Rational conjugacy of torsion units in integral group rings of non-solvable groups

Andreas Baechle and Leo Margolis

Vrije Universiteit Brussels, University of Stuttgart

RTRA
Murcia, June 4th 2013
- G a finite group.
- RG group ring of G over the ring R.
- \mathbb{Q}_p the p-adic number field, \mathbb{Z}_p ring of integers of \mathbb{Q}_p.
- $\varepsilon : RG \to R$ augmentation map, $\varepsilon_x : RG \to R$ partial augmentation on the conjugacy class x^G for $x \in G$:
 \[\varepsilon(\sum_{g \in G} u_g g) = \sum_{g \in G} u_g \quad \text{and} \quad \varepsilon_x(\sum_{g \in G} u_g g) = \sum_{g \in x^G} u_g \]
- $U(RG)$ units in RG, $V(RG)$ units of augmentation 1 aka normalized units ($\pm V(\mathbb{Z}G) = U(\mathbb{Z}G)$).
- $\exp(V(\mathbb{Z}G)) = \exp(G)$. (Cohn-Livingstone ’65)
Notations and Setting

- G a finite group.
- RG group ring of G over the ring R.
- \mathbb{Q}_p the p-adic number field, \mathbb{Z}_p ring of integers of \mathbb{Q}_p.
- $\varepsilon : RG \to R$ augmentation map, $\varepsilon_x : RG \to R$ partial augmentation on the conjugacy class x^G for $x \in G$:

$$\varepsilon\left(\sum_{g \in G} u_g g\right) = \sum_{g \in G} u_g \quad \text{and} \quad \varepsilon_x\left(\sum_{g \in G} u_g g\right) = \sum_{g \in x^G} u_g$$

- $U(RG)$ units in RG, $V(RG)$ units of augmentation 1 aka normalized units ($\pm V(\mathbb{Z}G) = U(\mathbb{Z}G)$).
- $\exp(V(\mathbb{Z}G)) = \exp(G)$. (Cohn-Livingstone '65)
Notations and Setting

- G a finite group.
- RG group ring of G over the ring R.
- \mathbb{Q}_p the p-adic number field, \mathbb{Z}_p ring of integers of \mathbb{Q}_p.
- $\varepsilon : RG \to R$ augmentation map, $\varepsilon_x : RG \to R$ partial augmentation on the conjugacy class x^G for $x \in G$:
 \[\varepsilon(\sum_{g \in G} u_g g) = \sum_{g \in G} u_g \quad \text{and} \quad \varepsilon_x(\sum_{g \in G} u_g g) = \sum_{g \in x^G} u_g \]
- $U(RG)$ units in RG, $V(RG)$ units of augmentation 1 aka normalized units ($\pm V(\mathbb{Z}G) = U(\mathbb{Z}G)$).
- $\exp(V(\mathbb{Z}G)) = \exp(G)$. (Cohn-Livingstone ’65)
(First) Zassenhaus Conjecture (H.J. Zassenhaus, in the ’60s)

For \(u \in V(\mathbb{Z}G) \) of finite order there exist \(x \in U(\mathbb{Q}G) \) and \(g \in G \) s.t. \(x^{-1}ux = g \).

A weaker version of this conjecture is:

Prime Graph Question

Let \(p \) and \(q \) be different primes s.t. \(V(\mathbb{Z}G) \) has an element of order \(pq \). Does this imply that \(G \) has an element of that order? I.e.: Do \(G \) and \(V(\mathbb{Z}G) \) have the same prime graph?
(First) Zassenhaus Conjecture (H.J. Zassenhaus, in the ’60s)

For \(u \in V(\mathbb{Z}G) \) of finite order there exist \(x \in U(\mathbb{Q}G) \) and \(g \in G \) s.t. \(x^{-1}ux = g \).

