Prime Graph Question for 4-primary groups II

Leo Margolis
University of Stuttgart
(With A. Bächle)

Brock International Conference on
Groups, Rings and Group Rings
August 1st 2014
As in Andreas talk we have:

- G finite group
- $\mathbb{Z}G$ integral group ring over G
- Augmentation map: $\varepsilon : \mathbb{Z}G \rightarrow \mathbb{Z}$, $\varepsilon(\sum_{g \in G} z_g g) = \sum_{g \in G} z_g$
- $V(\mathbb{Z}G)$ group of units of augmentation 1, aka normalized units
- \mathbb{Q}_p p-adic numbers, \mathbb{Z}_p p-adic integers
Prime Graph Question (Kimmerle, 2006)

(PQ) Let p and q be different primes. If $V(\mathbb{Z}G)$ contains an element of order pq, does G?

Theorem (Kimmerle, Konovalov, 2012)

Suppose that (PQ) has an affirmative answer for each almost simple image of G, then it has also a positive answer for G.
Prime Graph Question (Kimmerle, 2006)

(PQ) Let p and q be different primes. If $V(\mathbb{Z}G)$ contains an element of order pq, does G?

Theorem (Kimmerle, Konovalov, 2012)

Suppose that (PQ) has an affirmative answer for each almost simple image of G, then it has also a positive answer for $G.$
After applying HeLP to all almost simple 4-primary groups, we have the following cases left:

- Order 6 over $\text{PSL}(2, 2^f)$, for possibly infinitely many f
- Order 6 over $\text{PGL}(2, 3^f)$, for possibly infinitely many f
- Order 15 over $\text{PSL}(2, 81).\left(C_4 \times C_2\right)$
- Order 6 over $\text{PSL}(3, 4)$
- Order 15 over $\text{PSL}(3, 5).C_2$
- Order 21 over $\text{PSL}(3, 7).C_2$
- Order 6 over $\text{PSL}(3, 8)$
- Order 51 over $\text{PSL}(3, 17).C_2$
- Order 6 over $\text{PSU}(3, 4)$
- Order 21 over $\text{PSU}(3, 7).C_2$
- Order 10 over $\text{Sz}(32)$
- Order 21 over $G_2(3).C_2$
Let u be a torsion unit of some given order in $V(\mathbb{Z}G)$. After applying HeLP we get restrictions on the partial augmentations of u and thus on the eigenvalues of $D(u)$, where D is a representation of G. Can we use this knowledge to get even more restrictions on the partial augmentations?

Original motivation:

Theorem (Kimmerle, Konovalov, 2012)

(PQ) holds for all groups, whose order is divisible by exactly three different primes, if there are no units of order 6 in $V(\mathbb{Z}M_{10})$ and $V(\mathbb{Z}PGL(2,9))$.

Starting point: Hertweck’s handling of units of order 6 in $V(\mathbb{Z}A_6)$.

Leo Margolis University of Stuttgart (With A. Bächle)
Let u be a torsion unit of some given order in $V(\mathbb{Z}G)$. After applying HeLP we get restrictions on the partial augmentations of u and thus on the eigenvalues of $D(u)$, where D is a representation of G. Can we use this knowledge to get even more restrictions on the partial augmentations? Original motivation:

Theorem (Kimmerle, Konovalov, 2012)

(PQ) holds for all groups, whose order is divisible by exactly three different primes, if there are no units of order 6 in $V(\mathbb{Z}M_{10})$ and $V(\mathbb{Z}\text{PGL}(2, 9))$.

Starting point: Hertweck's handling of units of order 6 in $V(\mathbb{Z}A_6)$.
Let \(R \) be a complete local ring with maximal ideal \(P \) containing the prime \(p \). Denote by \(K \) the field of fractions of \(R \), by \(k \) the residue class field of \(R \) and by \(\bar{\cdot} \) the reduction modulo \(P \).

Proposition

Let \(G = \langle g \rangle \) be of order \(p^a m \) such that \(\gcd(p, m) = 1 \) and \(\xi \) a primitive \(m \)-th root of unity in \(R \). Let \(D \) be an \(R \)-representation of \(G \) and \(L \) an \(RG \)-lattice affording \(D \). Let \(A_i \) be sets with multiplicities s.t. \(\xi A_1 \cup \xi^2 A_2 \cup ... \cup \xi^m A_m \) are the complex eigenvalues of \(D(g) \).

