT . Determine explicitly the
cubic polynomial Q on E = kerD obstructing the deformations at second order.

• We plan to use elliptic theory for the operator D in order to describe the set of G2-structures near ϕ as
a level set of a naturally defined functional on stable 4-forms. The main tool for establishing existence
here is the implicit function theorem on Banach spaces.

• From our previous work the obstruction polynomial Q in the case of N(1, 1) can be interpreted as
a SU(3)-invariant polynomial on the Lie algebra of SU(3). The plan is to use harmonic analysis and
representation theory to show that it does not vanish identically, thus establishing rigidity. A similar
program was carried out by Foscolo in his proof of the rigidity of the nearly Kähler SU(3)/T 2.

• For the second Einstein metric on quasi-regular 3-Sasaki spaces we will determine E in terms of objects
defined on the 4-dimensional orbifold associated to the 3-Sasaki structure. We plan to treat the more
general case of Einstein deformations in a similar way, partly following ideas of van Coevering.

C) Deformation of associative submanifolds

Definition:
An associative submanifold in a general G2-manifold (M7, ϕ) is a 3-dimensional submanifold i : N ↪→M , ca-
librated w.r.t. the stable form ϕ, i.e. such that i∗ϕ = volN . The nearly parallel G2-manifolds are characterised
among the non torsion-free G2-manifolds by the fact that all associated submanifolds are minimal.

Facts and examples: Up to now associatives in nearly parallel G2 manifolds were mainly studied in the case
of the 7-sphere. Associatives can be constructed from other geometries, e.g. from Legendrian submanifolds
in the Einstein-Sasaki case or Lagrangians in nearly Kähler 6-manifolds via the sine-cone construction.

• Homogeneous associative submanifolds in S7 were classified by Lotay (2012) and in the squashed 7-
sphere S7

sq by Kawai (2015). Only one instance, A3 ⊂ S7, does not arise from other geometries. In
addition, constant curvature and totally geodesic associatives in S7 are well understood.

• Associatives ruled by geodesic circles correspond to pseudo-holomorphic curves in the Grassmannian
Gr+2 (R8). Moreover any minimal surface in S6 induces a family of associatives via its pseudoholomorphic
lift to Gr+2 (R8). A key role in this construction is played by the twistor fibration CP3 ↪→ Gr+2 (R8)→ S6.

• The general deformation theory of associative submanifolds has been developed by McLean (1998)
in the torsion free case and by Akbulut and Salur (2008) for general G2 structures. Infinitesimal de-
formations are given as an eigenspace of a twisted Dirac operator. This has been calculated on the
homogeneous examples. Based on this, Kawai showed that A3 is unobstructed to second order.

Project goals: New examples of associatives, classification under geometric conditions, study deformations.

• Find examples of associative submanifolds in the Berger space SO(5)/SO(3). In particular, classify
homogeneous or curvature pinched associatives together with their isometric deformations.

• In general, study classes of associative submanifolds in nearly parallel G2 manifolds, e.g. totally geodesic
or with index of nullity one, i.e. where the second fundamental form vanishes on a line subbundle.

• Study obstructions to deformations of associative submanifolds and prove in particular that formally
obstructed is the same as smoothly obstructed, in analogy to the nearly Kähler case. Test this for A3.

As a related problem we plan to answer the question whether the volume is constant under deformations of
associatives in nearly parallel G2 manifolds. This was proved by Verbitsky (2013) for the similar situation of
deformations of Lagrangians in 6-dimensional nearly Kähler manifolds.

Methods: We propose to search for a geometric construction of a space allowing a correspondence between
pseudoholomorphic curves in it and associative submanifolds in e.g. the Berger space. We believe that the
realisation of the Berger space as a S3-fibration over S4 (cf. Goette et al. (2004)) will play an impotrant role.
If the second fundamental form is additionally constrained we will use Cartan-Kähler theory to capture the
local geometry. For the obstruction theory we plan to use ideas from the nearly Kähler case and the work.
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