A weaker version of this conjecture is:

Prime Graph Question

Let \(p \) and \(q \) be different primes s.t. \(V(\mathbb{Z}G) \) has an element of order \(pq \). Does this imply that \(G \) has an element of that order? I.e.: Do \(G \) and \(V(\mathbb{Z}G) \) have the same prime graph?
The Zassenhaus Conjecture is known for some series of solvable groups (e.g. nilpotent groups (Weiss ’91)) and for some non-solvable. E.g.:

- A_5 (Luthar-Passi ’89),
- S_5 (Luthar-Trama ’91),
- Central extensions of S_5 (Bovdi-Hertweck ’08),
- $\text{PSL}(2, p)$, p a prime, $p \leq 17$. (Hertweck ’07, Gildea ’12, Kimmerle-Konovalov ’12),
- $\text{PSL}(2, 8)$ (Gildea ’12, Kimmerle-Konovalov ’12),
- $A_6 \cong \text{PSL}(2, 9)$ (Hertweck ’07).
The Zassenhaus Conjecture is known for some series of solvable groups (e.g. nilpotent groups (Weiss ’91)) and for some non-solvable. E.g.:

- A_5 (Luthar-Passi ’89),
- S_5 (Luthar-Trama ’91),
- Central extensions of S_5 (Bovdi-Hertweck ’08),
- $\text{PSL}(2, p)$, p a prime, $p \leq 17$. (Hertweck ’07, Gildea ’12, Kimmerle-Konovalov ’12),
- $\text{PSL}(2, 8)$ (Gildea ’12, Kimmerle-Konovalov ’12),
- $A_6 \cong \text{PSL}(2, 9)$ (Hertweck ’07).
The Zassenhaus Conjecture is known for some series of solvable groups (e.g. nilpotent groups (Weiss ’91)) and for some non-solvable. E.g.:

- A_5 (Luthar-Passi ’89),
- S_5 (Luthar-Trama ’91),
- Central extensions of S_5 (Bovdi-Hertweck ’08),
- $\text{PSL}(2, p)$, p a prime, $p \leq 17$. (Hertweck ’07, Gildea ’12, Kimmerle-Konovalov ’12),
- $\text{PSL}(2, 8)$ (Gildea ’12, Kimmerle-Konovalov ’12),
- $A_6 \cong \text{PSL}(2, 9)$ (Hertweck ’07).
The Prime Graph Question is known for:

- Solvable Groups (Kimmerle ’06),
- $\text{PSL}(2, p)$, p a prime (Hertweck ’07),
- Many sporadic simple groups (Bovdi, Konovalov et al. 07’ -),
- Groups, whose order is divisible by at most three primes, if there are no units of order 6 in $V(\mathbb{Z}\text{PGL}(2, 9))$ and in $V(\mathbb{Z}M_{10})$. (Where M_{10} denotes the Mathieu group of degree 10.) (Kimmerle-Konovalov ’12)
Our results

Theorem

The Zassenhaus Conjecture holds for $\text{PSL}(2, 19)$ and $\text{PSL}(2, 23)$.

Theorem

There are no units of order 6 in $V(\mathbb{Z} \text{PGL}(2, 9))$ and in $V(\mathbb{Z} M_{10})$.

Corollary

If the order of G is divisible by at most three primes, then the Prime Graph question has a positive answer for G.
Our results

Theorem

The Zassenhaus Conjecture holds for $\text{PSL}(2, 19)$ and $\text{PSL}(2, 23)$.

Theorem

There are no units of order 6 in $V(\mathbb{Z} \text{ PGL}(2, 9))$ and in $V(\mathbb{Z} M_{10})$.

Corollary

If the order of G is divisible by at most three primes, then the Prime Graph question has a positive answer for G.
The connection between rational conjugacy and partial augmentations is:

Lemma

\[u \in V(\mathbb{Z}G) \text{ is conjugate in } \mathbb{Q}G \text{ to an element of } G \text{ if and only if } \varepsilon_g(v) \geq 0 \text{ for every } v \in \langle u \rangle \text{ and every } g \in G. \]

General knowledge on partial augmentations of a torsion unit \(u \in V(\mathbb{Z}G) \):