Then \(L \cong L^{\xi} \oplus ... \oplus L^{\xi^m} \) and \(\bar{L} \cong \bar{L}^{\xi} \oplus ... \oplus \bar{L}^{\xi^m} \) s. t. \(\text{rank}_R(L^{\xi^i}) = \dim_k(L^{\xi^i}) = |A_i| \). Moreover if \(V_1, ..., V_m \) are \(KG \)-representations affording the representations \(E_1, ..., E_m \) s. t. \(E_i(g) \) has eigenvalues \(A_i \), then \(K \otimes_R L^{\xi^i} \cong V_i \) and \(L^{\xi^i} \) has only one composition factor up to isomorphism.
Main Proposition

Let R be a complete local ring with maximal ideal P containing the prime p. Denote by K the field of fractions of R, by k the residue class field of R and by $\overline{-}$ the reduction modulo P.

Proposition

Let $G = \langle g \rangle$ be of order $p^a m$ such that $\gcd(p, m) = 1$ and ξ a primitive m-th root of unity in R. Let D be an R-representation of G and L an RG-lattice affording D. Let A_i be sets with multiplicities s.t. $\xi A_1 \cup \xi^2 A_2 \cup ... \cup \xi^m A_m$ are the complex eigenvalues of $D(g)$.

Then $L \cong L^\xi \oplus ... \oplus L^{\xi^m}$ and $\overline{L} \cong \overline{L^\xi} \oplus ... \oplus \overline{L^{\xi^m}}$ s. t. $\text{rank}_R(L^\xi) = \dim_k(L^\xi) = |A_i|$. Moreover if $V_1, ..., V_m$ are KG-representations affording the representations $E_1, ..., E_m$ s.t. $E_i(g)$ has eigenvalues A_i, then $K \otimes_R L^\xi \cong V_i$ and L^ξ has only one composition factor up to isomorphism.
Let k be a field of characteristic p and $G = \langle g \rangle$ of order $p^a m$. Denote by ξ an primitive m-th r.o.u.

Lemma

Up to isomorphism there are m simple kG-modules. They are all 1-dim. and g^m acts trivially on them while g^{p^a} acts as ξ, \ldots, ξ^m. The projective indecomposable kG-modules have dimension p^a, are uniserial and have only one composition factor up to isomorphism. An indecomposable kG-module is a submodule of an projective, indecomposable kG-module.
Let k be a field of characteristic p and $G = \langle g \rangle$ of order $p^a m$. Denote by ξ an primitive m-th r.o.u.

Lemma

Up to isomorphism there are m simple kG-modules. They are all 1-dim. and g^m acts trivially on them while g^{p^a} acts as ξ, \ldots, ξ^m. The projective indecomposable kG-modules have dimension p^a, are uniserial and have only one composition factor up to isomorphism. An indecomposable kG-module is a submodule of an projective, indecomposable kG-module.
The easiest case

Next we need to establish a connection between A_i and the iso’type of L^{ξ^i}. This depends on the p-part of $\langle g \rangle$ and the ramification index of R over \mathbb{Z}_p and is a wild problem in general. The easiest case is the following:

Proposition

Assume R is unramified over \mathbb{Z}_p and let ζ be a primitive p-th root of unity. Up to isomorphism there are exactly 3 indecomposable RC_p-lattices $R, I(RC_p)$ and RC_p. All of them stay indecomposable when reduced modulo P. The corresponding eigenvalues are 1 and $\zeta, \zeta^2, ..., \zeta^{p-1}$ and $1, \zeta, ..., \zeta^{p-1}$ respectively.
The easiest case

Next we need to establish a connection between A_i and the iso’type of L^{ξ_i}. This depends on the p-part of $\langle g \rangle$ and the ramification index of R over \mathbb{Z}_p and is a wild problem in general. The easiest case is the following:

Proposition

Assume R is unramified over \mathbb{Z}_p and let ζ be a primitive p-th root of unity. Up to isomorphism there are exactly 3 indecomposable RC_p-lattices R, $I(RC_p)$ and RC_p. All of them stay indecomposable when reduced modulo P. The corresponding eigenvalues are 1 and $\zeta, \zeta^2, \ldots, \zeta^{p-1}$ and $1, \zeta, \ldots, \zeta^{p-1}$ respectively.
First applications for the Lattice-Method:

Theorem
There are no units of order 6 in $V(\mathbb{Z}M_{10})$ and $V(\mathbb{Z} \text{PGL}(2, 9))$, thus (PQ) holds for groups, whose order is divisible by exactly three different primes.