- \(\varepsilon_1(u) = 0 \), if \(u \neq 1 \). (Berman-Higman ’39/’51)
- \(\varepsilon_x(u) \neq 0 \), then the order of \(x \) divides the order of \(u \). (Marciniak-Ritter-Sehgal-Weiss ’87, Hertweck ’07)
The connection between rational conjugacy and partial augmentations is:

Lemma

\[u \in V(\mathbb{Z}G) \text{ is conjugate in } \mathbb{Q}G \text{ to an element of } G \text{ if and only if } \varepsilon_g(v) \geq 0 \text{ for every } v \in \langle u \rangle \text{ and every } g \in G. \]

General knowledge on partial augmentations of a torsion unit \(u \in V(\mathbb{Z}G) \):

- \(\varepsilon_1(u) = 0 \), if \(u \neq 1 \). (Berman-Higman ’39/’51)
- \(\varepsilon_x(u) \neq 0 \), then the order of \(x \) divides the order of \(u \). (Marciniak-Ritter-Sehgal-Weiss ’87, Hertweck ’07)
The HeLP-method (Hertweck ’07, Luthar-Passi ’89) establishes a connection between partial augmentations and eigenvalues under representations:

Let \(u \in V(\mathbb{Z}G) \) be a torsion unit of order \(n \), \(K \) an algebraically closed field of characteristic not dividing \(n \) and \(D \) a \(K \)-representation of \(G \) with character \(\chi \). Let \(\zeta \) be a primitive \(n \)-th root of unity and \(\xi \) some \(n \)-th root of unity. Then the number of times \(\xi \) appears as an eigenvalue of \(D(u) \) is

\[
\frac{1}{n} \sum_{d \mid n, \ d \neq 1} \text{Tr}_{\mathbb{Q}(\zeta^d)/\mathbb{Q}}(\chi(u^d)\xi^{-1}) + \frac{1}{n} \sum_{x \in G, \ p \mid o(x)} \epsilon_x(u) \text{Tr}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\chi(x)\zeta^{-1}).
\]
The HeLP-method (Hertweck ’07, Luthar-Passi ’89) establishes a connection between partial augmentations and eigenvalues under representations:

Let $u \in V(\mathbb{Z}G)$ be a torsion unit of order n, K an alg. closed field of characteristic not dividing n and D a K-representation of G with character χ. Let ζ be a prim. n-th root of unity and ξ some n-th root of unity. Then the number of times ξ appears as an eigenvalue of $D(u)$ is

$$
\frac{1}{n} \sum_{d \mid n, \ d \neq 1} \text{Tr}_{\mathbb{Q}(\zeta^d)/\mathbb{Q}}(\chi(u^d)\xi^{-1}) + \frac{1}{n} \sum_{x \in G, \ p \nmid o(x)} \varepsilon(x(u))\text{Tr}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\chi(x)\zeta^{-1}).
$$
Part of the ordinary character table of A_6:

<table>
<thead>
<tr>
<th></th>
<th>1a</th>
<th>2a</th>
<th>3a</th>
<th>3b</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>-1</td>
</tr>
</tbody>
</table>

Let D be a representation affording χ and ζ a prim. 3rd root of unity. Assume $u \in V(\mathbb{Z}A_6)$ is of order 6, s.t. $\varepsilon_{2a}(u) = -2$, $\varepsilon_{3a}(u) = 2$, $\varepsilon_{3b}(u) = 1$ and u^4 is rationally conjugate to an element in $3b$. Then $\chi(u^3) = 1$ and $\chi(u^4) = -1$, so

$D(u^3) \sim \text{diag}(1, 1, 1, -1, -1), \quad D(u^4) \sim \text{diag}(1, \zeta, \zeta^2, \zeta, \zeta^2).$

The eigenvalues of $D(u)$ are products of the eigenvalues of $D(u^3)$ and $D(u^4)$ and

$\chi(u) = \varepsilon_{2a}(u)\chi(2a) + \varepsilon_{3a}(u)\chi(3a) + \varepsilon_{3b}(u)\chi(3b) = 1.$

This gives

$D(u) \sim \text{diag}(1, \zeta, \zeta^2, -\zeta, -\zeta^2).$
Basic idea

Natural question: What can we do with the eigenvalues? Let:

- p a prime dividing the order of u,
- D an ordinary representation of G,
- K the p-adic completion of a number field affording D with minimal ramification index over \mathbb{Q}_p,
- R the ring of integers of K with maximal ideal P, s.t. $p \in P$,
- L an RG-lattice affording D,
- $k = R/P$ the quotient field of R,
- $\bar{\mathbb{F}}$ the reduction mod P.

Eigenvalues of $D(u) \longrightarrow$ Poss. iso’types of \bar{L} as $k\langle \bar{u}\rangle$-module.

↓

$K\langle u\rangle$-composition factors of $L \longrightarrow$ Poss. iso’types of L as $R\langle u\rangle$-lattice
Basic idea

Natural question: What can we do with the eigenvalues? Let:

- p a prime dividing the order of u,
- D an ordinary representation of G,
- K the p-adic completion of a number field affording D with minimal ramification index over \mathbb{Q}_p,
- R the ring of integers of K with maximal ideal P, s.t. $p \in P$,
- L an RG-lattice affording D,
- $k = R/P$ the quotient field of R,
- $\bar{\mathbb{F}}$ the reduction mod P.

Eigenvalues of $D(u) \rightarrow$ Poss. iso’types of \bar{L} as $k\langle \bar{u} \rangle$-module.

$K\langle u \rangle$-composition factors of $L \rightarrow$ Poss. iso’types of L as $R\langle u \rangle$-lattice
Basic idea

Natural question: What can we do with the eigenvalues? Let:

- p a prime dividing the order of u,
- D an ordinary representation of G,
- K the p-adic completion of a number field affording D with minimal ramification index over \mathbb{Q}_p,
- R the ring of integers of K with maximal ideal P, s.t. $p \in P$,
- L an RG-lattice affording D,
- $k = R/P$ the quotient field of R,
- $\bar{\mathbb{K}}$ the reduction mod P.

Eigenvalues of $D(u)$ \rightarrow Poss. iso’types of \bar{L} as $k\langle \bar{u} \rangle$-module.

↓

$K\langle u \rangle$-composition factors of L \rightarrow Poss. iso’types of L as $R\langle u \rangle$-lattice.
Basic idea

Natural question: What can we do with the eigenvalues? Let:

- p a prime dividing the order of u,
- D an ordinary representation of G,
- K the p-adic completion of a number field affording D with minimal ramification index over \mathbb{Q}_p,
- R the ring of integers of K with maximal ideal P, s.t. $p \in P$,
- L an RG-lattice affording D,
- $k = R/P$ the quotient field of R,
- $\bar{\ }$ the reduction mod P.

Eigenvalues of $D(u) \longrightarrow$ Poss. iso’types of \bar{L} as $k\langle \bar{u} \rangle$-module.

$K\langle u \rangle$-composition factors of $L \longrightarrow$ Poss. iso’types of L as $R\langle u \rangle$-lattice
Notation as above, let \(\circ(u) = p^a m \) with \(p \nmid m \), let \(\zeta \) a prim. \(m \)-th root of unity s.t. \(\zeta \in R \). Let \(A_i \) be tuples of \(p^a \)-th roots of unity s.t. the eigenvalues of \(D(u) \) are \(\zeta A_1 \cup \zeta^2 A_2 \cup ... \cup \zeta^m A_m \). Then as \(R\langle u \rangle \)-lattice \(L \cong M_1 \oplus ... \oplus M_m \) s.t. \(\text{rang}_R(M_i) = |A_i| = \dim_k(\bar{M}_i) \) and \(\bar{M}_i \) has only one composition factor up to isomorphism.