Theorem
The Zassenhaus-Conjecture holds for $\text{PSL}(2, 19)$.

A first application to a series of groups:

Theorem
Let $G = \text{PSL}(2, 2^f)$ with $3 \nmid f$. Then (PQ) holds for G.
First applications for the Lattice-Method:

Theorem
There are no units of order 6 in $V(\mathbb{Z}M_{10})$ and $V(\mathbb{Z}PGL(2, 9))$, thus (PQ) holds for groups, whose order is divisible by exactly three different primes.

Theorem
The Zassenhaus-Conjecture holds for $\text{PSL}(2, 19)$.

A first application to a series of groups:

Theorem
Let $G = \text{PSL}(2, 2^f)$ with $3 \nmid f$. Then (PQ) holds for G.
After applying HeLP to all almost simple 4-primary groups, we have the following cases left:

- Order 6 over $\text{PSL}(2, 2^f)$, for possibly infinitely many f
- Order 6 over $\text{PGL}(2, 3^f)$, for possibly infinitely many f
- Order 15 over $\text{PSL}(2, 81). (C_4 \times C_2)$
- Order 6 over $\text{PSL}(3, 4)$
- Order 15 over $\text{PSL}(3, 5). C_2$
- Order 21 over $\text{PSL}(3, 7). C_2$
- Order 6 over $\text{PSL}(3, 8)$
- Order 51 over $\text{PSL}(3, 17). C_2$
- Order 6 over $\text{PSU}(3, 4)$
- Order 21 over $\text{PSU}(3, 7). C_2$
- Order 10 over $\text{Sz}(32)$
- Order 21 over $\text{G}_2(3). C_2$
After applying HeLP to all almost simple 4-primary groups, we have the following cases left:

- **Order 6 over PSL(2, 2^f)**, for possibly infinitely many \(f \)
- **Order 6 over PGL(2, 3^f)**, for possibly infinitely many \(f \)
- **Order 15 over PSL(2, 81).\((C_4 \times C_2)\)**
- **Order 6 over PSL(3, 4)**
- **Order 15 over PSL(3, 5).C_2**
- **Order 21 over PSL(3, 7).C_2**
- **Order 6 over PSL(3, 8)**
- **Order 51 over PSL(3, 17).C_2**
- **Order 6 over PSU(3, 4)**
- **Order 21 over PSU(3, 7).C_2**
- **Order 10 over Sz(32)**
- **Order 21 over G_2(3).C_2**
After applying HeLP to all almost simple 4-primary groups, we have the following cases left

- **Order 6 over PSL(2, 2^f)**, for possibly infinitely many \(f \)
- **Order 6 over PGL(2, 3^f)**, for possibly infinitely many \(f \) (Decomposition)
- **Order 15 over PSL(2, 81).\((C_4 \times C_2)\)** (Data)
- **Order 6 over PSL(3, 4)**
- **Order 15 over PSL(3, 5).C_2**
- **Order 21 over PSL(3, 7).C_2**
- **Order 6 over PSL(3, 8)** (Representation type)
- **Order 51 over PSL(3, 17).C_2** (Data)
- **Order 6 over PSU(3, 4)**
- **Order 21 over PSU(3, 7).C_2**
- **Order 10 over Sz(32)** (Representation type)
- **Order 21 over G_2(3).C_2**
Sometimes the Lattice-Method is not successful when applied to G, but proves (PQ) for G when applied to some group A containing G.

For example $A = \text{Aut}(G)$ can help using Cliffords Theorem. Or M_{22} for $\text{PSL}(3,4)$.

→ Can we construct such “helping groups” to solve the open cases?
Thank you for your attention!