Easiest case: \(K \) unramified over \(\mathbb{Q}_p \), \(\circ(u) = p \). There are three indecomposable \(R\langle u \rangle \)-lattices \(R \), \(I(RC_p) \), \(RC_p \) of rank 1, \(p - 1 \), \(p \) resp. with corresponding eigenvalues \(\{1\} \), \(\{\xi_p, ..., \xi_p^{p-1}\} \), \(\{1, \xi_p, ..., \xi_p^{p-1}\} \), where \(\xi_p \) is a primitive \(p \)-th root of unity. The reduction of any such lattice stays indecomposable.
Notation as above, let $\circ(u) = p^a m$ with $p \nmid m$, let ζ a prim. m-th root of unity s.t. $\zeta \in R$. Let A_i be tuples of p^a-th roots of unity s.t. the eigenvalues of $D(u)$ are $\zeta A_1 \cup \zeta^2 A_2 \cup \ldots \cup \zeta^m A_m$. Then as $R\langle u \rangle$-lattice $L \cong M_1 \oplus \ldots \oplus M_m$ s.t. $\text{rang}_R(M_i) = |A_i| = \dim_k(\overline{M}_i)$ and \overline{M}_i has only one composition factor up to isomorphism.

Easiest case: K unramified over \mathbb{Q}_p, $\circ(u) = p$. There are three indecomposable $R\langle u \rangle$-lattices R, $I(R\mathbb{C}_p)$, $R\mathbb{C}_p$ of rank 1, $p - 1$, p resp. with corresponding eigenvalues $\{1\}$, $\{\xi_p, \ldots, \xi_{p-1}^p\}$, $\{1, \xi_p, \ldots, \xi_{p-1}^p\}$, where ξ_p is a primitive p-th root of unity. The reduction of any such lattice stays indecomposable.
Let $G = \text{PSL}(2, 19)$. After applying HeLP the only critical case left is:

\[\circ(u) = 10, (\varepsilon_{5a}(u), \varepsilon_{5b}(u), \varepsilon_{10a}(u)) = (1, -1, 1). \]

Let the setting be as above with $p = 5$ and let ζ be a primitive 5th root of unity.

There are ordinary representations D_{18} and D_{19} s.t. D_{18} is a $\mathbb{Z}_5[\zeta + \zeta^{-1}]$-representation and D_{19} a \mathbb{Z}_5-representation. If L_{18} and L_{19} are RG-lattices (R is different) then $\bar{L}_{18} \leq \bar{L}_{19}$ and $\bar{L}_{19}/\bar{L}_{18} \cong \text{trivial } kG$-module.
Let $G = \text{PSL}(2, 19)$. After applying HeLP the only critical case left is:

$\circ(u) = 10, (\varepsilon_{5a}(u), \varepsilon_{5b}(u), \varepsilon_{10a}(u)) = (1, -1, 1)$. Let the setting be as above with $p = 5$ and let ζ be a primitive 5th root of unity.

There are ordinary representations D_{18} and D_{19} s.t. D_{18} is a $\mathbb{Z}_5[\zeta + \zeta^{-1}]$-representation and D_{19} a \mathbb{Z}_5-representation. If L_{18} and L_{19} are RG-lattices (R is different) then $\bar{L}_{18} \leq \bar{L}_{19}$ and $\bar{L}_{19}/\bar{L}_{18} \cong$ trivial kG-module.
Using the given partial augmentations we compute:

\[D_{18}(u) \sim \text{diag}(A, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^4, -\zeta, -\zeta^4), \]
\[D_{19}(u) \sim \text{diag}(A', -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4), \]

where \(A \) and \(A' \) are some 5th roots of unity.

→ As \(k\langle \bar{u} \rangle \)-modules we have \(\bar{L}_{19} \cong M^1_{19} \oplus M^{-1}_{19} \) and \(\bar{L}_{18} \cong M^1_{18} \oplus M^{-1}_{18} \), where all compositions factors of \(M^*_1 \) are trivial and all composition factors of \(M^{-1}_* \) are non-trivial. Then \(M^{-1}_{19} \in \{ 2(k)_- \oplus 2I(kC_5)_-, (k)_- \oplus I(kC_5)_- \oplus (kC_5)_-, 2(kC_5)_- \} \).

As \(\bar{L}_{19}/\bar{L}_{18} \) is a trivial module, we have \(M^{-1}_{18} \cong M^{-1}_{19} \), but this is impossible by the composition factors of \(M^{-1}_{18} \) (by results of Jacobinski ’67 and Gudivok ’65).

→ The Zassenhaus Conjecture holds for PSL(2, 19).
Using the given partial augmentations we compute:

\[D_{18}(u) \sim \text{diag}(A, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^4, -\zeta, -\zeta^4), \]
\[D_{19}(u) \sim \text{diag}(A', -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4), \]

where \(A \) and \(A' \) are some 5th roots of unity.

→ As \(k\langle \bar{u} \rangle \)-modules we have \(\bar{L}_{19} \cong M^1_{19} \oplus M^{-1}_{19} \) and \(\bar{L}_{18} \cong M^1_{18} \oplus M^{-1}_{18} \), where all compositions factors of \(M^1_* \) are trivial and all composition factors of \(M^{-1}_* \) are non-trivial. Then \(M^{-1}_{19} \in \{ 2(k)_- \oplus 2I(kC_5)_-, (k)_- \oplus I(kC_5)_- \oplus (kC_5)_-, 2(kC_5)_- \} \).

As \(\bar{L}_{19}/\bar{L}_{18} \) is a trivial module, we have \(M^{-1}_{18} \cong M^{-1}_{19} \), but this is impossible by the composition factors of \(M^{-1}_{18} \) (by results of Jacobinski ’67 and Gudivok ’65).

→ The Zassenhaus Conjecture holds for \(\text{PSL}(2, 19) \).
Using the given partial augmentations we compute:

\[D_{18}(u) \sim \text{diag}(A, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^4, -\zeta, -\zeta^4), \]
\[D_{19}(u) \sim \text{diag}(A', -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4), \]

where \(A \) and \(A' \) are some 5th roots of unity.

\[\rightarrow \text{As } k\langle \bar{u} \rangle \text{-modules we have } \bar{L}_{19} \cong M_{19}^1 \oplus M_{19}^{-1} \text{ and } \bar{L}_{18} \cong M_{18}^1 \oplus M_{18}^{-1}, \]
where all compositions factors of \(M_* \) are trivial and all composition factors of \(M_*^{-1} \) are non-trivial. Then \(M_{19}^{-1} \in \{ 2(k)_- \oplus 2l(kC_5)_-, (k)_- \oplus l(kC_5)_- \oplus (kC_5)_-, 2(kC_5)_- \} \).

As \(\bar{L}_{19}/\bar{L}_{18} \) is a trivial module, we have \(M_{18}^{-1} \cong M_{19}^{-1} \), but this is impossible by the composition factors of \(M_{18}^{-1} \) (by results of Jacobinski '67 and Gudivok '65).

\[\rightarrow \text{The Zassenhaus Conjecture holds for } \text{PSL}(2, 19). \]
Using the given partial augmentations we compute:

\[D_{18}(u) \sim \text{diag}(A, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^4, -\zeta, -\zeta^4), \]

\[D_{19}(u) \sim \text{diag}(A', -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4), \]

where \(A \) and \(A' \) are some 5th roots of unity.

→ As \(k\langle \bar{u} \rangle \)-modules we have \(\bar{L}_{19} \cong M^1_{19} \oplus M^{-1}_{19} \) and \(\bar{L}_{18} \cong M^1_{18} \oplus M^{-1}_{18} \), where all compositions factors of \(M^*_1 \) are trivial and all composition factors of \(M^*_{-1} \) are non-trivial. Then \(M^{-1}_{19} \in \{ 2(k)_- \oplus 2I(kC_5)_-, (k)_- \oplus I(kC_5)_- \oplus (kC_5)_-, 2(kC_5)_- \} \).

As \(\bar{L}_{19}/\bar{L}_{18} \) is a trivial module, we have \(M^{-1}_{18} \cong M^{-1}_{19} \), but this is impossible by the composition factors of \(M^{-1}_{18} \) (by results of Jacobinski ’67 and Gudivok ’65).

→ The Zassenhaus Conjecture holds for PSL(2, 19).
Thank you for your attention!